
A scientific session of the Division of General Physics and
Astronomy of the Russian Academy of Sciences (RAS) was
held on 27 January 1999 at the P L Kapitza Institute for
Physical Problems, RAS.

Two papers were presented at this session:
(1)Valiev K A (Institute of Physics and Technology, RAS,

Moscow) ``Quantum computers: can they be made `large'?'';
(2) Molotkov S N (P N Lebedev Physics Institute, RAS,

Moscow) ``Quantum cryptography''.
An abridge version of the first paper is given below.
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Quantum computers:
can they be made `large'?

K A Valiev

The idea of the quantum computer goes back to Feynman's
work in 1982 ± 1986 [1 ± 3] when, concerned with using the
computer to simulate the evolution of a quantum system, he
found this `incompatible' in the sense that classical machines
have insufficient memory and speed for solving quantum
problems. For example, a system of n two-state quantum
particles (of spin 1/2) offers 2n basis states, implying that for
the system to be described 2n state amplitudes should be
specified and stored in the computer. It was this negative
result which led R Feynman to conjecture that probably the
`quantum computer' will have suitable properties for quan-
tum problems to be dealt with [1 ± 3].

`Classical' computers are built up of transistor circuits
having their input and output voltages related in a nonlinear
fashion. These are, in fact, bistable elements: for example, for
a low input voltage (logical `0') the output voltage is high
(logical `1'), and vice versa.

In the quantum world, one can associate with such a
bistable transistor circuit a two-level quantum particle if one
assigns to the state E0, jC0i the value of logical `0'� j0i and
to the state jC1i, E1 > E0, the value of logical `1'� j1i. To
the transitions `0'! `1' in such a bistable transistor circuit
there will correspond level-to-level transitions, i.e.
j0i $ j1i�E0$E1. However, compared with its classical
counterpart, the quantum bistable element (which came to
be known as the qubit) possesses a new property, namely
that of the superposition of states, meaning that it may be in
any state jCi � aj0i � bj1i, where a, b are complex
numbers, and jaj2 � jbj2 � 1. The states of a quantum

system of n two-level particles are generally superpositions
of the form jCi �P2nÿ1

i�0 aijCii of 2n basis states
jCii � ji1i2 . . . ini, ik � 0; 1. Essentially, it is the quantum
principle of superposition which imparts to the quantum
computer its fundamentally new `abilities'.

It has been proved that it takes only two elements (gates)
to build a quantum computer, a one-qubit element Q�y;j�
and a two-qubit element `controlled NOT' (CNOT). The
2� 2 matrix of the Q�y;j� element is of the form
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TheQ�y;j� gate describes a rotation of the qubit state vector
from the axis z to the polar axis specified by angles y, j. If the
numbers y;j are irrational, then by repeatedly applying
Q�y;j� the state vector may be given any preassigned
orientation Ð a feature which makes the one-qubit gate (1)
`universal'. In the special case y � p=2, j � 0 we have a one-
qubit logical element NOT: NOTj0i � j1i, NOTj1i � j0i. To
realize NOT physically requires a quantum particle (qubit) to
be subjected to an external pulse whose role is to transfer the
qubit from one state to another. A controlled NOT gate is
established by acting on two qubits with a coupling between
them, the coupling allowing one qubit to control the evolution
of the other. Transitions caused by external pulses are well
known in pulsed magnetoresonance spectroscopy. The NOT
gate corresponds to the spin flip Iz $ ÿIz due to pulse Y�p�
(the magnetization vector rotates about the axisY through an
angle p). A CNOT gate is set up by two 1/2 spins with the
Hamiltonian H � oiIzi � AijIziIzj �H 0imp�t� (spin Ij control-
ling Ii) and proceeds in three stages: a pulse Yi�p=2�, free
precession for a time t � p=Aij, and finally a pulseXi�p=2�. If
Izj � 1=2 (the controlling qubit in the state j0i), the above
influences cause the controlled qubit to perform the transi-
tions Izi ! Ixi ! Iyi ! Izi (orÿIzi !ÿIxi ! ÿIyi ! ÿIzi). If,
on the other hand, Izj � ÿ1=2 (the controlling qubit in the
state j1i), the evolution of the controlled qubit has a different
result: Izi ! Ixi ! ÿIyi ! ÿIzi (ÿIzi ! ÿIxi ! Iyi ! Izi).
Thus, the spin Ii evolves differently for Izj � 1=2 and
Izj � ÿ1=2: j00i ! j00i, j01i ! j01i, j10i ! j11i,
j11i ! j10i; here i1 in ji1i2i is the state of the controlling qubit.

