
Abstract. The current state of Monte Carlo work on phase
transitions and critical phenomena is reviewed. Both classical
and quantum Monte Carlo results are discussed with emphasis
on statistical lattice-model studies involving the highly accurate
calculation of critical exponents. It is shown that finite-size
scaling is an effective method whereby not only simple lattice
models but also those of complex practical magnetic materials
can be treated. For models allowing crossover phenomena, it is
shown that both finite-size scaling theory and conventional
power-law functions must be used in carrying out a Monte
Carlo analysis.

1. Introduction

In recent years we have witnessed considerable progress in the
understanding of phase transitions (PT) and critical phenom-
ena (CP), a lot of the credit for which should go to the ideas
based on the scaling and universality hypotheses and the
theory of renormalization group (RG) [1 ± 4]. A precursor of
these microscopic approaches is the phenomenological
Landau theory of second-order phase transitions in the
framework of which critical exponents (CE) were calculated
for the first time. However, the numerical values of these
exponents did not coincide with those obtained experimen-
tally inmagnets, ferroelectrics, and liquids. V LGinzburg was
the first to point out that spatially heterogeneous fluctuations
of the order parameter should be taken into account in the

Landau theory [5]. He suggested a criterion for the applic-
ability of the Landau theory, which was shown to be valid as
long as the fluctuations of the order parameter, averaged over
a volume comparable with the coherence length, are less than
the order parameter. The recognition of the paramount
importance of the consideration of the order parameter
fluctuations has played a key role in the development of the
above-mentionedmicroscopic theories and approaches. They
have appeared a good tool to enable researchers to obtain the
majority of important results of modern PT and CP theories,
to reveal the main features of the behavior in the critical
region, to find relations between the critical exponents and
critical amplitudes (CA), to derive equations of state, and to
calculate values of CE and CA. The RG method and the
e expansion are considered nowadays to yield themost precise
and reliable values of CE and CA obtained by approximate
methods [6 ± 8]. The ideas underlying all these methods have
provided a deep insight into the nature of critical phenomena.
Nevertheless, we have to state that no rigorous microscopic
theory of the second-order phase transitions still exists
nowadays [9]. The majority of theoretical results that were
obtained in recent years are based on the use of the RG
method. But some of the statements and techniques employed
in the RG theory cannot be considered rigorously proved and
justified [2]. Note also that the problem of the influence of
nonideal features, inherent in real systems, on the results of
studying CP are still to be understood. Now the emphasis is
given to the study of more realistic models with regard to
numerous complicating factors, such as anisotropy and
impurity effects, multispin exchange, dipole ± dipole interac-
tion, lattice vibrations, etc. inherent in real systems, but
disregarded in the earlier models [2] (e.g., the classical Ising
and Heisenberg models). A rigorous study of such systems
with the use of microscopic Hamiltonians by methods of
modern theoretical physics is an extremely difficult problem.
In view of this and some other reasons, phase transitions and
critical phenomena are intensively investigated by numerical-
simulation methods such as Monte Carlo (MC) and mole-
cular dynamics (MD) [10 ± 18]. The present stage of the
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studies of PT and CP can probably be called `computer-
based.' For comparison, Figs 1 and 2 show the data on the
critical exponent n of the correlation radius and the inverse
critical temperature Kc � J=kBT, obtained by various meth-
ods for the Ising and Heisenberg models (here and below we
use the conventional symbols for the critical exponents).
Although the quantitative study of the critical region by MC
methods has been made possible only in the very recent past,
the accuracy of the data obtained is highly competitive with
the most accurate results obtained by other methods and
sometimes is even superior to them [16, 17]. Now the accuracy
of the results is mainly determined by hardware and software
resources used by researchers and their experience. Besides,
the MC methods have some valuable advantages concerned
with their rigid mathematical justification and the possibility
of control over the accuracy of results by the resources of the
methods themselves. Moreover, the results can be visualized
and a great body of attendant information can easily be
displayed. The weaknesses of these methods can be taken into
account and their influence on the results of numerical
calculations can easily be controlled [10, 12, 15].

MC methods have been successfully used to study a large
number of systems undergoing phase transitions. The results
of such investigations have been reviewed, e.g., in Refs [10,
16 ± 18]. But so far the primary emphasis has been given to
simple ferromagnetic systems with interacting nearest neigh-
bors. The study of real substances with regard to their

concrete crystal structure, multispin and relativistic effects
of interactions between next nearest and more distant
neighbors has received less attention. Besides, in most works
where the MC methods are used to investigate lattice models
the critical region is treated only qualitatively. Therefore in
this review we will deal mainly with the results obtained in the
studies of systems near or at the critical point. Of all the
extensive material on the subject we will consider only the
papers where some original results are found, the CE and CA
are calculated with high accuracy, and new methods and
approaches are used to study PT and CP. Besides, we
concentrate mainly on models treating magnetic PT and CP,
since we believe that significant progress has been achieved
there, and our review can bridge a gap concernedwith the lack
of analogous reviews in Russian literature.

This paper is arranged as follows. First we briefly describe
the classical version of the MC method used in statistical
physics (Metropolis algorithm), consider some most up-to-
date highly efficient MC algorithms, discuss quantum MC
methods, and outline the Handscomb approach. In Section 3
we discuss the results obtained in studies of phase transitions
and static critical phenomena in model systems. Section 4 is
devoted to the study of PT and CP in quantum-lattice
systems. The results of investigations of real magnetic
substances with the use of microscopic Hamiltonians are
presented in Section 5. The data obtained in studies of critical
dynamics by MC are considered in Section 6.

2. MC methods in statistical physics

2.1 Classical MC method
Let us consider a canonical ensemble consisting ofN particles
in a volume V at a temperature T. Since we will investigate
models on a regular lattice, the variableV can be omitted, and
therefore we will deal with two thermodynamic variables N
and T. Below we will mainly use `magnetic' jargon.

In statistical mechanics, the average of any smooth
function f �x� is written as [19]

h f �x �i �
�
V f �x�P�x� dx�

V P�x� dx
; �2:1�

whereP�x� is the probability density forN dimensional vector
x in region V, x � �r1; r2; :::; rN�, where ri is the radius vector
of the ith particle;�

V

dx �
�
V

dr1:::

�
V

drN ;

Peq�x � � P�x � � exp

�
ÿHN�x �

kBT

�
: �2:2�

Here HN�x� is the Hamiltonian of the system and kB is the
Boltzmann constant. Unfortunately, integrals of type (2.1),
calculated by partition of the region V and random sampling
of points, are of little interest in statistical physics. The MC
method used in statistical physics is based on the idea of an
`essential' sample [10 ± 12, 20, 21]. In this version the points
are chosen in the region V so that their probabilities are
proportional to their Boltzmann factor (2.2). Then expression
(2.1) takes on the form

h f �x �i� f �x ��
P

i�1 f �xi�Pÿ1�xi� exp�ÿH�xi�=kBT �P
i�1 Pÿ1�xi� exp�ÿH�xi�=kBT �

: �2:3�
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Choosing P�xi� in accordance with (2.2), expression (2.3)
transforms into the mean average

f �x � � 1

M

XM
i�1

f �xi� : �2:4�

In real systems the exact value ofPeq�xi� is not known, but
can be obtained by a random walk fxig in the phase space
with the use of a Markovian process so that limi!1 P�xi� �
Peq�xi�. The Markovian process is determined by the
probabilityW�xi ! xj� of the transition from a point xi to a
point xj. The condition of microscopic reversibility provides a
way to evaluate the probabilityW�xi ! xj�:

Peq�xi�W�xi ! xj� � Peq�xj�W�xj ! xi� : �2:5�

In accordance with (2.5), the ratio of transition probabil-
ities depends only on the change in the energy DH �
HN�xj� ÿHN�xi�:

W�xi ! xj�
W�xj ! xi� � exp

�
ÿ DH
kBT

�
: �2:6�

Equation (2.6) does not determine unambiguously a single
value ofW�xi ! xj�, therefore the choice is carried out using
the Metropolis algorithm [20 ± 22]:

W�xi ! xj� �

1

N
if DH � 0 ;

1

N
exp

�
ÿ DH
kBT

�
if DH > 0 ;

1ÿ
X
i 6�j

W�xi ! xj� if i � j :

8>>>>>>>><>>>>>>>>:
�2:7�

The above scheme based on the essential sampling
provides a good accuracy for estimating f �x� far away from
the critical region with the use of rather few MC steps per
particle (about 103 ± 104). Note that the error of estimating
�f �x� is expressed as

�df �x��2 � 1

M�Mÿ 1�
XM
i�1
�f �x� ÿ f �xi��2 ; �2:8�

whereM4 1, andM is the number of intermediate averages
in K0 steps. If the total number of steps is considered to be
equal to K, thenM � K=K0.

Numerous investigations obtained by MC methods
demonstrate that these methods are a powerful apparatus
for studying classical systems [10 ± 18, 20 ± 22]. However, near
the critical point the effectiveness of the method decreases
sharply, and so-called critical retarding takes place. The
critical retarding probably presents the gravest obstacle to
the study of phase transitions and critical phenomena byMC
methods.

According to the modern views of PT and CP, the
relaxation time at the critical temperature Tc of phase
transition is divergent [1, 2] as

t � xz ; �2:9�

where x is the correlation length x � �T=Tc ÿ 1�ÿn and z is the
dynamic critical exponent. The typical value of the exponent z

is 2 for a large number of models [1, 2]. Thus, the relaxation
time increases sharply as T! Tc. The increase of t to infinity
makes the MC method inefficient near the point of the
second-order transitions. The reason is that in the Metropo-
lis algorithm, an MC test consists in flipping a single spin,
while the phase phenomena near the critical points are caused
by fluctuations of large-sized spin clusters.

In finite-sized systems used in numerical simulations, the
cluster size is restricted by the size L of the system under
consideration [18]. In this case, the relaxation time t atT � Tc

is determined as

t � Lz : �2:10�

Recently some new algorithms of the MC method have
been proposed, which enable one to obviate the problem of
critical retarding. Among these aremultigrid algorithms [23 ±
28], overrelaxationmethods [29 ± 32], algorithms based on the
RG theory [33 ± 36], and cluster algorithms [37 ± 40], various
versions of which based on the percolation approach [37, 38]
are especially popular.

There are some other methods where various combined
schemes are used to get around some particular problems
[41 ± 43]. For example, in Ref. [42] a Replica MCmethod was
proposed to increase the efficiency of cluster algorithms as
applied to the frustrated systems, while in Ref. [43] this
method was used to study spin glasses, namely, Ising spin
glasses in 2-, 3-, and 4-dimensional spaces [42, 44 ± 46].

Among the new algorithms, the multicluster Swendsen ±
Jang method [37] and one-cluster Wollf approach [38] are the
most efficient. We briefly outline them.

The Swendsen ± Jang algorithm is based on two transfor-
mations:

(1) a spin configuration is replaced by a configuration of
spin bonds;

(2) the configuration of bonds is used to produce a new
spin configuration.

