
Abstract. It is demonstrated that the linear kinetics of a colli-
sionless quantum plasma can be described in a simple and
effective way by means of a self-consistent-field scheme in
which the quantum hydrodynamic equations are derived di-
rectly from the SchroÈ dinger equation.

1. We show that the known system of equations of cold
hydrodynamics in the Eulerian form [1] 1
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can also be used with profit, at least in the linear approxima-
tion, for describing the kinetic properties of a plasma with a
thermal scatter in the particle velocities (a Vlasov plasma).

Let some group of particles with number density n in a
homogeneous isotropic plasma (without an externalmagnetic
field B0) possess a velocity V. A small perturbation of this
state by a weak electromagnetic field E, B will give rise to
perturbations of density dn and velocity dV, which are found
from the linearized system (1). Since n andV are constant, the
quantities dn and dV can be sought as exp�ÿiot� ikr�. On
determining dn, dV and then the current density
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we shall find the conductivity sij and the dielectric constant of
the particle group under consideration:

eij�o; k� � dij � 4pi
o

sij�o; k�

� dij ÿ 4pe2n
mo2

�
dij � k2ViVj

�oÿ kV�2 �
kiVj � Vikj
oÿ kV

�
: �3�

Nowwe can go over from a group of particles to the entire
plasma by averaging over the momentum distribution
function f0�p� with the substitution n! f0�p� dp and subse-
quent integration
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�
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The last bracketed factor of the integrand stands for the
factor in expression (3) enclosed in square brackets. In
consequence we find the known expression for the permittiv-
ity tensor for an isotropic plasma, which is usually obtained
by solving the kinetic Vlasov equation [2]:
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Naturally, the outlined method is applicable not only for
calculating the dielectric constant of an isotropic plasma. The
substitution (4) is appropriate whenever the plasma with a
thermal velocity scatter can be treated as a collection of
groups of particles described by Eqns (1). In this case, the
square brackets under the integral in (4) should enclose all
expressions dependent on the hydrodynamic characteristics
of each group of particles.

2. We shall generalize the outlined method to the case of a
quantum plasma. In doing this, we proceed from the
SchroÈ dinger equation for the electrons without a spin,
following Ref. [3] in the derivation:
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Here A and j are the vector and scalar potentials of the fields
E and B, with
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We represent the wave function as
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1 For brevity of the following presentation, we consider only one plasma

component, for instance, the electron component.



and draw on the definitions of charge and current densities
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to obtain the system of equations
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from the SchroÈ dinger equation (6).
The first of these equations coincides with the equation of

continuity, and the second with the Euler equation of system
(1). Therefore, by analogy with system (1), system (10) will be
referred to as the quantum equations of cold plasma
hydrodynamics.

Eqns (10) differ from Eqns (1) in that the Euler equation
includes the quantum force resulting from the Heisenberg
uncertainty principle. This is easily verified by considering
small perturbations of the uniform state with n � const and
V � 0. In the limit n! 0 when the self-consistent fields E and
B can be neglected, for solutions of the type exp�ÿiot� ikr�
the linearized system (10) yields the dispersion relation

o � �hk2

2m
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which describes the oscillations of a single electron. This
expression relates the temporal (proportional to 1=o) and
spatial (proportional to 1=k) domains of localization of a free
electron, or the energy �ho and the momentum �h k. The
quantity (11) is the frequency of the quantum oscillations of
a free electron.

Following the outlined procedure, we can now derive the
dielectric constant of a quantum isotropic plasma with a
thermal scatter in electron velocities. First, for any group of
plasma particles we obtain the corresponding quantum
dielectric constant, i.e. the quantum analog of tensor (3).
Assuming the perturbed quantities to be of the form
exp�ÿiot� ikr�, from Eqn (10) it follows that
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where oLe
� ������������������

4pe2n=m
p

is the electron Langmuir frequency,
and eclij � dij � declij is the classical dielectric constant tensor
defined by expression (3). In the derivation of expression (12),
we drew on the obvious substitution
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which follows in the linear approximation from the Euler
equation (10).