In discussing various quantum systems as candidates for a
quantum computer, it is the realizability and properties of the
elementary gates NOT and CNOT which should be consid-
ered first.

For later use, it is convenient to introduce the Hadamard
one-qubit transformation

Hj0i � 1���
2
p ÿj0i � j1i� ; Hj1i � 1���
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In the magnetic resonance technique, these gates are realized
by the pulses p=2:
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A flow chart of a quantum computer is shown in Fig. 1.
Before starting the computer, all the qubits (quantum
particles) must be brought to the state j0i, i.e. to their ground
state. This is not a trivial condition in itself because to fulfil it,
either deep cooling (to millikelvin temperatures) or polariza-
tion techniques are needed. A system of n qubits in the state
j00 . . . 0i can be regarded as a memory register prepared for
recording input data and performing computations. Apart
from this register, additional (auxiliary) registers for record-
ing intermediate computation results are generally assumed
to exist. To record data, some kind of influence is exerted on
each computer qubit. Suppose, for example, that each register
qubit is subject to the Hadamard transformation

Hn
Hnÿ1 
 . . .
H1j0102 . . . 0ni

� 2ÿn=2
Yÿj0i1 � j1i1� . . .

ÿj0in � j1in�
� 2ÿn=2

X2nÿ1
x�0
jxi � jC1i : �2�

As a result, the system goes over to a state superposed of 2n

basis states with an amplitude of 2ÿn=2. Each basis state
comprises a binary number x, from x � 0�j00 . . . 0i� to
x � 2n ÿ 1�j11 . . . 1i�. Notice that the horizontal lines in the
figure represent time axes.

The algorithm f�x� proceeds by subjecting the super-
position jC1i to the unitary transformation Uf represented
by a unitary 2n � 2n matrix. In the external pulse scheme, the
matrix Uf�2n� must be represented as a vector product of the
matrices of size 2 �U�2�� and 22 �U�22��. These latter can be
performed by successively acting on single qubits �U�2�� or
qubit pairs �U�22��:

Uf � Uk 
Ukÿ1 
 . . .
U0 ; �3�

the number of cofactors in the expansion determining the
time required for and the complexity involved in calculating
f�x�. All the Ul in Eqn (3) are performed by applying the
operations NOT, CNOT, H or varieties of them.

Remarkably, the linear unitary operator Uf simulta-
neously acts on all the terms jxi in the superposition

jC1i � 2ÿn=2
P2nÿ1

x�0 jxi:

UfjC1ij0i � 2ÿn=2
X2nÿ1
x�0

Uf jxij0i � 2ÿn=2
X2nÿ1
x�0
jxij f�x�i : �4�

The calculated j f�x�i is stored in a stand-by register,
which had been in the state j0i before Uf was applied. One
run of the computational process gives us the necessary
magnitudes of the desired function f for all values of the
argument x � 0; . . . ; 2n ÿ 1. This phenomenon has come to
be known as quantum parallelism.

To measure the result of the calculations simply requires
that the superposition vector in Eqn (4) be projected onto the
vector of one of the basis states jxi:

R2ÿn=2
X2nÿ1
x�0
jxij f�x�i � 2ÿn=2jxij f�x�i : �5�

We see here one of the weaknesses of the quantum computer:
the number jxi `appears' at random in the process of
measurement. In order to find f�x�� for a given x�, computa-
tions and measurements must be performed many times until
jx�ij f�x��i appears in this random way. If input data are
structured such that the amplitude cx� of the vector jx�i in
jC1i �

P2nÿ1
x�0 cxjxi may be close to 1, then the measurement

will at once yield the state jx�ij f�x��i with probability
jcx� j2 � 1. If x� is not known in advance and the input data
cannot be structured, special operations can be introduced
into the algorithm, which will determine the required super-
position term and, via the iteration process, will increase its
amplitude to� 1. An example is Grover's algorithm to search
for a certain object in an unstructured database [4].

