
Abstract. It is shown that B B Kadomtsev's idea of small
`external noise' securing a time-irreversible evolution reduces
the justification of statistical physics to a fundamentally new
formulation which requires that the dynamics of a multiparticle
system be treated by neglecting small acceleration particles. It
turns out that this formulation not only leads naturally to
irreversible evolution but also suggests a new way of construct-
ing kinetic equations capable of correctly accounting for fluc-
tuations. At the early, small-time, stage of evolution, the
original correlations are forgotten and `post-collisional' ones
form. It is the final portion of the first stage and the formation
of the `post-collisional' correlations which can be described by a
closed form kinetic equation. A relation between Kadomtsev's
external noise idea and Bogolyubov's derivation of kinetic
equations is established, leading to a new physical interpreta-
tion of the `molecular chaos' hypothesis.

1. Introduction

It is known from experiment that a closed macroscopic
system approaches the state of thermodynamic equilibrium
on a certain time scale called the relaxation time. Meantime,
laws of both classical and quantum mechanics are time
reversible. So the question of how the description of
irreversible processes can be obtained from reversible
dynamical equations has been broadly discussed in the
physics literature [1]. We do not wish even try to comment
on all the relevant points of view, but instead are going to
focus on those approaches to the problem (although not
totally sharing some of them) that somehow relate to the
ideology of the present paper.

As shown in [1], in a rarefied gas only Bolzmann's
hypothesis of `molecular chaos' proves to be sufficient to
explicitly introduce physical irreversibility: According to the
H-theorem,Bolzmann's kinetic equationdescribes the irrever-
sible relaxation of the gas to the thermal equilibrium state.
When considering what exact physical phenomenon underlies
themolecularchaoshypothesis,BBKadomtsev [1] cameto the
conclusion that irreversibility of the dynamics of a gas
consisting of classical particles and the possibility of its
statistical treatment are due to a tiny interaction of the system
with the irreversible surrounding. It is stated in [1] that the
dynamic chaos by itself is insufficient for irreversibility to
appear.According toBBKadomtsev [1], ``irreversibility is not
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a direct consequence of chaos, although it can be indirectly
related to chaos''. Suchaconclusion,deduced fromqualitative
considerations, is quite unexpected. In this connection we
recall that arguments disfavoring the possibility of a consis-
tent construction of statistical physics within the frame of the
theory of `external surrounding effects' are given in [2]. Paper
[2], which was published significantly earlier than paper [1],
states that the idea of introducing an external irreversible
surrounding should be rejected and irreversible dynamics
appears in dynamical systems throughmixing.

The conclusion made in [1] that thermodynamic equili-
brium can not be achieved without external noise is not only
of theoretical interest. Indeed, according to [1], S AMajorov,
ANTkachev, and S I Yakovlev [3] showed, using the method
of molecular dynamics for point-like charges in a closed
volume with mirror walls, that a stationary state different
from thermodynamic equilibrium is ultimately established. In
particular, in this stationary state the process of recombina-
tion of a strongly overcooled plasma slows down very much.

However, it is well known that Bolzmann's equation can
be obtained by `cutting' the Bogolyubov ±Born ±Green ±
Kirkwood ± Ivon (BBGKI) hierarchy with a small para-
meter, as was demonstrated by N N Bogolyubov [4]. In this
approach, no external noise is required.

In the present paper we show that in fact there exists a
tight connection between N N Bogolyubov's approach and
B BKadomtsev's ideas of the role of the external surrounding
in producing time irreversible evolution, and suggest a new
approach for deriving kinetic equations. As follows from
below, the development of B B Kadomtsev's approach
enables us to have a new look at the physical meaning of the
`molecular chaos' hypothesis and to point to a method for
consistent description of fluctuations in the framework of the
kinetic theory. In addition, in the framework of development
of B B Kadomtsev's ideas, it is necessary to answer the
question why an external noise leads to irreversible dynamics
but the irreversible dynamics itself are independent of the
external noise if it is sufficiently small.

2. Structure of the BBGKI hierarchy

We start with discussing some simple properties of the
BBGKI hierarchy focusing on questions which will be
related to the time irreversibility of the dynamics.

Consider a system of N identical particles described by a
Hamiltonian

H �
Xi�N
i�1

p2i
2m
� 1

2

X
i 6�j

U�ri ÿ rj� ; �1�

where U�ri ÿ rj� and m are the binary potential of inter-
particle interaction and the mass of particles, respectively.

The dynamics of this system may be described by two
equivalent means. It is possible to study trajectories of the
system in the phase space or consider the evolution of
functions determined in the phase space. The first approach
corresponds to the treatment of dynamics by the Hamilton
equations (the second Newton's law), the second one Ð by
Liouville's equations. An arbitrary function r�t; 1; . . . ;N�,
where i � �pi; ri�, determined in the 6N-dimensional phase
space of the system, evolves in time according to the Liouville
equation

qr
qt
� bLr ; �2�

where bL is the Liouville operator

bL �Xi�N
i�1

�
qH
qri

q
qpi
ÿ qH

qpi

q
qri

�
: �3�

Considering dynamical systems with a large number of
particles, N! �1, it proves convenient to transit from the
function r�t; 1; . . . ;N�, which is symmetrical with respect to
all groups of variables 1; 2; . . ., to s-particle distribution
functions

Fs�t; 1; . . . ; s� �
�
d�s� 1� . . . di . . . dN

�Nÿ s�!
� r�t; 1; . . . ; i; . . . ;N� ; 14 s4N ; �4�

and all multi-particle distribution functions with s5 �N� 1�
we set zero by definition. Using Fs, Eqn (2) can be rewritten
into a system of inter-coupled equations�

q
qt
� l̂1 � . . .� l̂s

�
Fs � bLsFs �

� X
14 i4 s

bL�i; s� 1�

� Fs�1�t; 1; . . . ; i; . . . ; s; s� 1� d�s� 1� ; 14 s4N ; �5�

where

l̂i � pi
m

q
qri

;

bLs �
X

14 i<j4 s

bL�i; j� ;
bL�i; j� � qU�ri ÿ rj�

qri

q
qpi
� qU�ri ÿ rj�

qrj

q
qpj

; i 6� j :