Both the operations deal with random numbers.
Bonds between the nearest neighbors Sj of a spin Si arise

with a probability P � 1ÿ exp�ÿK�, where K � J=kBT if Sj
has the same value as Si. If the nearest spins Si and Sj have
different values, a bond between them does not form, and, as
a result, they cannot be included in the same cluster. Within
the limits of a single cluster, all the spins have the same value.
Then the selected spin Si is MC tested. On Si taking a new
value, the same value is applied to all the spins of the cluster.
After that the procedure is repeated, starting with a new
configuration.

The algorithm is most efficient for the vectorization of
calculations and for large lattices. The high efficiency of the
method is also supported by the values of z obtained in the
Ising models. Thus, for a 2-dimensional system �d � 2�,
z � 2:1 if the conventional algorithm is used and z � 0:35 in
the case of the Swendsen ± Jang algorithm. In the three-
dimensional model, the conventional method yields z � 2,
while the Swendsen ± Jang algorithm results in z � 0:55 [37].
This algorithm is easily extended to the case of antiferromag-
netic interactions in an external magnetic field [37].

The one-cluster Wollf algorithm [38] differs from the
Swendsen ± Jang method in two points:

(1) as in the above-described method, all the nearest
neighbors of a chosen spin Si are included in a cluster around
this spin with the probability P � 1ÿ exp�ÿK�. However,
after that the second neighbors with the same spin are
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included in the cluster, with the same probability and the
procedure is repeated until the cluster reaches the boundaries
of the system;

(2)thethusobtainedcluster isreorientedwithprobability1.
Peculiarities of the application of this algorithm to models
with continuous symmetry are considered in Ref. [38].

Note that for the three-dimensional Ising model this
algorithm yields z � 0:4, arguing for its high efficiency with
respect to the Swendsen ± Jang method.

Both the algorithms are ergodic and nonlocal. Although
they are widely used, the problem of which algorithm is more
efficient, in particular, as applied to various models, is still
unclear [39]. For example, according to Ref. [41], the Wollf
algorithm ismore efficient due to the fact that the average size
of a cluster with changed spins is larger than that in the
Swendsen ± Jang method.

Note that some algorithms are not ergodic (for example,
theReplicaMonte Carlomethod), while others correspond to
the microscopic ensemble (overrelaxation method), and they
should be combined with other methods, for instance, with
the Metropolis algorithm [22].

2.2 Quantum Monte Carlo method
At present, the possibility of efficient application of the MC
schemes in studies of quantum systems (in particular, lattice
models with arbitrary spin in a wide range of varying physical
parameters) is highly problematic. There are several
approaches to the use of MC methods in such problems.

One of the approaches is based on the Trotter formula
[47 ± 52]

exp

�Xp
i�1

Ai

�
� lim

n!1

�
exp

�
A1

n

�
exp

�
A2

n

�
::: exp

�
Ap

n

��n

;

�2:11�
which transforms any d-dimensional quantum system into a
�d� 1�-dimensional classical system of a general type. This
method was used to study the one-dimensional Ising [53], the
one-dimensional Heisenberg, and the XY models [54, 55].
Most of the cited papers, especially [52], deal with the effects
related to the finite value of the additional dimensionality �n�.
The additional dimensionality is usually considered as
discrete imaginary time (0<n<b, b � 1=kBT ). The use of
formula (2.11) results in the division of the imaginary time
scale into N discrete intervals of length Dn �b � NDn�; the
division is valid when the additional dimensionality is infinite,
but the latter cannot be realized in numerical calculations.
This means that in the MC calculations with the use of the
above procedure, one more error � Dn2 arises in addition to
the usual errors of theMCmethod that are related to the finite
scale of the time interval. As the temperature decreases, the
number N of time intervals should be magnified to keep the
desired accuracy, leading to an increased time of calculations
and multiplication of statistical errors. As a result, in the low-
temperature region the calculations are rather difficult.
Nevertheless, the approach was successfully used to study a
large number of different models. Thus, Russian researchers
have obtained some interesting results in studies of boson,
fermion [56 ± 62], and magnetic spin systems [63 ± 65].
Recently the approach has been substantially modified. A
highly efficient version of the MC method with the use of the
Trotter expansion of the Gibbs exponent (2.11) was proposed
in Ref. [66]. This so-called loop algorithm is rapidly con-
vergent (the rate of convergence 100-fold exceeds the

conventional value) due to the use of a grand canonical
ensemble and global changes in the state of the system in the
course ofMCmodeling. However, this version also fails in the
low-temperature region. An important step was taken in Refs
[67, 68], where the authors proposed getting rid of the discrete
Trotter expansion and using an expansion with continuous
time 0 < n < b �Dn! 0�, which renders the method asymp-
totically correct. The idea was further developed in Ref. [69],
where it was combined with the loop algorithm and applied to
spin systems. However, these approaches are rather specific,
cumbersome, and require additional modifications of algo-
rithms in each case. All these difficulties seem to have been
successfully obviated by N V Prokof'ev et al. [70, 71]. Their
version of the MC method is characterized by rapid
convergence, can treat various ensembles and global thermo-
dynamic quantities at any temperature. Evidently, to reveal
all the advantages and drawbacks of this extremely interesting
method, one should apply it to a large number of different
models.

Quantum MC methods include one more approach,
which treats the partition function as the sum of all possible
products of interacting parts of the system under considera-
tion. Clearly, the problem of imaginary time does not arise
here. The products form a set on which a Markov chain is
determined. This approachwas first proposed byHandscomb
in Ref. [72] and used to calculate thermodynamic properties
of the isotropic Heisenberg model with spin S � 1=2 [73]. The
approach was somewhat improved in Refs [74, 75], where
some critical exponents were calculated for the one-dimen-
sional Heisenberg model with S � 1=2. A similar model was
also studied in Refs [76 ± 78], while the XY model was
investigated in Ref. [79]. Some interesting data were obtained
by I A Favorski|̄ and P N Vorontsov-Vel'yaminov et al. [80 ±
87]. The Handscomb method was extended in Refs [81, 82] to
the Ising model with a transverse field and short- and long-
range interactions. Ingenious results of the study of the
quantum Heisenberg model with multispin exchange on a
simple cubic lattice with S � 1=2 were obtained in Refs [81,
83, 84]. The generalization of the method to the Heisenberg
model with multispin exchange was carried out in Ref. [84].
Note that the papers [81, 83] were the first to study first-order
phase transitions by the quantumMC method.

Here we outline the Handscomb method following [82,
85]. Let the Hamiltonian of a system take on the form of the
operator sum

H � ÿ2mH�
XN
t�1

St ÿ 2J
XNb

i�1
St�i �St 0�i � � H0 �

XNb

i�1
H�i � ;

�H�i �;H0� � 0 ; �2:12�

where N is the number of spins, Nb is the number of bonds,
andH � is the magnetic field. If we write the canonical average
of an operator A as

hAi � SpfA exp�ÿbH �g
Spfexp�ÿbH�g ; �2:13�

then the numerator of (2.13) is expressed as

SpfA exp�ÿbH�g �
X1
r�0

X
Cr

��ÿb�r
r!

�
SpfAH�i1�H�i2�

::: H�ir� exp�ÿbH0�g ; �2:14�
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where Cr is the set of exponents i1; i2; . . . ; ir, characterizing
bonds; and

P
Cr
is the sum over all the r elementary setsCr. If

we change the order of calculating the trace and the sum, the
partition function can be presented as

Z � Spfexp�ÿbH �g � Sp

�
exp�ÿbH0�

X1
r�0

��ÿb�r
r!

�
�
X
Cr

�H�i1�H�i2�:::H�ir��
�
: �2:15�

Then the average of any observed quantityA is determined as
the value of the mathematical expectation OA defined in the
space of all possible sequences Cr as:

OA�Cr� � SpfAH�i1�H�i2�:::H�ir� exp�ÿbH0�g
SpfH�i1�H�i2�:::H�ir� exp�ÿbH0�g : �2:16�

To construct a Markov chain, we can use the relation
between the spin operators StSt 0 �S � 1=2� and the permuta-
tion operators E�t; t 0�:

E�t; t 0� � 1

2
�4StSt 0 � 1� : �2:17�

The operator E�t; t 0� changes the spin numbered t to the
spin numbered t 0 and vice versa. We use the notation

p�Cr� �
��ÿb�r

r!

�
SpfH�i1�H�i2�:::H�ir� exp�ÿbH0�g : �2:18�

In the case of a ferromagnet, we have H�i � � ÿJE�ti; t 0i �,
whence

p�Cr� �
��ÿbJ �r

r!

�(Yr
ik�1

E�t�ik�; t 0�ik�� exp�ÿbH0�
)

�
��ÿbJ �r

r!

�YK�Cr�

j�1
2cosh

�
mbHaj
2kBT

�
; p�Cr�5 0 ;

�2:19�
where K�Cr� is the number of cyclic permutations to which
the sequenceCr can be reduced, while aj is the length of the jth
cycle. As a result, we can write the partition function as the
sum over p�Cr�

Z �
X1
r�0

X
Cr

p�Cr� ; �2:20�

and construct the Markov chain in the space of exponent sets
fCrg distributed with the normalized probability P�Cr�

P�Cr� � p�Cr�
Z

5 0 ;
X
Cr

P�Cr� � 1 : �2:21�

Finally, the average is determined as

hAi �
X1
r�0

X
Cr

OA�Cr�P�Cr� � efOA�Cr�g : �2:22�

The rules for constructing a stochastic procedure and
specific details are given in Refs [82, 84, 85]. At present,
serious efforts are still being made to develop quantum MC
methods suitable to study systems with an arbitrary spin [67,
70, 71, 88 ± 90].

3. Studies of PT and CP in model systems

Essentially all the studies of various models of phase
transitions by MC methods have been accompanied by
attempts to investigate the critical region and calculate CE
and CA [15, 16, 91 ± 93]. However, in earlier works almost
without exception this region was considered only qualita-
tively. It was rather difficult to calculate Tc and other critical
parameters with a high accuracy. The situation seems to have
changed when K Binder proposed to use the fourth-order
cumulants UL to determine Tc [94, 95]

UL � 1ÿ hE
4iL

3hE 2i2L
; �3:1�

UL � 1ÿ hM
4iL

3hM 2i2L
; �3:2�

where E is the energy of the system with a characteristic linear
size L, andM is the magnetization.

Expressions (3.1) and (3.2) allow one to calculateTc with a
high accuracy in the systems undergoing first- and the second-
order phase transitions, respectively. In the first-order phase
transitions, the valueUL tends to a nontrivial limit. In the case
of the second-order phase transitions, the temperature
dependence of UL can be obtained at various L and Tc as
the point of intersection of the curves. The theory of finite-size
scaling implies such a point to exist [12, 16, 96] (the theory is
also detailed in Section 5). Figures 3 and 4 plot typical
temperature dependences of UL (in Fig. 4 and below, the
error of all the plotted quantities corresponds to the scale of
the used symbols). The accuracy of the method of cumulants
is rather high, although it requires considerable computing
resources and careful treatment of the results. The method
can be applied to various problems such as the Ising and
Heisenberg models [94 ± 98], the Potts [99] and the XY [100]
models, including spin glasses [101], and others.

