
Abstract. The state-of-the-art symmetry methods for the con-
sistent quantum-mechanical treatment of intramolecular mo-
tions are reviewed. It is shown that for a broad class of topical
problems, these methods are not only self-sufficient but, at
present, the only possible ones. In particular, they greatly
simplify the analysis of nonrigid molecules, for which conven-
tional, analytical equation-of-motion methods run into serious
mathematical difficulties even at low excitation energies.

1. Introduction

The development of symmetry methods for the construction
of a consistent quantum description of intramolecular
motions is a very topical problem nowadays. The point is
that for a wide range of important current problems these
methods present a highly efficient alternative to the tradi-
tional analytical methods based on the solution of the
equations of motion, which encounter serious mathematical
difficulties. Quite a natural requirement on the qualitative
methods is their selfsufficiency. In other words, the descrip-
tion should proceed entirely from the symmetry principles
without any appeal to the equations of motion. Unfortu-
nately, the most widespread qualitative approach, which
leans upon the conception of the so-called complete nuclear
permutation-inversion (CNPI) group [1], does not satisfy this
requirement. At the present time, the only approach which is
complete in this sense is that proposed by the present author
and based on the conception of a chain of symmetry groups
[2, 3]. This approach is a nontrivial generalization of the
solution of this problem adopted in the Russian scientific
school [4]. The generalization concerns, in particular, the

extension of the analysis to nonrigidmolecules. It is of interest
that one of the main reasons for the introduction of the CNPI
group conception in the pioneering work [5] was associated
with the impossibility of such an extension. The ideological
difference between the two approaches is rather significant,
which may even imply the existence of fundamental errors in
monograph [4] (see, for example, Ref. [6]). In view of the
present state of the conception of a symmetry group chain,
which is drastically different from the one presented in
reviews [2, 3], we shall emphasize the following.

(1) The basic operative approximation in the description
of intramolecular motions is the Born ±Oppenheimer (BO)
approximation [7]. The concept of the nuclear field of force
and, consequently, the notion of a set of equilibrium
configurations corresponding to the field minima separated
by barriers are specially introduced for this particular
approximation. From the qualitative point of view, a
molecule or, in the more general case, a molecular system
(for instance, a dimer) is assumed to be nonrigid if the
transitions between these configurations are to be taken into
account. Themost topical analysis now is that of systems with
transitions between energetically equivalent configurations.
In the conception of symmetry group chains, the geometry of
the internal motion of such a system is characterized by an
extended point groupwhich includes additional (compared to
the point group) elements that determine the nonrigid
transitions. It is of importance here that for a certain type of
transitions the extended group becomes a so-called noninvar-
iant dynamic group [8], i.e. wider than follows from the
Hamiltonian symmetry. It is, in fact, the disregard of this
circumstance that led the authors of Ref. [5] to the conclusion
that the existing methods cannot be extended to nonrigid
molecules. The creation of a very formal and therefore
sometimes physically erroneous CNPI conception is, among
other things, an attempt to restrict the analysis in the BO
approximation to the Hamiltonian symmetry group.

(2) In the CNPI conception, the analysis begins with
writing down the explicit form of at least approximate
solutions for stationary states relevant to the types of
intramolecular motions of interest for us, which becomes
quite a nontrivial problem for nonrigid molecules. The notion
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of symmetry is `secondary' because its application rests upon
the knowledge of approximate solutions and serves mostly to
simplify the computations. In the conception of a group
chain, the notion of symmetry is `primary' because the
description proceeds entirely from the symmetry properties.
Within such an approach, it is precisely the latter properties
that totally determine the Hamiltonian of the motions of
interest, which is contrary to the usual statement of the
problem.

(3) An adequate description of the internal molecular
dynamics in the presence of nonrigid transitions pertains to
the most topical and complicated contemporary problems in
the theory of high-resolutionmolecular spectra. For example,
in a hydrazine molecule N2H4 (containing only six atoms!) it
is necessary to allow for four such transitions delocalizing this
molecule over eight equivalent configurations, and in one of
the simplest dimers (HF)2 two transitions are possible, which
link two equivalent configurations. The analytical solution to
the problem of the spectrum of such involved quantum
systems is practically impossible without the application of
symmetry methods. However, the formality and internal
incompleteness of the CNPI group methods lead to an
exceedingly cumbersome procedure for the description,
which in addition is only possible in the assumption that the
nonrigid motions are independent (the examples mentioned
above can be found in Refs [9, 10]). At the same time, the
methods discussed here are used in such cases without
particular difficulties.

It can be said that we are speaking about the development
of a closed formulation of the qualitative intramolecular
quantum dynamics, which provides substantial progress in
the solution of a wide class of topical problems in the theory
of high-resolution molecular spectra.

2. Chains of symmetry groups

The main operative method in the traditional analytical
solution to the problem of stationary states of a molecule
proceeds from perturbation theory. The passage to the
zeroth approximation is realized by constructing a number
of (increasingly rough) models embedded in one another
until the exact solution of a given model problem becomes
possible.

The symmetry properties of any model in this chain are
specified by its symmetry group. For example, in the BO
approximation the symmetry of the internal motion of a
rigid molecule is characterized by the point group of a single
equilibrium configuration, while in the zeroth approxima-
tion the rotational symmetry is specified by the rigid top
symmetry, etc. While working within the framework of only
one model we do not encounter any special difficulties in
qualitative analysis. However, the situation becomes much
more complicated when we attempt to consider the evolution
of the symmetry properties of intramolecular motion (i.e. the
evolution of the symmetry properties of the wave functions
and operators of physical quantities) in passing over to a
neighboring model. There exists no conventional solution of
this problem now. Within the conception presented here it is
solved as follows. In the quantitative calculation, the passage
between neighboring models should be continuous, i.e. the
distinctions between them must be describable as a series in a
small parameter of the theory. In spite of this requirement,
symmetry groups of these models may be different, i.e. the
symmetry changes abruptly because an approximate model

is based on a certain physical idea and as a consequence may
have additional qualitative information about the internal
motion. The latter information is contained in the symmetry
group of a given model, which therefore plays a clearly
pronounced independent role compared to groups of more
rigorous models. All the groups are united in a chain by the
sewing together conditions, namely, equivalent elements are
indicated in the groups of neighboring models, with respect
to which the wave functions and the operators of the
physical quantities must be transformed in a similar way.
In other words, passages between neighboring models are
accompanied by some nontrivial restrictions upon corre-
spondence in the types of symmetry. Concrete formulations
of sewings together for a chain of basic molecular models are
presented in Ref. [2].