The analysis of the unitary evolution of a computing
quantum system highlights the importance of the interference
type physical processes: unitary transformations are per-
formed in the space of complex numbers whose phases
produce an interference effect when added. It turns out that
the Fourier transform, known to be so fruitful in interference
phenomena and spectroscopy, is also ever-present in quan-
tum algorithms. The Hadamard transform is in fact the
simplest possible discrete Fourier transform. The NOT and
CNOT gates may be established directly with the Mach ±
Sehnder interferometer by using the photon interference
effect and rotations of the photon polarization vector [5].

Various approaches to the realization of quantum
computers are currently being studied. In particular, quan-
tum computing models using a pulsed NMR spectrometer
have been tested [6 ± 10], in which two or three spins (qubits),
for example, two spins of 13C nuclei and one proton spin in
the trichlorethylene molecule [10]

were employed. However, the quantum computer involved in
these experiments was of the `ensemble' type in that its output
signal was in fact a sum of signals from a large number
(� 1020) of liquid solution molecules.

By now, a number of systems have been suggested as
quantum computer candidates, including trapped ions and
molecules in vacuum [11]; nuclear spins in liquids (see above);
nuclear spins of 31P atoms in crystalline silicon [12]; electron
spins in quantum dots produced in the 2D electron gas of the
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Figure 1. Flow chart of a quantum computer.
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GaAs heterostructure [13], and the Josephson junctions [14].
We see that, in principle, atomic particles in vacuum and
liquids as well as in crystals are suitable for building up a
quantum computer. Although in each particular case certain
obstacles are to be overcome, some of these are common due
to the common principles of operation of qubits in a quantum
computer. Suppose we set ourselves the task of constructing a
full-scale, say, 103 qubits, quantum computer (even though an
n � 100 quantum computer may be useful enough). This
implies the following.

(1) Techniques are to be found with which to put
computer qubits in the initial state j0 . . . 0i. For a spin system
in a crystal this clearly requires ultralow temperatures and
superstrong magnetic fields. For cooling and high fields
combined, spin polarization by pumping may prove useful.

For vacuum trap ions, laser methods are used to achieve
superlow cooling of ions (atoms) and of course a cold and
ultrahigh vacuum is also necessary.

(2) Technology is needed to apply pulses selectively to any
chosen qubit. For the radio-frequency range and spin
resonances, this implies that (in spectroscopic resolution
terms) each spin should have its own resonance frequency.
Resonance frequency differences between spins in molecules
are due to chemical shifts for spins of one isotope and one
element; the required frequency differences exist for nuclear
spins of dissimilar elements. Common sense suggests, how-
ever, that these nature-provided frequency differences are
hardly sufficient to work with 103 spins.

More promising approaches are those allowing the
resonance frequency of each individual qubit to be externally
controlled. In the silicon quantum computer concept, the
nuclear spin of an impurity atom 31P acts as a qubit, the
resonance frequency being determined by the constant A of
the hyperfine nuclear-electron spin interaction HIS � AI� S
in the 31P atom. The electric field at the nanoelectrode above
the 31P atom polarizes this latter and changes the constant A
(and hence the resonance frequency of the nuclear spin).
Thus, the presence of the electrode makes the qubit a part of
the electronic circuit and tunes its resonance frequency.

(3) To perform a CNOTij (controlled NOT) operation
requires that there be a coupling of the form AijIziIzj between
qubits i and j. Such a coupling occurs between nuclear spins in
a molecule if nuclei i and j are separated through a single
chemical bond between them. In principle, it is necessary to be
able to perform the CNOTij operation for any pair of qubits
with i 6� j. In a natural environment, since the qubit-qubit
coupling is hardly expected to be of the all-with-all type and of
the same order of magnitude for each qubit pair, it is clearly
necessary that the medium in-between the qubits be tuned
from outside by means of controlled-potential electrodes
introduced for the purpose. In this way, for example, an
overlap of electron wave functions between neighboring
quantum dots and a coupling of the form J�V�Si � Sj

between the electron spins [13] can be achieved. The overlap
between the electron wave functions of the neighboring 31P
atoms gives rise to the coupling AijIi � Ij between nuclear
spins [12].