Now, making the thermodynamic limiting transition

N!1; V!1; N

V
� const ; �6�

where V is the system volume and assuming all Fs to have a
finite limit, we arrive at the infinite system of intercoupled
equations�

q
qt
� l̂1 � . . .� l̂s

�
Fs � bLsFs �

� X
14 i4 s

bL�i; s� 1�

� Fs�1�t; 1; . . . ; i; . . . ; s; s� 1� d�s� 1� : �7�

The system of equations (7) differs from (5) only by an
infinite number of equations. Some distinct features of Eqns
(7) and the related system (5) should be mentioned. Firstly,
Eqns (7) are time reversible. Secondly, all equations (7) are
linear integro-differential equations. Indeed, if

C � �F1;F2; . . . ;Fs; . . .� i C 0 � �F 01;F 02; . . . ;F 0s; . . .� �8�

are two arbitrary solutions of system (7), then the set of
functions

aC� bC 0 � �aF1 � bF 01; aF2 � bF 02; . . . ; aFs � bF 0s; . . .� ;

�9�

where a and b are arbitrary numbers, are also a solution of
system of equations (7).
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At last, when deriving (7), no special restrictions were
imposed on the symmetric function r�t; 1; . . . ;N� besides the
requirement that a limit Fs exists at any s when N! �1.
Non-negativeness and normalization of the function
r�t; 1; . . . ;N� have also not been assumed.

3. A physical sense of the simplest properties
of the BBGKI hierarchy

The time irreversibility of the BBGKI hierarchy is a natural
consequence of the time irreversibility of the Hamilton
equations corresponding to (1). That quite arbitrary func-
tions r lead to (7) means that the evolution of arbitrary
(symmetric) ensembles can be described byEqn (7). Therefore
the problem of the physical interpretation of particular
solutions (7) appears. Indeed, from the point of view of
physics, of most interest is the behavior of only those
ensembles whose evolution enables one to study the
dynamics (perhaps, `rough') of separate points of the phase
space. At the same time, we still have no criterion to separate
`physically interesting' ensembles and corresponding func-
tions �F1;F2; . . .�. These considerations can be illustrated by a
simple example. Consider an ensemble defined as

r�t; 1; . . . ;N� � exp

�
ÿ H

T1

�
� exp

�
ÿ H

T2

�
; T1 6� T2 ;

�10�

where T1 and T2 should be interpreted as temperatures, and
ensemble (10) should be thought of as a `mixture' of systems
with different temperatures. Clearly, it is physically mean-
ingless to study ensemble (10). More proper examples related
to a reasonable choice of the ensemble can be found, for
example in [5, 6], where the relation of this question to the
concept of quasi-averages [7] is pointed out.

The linearity of all equations (7) mentioned above, which
follows from the linearity of Liouville's equation, has a clear
physicalmeaning.Note that equations (7) describe not a single
system, whose dynamics are defined by (1), but the whole
ensemble of such systemswith different initial conditions. The
linearity of the BBGKI chain equations reflects the fact that a
particle, which belongs to a given instance of a system with
Hamiltonian (1), interacts only with the particles entering the
same instance of the system, i.e. they do not interact with
particles belonging to other systems from the ensemble under
consideration. The latter becomes obvious when the integral
in Eqn (4) is substituted by Riemann's sums. However, to
avoid complications due to awkward notation, let us consider
an ensemble containing only two points of the phase space
withweights a and 1ÿ a, respectively. In this casewe canwrite

F1 � a
Xi�N
i�1

d
ÿ
rÿ r

�1�
i �t�

�
d
ÿ
vÿ v

�1�
i �t�

�
� �1ÿ a�

Xi�N
i�1

d
ÿ
rÿ r

�2�
i �t�

�
d
ÿ
vÿ v

�2�
i �t�

�
; �11�

F2 � a
X
i6�j

d
ÿ
r1 ÿ r

�1�
i �t�

�
d
ÿ
v1 ÿ v

�1�
i �t�

�
d
ÿ
r2 ÿ r

�1�
j �t�

�
� d
ÿ
v2 ÿ v

�1�
j �t�

�� �1ÿ a�
X
i 6�j

d
ÿ
r2 ÿ r

�2�
i �t�

�
� d
ÿ
v2 ÿ v

�2�
i �t�

�
d
ÿ
r1 ÿ r

�2�
j �t�

�
d
ÿ
v1 ÿ v

�2�
j �t�

� �12�

etc., where in r
�n�
i �t� (n � 1; 2, i � 1;N ) the superscript counts

one of the two points of the phase space from this ensemble,
and the subscript enumerates the particles. Substituting (11),
(12) into Eqn (7) for the evolution of the one-particle
distribution function, it is easy to ascertain that the linearity
indeed admits the above interpretation. Eqns (11) and (12)
imply that particles from a given representation (a point of the
phase space) interact only with particles from this representa-
tion, i.e. from the same point in the 6N-dimensional phase
space of the system.

4. Uncoupling the BBGKI hierarchy
by N N Bogolyubov's method

To derive Bolzmann's kinetic equation, N N Bogolyubov
suggested searching for solution (7) in the form [4]

F2�t; 1; 2� � F1�t; 1�F1�t; 2� � G2�t; 1; 2� ;

F3�t; 1; 2; 3�� F1�t; 1�F1�t; 2�F1�t; 3� � F1�t; 1�G2�t; 2; 3�

� F1�t; 2�G2�t; 1; 3� � F1�t; 3�G2�t; 1; 2� � G3�t; 1; 2; 3�;
�13�

where the functions G2, G3, etc. are small in a certain sense.
The `smallness' of the correlation functions has a different
sense in different problems. For example, for a rarefied gas
with a short-action potential, the `smallness' of the correla-
tion functions assumes their small values at distances greatly
exceeding the radius of action of the potential. In contrast, in
the case of a gas with a weak interparticle interaction (much
smaller than the temperature) the correlation functions are
assumed really to be small everywhere.