An important notion of the coordinate spin of a
molecule 1, on whose basis a complete set of self-adjoint
operators is readily formed for functional finite-dimensional
spaces, is quite naturally introduced [3] into our conception.
Such spaces correspond to essentially quantum types of
motion and arise, for example, in the description of (a)
configuration degeneracy in nonrigid molecules, and (b)
vibrational and orbital electron degeneracies and quasi-
degeneracies which already exist in rigid molecules. Compo-
nents of the coordinate spin operator e in the Cartesian
laboratory reference frame (LRF) form thewell-known three-
dimensional Lie algebra of the type

�ea; eb� � ieabgeg ; �1�

where eabg is an absolutely antisymmetric tensor of rank three.
Since spin is a coordinate physical quantity, for the commu-
tation relations between the components of the total
coordinate angular momentum J and the components of e
we obtain in LRF [4]

�Ja; eb� � ieabgeg : �2�

For the unit vectors k i of the Cartesian molecular reference
frame (MRF) we have

�Ja; lib� � ieabglig ; �ea; lib� � 0 : �3�

The last of relations (3) implies that the coordinate spin
operators do not rotate the MRF. Then from (1) ± (3) it
follows that

�ei; ej� � iei j kek; �Ji; ej� � 0 : �4�

Thus, the commutation relations for the e components are
invariant under passing over from LRF to MRF. Note that
for the J components such an invariance does not occur [4]. It
is also important that relations (4) hold for two types of
behavior of spin components under time inversion 2: either all
the three components are t-odd or any two components are t-
even, while the third component is t-odd. In the analysis of
intramolecular motions both these types are realized.

1 Spin is a coordinate quantity in the sense that it helps in the description of

usual coordinate degrees of freedom.
2 In nonrelativistic quantum mechanics, the time inversion operator is

antiunitary and antilinear. As a result, the behavior under this operation

has a physical meaning for operators rather than wave functions [8].
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3. Dynamic noninvariant symmetry groups

As a first step in the understanding of the cause of the
appearance of dynamic noninvariant groups in the descrip-
tion of intramolecular motions, we shall consider a system
with two equivalent equilibrium positions separated by a
finite potential barrier. Suppose that the description of
tunnelling can be reduced to a one-dimensional problem for
an unrestricted variable x. There exist two versions for the
realization of such a situation. In the first one, the potential of
the system depicted at the top of Fig. 1 shows two equivalent
minima. For the transformation group 3 which specifies the
tunnelling event we have CS � �E; s�, where s is a reflection
para to the point x � 0. As a consequence, the complete set of
the basis functions in the functional space of a given problem
consists of the unit vectors jsi and jai belonging to the
symmetric and antisymmetric representations of the group
CS. Now, in the functional space it is necessary to construct a
complete set of self-adjoint operators. A two-dimensional
representation of the Lie algebra for the coordinate spin
operators in the space of the functions jsi, jai is written in
terms of the well-known Pauli matrices [4]:

e3 � 1

2

���� 1 0
0 ÿ1

���� ; e2 � 1

2

���� 0 ÿi
i 0

���� ; e1 � 1

2

���� 0 1
1 0

���� : �5�
It is readily seen that the operator e3 pertains to the
representation s of the group CS, while the operators e2
and e1 pertain to the representation a. In view of the fact
that these representations are nondegenerate and real, we
also obtain that the operators e3 and e1 are t-even, while the
operator e2 is t-odd. In a two-dimensional space, a complete
set of self-adjoint operators consists of three components ei
and a completely symmetric unit operator I. The tunnelling
Hamiltonian must clearly be t-even and in this case
invariant with respect to the transformations of the group
CS. As a result, we arrive at the following expression for this

Hamiltonian:

H � c0I� c3e3 ; �6�

where c0 and c3 are real phenomenological constants.
Hamiltonian (6) describes the splitting (due to the tunnel-
ling) of the system levels into two sublevels of s and a
symmetry.

In the second version, the system potential presented on
the bottom of Fig. 1 shows a single minimum, but there may
occur tunnelling with a rearrangement of the spatial position
of the potential symmetrically about the point x � 0. The
group defining the transformation under this motion is CS as
before. However, the condition of Hamiltonian invariance
under this transformation is now lifted (the potential does not
go over to itself), and CS becomes a dynamic noninvariant
group. As a result, instead of (6) we have

H � c0I� c3e3 � c1e1 : �7�

Hamiltonian (7) also describes the splitting of the system
levels into two sublevels, but the presence of the last term does
not allow assignment of s and a types of symmetry to them.
Nevertheless, in this simple case the nonzero matrix elements
of the Hamiltonian are invariant under CS and, as a
consequence, so are its eigenvalues. The latter fact is quite
obvious from simple geometrical considerations.

We shall now proceed to intramolecular motions. In line
with Ref. [2], the energetically equivalent equilibrium config-
urations of a nonrigid molecule, separated by a potential
barrier, will be called independent, and the transitions
between them will be divided into exchange and nonex-
change types. The geometrical symmetry of the internal
motion in the BO approximation with allowance for transi-
tions between the independent configurations is specified by
the extended point symmetry group G which includes
additional (compared to the point group G0 of the molecule)
elements defining nonrigid transitions. Under exchange type
transitions, the spatial position of the nuclear field of force
(i.e. the spatial position of the electron configuration) and,
accordingly, the spatial position of the equilibrium config-
uration remain unchanged and the nuclearmotion in this field
of force reduces to exchanging places of identical nuclei.
Hence, all the transformations of the group G have analogs
in the permutation group p of identical nuclei. The funda-
mental symmetry properties require that theHamiltonian of a
purely coordinate motion be transformed according to the
completely symmetric coordinate Young scheme of the group
p. From sewing together the groups p and G it follows that
only a unit representation of the group G is possible for the
Hamiltonian. As a result, the extended point group coincides
with the symmetry group of the Hamiltonian in the BO
approximation. An obvious example of nonrigid exchange
type motions are torsion motions of CH3 tops.

Nonexchange type transitions are primarily characterized
by a change in the position of the nuclear field of force. As a
consequence, the spatial position of the equilibrium molecu-
lar configuration changes. The electron ± nuclear transforma-
tions of the group G, which specify such transitions, do not
naturally have any analogs in the group p. Therefore, the
fundamental symmetry properties for permutations of iden-
tical nuclei lead to the requirement that in the BO approxima-
tion the Hamiltonian should be invariant only under
exchange type operations of the group G, which form its

V

ÿa a

x

V

ÿa a

x

Figure 1. Two versions of tunnelling in a one-dimensional systemwith two

equilibrium positions.

3 The standard notation for symmetry corresponds to that introduced in

Refs [4, 11].
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subgroupGH. Notice thatGH includesG0 as a subgroup. As a
result, the groupG becomes a dynamic noninvariant group. A
simple example of a nonrigid nonexchange type motion is the
inversion motion in an ammonia molecule NH3.

4. The extended point group and unstable
configurations

In the BO approximation, the symmetry of the internal
motion of a rigid molecule is specified by the point group of
a unique equilibrium configuration, which is stable by
definition. However, for a certain class of nonrigid molecular
systems the symmetry of the internal motion can be specified
by the geometry of an unstable configuration. As an example,
we shall consider one of the simplest dimers (HF)2 whose
equilibrium configuration [12] is shown in the upper part of
Fig. 2. The characteristic feature of this equilibrium config-
uration is the paucity of its point groupCS, which is due to the
energetically nonequivalent position of identical monomers
HF. Such equilibrium configurations will be called dis-
torted 4. In this case, the dimer is delocalized over two
independent distorted configurations differing by permuta-
tion of monomers and positioned symmetrically in the
neighborhood of the unstable intermediate configuration
with an equivalent position of monomers. Because of this, it
is the symmetry of the intermediate configuration that
determines the symmetry of motion with allowance for the
nonrigid transition made through it.