In order to perform the operation CNOTij, where i and j
are far-apart qubits with noAijIi � Ij coupling between them,
it is necessary that the computer performs the state exchange
operation along the chain j! l! k! . . .! p, in which case
AipIiIp secures CNOTij because the state Ip is the same as Ij.

(4) Since computer qubits are affected by the environment
in the course of performing a unitary transformation

corresponding to the selected algorithm, the amplitudes and
phases of the qubit state vector undergo random changes, i.e.
decoherence. In fact, decoherence is the relaxation of those
degrees of freedom of the particle, which are employed in the
qubit, and the time of decoherence td is equal to the relaxation
time. For a nuclear magnetic resonance in liquids, the
relaxation times T1 and T2 range between 1 and 10 s. For
ions in traps with optical transitions between the levelsE0 and
E1, the decoherence times are the time of spontaneous
emission and the collision time for residual atoms. Clearly,
decoherence is a serious obstacle to quantum computing in
that the computation process acquires some elements of
randomness when a period of time equal to the decoherence
time passes after its start.

However, the stability of the quantum computation
process can be maintained for an arbitrarily long tome
t4 td by systematically applying the methods of quantum
encoding and (phase and amplitude) error correction [15]. It
has been proved that, for relatively mild requirements on the
failure rate of elementary operations NOT and CNOT (error
probability within 10ÿ5), quantum error correction (QEC)
methods secure a stable operation of a quantum computer.

Alternatively, the decoherence process can be suppressed
by periodically performing measurements on the system of
qubits. With a large probability, a measurement will find the
particle to be in a `regular' state, whereas small random
changes of the state vector will collapse during the measure-
ment (Zenon quantum effect [16, 17]). As yet, however, the
utility of this approach is difficult to assess because measure-
ments like this may themselves affect Ð and destroy Ð the
computing process.

(5) To see the result of the computation, the states of the
qubits must be measured after the computing process is over.
Although today no technology is up to the job, the obvious
way it should be sought is by using amplification methods
when performing the quantum measurement. For example,
the state of the nuclear spin I is transferred to the electron
spin S, this latter determines the orbital wave function, and
the knowledge of this functionmay in turn be used to perform
a charge transfer (ionization); using classical electrometrical
methods [12, 13], the presence or absence of a single electron
charge may be detected. In measurements like this, force-
microscopy probe techniques are likely to be employed.

Quantum algorithms that speed up computations expo-
nentially relative to classical computers have been discovered.
One example is Shor's algorithm for factoring large (multi-
digit) numbers [18]. This purely mathematical problem has
serious implications for human society because the `non-
computability' of such factors is currently at the heart of
many cryptographic systemsÐhence the sensation caused by
Shor's discovery. For physicists, it is important that quantum
problems (in particular, the SchroÈ dinger equation for many-
particle systems) may be solved exponentially faster with a
quantum computer [19].

Finally, it is important that in the course of quantum
computing studies, the basic problems of quantum physics Ð
in particular, locality, reality, complementarity, hidden
parameters, and wave function collapse Ð come again
under the scrutiny of both theoreticians and experimentalists.

The concepts of quantum computing and quantum
communications came to the fore a hundred years after the
advent of quantum mechanics. Both theoretical and experi-
mental studies have demonstrated the viability of the
quantum computer idea. Quantum physics is `sufficient' as a
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tool for designing quantum computers on various `elemental
bases.' If blessed with success, quantum computers will be a
XXI century technique. For their fabrication, technology
issues at nanometer and atomic size levels will have to be
resolved Ð a task for decades of work, perhaps. Another
illustration of the principle of the inexhaustibility of nature,
quantum computers would show that Mother Nature has
enough means to solve whatever problem a human may
correctly formulate. In conclusion, these reviews on quan-
tum computing [20 ± 22] are recommended for further read-
ing.
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