Bogolyubov's approach is consistent from the mathema-
tical point of view, although its applicability is restricted by
the finite order in the small parameter due to the increase to
infinity of contributions from four-particle collisions [8] (see
[9] for more detail). However its physical content requires
certain comments. Note first of all that Eqn (13) is an implicit
definition of the ensemble of systems we are going to study
with the help of equations (7). Since Bogolyubov's approach
assumes that�

G2 d1 d2 � 0 ; �14�

then according to (13), (14)�
F2�t; 1; 2� d1 d2 �

�
F1�t; 1� d1

�
F1�t; 2� d2 ; �15�

which with account of (4) leads to the equality (N! �1)�
r�t; 1; . . . ;N� d1 . . . dN �

�
1ÿ 1

N

�
N!; �16�

i.e. a certain normalization of the ensemble under study is
required, which allows the probability theory terms to be
used. It is also necessary to note that the use of non-linear
factorization (13) implies a principle assumption, from the
physical point of view. Namely, it is assumed that the
dynamics of the system permit the construction of such an
ensemble, in which the actual interaction of a particle from
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any fixed system of the ensemble, with particles from the
same system can be approximated to a good accuracy by the
ensemble-averaged interaction with particles from different
systems of the ensemble. In other words, factorization (13)
`introduces' an interaction between different particles from
different systems of the ensemble. This can be directly
checked by representing Eqn (13) in the form of the
production of Riemann's sums which approximate F1

according to Eqn (4). Yet the point above is illustrated by
the example of a `two-point' ensemble considered earlier.
Indeed, in this particular case, the use of the first of
equations (13) would mean the following approximation of
function F2:

F2 � a2
X

d�r1ÿ r
�1�
i �t��d�v1 ÿ v

�1�
i �t��d�r2 ÿ r

�1�
j �t��

� d�v2ÿ v
�1�
j �t����1ÿ a�2

X
d�r1 ÿ r

�2�
i �t��d�v1ÿ v

�2�
i �t��

� d�r2ÿ r
�2�
j �t��d�v2 ÿ v

�2�
j �t���a�1ÿ a�

X
�d�r1ÿ r

�1�
i �t��

� d�v1ÿv�1�i �t��d�r2 ÿ r
�2�
j �t��d�v2ÿv�2�j �t���d�r1 ÿ r

�2�
i �t��

� d�v1 ÿ v
�2�
i �t��d�r2 ÿ r

�1�
j �t��d�v2 ÿ v

�1�
j �t��� : �17�

It is important to note that because of the third term in (17),
which is proportional to a�1ÿ a�, and analogous terms in
more complex ensembles, approach (13) `incorporates' the
interaction between particles from different representatives of
the ensemble. Indeed, in Eqn (17) in comparison with Eqn
(12), a new term has appeared which is proportional to
a�1ÿ a�. This term contains the product of d-functions
including particles from different representatives of the
ensemble (with different superscripts).

Now it becomes clear why it is possible to obtain time
irreversible kinetic equations using approach (13). Indeed,
Eqn (13) `introduces' the interaction between different
representatives of the ensemble, i.e. each system of the
ensemble becomes incomplete and the appearance of
irreversible evolution under such conditions for an infinite
number of systems in the ensemble seems to be very
natural.

Of course, the irreversibility appears during calculations
at such an order of small parameter, in which the difference
between different points of the phase space becomes notice-
able (a plasma may provide an example: Vlasov's equation,
i.e. the first order in the reverse number of particles within
the Debye sphere, is reversible, while Vlasov's equation with
Landau's collision integral, i.e. with account of the second
order in small parameter, is no longer reversible). Notice
that this explains Bolzmann's hypothesis of `molecular'
chaos: a particle simply `collides' (with the corresponding
weight) with particles from different ensemble representa-
tives, so the particles are statistically independent before the
collision.

Running somewhat ahead, we wish to make one more
important note. From the above point of view the justifica-
tion of the principle of `molecular' chaos means at least the
determination of such properties of a dynamical system and
its treatment in such an approximation, when the change of
the actual interparticle interaction inside one ensemble
representative by the interaction of its particles with those
from the ensemble-`averaged' representative is valid. The
precise meaning of the latter considerations becomes clear
from the subsequent discussion.

5. N N Bogolyubov's method
and B B Kadomtsev's idea of external
surrounding effects

Let us consider in more detail the tight connection between
NNBogolyubov'smethod of deriving Bolzmann-type kinetic
equations and the ideas suggested by B B Kadomtsev [1] on
the necessity of introducing an interaction with `external'
noise (with an external irreversible surrounding) for irrever-
sible dynamics to appear in the system.

We have seen earlier that approach (13) corresponds to
the introduction of an interaction with particles from
different representatives of the ensemble under study, i.e.
each ensemble representative becomes incomplete and the
interaction with other representatives of the ensemble plays
the role of the interaction with the external surrounding. Note
that the continuity of the distribution function requires the
ensembles to contain an infinite number (more precisely, a
continuum) of representatives. A non-trivial result of
N N Bogolyubov's approach is the proof that at some time
intervals, for some states of system (1) (the initial conditions)
with small parameters (see [4, 8] for more detail), the
interaction of particles introduced by Eqn (13) with a far
from low external noise (see, e.g., the third and first two sums
in Eqn (17)) well approximates, in some sense, the `rough'
dynamics of the system.

At the same time, such a treatment of irreversibility
appears not to be fully satisfactory for a number of reasons.
First of all, the change of the actual interparticle interaction
inside each particular ensemble representative by the interac-
tion with particles of the `averaged' ensemble representative
means in fact that fluctuations are neglected, which was first
noted by M A Leontovich [10]. The first attempt to get rid of
this shortcoming of the Bolzmann equation was undertaken
in the well-known paper by B B Kadomtsev ``On fluctuations
in gas'' [11] (see also [13]). However, the method used in this
paper and a huge number of studies, initiated by this paper,
on fluctuations in kinetic equations, enable only the case of
small fluctuations to be considered, i.e. the case where the
notion of a `fluctuationless' state perturbed by small fluctua-
tions is admissible.