The analysis shows [10] that most probable are trans- and
cis-transitions whose intermediate configurations have sym-
metry groupsC2h and C2v (see Fig. 2). The major transition is
here the trans-transition because it takes place through a

lower barrier. A simultaneous account of both transitions
naturally requires the solution to the problem of combination
(in a unified description) of two geometric symmetry groups
of the problem in the BO approximation. We shall also note
that the analysis of systems with distorted equilibrium
configurations suggests the possibility of a priori attributing
the nonrigid motion to the exchange or nonexchange type. In
the case of the dimer (HF)2, whose spectrum observed
unambiguously points to the exchange type of transitions,
the higher symmetry of the intermediate configuration is due
to elimination of the distortion in the position of identical
nuclei. This is apparently a sufficient indication of a nonrigid
exchange type motion.

The interest in complexes has arisen rather recently. A
classical example of a system of the class in question is the
methanol molecule CH3OH, in which there exists a clearly
pronounced torsionmotion of themethyl groupCH3 between
three energetically equivalent minima. Such a motion is
entirely due to distortion of the equilibrium configuration of
the molecule depicted in Fig. 3 [12]. The distortion causes a
lowering of the point group from the maximum possible C3v

to the actually observed CS � �E; s�yz��. Accordingly, the
three nuclei H of the methyl group do not occupy energeti-
cally equivalent positions.More precisely, the positions of the
nucleus H in the yz-plane is not equivalent to the positions of
the nuclei H outside this plane, which is indicative of a slight
distortion of the regular pyramidal structure of the CH3

group. Hence, the symmetry of the internal motion is
characterized by an unstable configuration, in whose neigh-
borhood three independent configurations are symmetrically
located.

For energetically most advantageous transitions (with a
barrier of 1.07 kcal molÿ1 [13]), the symmetry is specified by a
configuration close to an equilibrium one but having an
undistorted structure of the methyl group 5. The extended

4 The conventional point of view on themechanisms of such a distortion as

manifestations of the Jahn-Teller pseudoeffect is presented in Ref. [7].

x

z

F2

F1

H1

H2

x

z

F2

F1

H1

H2

x

z
F2F1

H1 H2

Figure 2. Equilibrium and intermediate configurations for trans- and cis-

transitions (downward) in the dimer (HF)2 (in all the configurations the

nuclei lie in the xz-plane, and the z-axis is coincident with the straight line

joining the centers of mass of the monomers).
5 We emphasize that an intermediate configuration is introduced for the

description of the symmetry of internal motion and is not obliged to

correspond to the barrier top. Such a correspondence holds if by analogy

with the case of the dimer (HF)2 the barrier is entirely due to a distortion of

the equilibrium configuration as compared to the intermediate one.
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Figure 3.Equilibrium configuration of theCH3OHmolecule (theH3, C,O,

and H4 nuclei and the C3-axis of the methyl group for the intermediate

configuration of the low-energy channel of torsion motion lie in the

symmetry plane of the CS group).
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point group has the formG12 � c3v � cS, where the groups c3v
and cS are specified by the geometry of the structures CH3 and
COH. The analytical solution of the SchroÈ dinger equation in
a given electron-vibrational state is much easier here owing to
the possibility of a simple one-dimensional parametrization
for a nonrigid motion. Nevertheless, the necessity of con-
structing a perturbation series with allowance for this motion
already in the zeroth approximation causes considerable
difficulties, and the problem of the description is now under
discussion [14]. However, there exists another intermediate
configuration corresponding to the maximum possible point
group C3v which now plays the role of an extended point
group. This channel of exchange with a barrier which is only
due to distortion of the equilibrium configuration will lead to
qualitatively new contributions in the description of the
internal motion. The quantitative estimation of these con-
tributions requires the use of quantum-chemical methods. It
can be noted, however, that a chemically similar barrier for a
configuration with the maximum possible symmetry group
C1v of the water molecule H2O (30 kcal molÿ1 [15]) should be
taken into account in the analysis of microwave data 6. It is of
importance for us here that the analytical solution of the
SchroÈ dinger equation for a nonrigidmethanolmolecule in the
case of two exchange channels seems to be rather proble-
matic.

In what follows, concrete examples are given to consider
the main regularities of the use of the presented qualitative
methods for describing the internal motion in molecular
systems. Purely technical aspects will whenever possible be
replaced by references to original papers. However, compared
with these papers our presentation may appear to be more
consistent and rigorous.

5. The description of torsion exchange type
motions in molecules

Exchange type torsion motions seem to be the most wide-
spread nonrigid motions in molecules and their complexes.
For the first step in the presentation it is convenient to choose
the methanol molecule CH3OH. It is sufficient to write out its
permutation group of identical nuclei H in the form p3 � p1,
where p3 determines the permutation symmetry of the methyl
group. Neglecting hyperfine interactions due to nuclear spins,
one can represent the total molecular wave function as a
convolution of the coordinate and spin parts [11] transform-
ing by mutually dual Young schemes. Specifying the
admissible Young schemes and sewing together the group
p3 � p1 with the point group CS (for the technical details see
Ref. [17] and the references therein), we obtain in the BO
approximation for a rigid molecule the following allowed
multiplets:

4A 0; �8� 4�A 00 : �8�

The figures before the multiplet mark its nuclear statistical
weight. The interactions of interest are also invariant under
the operation of spatial inversion i of all the particles of a
molecule. Since this operation is associated with the proper-
ties of the space, it must commute with the operations
specified by the molecular geometry, which makes it possible

to write out the symmetry group CS � Ci in the BO
approximation. This means that the multiplets are also
characterized by their behavior under i, which will be given
by the postsuper (�) in their notation. It is then necessary to
find the relation between the multiplets and the solutions of
the zeroth approximation. In the zeroth approximation, the
motion of the nuclei is divided into independent vibrational
and rotational motions which are described using the
harmonic oscillator and rigid rotator models. The relation is
specified by the sewing together of the symmetry group in the
BO approximation and the symmetry groups of the zeroth
approximation:

�Gmult�CS�Ci
� �Gel�CS

� �Gvib�CS
� �Grot�inv

�CS�Ci
: �9�

Here Gel and Gvib are irreducible representations of the CS

group for the wave functions of the zeroth approximation for
the electronic and vibrational motions, Grot�inv

are irreducible
rotation-inversion representations of the group CS � Ci. The
correlation of the latter with the rotational representations of
the group D2 of a rigid asymmetric top follows from the
relation between these groups by their common subgroup
C2 � �E;C �x�2 �. The arrow in (9) implies that the behavior
under the operation i has a physical meaning for a multiplet
only. As a result we observe the evolution of rotational levels
in an arbitrary electron-vibrational state when we pass over
from the zeroth to the BO approximation. The first two
columns in Fig. 4 illustrate this evolution for Gel � Gvib � A 0.