The next great stride forward in this direction was the
design of highly efficient cluster algorithms for the MC
methods, which were specially devised to study the critical
region and treat histogram data [37 ± 40]. All these develop-
ments in combination with the theory of finite-size scaling
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Figure 3.Temperature dependence of the Binder cumulantUL for the first-

order phase transition in the 2d Potts model with q � 8 states: 1, L=16;

2, 24; 3, 32; and 4, 40 [130].
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have enabled one to obtain results by the MCmethod, whose
accuracy is highly competitive with that found by other
methods (see Figs1 and 2).

A detailed study of the Ising model on squared and simple
cubic (SC) lattices was carried out as early as in the 1970s
[92, 93]. In succeeding years the emphasis has been displaced
toward the study of more realistic models with complex
interactions on other types of lattices including rather exotic
ones. For example, the Ising model with three-spin and four-
spin interactions was studied in Ref. [102] and [103],
respectively. In Refs [104 ± 107] it was applied to random
fields. In Ref. [108] a biquadratic interaction was considered.
In Ref. [109] the model was investigated in a transverse field
and in Ref. [110] it was studied in a strong magnetic field.
Besides, it was applied to dilute [111] and anisotropic [112]
systems as well as to antiferromagnetic [113, 114] and
frustrated systems, with account of the interaction of next-
nearest and more distant neighbors [116 ± 118] and to
quasilattices [119, 120].

The equilibrium properties of the Heisenberg model and
its various versions were studied in Refs [121 ± 129]. The Potts
model was considered in Refs [130 ± 133]. The MC method is
intensively applied to XY, XXZ, and XYZmodels on lattices
of various space dimensions [134 ± 141].

In recent years theMCmethod has probably been playing
a key role in determining whether or not a model belongs to a
certain universality class and in checking the validity of the
universality hypothesis for various models.

Let us consider some results obtained in various models,
which seem to be the most interesting.

The 2d ferromagnetic Ising model was studied on a
quasiperiodic octagonal lattice with free boundaries
(L� L � N, 1854N4 5497). The critical value Tc found
by the MC method is considerably higher �kBTc=J �
2:39� 0:01� than that found in the classical Ising model on
a square lattice �kBTc=J � 2:269�, although the coordination
number is the same for both the models and equal to n � 4.
The critical exponents n, b, and g agree with data obtained on
a quasilattice with a 5-fold symmetry axis (Penrose lattice).
Careful investigations on this lattice demonstrated that the
finite-size scaling well describes quasilattices with free
boundaries, which suggests that the quasilattice 2d Ising
model without frustrations belongs to the same universality
class as the 2d Ising model with periodic boundary conditions
(PBC). Besides, the authors of [119] easily calculated g and n,

butmet with serious difficulties in determining b because of its
small value. Noteworthy also is the fact that the critical
temperature Tc for the octagonal and the Penrose lattices is
higher than that for an infinite square lattice. But the present
numerical calculations do not allow one to determine whether
or not the critical temperatures Tc are the same for both types
of quasilattice.

The Ising model was studied in Ref. [120] on a 2d random
lattice with the number of spins equal to N � 5000, 10000,
20000, 40000, 80000. The main goal of the work was to test
the validity of the universality hypothesis for random lattices.
Earlier attempts to do this have not been successful [142 ±
145]. Note that the conventional MC algorithm used in some
works [145] requires too much time for numerical calcula-
tions; therefore, since the late 1980s, cluster algorithms have
come into wide use. Such an algorithm was used for an MC
study in Ref. [120]. The most probable coordination number
n � 6 for the lattice concerned is the same as for a regular
triangular lattice. The value Kc � J=kBTc � 0.2630� 0.0002
obtained in [120] by the calculations of the Binder cumulant
agrees well with that found by high-temperature expansion
(HTE) [145], and is close to that for the regular triangular
lattice Kc � ln�3=4� � 0:27465. The values obtained for the
critical exponents n, b=n, g=n, and g bring out clearly that the
2d Ising model on a random lattice belongs to the same
universality class as the Ising model on a regular 2d lattice.

Extensive studies of the Ising model as applied to random
fields on an SC lattice of L� L� L size �44L4 32� were
carried out in Ref. [107]. Using finite-size scaling and a cluster
algorithm, the authors calculated by the MC method n, b, g
and critical temperatures as functions of a random field h. The
CEswere comparedwith data obtained by othermethods (the
conventional MC approach, HTE and RG theory) and the
results found by the cluster MC algorithm were shown to be
more accurate.

Noteworthy is an interesting feature obtained inRef. [137]
for the completely frustrated XYmodel on a 2d square lattice
by the MC method. There the critical exponents were found
to be n � 0:3069, Z � 0:1915; for lattices of sizes up to
L� L � 240� 240, the model was revealed to belong to a
universality class different from that of the conventional XY
model and the classical 2d Ising model. At the same time the
authors point out that the results should be carefully checked.

The most exact values of critical parameters of the three-
dimensional Ising model on an SC lattice seem to have been
obtained in Ref. [146] by the classical MC method. The
critical properties of the Ising model on lattices of size
84L4 96 were considered using histogram analysis and
special multispin algorithms. Table 1 presents the comparison
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N � 4000

Figure 4. Temperature dependence of the Binder cumulant UL for the

second-order phase transition in the ferromagnetic Cr2O3 model.

Table 1. Critical parameters for the 3d Ising model.

Critical
parameter

Field theory MC method

Metropolis algorithm
[146]

[6, 7] [8]

Kc

n
a
b
g
Z
d

ì
0.6305(25)
0.108(9)
0.3265(25)
1.239(4)
0.037(3)
4.795(17)

ì
0.631
0.107
0.327
1.239
0.038
4.7889*

0.2216595(26)
0.6289(8)
0.113*
0.3258(44)
1.2390(71)
ì
4.8029*

* The values are calculated with the use of the relations a� dn � 2 and
d � 1� g=b.
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of the obtained results with the widely used [6, 7] and new [8]
data calculated on the basis of the field theory.

There are a number of works where the Heisenberg model
is treated with a high accuracy [128]:

H � ÿJ
X
i; j
i< j

�Sx
i S

x
j � S

y
i S

y
j � Sz

i S
z
j � ; �3:3�

where J > 0 is the parameter of the exchange interaction
jSij � 1. The studies cited were carried out on an SC lattice of
size L� L� L �64L4 24�. In Refs [39, 40] the equilibrium
critical exponents a, b, g, and n were calculated with a high
degree of precision using finite-size scaling and optimized
histogram analysis. In Ref. [147], model (3.3) was studied on
SC and BCC lattices of sizes up to L � 40. The authors
calculated various thermodynamic quantities as a function of
temperature near Tc and showed that although the critical
temperatures for these lattices [Kc � 0:693035�37� for the SC
lattice and Kc � 0:486798�12� for the BCC lattice] differ
significantly, the critical exponents correlate well for both
the lattices. Similar investigations were performed in Ref.
[148], where the sought effect was checked by the cluster
algorithm on an SC lattice of size L4 48. The data were
thoroughly analyzed by the histogram method, and n, a, b, g,
and Z were calculated with the use of finite-size scaling. The
results obtained in all the cited works are listed in Table 2. As
is seen, they are in excellent agreement with the data found by
theRGmethod and the e expansion. The authors of Ref. [148]
also studied spatial correlations and susceptibility for the
high-temperature phase on lattices of sizes up to L � 100.
Their results suggest that n and g can be evaluated directly
from the MC data on power dependences without invoking
any other methods. If this is the case, then bearing in mind the
pace of the development of computing resources, one would
expect that in the short run critical parameters may be
calculated directly from the MC experiments without resort-
ing to any contrivances or technical expedients. In Section 5
we will demonstrate that some critical exponents of ferro-
magnetic models can be evaluated in this way for systems of
far smaller size.

Of great interest are the results of the MC study of
frustrated models. On the whole, the question of the

existence of a new chiral class of universality for frustrated
spin systems on various lattices, in particular, on triangular
ones, is a subject of controversy today [149]. InRefs [150, 151]
the critical behavior of the frustrated antiferromagnetic XY
model and Heisenberg model on a hexagonal lattice was
assumed to be described by the universality class character-
ized by the exponents

a � 0:24�8�; b � 0:30�2�; g � 1:17�7�; n � 0:59�2� ;
bch � 0:55�4�; gch � 0:72�8�; nch � 0:60�3�

(for the n � 3 Heisenberg model), where ch denotes chirality.
In this respect noteworthy are the data obtained in Ref. [149]
for the frustrated Heisenberg model on a hexagonal lattice of
sizes 124L4 36. The authors found that the temperatures
of magnetic and chiral ordering coincide within the calculated
accuracy Tc � Tch � 0:9577�2�, but the reasons of this
coincidence remained unclear. They revealed a continuous
character of phase transition in this model, having calculated
the Binder cumulant. Besides, they found the critical
exponents b, g, n bch, gch, and nch, and showed that although
Tc � Tch, the exponents n and nch are not equal, which
suggests different characters of the growth of magnetic and
chiral correlations. The values of CE obtained there count in
favor of the hypothesis of the existence of a new universality
class. At the same time, the authors believe that more detailed
studies are necessary for the issue to be resolved conclusively.

Noteworthy is another interesting work [152], where a
liquid with the Heisenberg spins and Heisenberg interaction
was studied. In this liquid, an order ± disorder phase transi-
tion occurs as temperature changes while the spin density is
fixed. Using finite-size scaling theory, the authors calculated
the temperature of phase transitions and CE at various spin
concentrations. They revealed that the exponents b=n, g=n,
and 1=n are the same for all the densities studied (p � 0:4, 0.6,
0.7) and differ from those for the lattice Heisenberg model.

4. Phase transitions and critical phenomena
in quantum lattice models

In this section we consider rigorous results obtained by the
quantum MC method within the Handscomb approach.
After the method was used to study the ferromagnetic
Heisenberg model in the early sixties [72, 73], it was not
called for over a long period of time until it was applied in
Refs [74, 75]. Paper [74] dealt with one-dimensional ferro-
magnetic and antiferromagnetic systems and the three-
dimensional ferromagnetic Heisenberg model with S � 1=2.
The values of the susceptibility, heat capacity and energy
calculated there agree well with the data obtained by HTE. In
Ref. [75] some critical exponents for the classical Heisenberg
chain were calculated (for example, g � 1:75) and, what is
more important, the method was shown to suit to the low-
temperature region down to kBT=J � 0:025, where the
approach based on the use of the Trotter formula is
impractical. However, it is not only this fact that provoked
interest in the studies under discussion. The low-temperature
behavior of the one-dimensional ferromagnetic Heisenberg
chain raised a heated debate [153] during which many points
were clarified due to the quantumMCmethod. AsT! 0, the
susceptibility exponent g behaves as w � eÿg, various methods
yield a wide scatter in the data �g � 1:3ÿ2:0�, and the most
reliable result �g � 2:0� was probably found proceeding from
the Bethe ansatz [154]. But this approach involves a

Table 2. Critical parameters for the 3dHeisenberg model.