Thus Bogolyubov's method is applicable to construct
kinetic equations only for such media and only in states
where fluctuations are negligibly small. To avoid misunder-
standing we specially emphasize that fluctuations of the
`averaged' ensemble representative can be described, i.e. the
theory must be made precise such that to take into account
that for different specific problems the ensembles should be
constructed differently or, in other terms, the fluctuations of
the `averaged' ensemble representative must be treated
differently. Here it is easy to see that such a method can not
in principle fully describe fluctuations. Note that in Bogolyu-
bov's approach irreversibility finally appears due to the
possibility of approximating the actual interparticle interac-
tion by a fictive interaction emerging due to non-linear
factorization (13). Unfortunately, such a mechanism of
appearance of irreversibility does not shed light on physical
processes in the system with Hamiltonian (1), which lead to
irreversible dynamics. And at last, from our point of view, the
method itself of reducing the multiparticle problem to the
interaction of particles with particles of the `mean' represen-
tative is very artificial. Due to this fact Bogolyubov's method
of uncoupling allows us to obtain kinetic equations for
sufficiently a narrow class of systems (in fact, using Bogolyu-
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bov's method it is impossible to get kinetic equations even for
systems with arbitrary power-law potential for interparticle
interaction).

Below we show a novel method for studying irreversible
dynamics, but first another approach to the BBGKI hier-
archy should be addressed.

6. Singular distribution functions
and the BBGKI hierarchy

Let us turn to a somewhat different treatment of the BBGKI
hierarchy based on the formalism of singular distribution
functions [11 ± 13].

Using a one-particle distribution function [11 ± 13]

f1�t; 1� �
Xi�N
i�1

d�r1 ÿ ri�t��d�v1 ÿ vi�t�� �18�

we construct singular s-particle distribution functions

fs�t; 1; . . . ; s� � f1�t; 1� . . .f1�t; i� . . .f1�t; s� : �19�

According to Newton's 2nd law we find equations describing
the evolution of singular distribution functions
f1�t; 1�; . . . ;fs�t; 1; . . . ; s��

q
qt
� l̂1

�
f1�t; 1� � C1�t; 1� ; �20�

�
q
qt
� l̂1 � . . .� l̂s

�
fs�t; 1; . . . ; s� � Cs�t; 1; . . . ; s� ; �21�

where

l̂i � vi
q
qri

;

Cs�t; 1; . . . ; s� � 1

m

Xi�s
i�1

�
qU�ri ÿ r�s�1��

qri

� fs�1�t; 1; . . . ; s; s� 1� d�s� 1� :
Equations (20), (21) deserve some comments. Equations

(21) forfs, s5 2 are valid for all different r1; . . . ; rs, and when
taking the integrals entering Cs, s5 1, an infinitesimal
neighborhood of point qU�ri ÿ r�s�1��=qri should be
excluded from the integral containing ri to exclude `self-
interaction' of a particle at this point.

Nowwe try to transit from singular distribution functions
fs, s5 1 to a description of the dynamics by smoothed
distribution functions using averaging equations (20), (21)
over the ensemble. It would be desirable to use the freedom in
the ensemble choice to obtain as simple as possible equations
after averaging, i.e. to choose the ensemble in such a way that
the equalities


fs�t; 1; . . . ; s�� � 
f1�t; 1�
�

. . .


f1�t; i�

�
. . .


f1�t; s�

�
:

�22�

be fulfilled. Unfortunately, this is impossible. Now we turn to
definition of function f3�t; 1; 2; 3� at r1 6� r2:


f3�t; 1; 2; 3�
� � ÿd�r1 ÿ r3�d�v1 ÿ v3� � d�r2 ÿ r3�

� d�v2 ÿ v3�
�
F2�t; 1; 2� � F3�t; 1; 2; 3� ; �23�

where F2 and F3 are smooth distribution functions defined by
Eqn (4). Eqn (23) implies that no ensemble can be chosen such
that Eqn (22) is satisfied. The required choice is prohibited by
d-function factors entering in some terms in Eqn (24). Note
that these terms appeared due to ensemble averaging of
strongly singular expressions like

d
ÿ
r1 ÿ ri�t�

�
d
ÿ
v1 ÿ vi�t�

�
d
ÿ
r3 ÿ ri�t�

�
d
ÿ
v3 ÿ vi�t�

�
; �24�

containing the square of d-functions. Thus the impossibility
of satisfying Eqn (22) has no relation to particle interactions
and is simply formal consequence of the definition of s-
particle distribution functions.

Let us study the physical sense of the latter somewhat
formal considerations. First of all, we note the averaging over
the ensemble of equations (20), (21) leads to the BBGKI
hierarchy if the strongly singular contribution to hfsi is
correctly taken into account:


fs�t; 1; . . . ; s�� � � X
14 i4 sÿ1

d�ri ÿ rs�d�vi ÿ vs�
�

� Fsÿ1�t; 1; . . . ; sÿ 1� � Fs�t; 1; . . . ; s� ;

where ri 6� rj; 14 i < j4 �sÿ 1� :
�25�

Here strongly singular terms in fs, s5 3 lead to termsbLsÿ1Fsÿ1 in the r.h.s. of Eqn (7), and less singular ones give
rise to integral terms in Eqn (7) which contain Fs. The attempt
to choose the ensemble such that equalities (22) be satisfied is
equivalent, from the mathematical point of view, to solving
Eqn (7) by variable separation method, which the termsbLsÿ1Fsÿ1, arisen, of course, from strongly singular terms in
fs, prevent to.