To take into account the low-energy channel of the
torsion motion it is necessary that the extended point group
G12 � c3v � cS be introduced into the chain between the
groups p3 � p1 and CS. Sewing together the groups p3 � p1
and G12 we obtain the following allowed multiplets for a

6 A nonrigid motion in a water molecule does not of course make

qualitatively new contributions to the description, and we speak of the

corrections in the interpretation of spectroscopic constants [16].
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Figure 4. Classification of the stationary states of the CH3OH molecule

with allowance for the low-energy channel of torsion motion (the notation

of theH6-group irreducible representations corresponds to the notation of

the group D3 isomorphic to the groupH6).
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nonrigid molecule:

8�A2 � A 0�; 4�E� A 0� : �10�

Notice that the multiplet A1 � A 0 has zeroth nuclear
statistical weight and the representations G� A 00 are not
realized in the form of multiplets because the COH structure
is planar. The operation i commutes as before with all the
geometric elements of the molecular symmetry, and each of
the multiplets in (10) is characterized by the signs (�). Sewing
together now the groups G12 and CS, we arrive at a detailed
classification of stationary states of a nonrigid molecule,
which is shown in Fig. 4 for Gel � Gvib � A 0. The levels of
rigid and nonrigid molecules constitute nonsplit inversion
doublets, but for one-dimensional states of a nonrigid
molecule one of the sublevels of such a doublet is absent
because the multiplet A1 � A 0 is forbidden. As follows from
the classification, for constructing the description of torsion-
rotational levels in a given electron-vibrational state, instead
of the group G12 � Ci it suffices to take its rotation subgroup
H6 � H3 ^ C2. The symbol ^ means a semidirect product [8]
which arises because the operations of the torsion motion
group H3 � �E� E;C3 � E;C 2

3 � E� do not commute with
the operations of the rotation group C2 of the molecule as a
whole. The complete basis set of torsion unit vectors j0i and
j � 1i is determined by three irreducible representations of the
group H3 isomorphic to C3. Because of the properties of the
semidirect product, the action of the elements of the quotient
groupC2 is also defined in the basis of the invariant subgroup
H3. In view of the classification, for the completely symmetric
electron-vibrational state one can write

C
�x�
2 j0i � j0i ; C

�x�
2 j1i � j ÿ 1i : �11�

Allowing also for the behavior of the rotational functions
under transformations of the group C2 [4], we can readily
arrive at a partition of the complete basis set of the torsion-
rotational unit vectors around the irreducible representations
of the groupH6.

Next consider the physical quantities that determine the
torsion-rotational motion of a molecule. Their effective
operators must be transformed according to the Young
coordinate scheme [3] � [1] of the group p3 � p1. Sewing
together the latter group with G12 we have a single allowed
representation A1 � A 0 for such operators in the BO approx-
imation. Next, the sewing together of the groupsG12 � Ci and
H6 gives the representations A1 and A2, respectively, for the
physical quantities invariant under the inversion i and those
reversing sign under it.

The effective operators of the physical quantities are
constructed from the elementary operators which include, in
particular, components (in MRF) of the total angular
momentum J and coordinate spin e. The e components
realize the three-dimensional representation of the Lie
algebra (4) in the basis of the functions j0i, j � 1i. In the
standard definition, e3 is a diagonal operator with eigenvalues
0;�1, and e� � e1 � ie2 are the raising and the lowering
operators. From the transformation properties of the torsion
basis it follows that the operator e3 is t-odd and realizes the
representationA2 of the groupH6, while the operators e1 and
e2 are t-even and realize the representation E. For a three-
dimensional space, products of spin components of summary
power not higher than two are admissible. As concerns the
combinations of the J components, in the groupH6 they only

realize the representations A1 and A2 to which there
respectively refer combinations of the types A, B3 and B1, B2

of the group D2. Therefore, the torsion-rotational operators
of physical quantities may include only the following three
independent spin operators:

I; e23 ! A1 ; e3 ! A2 : �12�

For example, the effective Hamiltonian is invariant under the
operation i and is therefore transformed by the representation
A1 of the group H6, which can be realized by two torsion-
rotational (or spin-rotational) structures:

�A1�sp � �A1�rot ; �A2�sp � �A2�rot : �13�

Bearing in mind the t-parity of the Hamiltonian, it is easy to
write a complete expression for it in the form of a Taylor series
in components of the angular momentum with coefficients
dependent on the spin operators (12). Such a representation
of a Hamiltonian does not explicitly contain operators with
respect to the angle of internal rotation of the methyl group,
which radically simplifies its structure. The simplification is
essentially based on the fact that as distinct from the usual
elementary torsion operators the elementary coordinate spin
operators are introduced with allowance for the required
number of independent equilibrium configurations. That is,
the elementary spin operators are integral in the sense that
they immediately involve a large-amplitude motion over its
entire range.

The distinctions in the analysis of the high-energy channel
of the torsion motion are connected with the replacement of
the extended point group G12 by C3v. For the multiplets of a
nonrigid molecule, the representation G� A 0 of the group
c3v � cS is changed by the representation G of the group C3v.
Theminimum symmetry groupwhich takes adequate account
of all the types of torsion-rotational levels is now the group
D3 � C3 ^ C2, and the basis set of torsion unit vectors j0ti
and j � 1ti is specified by three irreducible representations of
the groupC3. The action of the quotient groupC2 in this basis
is analogous to Eqn (11). But the operationsC3 also comprise
the rotations of a molecule as a whole. This naturally has an
effect on the partition of the complete basis set of the torsion-
rotational unit vectors around the irreducible representations
of the group D3.

For a given channel of torsion motion we shall introduce
the coordinate spin operator s . The properties of the ti
components are similar to those of ei up to the replacement
of the group H6 by D3. But since the combinations of the Ji
components realize all the three irreducible representations of
the group D3, it follows that all the nine independent spin
operators participate in the construction of the torsion-
rotational operators. The effective Hamiltonian is trans-
formed by the representation A1 of the group D3 and the
contributions to it are already made by three spin-rotational
structures. In addition to (13) there arises the structure
Esp � Erot with the most numerous contributions.