Critical
parameter

Field theory MC method

[6, 7] [8] Metropolis
algorithm
[128]

Cluster algorithm

Kc

n

a

b

g

Z
d

ì

0.710(7)

ÿ0.130(21)
ÿ0.115(9)
0.368(4)

1.390(10)

0.033(4)
4.777(14)

ì

0.706

ÿ0.117

0.366

1.386

0.038
4.8187*

0.6299(1)

0.706(9)

ÿ0.118(27)

0.364(7)

1.390(23)

0.031(7)
4.819

0.693035(37) [147]
0.6930(1) [148]

0.7048(30) [147]
0.704(6) [148]

ÿ0.1144(90) [147]
ÿ0.112(18) [148]

0.3639(35) [147]
0.362(4) [148]

1.3873(89) [147]
1.389(14) [148]

0.027(2) [148]
ì

* The values are calculated from the relations a� dn � 2 and
d � 1� g=b.
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complicated calculation procedure, i.e., a large set of non-
linear integral equations should be solved with a high
accuracy and then double extrapolation of the data should
be performed (N!1, and the anisotropy parameter
D! 1). Actually, the value of this exponent in Ref. [154]
did not exceed 1.9. Having extrapolated it to T � 0, the
authors arrived at g � 2. Earlier studies by the quantum MC
method also resulted in discrepant results (g � 1:3, g � 1:55
[153], g � 1:75 [75]), which was probably caused by the
insufficient number of spins and insufficiently low tempera-
tures considered there �N4 200, T5 0:025�. For example, in
Ref. [75] N � 128 and T � 0:025 were used. To clarify the
question, the authors of Ref. [81] dealt with larger MC cells
and the number of spins equal to N � 100, 200, 300, 500 at
still decreased temperatures �0:014 kBT=J4 0:1�. At each
temperature, saturation with respect toN was attained, i.e., a
further increase in temperature did not affect the suscept-
ibility, and the length of Markovian chains was about 5000
MC steps per spin. The susceptibility exponent gef was
determined by differentiating the dependence of ln w on T.
The extrapolation of the MC data to T! 0 yields g � 2:0,
which agrees well with the data obtained using the Bethe
ansatz [154].

In Refs [80, 82] the method was extended to the Ising
model subjected to a transverse field with arbitrary long-
range potentials J=N. The results obtained were compared
with those found by the molecular field theory and by the
conventional MCmethod. Besides, in Ref. [80] the method in
question was first applied to study the Heisenberg model
(d � 1, S � 1=2, N � 51) with long-range potentials J � rÿ3.
Low-temperature data were used to estimate the suscept-
ibility (at T! 0), which was found to be g � 1:70� 0:05.
This value agrees with the result obtained in Ref. [75] within
the accuracy of the method.

The quantum MC method based on the Handscomb
approach proved to be useful in studies of both first- and
second-order phase transitions. It can also treat Hamilto-
nians with multispin interactions. Such investigations were
carried out in [83], where the quantum Heisenberg model
�S � 1=2� was studied on an SC lattice with the Hamiltonian

Ĥ � ÿ
X
s>p

2Jsp�ŜsŜp� ÿ
X
k;l;m;n

2Kklmn�ŜkŜl��ŜmŜn� ; �4:1�

where Jsp � J > 0 and the first sum includes only the nearest
neighbors, while in the second term the exchange constants
Kklmn are not zero �Kklmn � K > 0� only when the nodes k, l,
m, and n form a unit square on the lattice.

The interest in the systems under discussion has several
causes: multispin interactions take into account lattice
vibrations in the first approximation and, besides, there are
a number of real magnets where multispin interactions play a
key role [155, 156].

The models described by a Hamiltonian of the type of
(4.1) were considered earlier by the theory of molecular field
(MF) [155] and by the method of Green's functions [154].
Both methods are approximate for Hamiltonian (4.1); for
example, the molecular field method predicts that the second-
order phase transition temperature Tc is independent of
D � K=J, while various schemes to uncouple the relations in
the method of Green's functions result in a noncontrolled
error [155].

In Ref. [84] the quantumMCmethod was extended to the
considering the multispin interactions in the Hamiltonian. In
[83], the systems (4.1) were studied by the extendedmethod on

an SC lattice with periodic boundaries, containing
N � L� L� L spins (L � 8, 12, 16). The calculations were
carried out for D � K=J � 0, 0.5, 0.75, 1.0. The extension was
performed without any approximations; therefore, the
accuracy of the method at D > 0 can be estimated in the
limit D � 0 for which there are rigorous data obtained by the
HTE method with consideration of the terms up to the tenth
order [157]. At D � 0, a second-order phase transition takes
place. The data on the temperature dependence of the energy
presented in Ref. [83] agree well with those obtained by HTE.
The critical temperatures calculated by the MC and HTE
methods also coincide within the accuracy of the method
[157]:

TMC
c � kBT

J
� 1:67� 0:03; THTE

c � 1:68� 0:01 ;

while the molecular field approach and the method of the
Green's functions result in

TMF
c � 3:0; T GF

c � 2:4� 0:2 :

According to both the methods (MF and GF), at D > D0
the second-order phase transitions change to the first-order
ones (DMF

0 = 0.33, DGF0 = 0.5 [154]). Since the first-order
phase transitions studied in Ref. [154] by the quantum MC
method were not investigated before, we consider them in
greater detail. At D � 0 and 0.5, the temperature dependence
of the energy is smooth. However, at D � 1:0 the dependence
becomes discontinuous, although the gap is not large, which
points to the first-order phase transition close to the second-
order one. With this type of phase transition, finite-size
systems exhibit sharp `jumps' between phases, and the data
are averaged (Fig. 5). The distribution along the Markovian
chain indicates the presence of two branches in the tempera-
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ÿE=NJ

kBT=J
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Figure 5. Temperature dependences of energy and magnetization at

D � K=J � 1. For the energy �N � 512�, the symbols correspond to

averaging over the whole Markovian chain, while symbols refer to the

data derived from the positions of maxima of the bimodal energy

distribution. For magnetization, the symbols correspond to N=512;

, to N=4096; and , to N � 1 [83].
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ture dependence of the energy; at D � 1, the distribution is
bimodal (Fig. 6c), while at D � 0, 0.5 (second-order phase
transition), it is Gaussian (Fig. 6b).

Figure 5 plots the magnetization of finite-size systems
containing N � 512 and N � 4096 spins and their extrapola-
tion to N � 1. As is seen, there is a discontinuity at N � 1.
According to estimates [83], the valueD0 � 0:75 is the limiting
point separating first- and second-order phase transitions.
Figure 6a depicts the phase diagrams of the model and their
comparison with the data obtained in the MF approach and
by themethod ofGreen's functions. It is evident that the latter
differ significantly from the MC results; both theoretical
methods yield substantial errors. These results seem to
suggest that the developed quantum MC method is highly
efficient and can treat multispin exchange for the isotropic
Heisenberg model.

The quantum MC method based on the Trotter transfor-
mation (2.11) turned out to be efficient to study magnetic
systems with multispin interactions [47 ± 52, 158]. Thus,
S S Aplesnin [63, 64] investigated the thermal and magnetic
properties and calculated two- and four-spin correlation
functions for a one-dimensional antiferromagnetic chain
with four-spin interactions and S � 1=2. It was shown that
this interaction produces dimers in the chain and the
dimeric ± paramagnetic phase transition is of the second
order. An anisotropic antiferromagnet with four-spin inter-
actions and S � 1=2 was also studied by the same method on
a square lattice. The classical Heisenberg model with
anisotropic bilinear and four-spin exchange was investigated
in Ref. [159] by the conventional MC method.

5. Studies of PT and CE in models
of real magnetic substances

5.1 CE in small magnetic particles
As already noted,most recent numerical studies of PT andCE
have been centered on the well known ferromagnetic models

with interactions between nearest neighbors. For the most
part, these models are the simplest ones and ignore many
features of real systems.

In this section we consider the results obtained by theMC
study of real magnetic samples. Such models take into
account the peculiarities of real crystals, which are not
considered in the simplest models but affect the critical
behavior and the properties near Tc.

Models of the real ferromagnetic oxides a-Fe2O3, Cr2O3,
and V2O3 were developed in Refs [129, 160 ± 163], where their
equilibrium magnetic and thermal properties were studied by
theMCmethod, and short-time dynamic characteristics were
analyzed by theMDmethod. These works deal with the main
features and processes related to the influence of temperature,
external magnetic field, shape of particles, the number of
interacting elements and others effects on the properties of
small magnetic particles and systems with periodic boundary
conditions �Nef !1�.

The critical behavior of complicated real systems has not
been investigated in detail so far. Here, we dwell upon the
results of our study of the critical behavior of model
antiferromagnetic Cr2O3. We consider the critical behavior
of both small magnetic particles Cr2O3 and systems with
periodic boundary conditions.

In recent years the properties of small particles have
attracted ever growing attention. On the one hand, their
practical application offers much promise [164 ± 173]. On the
other hand, small particles (clusters) are mesoscopic objects,
i.e., they can be considered as a bridge between the classical
microworld and quantum microworld [174 ± 180]. Despite a
large number of works devoted to small particles, their critical
properties are still to be understood.

All crystallographic, exchange, and other parameters of
the models of small particles considered in this review are
taken from the experimental data and correspond to real
Cr2O3 samples.

The Hamiltonian of the system can be written as [160]

H�ÿ 1
2

X
i; j

J1�l i l j� ÿ
1

2

X
k; l

J2�lkl l�ÿD0

X
i

�lz
i �2; jl ij � 1 :

�5:1�
According to the data on neutron scattering and the

theory of spin waves presented in Ref. [181], J1 is the
parameter of interaction of a spin with a nearest neighboring
spin separated from it by a distance rij � 2:65 A, while J2 is
the parameter of its interaction with the next three neighbor-
ing spins separated from this spin by a distance rij � 2:89 A
(J2 � 0:45J1, J1 < 0, J2 < 0). The parameters of interactions
of more distant spins were considerably less and not taken
into account. The axis Z coincided with the direction of the
diagonal of the rhombohedral unit cell [111]. Various
relativistic interactions are approximated by an effective
anisotropy D0 > 0 [182, 183]. The ratio between the aniso-
tropy and exchange was taken to be D0=jJ1j � 0:025.