The appearance of the terms bLsÿ1Fsÿ1 along with integrals
for s > 2 in the r.h.s. of Eqn (7) has a simple dynamical sense:
the functions Fs, s > 2 are determined such that the integral
term in Eqn (7), which they enter, does not take into account
the force action from the particle at the point ri, 14 i4 sÿ 1,
which leads ultimately to the appearance of the terms rj, i 6� j
in equation (7) for the function Fsÿ1. This can be checked by
noticing that according to Eqn (4)

Fs�t; 1; . . . ; s� �
� X

i1 6�... 6�is

Yj�s
j�1

d�rj ÿ rij�t��d�vj ÿ vij�t��
�
:

�26�

Note that function F2 does not have this `shortcoming', which
is common for functions Fs at s > 2.

Thus, the emergence of terms in the BBGKI equations
that impede uncoupling is due to the definition of the
functions Fs and has nothing to do with the interaction
between particles [see Eqns (24), (25)]. Therefore, the
procedure of obtaining kinetic equations can be simplified
by transiting to a description of relaxation processes using
other functions.

However it should be borne in mind that these termsbLsÿ1Fsÿ1 have a dynamical sense as well: they take into
account those interparticle interactions that are not
accounted for by integral terms in Eqn (7), which is due to
the very definition of s-particle distribution functions for
s > 2.
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7. A novel method of derivation of kinetic
equations

Let us explain the basic ideas underlying our approach to
derive the kinetic equations. Note first of all that in the
method of kinetic equation derivation described above an
attempt was made to describe the interaction between
particles coming from given distribution functions. As the
zero approximation to solve the BBGKI hierarchy, a gas of
non-interacting particles was taken, which was used as a basis
for representation of the solution in the form of Eqn (13).
Thus for some problems we have managed not only to
describe the ensemble of systems whose evolution is driven
by kinetic equation, but to construct irreversible Bolzmann
type equations. At the same time, it is necessary to recognize
that time irreversible evolution is related just to interparticle
interaction, i.e. from this point of view the use of non-
interacting particle gas as a zero approximation seems to be
not quite logical. In this connection papers [5, 6] suggested
solving in some sense the inverse problem in comparison with
what is usually considered when constructing Bolzmann's
kinetic equations. Assuming the spatial distribution of
`forces' acting on the particles specified, papers [5, 6] suggest
looking for distribution functions that provide some config-
uration of the `force' vectors. Such an approach requires
introducing the `extended' distribution functions (see the last
paragraph of the preceding section). These are functions that
depend, in addition, on particle accelerations. We recall that
M Born and A Vlasov first noted the possibility of using the
distribution functions but did not use this formalism.

Note that introducing an additional variable, the
acceleration, carries us from a 6N-dimensional phase space
into 9N-dimensional `extended' phase space in which, as we
show below, it is much easier to describe the interaction
between particles. In other words, we first `plunge' into the
`extended' phase space and then `come' back but only after
the system's particles have substantially interacted with each
other.

After these introductory remarks we are in a position to
derive the kinetic equations for the `extended' distribution
functions.

8. Equations for singular `extended' distribution
functions

In the subsequent paragraphs we shall mainly use the method
suggested in paper [6] to derive a new class of kinetic
equations.

By performing additional differentiation of equations of
motion following from Eqn (1) we obtain the system of
differential equations

dri
dt
� vi;

dvi
dt
� ai; i � 1;N ;

dai
dt
� ÿ 1

m

X
j 6�i

�
vi ÿ vj;

q
qri

�
qU�ri ÿ rj�

qri
; �27�

where ai is the acceleration of the i-th particle.
The system of equations (27) is of higher order than the

equations of motions, i.e. it has solutions that do not
correspond to any real particle motions. Below we shall
show a way to exclude `non-physical' solutions and hereafter
we shall mean only `physical' solutions of Eqns (27).

In full analogy with Eqns (18), (19) we introduce singular
`extended' distribution functions

F1�t; 1� �
Xi�N
i�1

d�r1 ÿ ri�t��d�v1 ÿ vi�t��d�a1 ÿ ai�t�� ; �28�

Fs�t; 1; . . . ; s� � F1�t; 1� . . .F1�t; s� ; �29�
where i � �ri; vi; ai�.

It is easy to check that according to Eqn (27) the functions
Fs, s5 1 satisfy to equations�

q
qt
� bL1

�
F1�t; 1� � C �1 �t; 1� ; �30��

q
qt
� bL1 � . . .� bLs

�
Fs�t; 1; . . . ; s�� C �s �t; 1; . . . ; s� ; �31�

where

bLi � vi
q
qri
� ai

q
qvi

;

C �s �t; 1; . . . ; s� �
Xi�s
i�1

� bQ�i; s� 1�

� Fs�1�t; 1; . . . ; s; s� 1� d�s� 1� ;

bQ�i; j� � 1

m

��
vi ÿ vj;

q
qri

�
qU�ri ÿ rj�

qri
;
q
qai

�
; i 6� j ;

and the equation forFs is valid at ri 6� rj, 14 i < j4 s, and in
the integral containing bQ�i; s� 1�, the infinitesimally small
neighborhood of point ri is omitted.

The appearance of the additional argument in the
distribution functions enables the kinetic equations to be
constructed by a method that is totally different from
Bogolyubov's. Then in the formalism of the theory, construc-
tions that have no analogs in the standard BBGKI hierarchy
emerge.

9. Method of asymptotic integration

Let us check that in the limit of large time scales t, irreversible
dynamics appear in the exact equations (30), (31).

Assuming the r.h.s. of Eqn (30) is known, we solve the
linear inhomogeneous equation for F1

F1�t; 1� � exp�ÿt bL1�F1�t � 0; 1�

�
�t
0

exp�ÿt bL1�
� bQ�1; 20�F2�tÿ t; 1; 20� d20 dt ;

�32�

where F1�t � 0; 1� is the `extended' one-particle distribution
function at the time t � 0.