So, we have two pictures of the internalmolecular motion,
differing in the geometrical symmetry in the BO approxima-
tion, and they should be combined under a unified descrip-
tion. Then the basis unit vectors should be represented as
products of two spin functions for two types of nonrigid
motion by the rotational function and they must simulta-
neously belong to certain representations of the groups H6

and D3. The following two points are of importance here: (i)
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the indicated groups intersect in the group C2, and (ii) only
states for which the representations of the groups H6 and D3

coincide are realized. The latter circumstance is due to the fact
that similar elements of the group p3, appearing in the
symmetry group of a rigorous problem, correspond to both
the nonrigid motions or, in other words, these motions are
connected to one and the same set of three independent
configurations. It is also readily seen that the elements of H3

act on the functions j0i; j � 1i, the elements of C3 Ð on the
functions j0ti; j � 1ti; jJ; ki, and the elements of C2 act on all
these functions. As a result we obtain the partition of the
complete basis set of torsion-rotational unit vectors around
the irreducible representations of the groups H6 and D3. The
effective torsion-rotational operators of physical quantities,
which now contain products of three types of operators, are
constructed in an analogous way. Since the effective Hamil-
tonian transforms by the representation A1 of the groups H6

andD3 and is t-even, one can write out a complete expression
for it. In particular, for the main contribution from the
torsion motion we have

Htor � �c�1�I� c�2�e23�It � �c�3�I� c�4�e23�t23 � c�5�e3t3 ; �14�

where c�k� are real spectroscopic constants. The advantages of
such a description due to the absence of an explicit
dependence on the coordinates of the torsion motions are of
much greater importance here than in the one-channel
version. Furthermore, the solution of such a problem by
other analytical methods now seems to be rather problematic.

The next thing to do is to analyze the torsion exchange
type motion in molecules with a center of inversion. Such a
situation is of great interest because if it is realized then (i)
there are no less than two identical torsion tops, and the
symmetry operations are important in the analysis, which
define both the internal rotation and the identity of the tops,
with these two types of operations being not commuted, and
(ii) there are two inversion operations characterizing respec-
tively the symmetry of the space and the symmetry of
equilibrium configurations, which require a clear physical
interpretation of their use.

The classical example is the ethane molecule C2H6 (for the
aspects of the analysis not included here see paper [18] and the
references therein). In its equilibrium configuration, the
groups CH3 have a common three-order axis aligned with
the chemical bond C±C, and they are turned with respect to
each other through p=6 [12]. In this case all identical nuclei
occupy equivalent positions. The corresponding point group
D3d possesses the element of inversion I. Allowing for
invariance of the considered interactions under the spatial
inversion i, we can write out the symmetry group
D3d � Ci � C3v � CI � Ci in the BO approximation for a
rigid ethane molecule. In spite of their different physical
meanings, the two inversion operations enter here symme-
trically. The situation however changes radically for a
nonrigid ethane molecule. The experimentally examined
internal rotation of two identical tops CH3 relative to the
chemical bond C±C proceeds through a low potential barrier
[13] and belongs to the exchange type. The extended point
symmetry group is written in the form

G72 � �c3v � c3v� ^ CI : �15�

The direct product of two groups c3v describes the
geometrical symmetry of the two tops, and the group CI

allows for their identity. In this case the element I does not
commute with the elements of the group c3v � c3v being an
invariant subgroup of the group G72. But the element of the
inversion i characterized by space symmetry commutes as
before with all the symmetry elements determined by the
geometry of themolecule, and one canwrite out the symmetry
group G72 � Ci. Here the presence of the direct product has a
deep physical meaning since otherwise not all the stationary
states of such an isolated system as a molecule will show a
definite behavior under the operation i, which violates one of
the main principles of nonrelativistic quantum mechanics [4].

In a nondegenerate electron-vibrational state, the rota-
tional levels classified according to the group D1 of a rigid
symmetric top split owing to the effects of k-doubling and
torsion motion. To construct a complete description of such
splittings, it suffices to employ the rotation subgroup entering
the group G72 � Ci. This subgroup is represented in the form

H36 � H6 �D3 : �16�

Here D3 is the rotation subgroup of the group D3d, involving
only rotation of the molecule as a whole, and the group H6

isomorphic to the group D3 is H3 ^H2, where
H3 � �E� E;C3 � C 2

3 ;C
2
3 � C3� is a subgroup of the group

c3v � c3v and H2 � �E; Ii�. In the ethane molecule, as
generally in molecules with a linear skeleton and two
identical tops, there arises a problem of the resolution of
intramolecular motions into torsion and rotational motions.
The difficulty is that when using torsion motions alone one
can realize the rotation of a molecule as a whole about the
linear skeleton. Expression (16) allows the realization of a
very simple version of resolution in which the groups H6 and
D3 describe respectively the torsion motion and the rotation
of a molecule as a whole. The motion is assumed here to be
purely torsion if it is defined by the elements of the groupH3,
and the other motions are unambiguously resolved into the
given torsion and rotational motions. The complete basis set
of torsion unit vectors j0i, j � 1i is determined by three
irreducible representations of the group H3 isomorphic to
C3. Making use of the properties of the semidirect product
and the results of the classification, we obtain that in a
completely symmetric electron-vibrational state the unit
vectors j0i and j � 1i belong respectively to the representa-
tions A1 and E of the group H6. As a result we arrive at a
partition of the complete basis set of torsion-rotational unit
vectors around the representations of the group H36

7.
Furthermore, in the torsion space a complete set of coordi-
nate spin operators is introduced and their symmetry proper-
ties under the groupH6 transformations are determined. Also
taking into consideration the well-known behavior of the
operators of components of the angularmomentumunder the
group D3 transformations, one can construct an effective

7 It is noteworthy that H36 is isomorphic to the so-called MS group of a

nonrigid ethane molecule, which by definition bears all the necessary

information for an analysis within the CNPI group conception (the

writing out of the MS group as a direct product of two groups has not

been considered). But the formality of the construction and the use of the

MS group leads, for molecules with a linear skeleton and two identical

tops, to the appearance (in the description of some purely coordinate

internal motions) of two-valued wave functions reversing sign upon

rotation through 2p, which is physically quite incorrect. As a conse-

quence, the MS group is replaced by its dual group. The latter were

introduced for the description of physical systems with a half-integer spin

[4].
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torsion-rotational operator for any physical quantity of
interest.

The indicated version of resolution into torsion and
rotational motions in molecules with a linear skeleton and
two identical tops implies, in fact, the possibility of an
independent analysis of these motions, which is only realized
under strict requirements on the symmetry of the problem.
The fairly serious specificity of such a resolution, occurring in
a more general case, can be conveniently considered for the
example of the ethylene molecule C2H4 whose equilibrium
configuration in the ground electronic state is planar and
corresponds to the point group D2h � C2v � CI [12]. The
MRF will be so chosen that for the group C2v the two-order
axis will coincide with the z-axis, and the plane s�yz� with the
plane of the molecule. The internal rotation of two identical
tops CH2 about the double chemical bond C±C, which
belongs to nonrigid exchange type motions, is strongly
decelerated [13], but its analysis is of great methodological
interest. The extended point group in this case is [19]

G32 � �c2v � c2v� ^ CI : �17�

To construct a complete description of the torsion splittings
of the rotational levels classified by the group D2 of a rigid
asymmetric top, we shall single out the rotation subgroup
from the group G72 � Ci:

H16 � U2 �H8 : �18�

Here U2 � �E; s�yz�i� and H8 � �c2 � c2� ^ C2, where c2 � c2
and C2 � �E;C �x�2 � are subgroups of the groups c2v � c2v and
D2h, respectively. The structure ofH8 is such that it cannot be
represented as a direct product of two groups whose elements
act only in the rotation and torsion spaces. Hence, we have to
choose c2 � c2 as the group defining the torsion motion. In
this case (i) the complete set of basis unit vectors is formed
from the torsion unit vectors jp1i, jq1i and jp2i, jq2i,
corresponding to the symmetric and antisymmetric represen-
tations of the groups c2 � E and E� c2, and the rotation unit
vectors transformed by the representations of the group D2

which includes the rotation of a molecule as a whole from the
group H16; (ii) the operations of the group U2 are defined in
the rotation space only, the element s�yz�i specifying the same
rotation as the element C

�x�
2 . As a consequence, their action

on the rotation unit vectors must coincide (the element Ii in
the rotation space is equivalent to the identical element); (iii)
the group of torsion motions contains the element C

�z�
2 of

rotation of a molecule as a whole, and therefore a part of the
combinations of the torsion unit vectors will make a
contribution to this rotation, and (iv) four torsion unit
vectors are intended for the description of only two
independent configurations of the ethylene molecule, but the
symmetry requirement does not admit redundant torsion-
rotational unit vectors.