The calculations were carried out for spherical particles
with diameters

d � 24:0; 28:4; 32:8; 34:8; 41:82; 46:4; 48:64 A ;

the number of spins in the particles was respectively equal to

N � 286; 508; 760; 908; 1602; 2170; 2502 :

1.0 1.26ÿE=NJ

P�E � b

1.0 2.0ÿE=NJ

P�E � c
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kBT=J 2
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a

Figure 6. (a) Phase diagrams: 1, obtained by theMCmethod, 2, byGreen's

function method, 3, in the MF approach. Solid lines correspond to the

second-order phase transitions, while the dashed ones, to the first-order

phase transitions. (b, c) Energy distribution (in arbitrary units): (b) D � 0,

and (c) D � 1 [83].
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Markovian chains of length up to 10� 104 MC steps per spin
were generated in the process. To equilibrate the system, a
nonequilibrium portion of the chain of length �5ÿ20� � 103

MC steps per spin, depending on the proximity to the critical
region, was ignored. Traditionally, when studying critical
phenomena by the MC method, researchers try to decrease
the influence of the free surface and impose various periodic
boundary conditions on the system under study [10]. Here, we
consider both systems with free surfaces and those with
periodic boundary conditions. The questions related to
magnetic properties [165, 172, 173] and critical phenomena
in small particles [165], as well as the dependence of CE and
CA on the presence of surface spins occurring under slightly
different conditions than those of the bulk phase are of
interest by themselves [184]. In the case under consideration,
the fraction of surface spins varied over the range from 46.8%
for the smallest particle to 22.8% for the particle containing
N � 2502 spins. Since the total number of surface spins in
particles is rather large, their influence on various thermo-
dynamic parameters can be essential. To reveal the tempera-
ture dependences of heat capacity and susceptibility, we used
the following expressions [128]:

C � �NK 2��hU2i ÿ hU i2� ; �5:2�

w � �NK��hm2i ÿ hm i2� ; �5:3�

where K � jJ1j=kBT, N is the number of particles, U is the
internal energy, and m is the sublattice magnetization.

The temperature dependences C and w have clearly
defined maxima in the critical region. It is known that for
small particles the TN value shifts to lower temperatures than
in the case of systems containing substantial number of
particles. In our experiments, we observed a pronounced
shift of the maxima of C and w as N changed (Figs 7a and
8a) [185 ± 187], which suggests that the phase transition

temperature increases as the number of spins in the particles
rises.

To approximate the critical behavior of heat capacity, we
used the expressions [188 ± 191]

C � A

a
jejÿa�1�Dcjejx� ; �5:4�

C � A

a
�jejÿa ÿ 1� �Dcjejx ; �5:5�

where e � jTÿ Tcj=Tc; A is the critical amplitude; Dc is the
scaling correlation amplitude; and x � 0:55, corresponding
to the Heisenberg model [6, 7].

The MC data were treated by the nonlinear least-squares
method. The values a,A, andDc minimizing the sum of mean
deviations were considered to be optimal. The data calculated
by (5.4) and (5.5) are in good agreement, but we preferred
(5.5), since it provided higher accuracy.

The data obtained for a and A are listed in Table 3 [185].
All a values are negative at T > TN, which is typical of the
critical behavior of the Heisenberg model, but they are
somewhat smaller than the theoretical value a � ÿ0:126�28�
obtained for the isotropic Heisenberg model with short-range

a

N � 508

N � 2170

0 0.2 0.4 0.6

kBT=jJ1j
0.8
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C=kB
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0.2

kBT=jJ1j

N � 864

N � 4000

b
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Figure 7. Dependence of the heat capacity C=kB on the temperature kBT=jJ1j in the antiferromagnetic Cr2O3 model: (a) small particles [185], and

(b) systems with periodic boundary conditions (model I).

Table 3. Effective values of the critical exponent a and critical amplitudes
A and A 0 for small particles �a 0 � a�.
N 5� 10ÿ34e4 7:5� 10ÿ1 2:5� 10ÿ24e4 7:5� 10ÿ1

a A A 0 a 0 A A 0

286
508
760
908
1602
2170
2502

ÿ0.20(3)
ÿ0.18
ÿ0.20
ÿ0.17
ÿ0.19
ÿ0.17
ÿ0.21

0.61
0.57
0.67
0.57
0.66
0.61
0.63

0.61
0.55
0.67
0.58
0.60
0.64
0.68

ÿ0.19(3)
ÿ0.17
ÿ0.20
ÿ0.16
ÿ0.19
ÿ0.17
ÿ0.20

0.60
0.56
0.65
0.55
0.64
0.60
0.62

0.59
0.56
0.66
0.57
0.59
0.63
0.67
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forces [6 ± 8] and virtually do not depend on the sizes of
particles. The values of A 0 at T < TN were obtained on the
assumption that a 0 � a, in accordance with the equilibrium
scaling theory [1, 2]. The relations between the critical
amplitudes A and A 0 determined in the above-described way
for all the particles lie in the range 0:954A=A 04 1:10. The
values of the critical exponent a for Cr2O3 derived from the
experimental data are contradictory and vary from a � 0:14
to a � ÿ0:12 [189, 190], depending on the method used, the
interval of changes in e, the choice of TN and some other
parameters.

Note that since Hamiltonian (5.1) includes a term
describing anisotropy of single ions, a crossover from the
Heisenberg type of the critical behavior of Cr2O3 to the Ising
type should be observed [2, 191]. For all the calculated data,
the crossover temperature e � �D0=J�1=f is about ecr � 0:052,
where f � 1:25 at crossover from n � 3 to n � 1 (n is the
number of components of the order parameter). But the
values of a obtained in the temperature range
5� 10ÿ34e4 7:5� 10ÿ1 do not suggest the occurrence of
a crossover. The reason is probably that the surface spins in
Cr2O3 are easily reoriented even at temperatures much lower
than TN, as was revealed in Ref. [160]. This behavior of the
spins extends the range of the Heisenberg type of critical
behavior and shifts the crossover temperature ecr to the NeÂ el
point. Therefore, the entire above-considered range of
reduced temperatures can correspond to the Heisenberg
type of critical behavior.

The values of a slightly lower than those predicted by the
theory [6 ± 8] and found in experiments [189, 190] also seem to
be related to the presence of a substantial portion of weakly
bound surface spins (22.8 ± 46.8%). Note that in treating the
data on the low-temperature phase �T < TN� without regard
for the scaling assumption a 0 � a we arrived at a 0 � 0:03�3�
in the temperature range studied. In this case the ratio
between A and A 0 varies from 2.0 to 5.0.

To study the critical behavior of particles in more detail,
we should consider the temperature dependences of the
sublattice magnetization m and susceptibility w. Note right
away that both the quantities are unsuitable for study by the
MC methods, since the magnetization m has high-tempera-
ture `tails' near TN, and w fluctuates greatly.

Figure 9a demonstrates the temperature dependence of
magnetization m for two particles with N � 508 and
N � 2170. Noteworthy are the residual values of the
magnetization typical of the MC data, which noticeably
decrease as N rises.

To approximate the critical behavior of the sublattice
magnetization m, we used the expression

m � Bjejb�1� amjejx� ; �5:6�

where B and am are the critical amplitude and the scaling
correlation amplitude respectively. Table 4 lists the data on b
at am 6� 0 and am � 0 in the temperature range
emin4e4emax. Note that the exponent b, unlike other
exponents studied (a and g), depends on the number of spins
in the particle. Its absolute value increases with increasing N.

a

0 0.2 0.4 0.6

kBT=jJ1j
0.8

16

12

8

4

w
N � 508

N � 2170

kBT=jJ1j

b

0 0.2 0.4 0.6 0.8

w
N � 864

N � 2048

N � 4000
30

20

10

Figure 8.Dependence of the susceptibility w on the temperature kBT=jJ1j in the antiferromagnetic Cr2O3 model: (a) small particles [185], and (b) systems

with periodic boundary conditions (model I).

Table 4. Effective values of the critical exponent b for small magnetic
particles (emin4e4emax, emax � 0:75).

N am � 0 am 6� 0

emin emin

5� 10ÿ3 1� 10ÿ2 3� 10ÿ2 8� 10ÿ2 1� 10ÿ2 3� 10ÿ2 8� 10ÿ2

286
508
760
908
1602
2170
2502

0.18
0.22
0.25
0.25
0.29
0.33
0.33

0.21
0.25
0.27
0.31
0.31
0.37
0.37

0.26
0.29
0.30
0.32
0.33
0.39
0.40

0.31
0.32
0.33
0.36
0.36
0.41
0.43

ì
0.23
0.25
0.26
0.28
0.30
0.30

ì
0.28
0.30
0.31
0.32
0.35
0.34

ì
0.34
0.36
0.38
0.38
0.39
0.40
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Onemore tendency is observed for b: it likewise increases with
increasing emin. These features seem to be related to the short-
order effects, which are indicated by high-temperature tails of
magnetization shown in Fig. 9a. The dependence m�e�
depicted in the double-logarithmic scale shows a bend at
eB � 0:08. Figure 10a plots typical temperature dependences
with b � 0:27 at e4 eB and b � 0:38 at e > eB for a particle

containing N � 1602 spins. These data may suggest a cross-
over from the Heisenberg behavior at b � 0:38 (more
precisely, b � 0:367 in the Heisenberg model) to the Ising
behavior with b � 0:27 (b � 0:326 in the Ising model [6 ± 8]),
which is not observed in the temperature dependence of heat
capacity.

Typical temperature dependences of the susceptibility
obtained by (5.3) are plotted in Fig. 8a. To treat them, we
use the relation

w � Gjejÿg ; �5:7�
where g and G are, respectively, the critical exponent and
amplitude for the susceptibility. Table 5 lists the data on g
obtained by (5.7). The critical exponents g and g 0 were found
independently, below and above the critical temperature TN,
which was calculated from the maximum of the susceptibility
w. The critical exponents g and g 0 as well as a are independent
of the number of spins in the particle. But the values of g and
g 0 depend strongly on emin, and increase as emin grows. Note
that the absolute values of g and g 0 do not enable one to decide
the type of the critical behavior of susceptibility to be either
Ising �g � 1:24� or Heisenberg �g � 1:39�.

5.2 Phase transitions and critical phenomena
in macrosystems
Let us consider the critical behavior of Cr2O3 macrosystems
on which periodic boundary conditions are imposed. It is well
known that in finite-size systems there are no genuine phase
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N � 908

N � 2170
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kBT=jJ1j

1.0
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0.6

0.4

0.2

m
b

N � 864

N � 2916

Figure 9. Dependence of the sublattice magnetization m on the tempera-

ture kBT=jJ1j in the antiferromagnetic Cr2O3 model: (a) small particles

[185], and (b) systems with periodic boundary conditions (model I).
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b � 0.38(2)

b � 0.27(3)
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Figure 10. Double-logarithmic dependence of the sublattice magnetization m on the reduced temperature e in the antiferromagnetic Cr2O3 model: (a)

small magnetic particle, and (b) system with periodic boundary conditions (model I).