We next substitute expression (3) into (12) and pass on to
the kinetic description with the help of change (4) to obtain by
straightforward calculations the known expressions for the
quantum longitudinal and transverse dielectric constants of
an isotropic plasma [2]
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Notice that inRef. [2] expressions (14) were derived by solving
theWigner quantum kinetic equation, which involved tedious
calculations. In the limit �h! 0, formulas (14) obviously
transform to formulas (5).

3. Now consider a homogeneous magnetoactive plasma.
Let the externalmagnetic fieldB0 be alignedwith theOZ-axis.
For simplicity, we shall restrict our consideration to the case
of a potential field E � ÿHj, A � 0. As above, we consider a
group of particles with number density n, which possess
longitudinal velocity Vz and rotate about the magnetic lines
of force with the Larmor frequency O � eB0=mc and the
Larmor radius RL � V?=O. The longitudinal dielectric
constant of this classical cold plasma (group of particles) is
easy to obtain from the general formula given in Ref. [1]. It is
of the form
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where Js�z� is the Bessel function of the real argument
z � k?RL.

We average expression (15) over the distribution function
f0�p� according to the above recipe (4) to obtain the known
expression for the longitudinal dielectric constant of a
classical magnetoactive plasma [1]

e�o; k� � 1� 4pe2

mk2

�
dp
X
s

J2s �z�
oÿ kzVz ÿ sO

�
�
kz

qf0
qVz
� sO
V?

qf0
qV?

�
: �16�

It is also an easy matter to write out the longitudinal
dielectric constant of a quantum magnetoactive plasma. To
accomplish this, it should be recognized that the total force in
the right-hand part of the Euler equation (10) does not
depend on the type of plasma at all. Consequently, relation
(13) is universal in character too, and with it formula (12).
Hence, the longitudinal dielectric constant is given by
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where ecl � 1� decl is defined by expression (15).
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Therefore, expression (17) refers to the longitudinal
dielectric constant of a cold quantum plasma. As above, the
passage to the kinetic description is accomplished by
averaging expression (17) over the distribution function
f0�p� with the help of substitution (4). Substitution of
expression (15) into (17) with subsequent averaging results
in cumbersome expressions, which we omit here.

It is more expedient to address the question of the f0�p�
distribution itself over which the averaging is performed. The
point is that, in general, account must be taken of the energy
of quantization of the transverse electron motion in a
magnetoactive plasma. This has no effect on the magnitude
of oq but substantially affects the shape of the distribution
function f0�p�.

In the case of Maxwellian statistics (nondegenerate
electrons) [4], one obtains
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is the average energy of the transverse electron motion. The
condition for nondegeneracy is written as

EF 5T1=3E
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where EF � �3p2�2=3�h2n2=3 is the Fermi energy for B0 � 0.
When inequality (20) is violated, the degeneracy should be

taken into consideration and the function f0�p� becomesmore
complicated. Nevertheless, in the Hartree approximation it
has the simple form [5]
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where Ls�x� is the Laguerre function, and z is the chemical
potential, which coincides with the Fermi energy EF for free
electrons. The summation in expression (21) is extended over
all the Landau levels s.

Notice that the extension of the results derived in the
foregoing to a multicomponent plasma medium is apparent
and reduces to a simple summation over the components in
formulas (3), (5), (12), (14) ± (17). It is significant that the
plasma dielectric constant in a quantized magnetic field can
equally be derived through the direct solution of the Wigner
equation with the distributions (18) or (21). However, this
procedure is found to be very complicated owing to the
arduous mathematical treatment [6, 7]. The application of
formulas (16) and (17) may prove to be preferable.

Thus, with the appropriate averaging over the distribu-
tion function, the simple cold hydrodynamic model describes
the kinetic properties of a quantum plasma as fully as of a
classical one. This was demonstrated above in the linear
approximation. But nonlinear processes call for special
consideration.
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