The torsion-rotational unit vectors obtained in Ref. [19]
do not contain rotational B2 and B3 parts of the group D2,
which correspond to the projection of the angularmomentum
onto the z-axis with an odd quantum number. This means
that such a projection of the total angular momentum is
formed thanks to the torsion component, the contribution to
the molecular rotation being made by the spin parts jp1ijq2i
and jq1ijp2i with an asymmetric excitation of the tops.
However, the angular momentum J, which in the zeroth
approximation refers to the rigid top rotation, evolves in the

BO approximation into the total angular momentum. There-
fore, in the torsion-rotational unit vectors it is necessary that
the torsion contribution to the rotation be transported onto
the rotational parts 8. To this end we make the following
substitution of the rotational parts in asymmetrically excited
spin states:

A! B2 ; B1 ! B3 : �19�

With allowance for (19), all the four rotational types enter
into the torsion-rotational unit vectors. A complete set of
coordinate spin operators is introduced thereafter and the
effective torsion-rotational operators of any physical quan-
tities of interest are constructed. In particular, for the main
contribution of the torsion motion into the Hamiltonian we
have

Htor � c�1�I1I2 � c�2�e3;1e3;2 � c �3��I1e3;2 � e3;1I2� ; �20�

where the spin operators are analogous to (5). The subscripts
1 and 2 indicate the ordinal number of the spin subspace (or
the ordinal number of a top).

It should be emphasized that the completeness of the
geometrical symmetry groups considered in the BO approx-
imation is of vital importance. For example, an attempt to
simplify the extended point group by eliminating operations
which do not directly refer to the torsion motion (the
symmetry planes of the tops) leads to a notable distortion of
the results of the sewings together. This is absolutely clear
because the information on the symmetry of the internal
molecular motion is distorted. Such errors can of course be
rectified when the correct result is known in advance. But in
that case the main advantage of the proposed conception of
qualitative analysis, i.e. its completeness, proves to be lost.

6. The description of torsion exchange type
motions in complexes

We shall now proceed to the consideration of the peculiarities
in the analysis of torsion exchange type motions in molecular
complexes, which has lately been a fairly topical case. To
begin with, we shall note that a typical feature of the
complexes is a distortion of the equilibrium configuration.
This is apparently associated with a shallow potential well,
which also leads to a rapid increase in the number of possible
nonrigid motions as the structure of the complex is compli-
cated. As a result, even for such simple complexes as the dimer
(HF)2, the nonrigid motions were described by the CNPI
group methods only on the assumption of their independence
and using a fairly formal and cumbersome procedure [10].

As has already been mentioned, in the dimer (HF)2 trans-
and cis-transitions are possible, whose intermediate config-
urations correspond to the symmetry groups C2h and C2v.
Figure 5 gives the classification of the stationary states of
(HF)2 in the ground electron-vibrational state with allowance
for trans-transition predominance due to a smaller barrier
height. Note that because of the planar equilibrium config-

8 Within a more consistent construction of torsion-rotational quantities it

is immediately taken into account that the real motion corresponding to

the element c
�z�
2 � c

�z�
2 is a normal rotation of a molecule as a whole. This

element must therefore be defined in the rotation subspace only. This

automatically leads to a complete resolution of the torsion motion and the

rotation of the molecule as a whole.
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uration the spectrum does not contain inversion doublets. In
the groupC2h, the mixture of two independent configurations
is specified by the subgroup C2 � �E;C �y�2 � and the barrier is
only due to the distortion of the equilibrium configuration as
compared to the intermediate one.

The rotational type of mixing operation allows the trans-
transition to be called a torsion motion. To describe the
related splittings of the rotational levels, classified by the
group D2 of the rigid asymmetric top, it suffices to single out
the rotation subgroup U2 � C2 from the group C2h � Ci,
where U2 � �E; s �xz�i�. The complete basis set of torsion
unit vectors jAi, jBi is defined by the irreducible representa-
tions of the group C2. But the operations of the latter group
constitute also rotations of the dimer as a whole, which act on
the rotation unit vectors. The operations of the group U2 act
on the rotation unit vectors only. From the point of view of
the rotation of a dimer as a whole, the elements s�xz�i andC

�y�
2

specify one and the same turn, and therefore their actions on
the rotation unit vectors coincide. As a result, we have a
partition of the complete basis set of the torsion-rotational
unit vectors around the irreducible representations of the
group U2 � C2, the rotational part of the unit vectors
allowing for the torsion contribution to the rotation of the
dimer as a whole.

Next, in the torsion space the coordinate spin operator e
with components of the type (5) is introduced, whose
symmetry properties under the group U2 � C2 are defined in
a trivial manner:

e3 ! Ae ; �e2; e1� ! Be ; �21�

the components e3, e1 being t-even, and the component e2 Ð
t-odd. As concerns the combinations of the components of
the angular momentum, they belong to the representationsAe

and Bo. The torsion-rotational operators of physical quan-
tities belong to the coordinate Young scheme [2] � [2] of the
group pF

2 � pH
2 . The sewing together of the latter with C2h in

the BO approximation gives them a unique representationAg.
When passing over to the group U2 � C2, we have the
representations Ae and Ao for the physical quantities
respectively invariant and reversing sign under the inversion
i. For example, the effective Hamiltonian is transformed by
the representation Ae realized with the help of the unique
spin-rotational structure �Ae�sp � �Ae�rot.

The distinctions in the analysis of the cis-transition are
due to the replacement ofC2h byC2v and, consequently,C2 by
C 02 � �E;C �x�2 �. The classification of the stationary states
follows from that for the trans-transition when one uses the
following correlations between the representations of the
replaced groups:

Ag $ A1 ; Bu $ B1 ; A$ a ; B$ b ; �22�

where a and b are symmetric and antisymmetric representa-
tions of the group C 02, which specify the set of torsion unit
vectors jai, jbi for the cis-transition. Taking into considera-
tion the action of the group C 02 on the rotational functions
too, we obtain the partition of the torsion-rotational unit
vectors around the representations of the group U2 � C 02.
Next, in the space jai; jbi the coordinate spin r is introduced,
which has components of the type (5) whose symmetry
properties are analogous to those of ei up to replacement of
the representations A, B according to (22). Since the
combinations of the components of the angular momentum
realize all the four irreducible representations of the group
U2 � C 02, then for the effective torsion-rotational Hamilto-
nian belonging to the representation ae of the groupU2 � C

0
2,

two spin-rotational structures, �ae�sp � �ae�rot and
�be�sp � �be�rot, are possible.