Note that the emerged operator exp�ÿt bL1� is principally
different from that of the free evolution playing an important
role in the BBGKI hierarchy. Indeed, it is easy to see that

lim
t!1 exp�ÿt bL1�F1�t � 0; 1� � 0 : �33�

Consider equation (33) in more detail. Consider an arbitrary
function g�1� � g�r1; v1; a1� satisfying the condition

lim
v1!1

g�1� � 0 :
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Then by definition of the operator exp�ÿt bL1�
lim
t!1 exp�ÿt bL1�g�1�

� lim
t!1 g

�
r1 ÿ v1t� a1t

2

2
; v1 ÿ a1t; a1

�
� 0 ; �34�

since for a1 6� 0, the operator exp�ÿt bL1� increases the speed
unboundedly at t!1. This is a principal feature of operator
exp�ÿt bL1� that makes it distinct from the free evolution one.
Note that at this stage it is already clear that particles with
zero and close to zero value of acceleration play a special role
in the system dynamics. Below we consider the role of these
particles in more detail and now we only mention that
approaching the limit in Eqn (34) is nonuniform due to these
particles.

Therefore in the limit of large positive t (during the
evolution `ahead' in time)

F1�t; 1� �
��1
0

exp�ÿt bL1�
� bQ�1; 20�

� F2�tÿ t; 1; 20� d20 dt ; t4 t� � vch
ach

; �35�

and in the limit of large negative time (during evolution `back'
in time)

F1�t; 1� �
�ÿ1
0

exp�ÿt bL1�
� bQ�1; 20�

� F2�tÿ t; 1; 20� d20 dt ; t5ÿ t� � vch
ach

; �36�

where vch and ach are the characteristic velocity and accelera-
tion of a particle, respectively. Note that integrals over t in
Eqns (35), (36) converge nonuniformly. The nonuniform
convergence of these integrals comes, for instance, from
nonuniform convergence to the limit in Eqn (34) for small
accelerations.

Now we use equations (35), (36) to obtain evolutionary
equations for the singular distribution functions in the limit of
large time scales. These expressions allows one to make such
transformations of evolutionary equations (28) that are not
algebraic identities and are valid only due to considering
solutions of Eqns (30), (31) on large time scales.

Later we shall use the formalism of generalized functions,
so some features that make them distinct from standard
continuous functions must be taken into account. First of
all, in the generalized function formalism, the products of
functions are undetermined when carriers of the factors
overlap. In the application to our problem this means that
power-law functions of the singular distribution functions
under consideration are `poorly' determined. Indeed, it is easy
to see that the product of functions d�x� y� and d�xÿ y�,
y > 0 is a correctly determined expression

d�x� y�d�xÿ y� � 0 ; y > 0 ;

and d2�x� is an undetermined value. This example also
demonstrates the difficulty connected with the limiting
transitions in expressions containing generalized functions

lim
y!0

d�x� y�d�xÿ y� 6� d2�x� :

The last note is important for us since any integral, including
that entering in Eqns (35), (36), relates to a limiting transition.

Considering all said above, it is necessary to watch attentively
the correctness of computations when using expressions (35),
(36), since our purpose is to transform C �s , entering Eqn (31),
using these concepts for F1. Difficulties arise when the value
of the group of variables �s� 1�, over which the integration in
Eqn (31) is performed, coincides with that of the group of
variables i, 14 i4 s. So it is necessary to consider separately
the contribution to integral C �s (31) from the points
�s� 1� � i, i � 1; s and from the rest of the region of the
integration �s� 1� 6� i, i � 1; s. For this we rewrite C �s
entering Eqn (31) in the form

C �2 � bQ��1; 2�F2�t; 1; 2� � F1�t; 1�
� bQ�2; 20�

� F2�t; 2; 20� d20 � F1�t; 2�
� bQ�1; 20�F2�t; 1; 20� d20 ;

C �s �
X

14 i<j4 s

bQ��i; j�Fs�t; 1; . . . ; i; . . . ; j; . . . ; s�

�
X

14 i4 s

F1�t; 1� . . .F1�t; iÿ 1�F1�t; i� 1� . . .F1�t; s�

�
� bQ�i; s� 1�F2�t; i; �s� 1�� d�s� 1�; s5 3 ;

�37�

bQ��i; j�� 1

m

��
viÿ vj;

q
qri

�
qU�ri ÿ rj�

qri
;
q
qai
ÿ q
qaj

�
; i 6� j ;

where infinitely small neighborhoods of points d�s� 1� are
excluded from integrals over i, i � 1; s.

To avoid confusion, we specially emphasize that Eqn (37)
is an identity for the singular distribution functions. In
addition, we note that C �s can be expressed through singular
functions F1; . . . ;Fs not only according to Eqn (37), but also
by many other means. Below it becomes clear where one or
another factorization is more convenient, and now let us use
Eqn (37) for a while simply as a formal identity.

Note that representation (37) permits us to change F1 by
an integral from F2 according to Eqns (35), (36). Thus we
have arrived at a system of kinetic equations describing the
evolution of the singular distribution functions Fs, s5 2 at
times t5t� � vch=ach (evolution `ahead' in time):�

q
qt
� bL1 � . . .� bLs

�
Fs � C�s �t; 1; . . . ; s� ; s5 2 ; �38�

where

C�s �
X

14 i<j4 s

bQ��i; j�Fs�t; 1; . . . ; i; . . . ; j; . . . ; s�

�
X

14 i4 s

F1�t; 1� . . .F1�t; iÿ 1�F1�t; i� 1� . . .F1�t; s�

�
� bQ�i; s� 1�F2�t; i; �s� 1�� d�s� 1�; s5 3 ;

C�2 � bQ��1; 2�F2�t; 1; 2� � F1�t; 1�
� bQ�2; 20�

� F2�t; 2; 20� d20 � F1�t; 2�
� bQ�1; 20�F2�t; 1; 20� d20 ;