Table 5. Effective values of the critical exponents g and g 0 for small
magnetic particles �emax � 0:75�.
N g g 0

emin emin

4� 10ÿ2 8� 10ÿ2 1� 10ÿ1 4� 10ÿ2 8� 10ÿ2 1� 10ÿ1

508
760
908
1602
2170
2502

0.96(3)
0.94
1.02
1.01
1.00
0.98

1.14(3)
1.15
1.14
1.15
1.13
1.13

1.22(3)
1.20
1.18
1.19
1.20
1.22

0.90(3)
0.93
0.91
0.90
0.95
0.96

1.15(3)
1.14
1.22
1.21
1.20
1.18

1.33(3)
1.30
1.31
1.30
1.28
1.29
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transitions; therefore, the most serious drawback of the
numerical simulation of PT and CP is that one has to deal
with a finite number of particles N. As a result, the region of
the phase space for which the partition function is calculated
has a finite size and the thermodynamic functions are regular.
Nevertheless, finite-size systems allow one to reveal many
essential features of phase transitions. The study of such
pseudotransitions and their behavior in relation to the size of
the system provides valuable information on PT in infinite
systems.Wewill consider the potential of theMCmethod and
the peculiarities of PT and CP by examining the antiferro-
magnetic Cr2O3 model.

From our standpoint, it is necessary to consider the
following values of the ratio between the anisotropy D0 and
the exchange J1 in Hamiltonian (5.1):

D0=jJ1j � 2:5� 10ÿ4, which corresponds to Cr2O3 sam-
ples [182, 183]; and

D0=jJ1j � 2:5� 10ÿ2, which is typical of small magnetic
systems with uniaxial anisotropy and sizes up to several
angstroms [192, 193].

Below, we will refer to the first case as to model I, and to
the second case, as to model II. All the crystallographic,
exchange, and other data used in model I correspond to real
Cr2O3 samples. In model II, the value of the anisotropy
constant D0 is taken to correspond to small magnetic
particles, since despite the periodic boundary conditions the
systems modeled by MC have finite linear sizes L51
�L � N 1=3�, and therefore may exhibit some properties
typical of small systems.

The MC calculations were performed for systems with
periodic boundary conditions using the conventional Metro-
polis algorithm [10]. The studied systems included Nef � 500,
864, 1372, 2048, 2916, and 4000 spins. To equilibrate the
systems, we ignored in each system a portion of the
Markovian chain of length up to 3� 104, which was several
times larger than the nonequilibrium portion. Then we
averaged over the whole equilibrium portion of length
12� 105. To control the accuracy of the results obtained, we
repeated the experiments with portions of double length. The
latter did not affect the accuracy of the calculations.

Figures 7b and 8b present the temperature dependences of
C and w. Note that the temperature dependences of C and w
have pronounced maxima as in the case with Cr2O3 particles,
but the positions of the maxima coincide for systems contain-
ing different numbers Nef of spins within the accuracy of
calculations, which suggests that the chosen way of imposing
periodic boundary conditions well offset the boundary
effects. One can only see a pronounced increase in the
maxima, which takes place as the number of spins in the
system increases. Figure 9b plots the temperature dependence
of the sublattice magnetization m for two systems with
Nef � 864 and Nef � 2916. Note that m decreases monotoni-
cally and the effects related to the finite number of spins N in
the system decay noticeably as Nef rises. The critical
temperature TN calculated from the data presented in Figs
7 ± 9 has a large scatter.

To determine the critical temperature, we used the Binder
cumulants considered in Section 3. Figure 2 demonstrates the
temperature dependence of the fourth-order Binder cumulant
UL for model I. The maximum slope of the dependence can
serve as an estimate of the effective temperature of phase
transition. This method can also be applied to systems of
different sizes L, in order to determine the phase transition
temperature. The point is that the cumulants for systems of all

sizes should cross atT � Tc provided that the calculations are
performed with care. All the details of determining Tc in the
above-discussed way were studied in Refs [128, 146] as
applied to the ferromagnetic Ising and Heisenberg models
with the interaction between the nearest neighbors.

The values of TN calculated for models I and II in the
above-discussed way are equal to TN � 0:466�5� and
TN � 0:480�5�, respectively. We used them as the critical
ones. Some increase in the transition temperature for model
II which takes place as anisotropy grows is consistent with the
well known fact of a higher value of Tc in the Ising systems as
compared to that in the Heisenberg models. In what follows,
we will see once again that the anisotropy value
D0=jJ1j � 2:5� 10ÿ2 used in model II leads to predominance
of the Ising critical behavior of the model under study and
tells on the values of all critical parameters.

The calculated data on heat capacity were approximated
by (5.4) and (5.5). In this case too, the use of (5.5) decreased
the error of calculations. Table 6 lists the data obtained on a,
A, A 0 for the models I and II (to calculate A 0 at T < TN, we
used the equilibrium scaling theory a 0 � a [1]). All the values
of a inmodel I are negative and, as is typical of theHeisenberg
model, virtually do not depend on the number of spins in the
systems, and agree well with the theoretical estimate
a � ÿ0:126�28� obtained in the isotropic Heisenberg model
with short-range forces [6 ± 8]. The ratio between the critical
amplitudes A and A 0 derived in the above discussed way vary
over the range 0:904A=A 04 1:10 for all the systems. The
picture changes significantly for model II, where the values of
a are positive, which is specific to the Ising model. A
theoretical estimate of a for the Ising model obtained by the
e expansion is equal to a � 0:108�9� [6 ± 8]. A relatively large
value of anisotropy of single ions, which is typical of small
magnetic particles [192, 193] and used by us in model II,
provides that the systems with periodic boundary conditions
behave as the Ising ones. Note that the systems with free
boundaries behave asHeisenberg ones at the same anisotropy
[185, 186]. The ratio between the amplitudes varies over the
range 0:754A=A 04 0:9 for model II.

As e! 0, the system is expected to exhibit a crossover
from the Heisenberg behavior to the Ising one [191]. The
theoretical estimate of the crossover temperatures calculated
from our data are equal to ecr � 0:0013 and ecr � 0:052 for
models I and II, respectively. The data on a obtained in
model I do not suggest the occurrence of the crossover in the
range 5� 10ÿ34e4 7:5� 10ÿ1. As for model II, it behaves
as an Ising one at all the temperatures studied.

Let us consider the temperature dependences of the
sublattice magnetization m and susceptibility w. As is seen
fromFig. 9b, themagnetizationm decreasesmonotonically as
the temperature rises, and differs from zero even at tempera-

Table 6. Effective values of critical exponent a and the critical amplitudes
A and A 0 �5:0� 10ÿ34e4 7:5� 10ÿ1�.
N D0=jJ1j=2.5�10ÿ4 D0=jJ1j=2.5�10ÿ2

a A A 0 a A A 0

500
864
1372
2048
2916
4000

ÿ0.15(3)
ÿ0.15
ÿ0.16
ÿ0.12
ÿ0.15
ÿ0.14

0.61(2)
0.56
0.51
0.47
0.53
0.47

0.60(2)
0.56
0.49
0.46
0.53
0.48

0.11(3)
0.12
0.10
0.13
0.10
0.15

0.53(3)
0.43
0.44
0.44
0.38
0.42

0.70(3)
0.61
0.57
0.52
0.42
0.43
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tures far above the critical oneTc. To approximate the critical
behavior of m, we used (5.6). Table 7 lists the data on b
obtained for various temperature ranges of e. Note that the
values of b are slightly higher for model I than for model II in
the same temperature range. In both themodels, the exponent
b exhibits the same behavior as in small magnetic particles,
i.e., it rises as Nef and emin grow.

We believe both the features to result from short-order
effects (Fig. 9b).

The dependence of the sublattice magnetization m on the
reduced temperature e in model I presented in the double-
logarithmic scale shows a bend, which is typical of the
crossover behavior. Figure 10b depicts this dependence at
two values of b � 0:31�2� at e4 ecr and b � 0:36�2� at e > ecr
for a system containing Nef � 1372 particles. A similar effect
is observed in model I for the systems of all sizes studied.
Probably, these data suggest that the critical behavior of
model I changes from the Heisenberg type at b � 0:36 (the
exact theoretical value is b � 0:367 [6 ± 8]) to the Ising type at
b � 0:31 (the theoretical estimate is b � 0:326 [6 ± 8]), which is
not observed for heat capacity.

A similarm (e) dependence formodel II does not show any
peculiarities typical of model I, and the values b � 0:30�2�
obtained for this model are rather close to the theoretical
estimate for the Ising model.

The experimental value of b obtained for Cr2O3 in the
temperature range 3� 10ÿ54e4 3� 10ÿ2 is equal to
b � 0:35 [194] and close to that for the Heisenberg model
and to the value obtained by us inmodel I with theHeisenberg
behavior.

Figure 8b plots the typical temperature dependences of w.
To approximate them, we used (5.7). Table 8 lists the data on
g and g 0 obtained in model I. These values were calculated
independently above and below the critical temperature TN.
Note that these exponents as well as a, are independent of the
numberNef of spins in the system studied, and increase as emin
increases. Using these values, we cannot identify the type of
critical behavior as Heisenberg �g � 1:39� or Ising �g � 1:24�

[6 ± 8]. Similar data obtained in this way for model II coincide
with the data listed in Table 8 within the accuracy of
calculations. The behavior of g and g 0 may probably be
attributed to the fact that the resolution of the procedure is
not sufficient to treat the intensely fluctuating susceptibility.
In the next section, we will show that the analysis of the same
data by another method provides a clearer idea of the critical
behavior of susceptibility.

The results we have been discussing in this section were
obtained by approximating theMC data with traditional step
functions. We shall now consider an analysis of the same data
based on the theory of finite-size scaling.

5.3 Finite-size scaling and critical exponents
of models of real magnets
Finite-size systems can be used to model infinite systems as
long as the correlation length x does not exceed the linear size
L of the system. When near the critical point x5L, the
critical properties of systems depend strongly on the type of
periodic boundary conditions. Due to fluctuations, the
critical properties can be revealed in a temperature range
below and above the critical point, but the latter cannot exist
in real systems. As a result, `rounding' effects such as long-
range ordering above the critical temperature, smoothing out
of heat capacity and susceptibility peaks and their tempera-
ture shift, etc. take place. The first theory where the influence
of finite sizes on the critical phenomena was taken into
account was developed by Ferdinand and Fisher [195, 196].
Most fully the finite-size scaling (FSS) theory is presented in
Ref. [96]. The ideas underlying the theory enable one to
extrapolate the MC data obtained for finite-size systems to
the thermodynamic limit �N � L3 !1� and are widely used
[119, 120, 128, 147, 148]. According to the theory, the free
energy of a rather large system with periodic boundary
conditions at temperature T close to the critical temperature
Tc of the infinite system can be presented as

F�T;L� � LÿdF0�eL1=n� ; �5:8�

Table 7. Effective values of the critical exponent b �emax � 7:5� 10ÿ1�.
N D0=jJ1j=2.5�10ÿ4 D0=jJ1j=2.5�10ÿ2

emin emin

5� 10ÿ3 1� 10ÿ2 2� 10ÿ2 4� 10ÿ2 8� 10ÿ2 5� 10ÿ3 1� 10ÿ2 2� 10ÿ3 4� 10ÿ2 8� 10ÿ2

500
864
1372
2048
2916
4000

0.24(3)
0.25
0.27
0.28
0.31
0.33

0.25
0.26
0.29
0.28
0.34
0.35

0.26
0.27
0.32
0.32
0.35
0.36

0.28
0.29
0.35
0.33
0.36
0.38

0.28
0.29
0.36
0.34
0.37
0.38

0.18
0.20
0.21
0.21
0.25
0.27

0.21
0.23
0.24
0.24
0.26
0.27

0.23
0.24
0.25
0.25
0.27
0.28

0.24
0.25
0.26
0.26
0.29
0.29

0.25
0.26
0.27
0.28
0.30
0.31

Table 8. Effective values of the critical exponents g and g 0 for a system with periodic boundary conditions (emax � 0:75, D0=jJ1j � 2:5� 10ÿ4).