It is also easy to unite the trans- and cis-pictures of the
internal motion in a unified description. In this case, the
torsion-rotational unit vectors are written out as a product of
two spin unit vectors for the two variants of the nonrigid
motion by the rotation unit vector and they simultaneously
belong to definite representations of the groups U2 � C2 and
U2 � C 02. It is necessary to take into account here that (i) the
indicated groups are intersected by the subgroup U2, and (ii)
the dimension of the functional space should not increase
since the same elements of the group pF

2 � pH
2 correspond to

both the transitions in the symmetry group of a rigorous
problem. That is, these transitions mix up one and the same
independent configurations, which for admissible torsion-
rotational unit vectors leads to the correlation (22) between
the representations of the groups C2 and C

0
2 . The torsion-

rotational operators of physical quantities are constructed in
a similar way. For example, for the effective Hamiltonian
undergoing transformation by the representation �Ae; ae�, the
following complete expression holds [20]:

H �
X1
n�0

�
H
�A�
2n �H

�B2�
2n�2 �H

�B2�
2n�1

�
; �23�

where the superscript specifies the type of the irreducible
representation of the rotation groupD2 � C2 � C

0
2 , by which

admissible combinations of components of the angular
momentum are transformed, and the subscript stands for
the summary degree of these components. The coefficients of
the rotational combinations in the first, second and third

Be

Ae

e

10A
���
g

16A
0 ���

A; B2
6B���u

U2 U2 � C2

C2h � CiD2 CS � Ci

Ao

Bo

o

6B�ÿ�u

16A
0 �ÿ�

B1; B3
10A

�ÿ�
g

U2 U2 � C2

Figure 5. Classification of the stationary states of the dimer (HF)2 with

allowance for the trans-transition (e, o are symmetric and antisymmetric

representations of the group U2).
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contributions to Eqn (23) depend respectively on the spin
operators ĉ, d̂, and ĝ:

ĉ � �c�1�I� c�2�e3�Is � �c�3�I� c�4�e3�s3 ;
d̂ � �d �1�I� d �2�e3�s1 ;
ĝ � �g�1�I� g�2�e3�s2 ; �24�

where c �k�, d �k�, and g�k� are real spectroscopic constants. The
characteristic feature of the unified description is the presence
in Eqns (24) of nontrivial cross terms related to the two types
of nonrigid motion.

However, in the analysis of the complexes there arise
problems associated not only with the necessity of allowance
for a comparatively large number of nonrigid motions. As an
illustration we shall consider the water dimer (H2O)2.
Beginning with the pioneering paper [21], intensive studies
by high-resolution spectroscopy have accumulated rich
experimental material which shows the delocalization of this
dimer over all its eight independent configurations. The main
contribution to this delocalization is made by nonrigid
motions through the intermediate trans-configuration.
Among these motions there are three torsion exchange type
motions.

An analytical solution of such a difficult problem is
impossible without the application of the symmetry
approach. The most developed method of solution using the
CNPI group conception is the generalized method of internal
axes [22, 23]. But as has already been mentioned, the CNPI
group conception requires knowledge of a complete set of
basis wave functions, which is a very serious problem for a
water dimer. As a consequence, with the help of a rather
cumbersome and formal procedure 9 only the main contribu-
tion to the solution was obtained on the assumption that due
to tunnelling transitions the potential barriers between
independent configurations are much larger than the
observed level splittings, and the contributions from the
nonrigid motions can simply be summed up. Such an
assumption looks rather unrealistic, which is confirmed by
experiment [24].

The complete description of torsion exchange type
motions in terms of the intermediate trans-configuration,
which was based on the conception of the symmetry group
chain, can be found in Ref. [25]. Here we shall only emphasize
a novel aspect of this description. Figure 6 displays the
equilibrium configuration of the dimer (H2O)2 [26] with the
point group CS � �E; s�xz�� and the intermediate trans-
configuration. When the analysis is restricted to exchange
type transitions, the extended point group has a form similar
to (17), where the direct product of the groups c2v describes
the symmetry of two monomers. In sewing together the
groups CS and G32, the operation s�xz� passes over to
s1 � s2, where s1 is the element of the left monomer
reflection under which the H nuclei exchange places (the xz-
plane), and s2 is the element of the right monomer reflection
which leaves the H nuclei in their places (the monomer plane).
This peculiarity is due to the fact that the operation s1 � s2 is
already not a transformation of the dimer as a whole. This
circumstance, which has not occurred before, leads to some
rather serious consequences.

7. The description of nonrigid nonexchange type
motions

Nonrigid nonexchange type motions are very frequently
encountered in molecular systems. A simple example is the
so-called inversion motion in the ammonia molecule NH3 [4].
In this case GH � G0 � C3v, and the point group more
extended than GH has the form G12 � C3v � CS, where the
nontrivial element of the group CS, which determines the
inversion motion, specifies reflection in the plane passing
through the center of mass of the molecule and orthogonal to
the three-order axis of the point group. The operator of any
coordinate physical quantity (including the Hamiltonian)
must belong to the coordinate Young scheme [3] of the
permutation group p3 of three H nuclei. Sewing together the
groups p3 andG12 implies that for such an operator in the BO
approximation the representations

A1s; A1a �25�
are possible. Here s and a are symmetric and antisymmetric
representations of the group CS, which specify the complete
set of unit vectors jsi, jai for the inversion motion. Let us
consider the inversion-rotational motion in the ground
electronic vibrational state. The relation
C3v � CS � Ci � D6 � CS facilitates the partition of the
inversion-rotational unit vectors around the irreducible
representations of the group G12 � Ci. Introducing the
coordinate spin operator e with components of type (5) in
the inversion space, one can readily construct the effective
inversion-rotational operator for a physical quantity of
interest. The results of such a construction for an effective
Hamiltonian are equivalent to those of Ref. [2]. Because the
Hamiltonian contains noninvariant terms, the subscripts s
and a are not symmetry indices for stationary wave functions.
Nevertheless, the consequences associated with the dynamic
noninvariant group G12 are here sufficiently trivial, which is

9 In particular, as for the ethane molecule, in the description of separate

purely coordinate motions the two-valued wave functions are used and, as

a consequence, the MS group of the water dimer is replaced by its dual

group.
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Figure 6. Equilibrium (upper) and intermediate (lower) configurations for

the water dimer (H2O)2 (the z-axis coincides with the straight line joining

the centers of mass of the monomers. In the equilibrium configuration, the

plane of themonomerH1H2O1 is orthogonal to the xz-plane and the plane

of the monomer H3H4O2 coincides with this plane. The dotted line shows

the hydrogen bond between the monomers. In the intermediate config-

uration, the planes of both the monomers are orthogonal to the xz-plane).
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due to the simple structure of this group. Namely, its
subgroup GH coincides with G0 and the elements of the latter
are invariant under nonexchange type transformations. As a
result, nonzero matrix elements of the Hamiltonian are
invariant under the dynamical group and, therefore, so are
the eigenvalues of this Hamiltonian.