F1�t; i� �
��1
0

exp�ÿt bLi�
� bQ�i; 200�F2�tÿ t; i; 200� d200 dt ;

as well as at a system of equations determining evolution of
singular distribution functions at large negative times
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t5 ÿ t� � vch=ach (evolution `back' in time):�
q
qt
� bL1 � . . .� bLs

�
Fs � Cÿs �t; 1; . . . ; s�; s5 2 ; �39�

where

Cÿ2 � bQ��1; 2�F2�t; 1; 2� � F1�t; 1�
� bQ�2; 20�

� F2�t; 2; 20� d20 � F1�t; 2�
� bQ�1; 20�F2�t; 1; 20� d20 ;

Cÿs �
X

14 i<j4 s

bQ��i; j�Fs�t; 1; . . . ; i; . . . ; j; . . . ; s�

�
X

14 i4 s

F1�t; 1� . . .F1�t; iÿ1�F1�t; i�1� . . .F1�t; s�

�
� bQ�i; s� 1�F2�t; i; �s� 1�� d�s� 1�; s5 3 ;

F1�t; i� �
�ÿ1
0

exp�ÿt bLi�
� bQ�i; 200�F2�tÿ t; i; 200� d200 dt :

Of course, equations (35), (36) can be solved for arbitrary
t. Here it is necessary to understand that this means
identifying the initial time moment with t � ÿ1 for equa-
tions (35), and with t � �1 for equations (36).

We stress that equations (35) and (36) results from
asymptotic (for large positive and negative time) integration
of exact equations of motion.

10. On the relation between one-particle
and two-particle distribution functions

In the standard BBGKI hierarchy no ways are known to
derive the one-particle distribution function at a time t at a
point r of space from the two-particle distribution function
determined at a time close to t in a neighborhood of the point
r. The only common relation between F1 and F2 known from
the standard BBGKI chain reduces to the equality

F1�t; r; r� � 1

N

�
F2�t; r; v; r0; v0� dv0 dr0 ; �40�

which comes directly from Eqn (4). Expression (40) is
extremely awkward: the main contribution to Eqn (4) is due
to r0 that differs significantly from r.

From the physical point of view, the two-particle distribu-
tion function contains more information on the system
dynamics in comparison with the one-particle distribution
function, so it seems natural if the one-particle distribution
function is expressed through the two-particle one by an
`almost' local operator. Such an operator for the `extended'
distribution functions is given by Eqn (35). This expression is
valid only over sufficiently large time scales t5t� � vch=ach,
which appears reasonable from physical considerations:
particles `forget' their original states and correlations over
the time t� due to interactions, and the formation of `post-
collision' correlations, which arise during the interactions,
causes the one- and two-particle distribution functions to be
related.

The initial correlations in any dynamical system are more
or less arbitrary, while the `post-collision' ones are deter-
mined by the interaction. So the formation of the `post-
collision' correlations should necessarily lead to irreversible
dynamics. In the next section we consider this problem in
more detail, and now make two important notes.

Firstly, expression (35) is linear both in function F1 and
function F2. So the transition in Eqn (32) to smooth
distribution functions (probabilistic treatment) f1, f2, which
appears after ensemble averaging of F1, F2, respectively, can
be performed straightforwardly and yields, due to the linear
relation between F1 and F2,

f1�t; 1� �
��1
0

exp�ÿt bL1�
� bQ�1; 2� f2�tÿ t; 1; 2� d2 dt : �41�

Secondly, when deriving Eqns (35) and (41), we never used
the smallness of the interparticle interaction, i.e. these
expressions are valid for any value of the potential
U�r1 ÿ r2� in Eqn (1). Moreover, the transition to the limit
U! 0 in Eqn (35) and (41) is a complicated task: these
equations are valid only at t5t� � vch=ach, and at U! 0
time t� ! �1, but here the potential U enters linearly into
operator bQ. However, in the present paper we shall not
specially study the case of small interactions and restrict
ourselves to the note made.

We specially pay attention to the principal difference
between expression (40) and (41). In Eqn (40), the main
contribution to the integral is due to r0, which is significantly
different from r. In Eqn (41), the integration is formally
performed over arbitrarily large r2, however because of the
presence of a kernel, a region localized in a small neighbor-
hood around point r1 mainly contributes to the integral. The
size of the region mainly contributing to integral (41) is
determined by the interparticle interaction in the system.
Such a relation between one- and two-particle distribution
functions is quite natural. Indeed, the one-particle distribu-
tion function is formed due to particles that `arrived' at a
given point in space from other points, but particles cannot
`arrive' at this point from very remote points without having
been scattered by other particles. Thus, to determine the one-
particle distribution function, it is sufficient to know the two-
particle distribution function in a neighborhood with a size of
the order of the scale of scattering of particles by force fields.
The formalism of extended distribution functions allows us to
take these points into account, which removes all difficulties
connected with the divergent contribution from four- and
higher-order collisions that appears using the conventional
approach [9].

11. Time irreversibility

Let us make sure that Eqn (38) that appears due to relation
(35) between one- and two-particle distribution functions
describes irreversible dynamics establishing in dynamical
system (1) on large time scales t5t� � vch=ach.

Consider the functions Fs, s5 2 satisfying (38) and
function F1 determined by Eqn (35) from function F2. We
denote this set of functions by F�s , s5 1. For functions that
relate in a similar way to equations (36) and (39) we introduce
the notation Fÿs , s5 1. We shall use this notation below
without special comments. Now introduce the operator of
time inversion bT, i.e. each of the functions F�s and Fÿs
corresponds to new functions bTF�s and bTFÿs determined by
the relationships

� bTF�s ��t; 1; . . . ; s� � F�s �ÿt; bT1; . . . ; bTs� ; �42�

� bTFÿs ��t; 1; . . . ; s� � Fÿs �ÿt; bT1; . . . ; bTs� ; �43�

where bTi � �ri;ÿvi; ai�.
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Note that such defined functions bTF�s , s5 2 are solutions
of equations (39) and functions bTF�1 and bTF�2 are related by
Eqn (35). Therefore, the time inversion operator transforms
solutions of one set of kinetic equations to those of another
set. Thus time irreversibility means that solutions of the
kinetic equations describing evolution `ahead' in time can
not generally be transformed by Eqns (42) into solutions of
the same kinetic equations. At the same time the equivalence
of two time directions in classical mechanics also take place:
solutions of system of equations (38) during time inversion
transit into the solutions to Eqns (39), and vice versa.