N g g 0

emin emin

1� 10ÿ2 2� 10ÿ2 4� 10ÿ2 8� 10ÿ2 1� 10ÿ2 2� 10ÿ2 4� 10ÿ2 8� 10ÿ2

500
864
1372
2048
2916
4000

0.86
0.87
0.89
0.90
0.89
0.93

1.05
1.07
1.09
1.11
1.10
1.12

1.08
1.10
1.13
1.15
1.11
1.17

1.17
1.17
1.19
1.21
1.18
1.23

0.92
0.93
0.94
0.96
1.03
1.03

1.07
1.08
1.10
1.12
1.14
1.15

1.15
1.20
1.15
1.19
1.21
1.22

1.29(4)
1.31
1.32
1.31
1.34
1.33
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where e � jTÿ Tcj=Tc, Tc � Tc (L � 1), and n is the equili-
brium critical exponent of the correlation radius of the
infinite system �L � 1�. The shift of the effective tempera-
ture of the phase transition caused by changes in sizes of the
system is expressed as

kBTc�L�
J

� kBTc

J
� aLÿ1=n ; �5:9�

where a is a constant. Equation (5.8) leads to similar
equations for the heat capacity, spontaneous magnetization,
and susceptibility per spin [119]

C�T;L� � La=nC0�eL1=n� ; �5:10�

m�T;L� � Lÿb=nm0�eL1=n� ; �5:11�

w�T;L� � Lg=nw0�eL1=n� ; �5:12�

where a, b, and g are the equilibrium exponents for the system
at L � 1. They are related by the hyperscaling equation
2ÿ a � dn � 2b� g [4].

Equations (5.10) ± (5.12) adequately reproduce the critical
behavior of infinite systems at e5 1 andL!1. The validity
of the finite-size scaling theory was shown by theMC study of
the 2d and 3d Ising models both with periodic boundary
conditions and with free boundaries [91, 92, 119, 120]. The
application of (5.10) ± (5.12) to the MC data should remove
finite-size effects. To what extent the relations of the FSS
theory are suitable to treat our data can be inferred from
Fig. 11, where the scaled data for model II are plotted. The
data obtained for model I are scaled in a similar manner. The
FSS relations are equally effective to study heat capacity and
magnetization for both models.

According to the theory, in the system of sizeL� L� L at
T � TN and large L, the magnetization and susceptibility

satisfy the following relations:

m � Lÿb=n ; �5:13�
w � Lg=n : �5:14�

Treating our data using (5.13) and (5.14), we also obtained
the values of b and g. For this purpose, we plotted the
dependences of m and w on the lattice size L on the double-
logarithmic scale (Figs 12 and 13). All the points of the curves
fall on a straight line within the accuracy of calculations. Note
that even in the system of the smallest size L � 8, the
arrangement of the points does not drop out of the general
pattern. The asymptotic finite-size scaling behavior seems to
take place even at L5 8. The dependences plotted in Figs 12
and 13 were derived with the use of the least-squares method.
The slope of the straight line determines the values of b=n and
g=n, which are equal to 0.544 and 1.985 for model I. Taking
into account that model I has a clearly pronounced Heisen-
berg character and n � 0:706 [6 ± 8], we have b � 0:38�2� and
g � 1:38�2�. Note that these values are in agreement with the
theoretical estimates for the Heisenberg model (b � 0:368,
g � 1:39 [6 ± 8]). In model II, we have b=n � 0:426 and
g=n � 1:791. Since this model exhibits Ising behavior, while
the initial Hamiltonian shows Heisenberg behavior, we
determine the exponents at both n � 0:706 (Heisenberg
model) and n � 0:63 (Ising model). Thus, we have
b � 0:30�2�, g � 1:26�3� at n � 0:706, and b � 0:27�2�,
g � 1:13�3� at n � 0:63. The values obtained for model II are

ÿ30 ÿ20 ÿ10 0 10 20
eL1=n

30

0.28

wLÿg=n

0.24

0.20

0.16

0.12

0.08

0.04

0

D � 2:5� 10ÿ2

N � 500

N � 864

N � 1372

N � 2048

N � 4000

Figure 11.Data on the susceptibility of Cr2O3 samples, scaled by (5.12) for

the model II.
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1.0

m

0.1

T � TN

b=n � 0.544

b � 0.38(2)

Figure 12. Double logarithmic dependence of the magnetization m on the

reduced temperature e, obtained for Cr2O3 samples (model I).

10 20
L

100

10

w

0,1

T � TN

g=n � 1.955
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Figure 13. Size dependence of the susceptibility w�L� at T � TN for Cr2O3

samples (model I).
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close to the theoretical estimates for the Ising model
(b � 0:326, g � 1:24 [6 ± 8]) and are slightly less at n � 0:63.

In the case of sharply peaked heat capacity curve, the
scaling of Cmax is usually performed by [128, 197]

Cmax�L� � Cmax�L � 1� ÿ aLa=n ; �5:15�

where a is a constant (Fig. 14). Approximation of the data by
(5.15) yields the critical exponent a � ÿ0:14�3� for model I,
and a � 0:16�3� at n � 0:706 and a � 0:14�3� at n � 0:63 for
model II. These results agree well with the theoretical
estimates obtained for the Heisenberg (a � ÿ0:126 [6 ± 8])
and the Ising (a � 0:108 [6 ± 8]) models and with the data
calculated by theMC data treated by the conventional power
dependences.

Our data obtained by the MC study of models of real
antiferromagnetic Cr2O3 suggest that model I with weak
anisotropy behaves as the Heisenberg one under the condi-
tions studied. The critical exponents a for heat capacity
derived from the power dependences and finite-size scaling
relations are in good agreement and correlate well with the
theoretical estimates.

The exponents b and g calculated in the conventional way
with the use of (5.6) and (5.7) show features typical of MC
data and cannot be used to identify the type of critical
behavior. The values of a, b, and g obtained by the FSS
treatment of the same data suggest thatmodel I behaves as the
Heisenberg one with critical exponents a � ÿ0:14�3�,
b � 0:38�2�, and g � 1:38�2�.

The analysis of the data obtained at D0=jJ1j � 2:5� 10ÿ2

(model II) and treated by both the methods proves the
model II to exhibit Ising critical behavior.

Note that, although the values of critical exponents a, b
and g found by the FSS theory are in better agreement with
the theoretical estimates and experimental results, approx-
imation of the same data by conventional power functions
yields a great body of additional information.We believe that
to gain a comprehensive idea of the critical behavior of the
systems under study, the results of the MC modeling should
be analyzed by both the methods.

6. MC study of the dynamic critical behavior

The investigation of the dynamic properties of condensed
systems near the critical points is a traditional concern of

statistical physics. Development of a complete theory of
dynamic critical phenomena on the basis of microscopic
Hamiltonians is a central problem of the modern theory of
PT and CP, which is still far from being solved. Nevertheless,
the available analytical approaches based on the RG
approach [2], the theory of interacting modes [4], and
dynamic scaling [2, 4] start from microscopic Hamiltonians
in considering spin systems. Note that theoretical and
experimental studies in this field run into severe difficulties
[198 ± 205]. Nevertheless, noteworthy is the most essential
step forward yet taken in this direction, which is the
application of the RG method and the e expansion to the
study of dynamic critical phenomena [198, 199]. It has
enabled the calculation of the dynamic critical exponent z
(Table 9) for some particular models and to reveal the main
effects influencing its numerical values. The analysis of
dynamic critical phenomena demonstrates that the exponent
z is one of the main characteristics of the critical dynamic
behavior. It has turned out to depend not only on the space
dimension d, the number n of degrees of freedom of the order
parameter, and the type of ordering interaction, but also on
the conservation of the characteristic energy and the order
parameter. The main expression of the dynamic scaling,
which determines this critical exponent, takes on the form [1]

o � q zf�qxc� ; �6:1�

where o is the characteristic frequency of fluctuations with
wave number q, and xc is the critical correlation radius.

The dynamic critical properties of magnetically ordered
materials, especially ferromagnets, are highly diversified and
complicated, since account should be taken not only of the
strong exchange interactions but also of the weak relativistic
ones. The most significant of the latter are the dipole
interactions, which grow in importance as the system
approaches the critical point. As a result, the critical region
turns out to be divided into two regions, in one of which the
dipole effects are dominant, while in the other, exchange

Cmax

10 20
L

2.5

2.0

Cmax�L� � Cmax�L � 1� ÿ aLa=n

a � ÿ0.14(3)

Figure 14. Size dependence of heat capacity maximum Cmax�L� for Cr2O3

samples (model I).

Table 9. Theoretical estimates of the dynamic critical exponent z.

Spin system
model

Universality
class for equi-
librium criti-
cal behavior

Scaling law Approxima-
ted numeri-
cal values
at d=3

M o d e l A. Aniso-
tropic magnets,
where the order para-
meter and the energy
are not conserved

M o d e l C. Aniso-
tropic magnets,
where the order
parameter is not
conserved, while the
energy is conserved

M o d e l G. Aniso-
tropic antiferromag-
nets

M o d e l J. Isotropic
antiferromagnets

Ferromagnets with
a dipole interaction:
normal and
rigid dynamics

(1, d )

(1, d )

(3, d )

(3, d )

(3, d )

z � 2� cZ,
c � 6 ln�4=3� ÿ 1

z � 2� a=n,
n � 3;
z � 2� 2a=nn,
0 < n4 2;
z � 2, n5 4

z � d=2

z � �d� 2ÿ Z�=2

z � 2ÿ Z,
z � 2� cZ,
c=0.94;
z � �5ÿ Z�=2ÿ 1=n

2

2

3/2

5/2

2
2

1
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forces prevail [200 ± 202]. According to the experiments on
ferromagnets, in the region with prevailing exchange forces
the predictions of the theory of interacting modes and
dynamic scaling are correct [200 ± 203]. In the region with
dominant dipole interactions the theory predicts two types of
behavior, i.e., normal and rigid. These experimental data are
contradictory and cannot be treated in a unique manner
[200 ± 204]. The considerable difficulties encountered in the
theoretical and experimental studies have not yet been
overcome. We believe that the MC methods, which in recent
years have been intensively applied to study dynamic critical
phenomena, would clarify at least some of the significant
questions concerned. Note that the main advantage of the
MC treatment is that all the parameters affecting the physical
processes are controlled.