The description, considered in Ref. [27], of nonrigid
nonexchange type motions in the hydrazine molecule N2H4

is much more interesting. A very important feature of this
molecule is the closeness of its equilibrium configuration [12]
with the symmetry group G0 � C2 � �E;C �y�2 � and the
intermediate configuration shown in Fig. 7. In the latter
configuration, two equivalent NH2 structures are isosceles
triangles and the dihedral angle between them is equal to p=2.
As a result, each NH2 structure may escape a shallow
potential barrier [28, 29] and find itself at an energetically
equivalent position both via the reflection s2 in the plane
passing through the z-axis parallel to the segment H ±H
(inversion motion) and by rotation through an angle p
about the z-axis (internal rotation). These four nonexchange
type transitions delocalize the molecule over eight indepen-
dent equilibrium positions lying in the neighborhood of the
unstable intermediate configuration whose geometry defines
the symmetry of the intramolecular motion in the BO
approximation. The dynamical group has a fairly involved
structure

D32 � �c2v � c2v� ^ C2 ; �26�
where the direct product of the two groups
c2v � �E; c �z�2 ; s1; s2� describes the symmetry of nonrigid
motions of two NH2 structures. Accordingly, the symmetry
group of the Hamiltonian, GH, has the form

GH � �cS � cS� ^ C2 ; �27�
where cS � �E; s1�. The element s1 which is of the exchange
type describes the result of a successive realization of two
nonexchange type motions typical of the NH2 structure. For
this reason, the group GH is appreciably more extended than
the group G0. Moreover, part of the elements of GH are

noninvariant under nonexchange type transformations
because the latter change the position of the symmetry axis
of the point group from y to x and vice versa. As a result, the
presence of a noninvariant dynamic symmetry group in the
BO approximation suggests serious conclusions. We shall
stress the following of them. The groupD32 has 14 irreducible
representations: eight one-dimensional Ai, and six two-
dimensional Ei

10. The rotational symmetry in view of
nonrigid motions is given by the subgroup D2 � C2 �O2 of
rotations of a molecule as a whole in the groupD32 � Ci. The
presence of O2 � �E;C �z�2 � is due to the possibility of
molecular rotation about the z-axis with the help of the
element c

�z�
2 � c

�z�
2 . The complete picture of the rotational

level splittings due to nonrigid motions for the ground
completely symmetric electron-vibrational state is presented
in Fig. 8. Since the group D32 does not contain improper
transformations of a molecule as a whole, stereoisometry
takes place [4], and all the levels are nonsplit doublets G ���.
For the effective operators of purely coordinate physical
quantities, including the Hamiltonian, the representations

A1; A5; E3 �28�
are allowed. In this case due to stereoisometry the behavior of
the operator of a physical quantity under the operation i does

H4
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H1
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H3

C2

y

x

z

Figure 7. Intermediate configuration of the N2H4 molecule (the z-axis

coincides with the straight line joining the centers of mass of the NH2

structures).
10 The numbering over the index i begins with 1. In the one-dimensional

case, i � 1 corresponds to a unit representation.
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Figure 8. Picture of splitting of the rotational levels of the N2H4 molecule

with allowance for nonrigid motions (En;1 and En;2 are two components of

the En representations with n � 3; 4).
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not affect its construction. In the group GH which has five
irreducible representations (four one-dimensional ai and one
two-dimensional e), the Hamiltonian belongs to the repre-
sentation a1. Upon a reduction of G to GH, the representa-
tionsE3 andE4 fall respectively into the representations a1, a2
and a3, a4, while the representations E1, E2, E5, E6 pass over
to e. This means that for the Hamiltonian only a single
component E3 is admissible. Nevertheless, there is no contra-
diction here because under nonexchange type operations
which transform the components E3 into each other, part of
the elements of the groupGH change their positions. It is very
important that the presence of noninvariant terms in the
Hamiltonian leads to a splitting of E3 and E4 type states into
doublets. This effect is a particular case of the general rule [8]
saying that the degeneracies observed in the energy spectrum
and nuclear statistical weights of states are determined by the
symmetry group of the Hamiltonian. Notice also that under
the transformations of the group D32 the eigenvalues of the
Hamiltonian are noninvariant here as well. Such an invar-
iance is incompatible, for example, with splitting of the states
E3 and E4.

The application of noninvariant dynamic groups is
essential for the description of intramolecular dynamics in
the presence of nonrigid nonexchange type motions because
the geometrical Hamiltonian symmetry group does not in this
case simultaneously `see' all the necessary independent
equilibrium configurations of a nonrigid molecular system.
To justify the use of the expression `symmetry group' as
applied to a noninvariant group, we note that the latter
determines precisely the symmetry of molecular motion in
the BO approximation. But the term `symmetry' should be
understood here in a wider sense than `invariance'.

8. Conclusions

The proposed methods of qualitative intramolecular quan-
tum dynamics are also fairly promising in a whole number of
other fields of application, which we have not touched upon
here. We would like to single out the following of them:

(i) there exists a wide class of molecular systems for which
the analysis of observed nonrigid motions requires allowance
for energetically nonequivalent equilibrium configurations.
The description of suchmotions is not typically carried out by
qualitative methods. The reason is simple Ð the symmetry
elements cannot relate nonequivalent configurations. As a
result, the symmetry group in the BO approximation does not
`see' them simultaneously.

The idea of the analysis of such systems consists in the
introduction into the chain of a so-called virtual symmetry
group in the BO approximation, which assumes all necessary
equilibrium configurations to be equivalent and, conse-
quently, has information on the transitions between them.
Although the virtual symmetry later lowers to become real,
the information is not lost. The first steps in this direction
were made in Refs [30, 31];

(ii) in the above examples the analysis is restricted to
physical quantities characterizing the internal motion of a
molecular system. However, the operators describing transi-
tions in this system under the action of the electromagnetic
field are easily constructed. The construction of an electric
dipole moment operator [32, 33] including the terms respon-
sible for the so-called forbidden transitions is of great interest
in this respect [34];

(iii) interesting and diversified are the range of phenomena
in rigid molecules, which are associated with coordinate
degeneration or quasi-degeneration of electronic states. In
particular, for nonlinear molecules these are consequences of
the Jahn ±Teller effect, whose description encounters serious
difficulties [7]. Naturally, the qualitative methods presented
may appear to be very useful there. For the present they have
only been used for a relatively simple case of the linear
molecule [35]. It is however quite obvious that the role of
these methods becomes especially significant when the
description is extended to nonrigid molecules.

The author is grateful to the Russian Foundation for
Basic Research for sponsorship (Project 96-02-16020).
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