TheMC study of various aspects of dynamic properties of
the Heisenberg and Ising models has received considerable
attention [160, 161, 205 ± 226]. Quantitative studies of the
critical dynamics by the MC method have started only
recently, and they are fewer in number than those dealing
with the equilibrium dynamic properties. In recent years a
number of works have appeared, where various MC versions
were used to investigate dynamic properties near Tc and
calculate the critical exponent z [208, 211, 213 ± 220, 226].
The values of the critical exponent z for the Ising model
obtained in earlier works show a wide scatter from 2.17 [222]
to 1.95 [225]. These studies demonstrate the tendency for the
exponent z to decrease as the size of the system under
consideration and the duration of calculations rise. The
latter seems to result from the finite-size effects and/or
insufficient data considered in statistical treatment. Some
results obtained with the use of supercomputers and powerful
special-purpose computer complexes on large-size lattices
(L� L� L, L � 512) yield z � 1:95 [223] and z � 1:99 [226]
for the 3d Ising model. Despite the high accuracy of the
calculations, these values do not agree with the lowest
estimate z � 2 predicted by the e expansion for all the
systems with the space dimensionality varying from 1 to 4
[227].

An attempt to clarify the situation with contradictory z
values was made in Refs [207, 208]. The authors of Ref. [208]
analyzed possible systematic errors arisen in the MC study of
dynamic properties. They investigated the time correlation
functions F�t� for the magnetization and the energy at Tc on
SC lattices of size L� L� L, L4 96 with periodic boundary
conditions. The time correlation functions FA�t� for a
thermodynamic value A were shown to be calculated as

FA�t� � hA�0�A�t�i ÿ hA�0�ihA�0�ihA�0�A�0�i ÿ hA�0�ihA�0�i �6:2�

under the condition that the number of MC steps tends to
infinity �N!1�. In the general case, the function FA�t� is
written [228, 229] as

FA�t� �
X
i

ai exp

�
ÿ t

ti

�
; �6:3�

where ai are unknown coefficients. Using the nonlinear least-
squares method to treat FA�t�, we obtain ti values, which can
be considered as the relaxation times for the system studied.
To find ti, the authors of Ref. [208] calculated the time
correlation functions for the energy E on the time interval t
of length up to t � 1000 MC steps/spin and the time
correlation functions for the magnetization M on the time
interval t of length up to t � 5000 MC steps/spin. The

corresponding relaxation times were also evaluated in
Ref. [211] for the classical Heisenberg model on an SC lattice
at t � 3000 MC steps/spin. There, F�t� was approximated by
both the ordinary exponent � A

�
exp�ÿt=t�� and a two-

exponent function:

F�t� � a1 exp

�
ÿ t

t1

�
�a2 exp

�
ÿ t

t2

�
: �6:4�

It turned out that the values ti calculated using the simple
exponent are less by several percent than those obtained by
(6.4). In Ref. [230] the critical exponent z is determined by
finite-size scaling. Following the theory, in the dynamic
critical region the relaxation time t is scaled as

t�x;L; e� � Lzf

�
x
L
; eLÿz

�
; �6:5�

where x is the correlation length, and f �x; y� is the scaling
function. At the pointTc the characteristic scale is determined
by the linear size L of the system, and the relaxation time is
defined as t � Lz at asymptotically large L!1.

For the Ising model, the critical exponent z obtained by
the FM�t� dependences for lattices of size L5 12 is equal to
2:04� 0:03, which is in good agreement with the e expansion
value z � 2:02 [199]. The data obtained by the study of FE�t�
are less accurate and yield z � 2:03� 0:10.

It is pertinent to consider some methodological points. As
is shown in Ref. [208], a system with L4 12 exhibits
deviations from the asymptotic behavior and the FSS
analysis should be improved. Investigation of the system
with L � 12 shows that the relaxation times can be affected
by the type of periodic boundary conditions, although the
effect probably decreases as L rises. These facts suggest that
the dynamic critical phenomena are difficult to study not only
by the theoretical and experimental methods but also by
numerical calculations.

Figure 15 plots typical data obtained by this way for the
Heisenberg model [211] on SC lattices within the approach
discussed. The estimate z � 1:96�6� is obtained from the data

z � 1.96(6)

(after correction)

z � 1.91(6)

K � 0.6916

6 10 20 30 L

2000

t

1000

500

100

Figure 15. Double-logarithmic dependence of the relaxation time t for
magnetization on the lattice size L obtained in the 3dHeisenberg model at

T � Tc (Kc � J=kBTc =0.6929) [211].
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shown in the figure after the use of a correcting procedure
described in Ref. [211] (Fig. 15, dashed line). This value z
differs slightly from that found by the RG theory [231 ± 233]:

z � 2� cZ; c � 6 ln

�
3

4

�
ÿ1 ; �6:6�

which yields z � 2:024. But the estimate by the MC data is in
agreement with the prediction of the classical theory of
critical retarding z � 2ÿ Z [234, 235]. The authors of Ref.
[211] explain the difference between the MC and RG results
by the fact that the MC data are systematically shifted, for
example, due to the narrow range of L variation (from 6 to
24). Another possible reason indicated in Ref. [208] is the
finite number of MC steps; this error cannot be ignored even
given considerable MC statistics.

For the Heisenberg model, various experimental data
yield 1.88 ± 2.09 including a high error ��0:05� of measure-
ments. These data agree with the theory only qualitatively and
do not clarify the situation.

A direct comparison of the MC data with experimental
results is rather difficult, since the `artificial' stochastic
dynamics used in the MC process results in purely relaxation
behavior. Note also that recent experiments on the critical
behavior of isotropic ferromagnets (EuO, EuS) have revealed
a crossover from z � 2:5 to z � 2:0, which is probably
explained by the presence of dipole ± dipole interactions [211].

The critical exponent z can also be estimated from the
dependence of the relaxation time on the closeness to the
critical temperature [199]. If the correlation length x diverges
as x � ��Tÿ Tc�=Tc

�ÿn � �e�ÿn atTc, then this dependence of
the relaxation time is expressed as

t �
�
T

Tc
ÿ 1

�ÿy
; �6:7�

where y � zn. Figure 16 depicts a typical finite-size scaling
dependence t�e� for the 3dHeisenbergmodel on an SC lattice,
which is derived from

tL�e� � Lzf �eL1=n� : �6:8�

The values y � 1:28 [208] and y � 1:38 [211] calculated for
the Heisenberg and the Ising models are best suited to
describe the experimental MC data. Using n � 0:63 and
n � 0:706 for the Ising and Heisenberg model, respectively,
we arrive at z � 2:03 and z � 1:95. For the Heisenberg model
the value y � 1:38�1� not only coincides with that predicted
by the RG method y � 1:38�5�, but also surpasses it in
accuracy. Note that the values obtained by the size depen-
dences of t agree well with those derived from the temperature
dependences of t for both the models. The authors of Ref.
[208] point out that the first method provides higher accuracy
of z calculation than the second one and discuss various
reasons for the difference between the theoretical data and the
results found by other authors.

In recent years, much attention has been given to studies
aimed at elucidation of the extent of influence of impurities
and other nonideal properties of real crystals on the critical
behavior of systems at phase transitions [107]. For instance,
it was found [236] that the presence of impurities changes the
critical properties of magnets whose heat capacity diverges at
Tc. The RG method showed [237, 238] that the critical
behavior of the dilute Ising model can be assigned to a new
universality class, and the critical exponents do not depend
on the concentration of point impurities until it exceeds a
threshold value. In this regard, the works of Prudnikov and
his associates concerned with the critical dynamics of dilute
Ising systems are very interesting. The 3d Ising model of size
L� L� L �L � 48� is considered in [213, 214] at various
spin concentrations p � 1:0, 0.95, 0.8, 0.6, and 0.4. In Ref.
[224], the MC method is combined with the dynamic RG
approach to calculate the critical exponent z. There, the
concentration dependence of the critical exponent z�p� was
found: z(1.0)=1.98� 0.08, z(0.95)=2.19� 0.07, z(0.8)=
2.20� 0.08, z(0.6)=2.58� 0.09, and z(0.4)=2.65� 0.12.
According to the works cited, the concentration range can
be divided into several intervals; critical exponent is constant
in each such interval within the accuracy of calculations, but
differs for different intervals. A step-like universality of the
critical exponent is assumed to explain these data for three-
dimensional dilute Ising systems. Note that the critical
exponent z(1.0)=1.98� 0.08 of the homogeneous system
without impurities agrees well with the data found in Ref.
[208] by complicated numerical calculations using special
coding algorithms. Similar investigations were carried out in
Refs [215 ± 219] for the 2d Ising model on a simple square
lattice with spin concentrations p � 1:0, 0.95, 0.9, 0.85, 0.80,
0.75, 0.70 and lattice size L� L � 400� 400. At a spin
concentration higher than p5 0:9, the dynamic behavior of
the disordered Ising model is shown to belong to the same
universality class as that in the homogeneous model with an
exponent z � 2:24� 0:07 . This value agrees well with the
data obtained by the field theory [215 ± 219]. Although the
accuracy of calculations of the exponent z is not high, the
model as well as the procedure used in these works are worthy
of notice.

7. Conclusion

In this review, we have made an attempt to consider the
results of the study of phase transformations and critical
exponents obtained by the Monte Carlo (MC) method in
recent years. The method is ideally suited to the study of
small-size systems, and in combination with the finite-size
scaling theory is effective to investigate `macrosystems.' We

Ð L � 8

Ð L � 16

Ð L � 20

10ÿ1 100 101 102
eL1=0:706

tLÿ1:96

100

101

10ÿ1

10ÿ2

nz � 1.38(1)

Figure 16.Double-logarithmic dependence of the relaxation time t on the
reduced temperature e obtained in the 3dHeisenbergmodel treated by FSS
analysis in the paramagnetic range Kc � J=kBTc � 0:6929 [211].
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have demonstrated that the MC method is a powerful and
versatile tool to study not only classical but also quantum spin
systems. It capable of treating complicated models, which can
hardly be investigated by other methods, and enables one to
calculate critical exponents and critical amplitudes with a
high accuracy. We have indicated some works, where the
universality class of the critical behavior of certain models is
determined from the MC data. We have also presented for
these models the critical exponents derived from theMC data
treated by the conventional power dependences as well as the
finite-size scaling theory. All the data of numerical calcula-
tions are compared with the theoretical estimates and
experimental evidence.

Unfortunately, the application of theMCmethod to fields
such as spin glasses, ferroelectrics, high-temperature super-
conductors, liquids, polymers, andmany others has remained
beyond the scope of this review. The areas of application of
the MC method are so wide that all interesting problems of
modern physics of phase transformations and critical
phenomena, which are not closely related, can hardly be
considered in a single review. We believe new highly efficient
MC methods specially developed to study the critical region
to be of interest and discussed in detail. These and quantum
MC methods should to be the goal of a separate review
elsewhere.
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