If consider Eqn (30) as a linear inhomogeneous equation
relative to F1, then expressions (39), (36) do not describe the
general shape of the solution. The general solution represents
the sum of a particular solution of equation (30) itself and an
arbitrary solution of the corresponding linear homogeneous
equation. Equalities (35), (36) appeared from the assumption
that the solution of the homogeneous equation [the first term
in Eqn (32)] rapidly decreases with increasing jtj. Physically
this means that vch and ach can be introduced into the system.
This puts some constraints on both the physical system
described by Eqn (1) and its states which can be described in
a similar way. Indeed, if the Hamiltonian (1) admits an
equilibrium state for a given energy, i.e. equations

qH
qpi
� qH

qri
� 0 ; i � 1;N ; �44�

have solutions, the motion corresponding to the equilibrium
state (all particles have zero velocities and zero accelerations)
can not be described by Eqns (35) and (36). There are other
`pathological' motions that can not admit the transition from
Eqn (35) to Eqn (36). However, for a wide class of systems
Eqns (38) and (39) enable irreversible dynamics to be
introduced for `general position' motions, which is of
principal importance since it permits the notion of relaxation
to be introduced [2].

Let us consider in more detail the physical and mathema-
tical reasons for which the asymptotic integration leads to
irreversible dynamics. From the mathematical point of view,
irreversibility appears due to the limiting transition, which led
to Eqns (35), (36), being nonuniform. This can be easily
checked using, for example, Eqn (33); for small a1 the
function

exp�ÿt bL1�F1�t � 0; 1�

is not small even for very large t, i.e. in the space �r1; v1; a1�
there are regions in which equalities (35) and (36) are invalid
for arbitrarily large jtj, but these regions themselves shrink
with increasing jtj. Physically, such regions relate to particles
which are not substantially affected by other particles or their
action is compensated, which corresponds to small a1.

The emerging irreversibility has a clear physical meaning.
Because of the limiting transitions performed, particles
`weakly coupled' with other particles of the system were
excluded. Note that the exclusion of these particles was
realized by a very non-trivial means. First, the effect of low-
acceleration particles on other particles of the system was
correctly taken into account. (Some `other' particles of the
system can be strongly affected by the low-acceleration
particles. For instance, consider three particles at the center
and ends of a segment of sufficiently short length; in this case
the particle located at the center has zero acceleration, but

significantly affects the particles located at its ends). After
that these `weakly coupled' particles were as if excluded from
the system by the limiting transition. In some sense, the
`weakly coupled' particles during such a transition play the
role of an external surrounding with respect to other particles.
It is easy to see that in this case Kadomtsev's idea on the role
of the external noise also remains `almost' true: there is a
source of `noise' (`external surrounding') in this problem, but
it is inside the system itself. At the same time, the irreversi-
bility introduced can be and even must be interpreted in the
framework of Kadomtsev's hypothesis.

Note that low-acceleration particles [for the time t low-
acceleration particles include those with acceleration smaller
than vch=t, i.e. the larger t, the smaller acceleration, since it is
these particles that cause the nonuniformity in Eqn, (34)] are
very sensitive to even minute external effects. To avoid
confusion, we specially emphasize that at different moments
of time different particles have a low acceleration, but in the 9-
dimensional (three coordinates, three components of velocity,
and three components of acceleration) `extended' phase space
of a single particle there are some regions in which arbitrarily
small external noise becomes significant, but these regions
themselves are small due to the external noise smallness.
From this point of view, the method of obtaining irreversible
dynamics suggested in this work exactly corresponds to
Kadomtsev's idea: any small external and, generally speak-
ing, uncontrolled effect is significant for a small number of
`weakly coupled' particles. Neglecting these particles leads to
irreversible dynamics, which is independent of the external
effect itself if it is smaller than the interparticle interaction.
Thus, this is the external noise that leads to irreversible
dynamics, but the irreversible dynamics are independent of
the small external noise. Note that this is the consideration of
Eqns (35), (36) from the point of view of interaction with
`external' noise that enables the physical content of the
nonuniform limiting transition (34) leading to Eqns (35),
(36) to become clear.

It is interesting to compare the considered mechanism of
irreversible dynamics formation with the properties of the
integrating dynamical system (1). Consider, for example, a
system of particles with the Hamiltonian (1), in which the
interparticle interaction potential U�r1 ÿ r2� is unable to
make it bound, i.e. on large time scales the system `disin-
tegrates' into separate free particles. An example of such a
system is provided by a gas with a short-acting repulsive
intermolecular interaction potential. If the system containsN
particles, it has 3N first integrals in the involution [14].
Projections of particle momentum onto the coordinate
frame axes can be taken as such integrals as t! �1, i.e.
after the disintegration has finished. For a kinetic considera-
tion of such a system it must be significantly changed:
introducing the `walls' described by an external potential
should hamper the disintegrationV�r�. During this procedure
equations (30) and (31) preserve their shapes but the
definition of the operators bLi alters. Now bLi are determined as

bLi � vi
q
qri
�
�
ai ÿ 1

m

qV�ri�
qri

�
q
qvi

: �45�

For the operator bL1, determined by Eqn (45), relationship
(33) is no longer valid since operator exp�ÿt bL1� increases or
decreases the velocity alternately after collision with the wall.
At the same time, assuming infinite size of the system, i.e.
N � �1, we can again use Eqn (33). Thus in the dynamical
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systems considered, the asymptotic integration leading to
Eqns (35) and (36), automatically assumes the system to
have an infinite number of particles, which solves the
problem of integration at any finite N. Indeed, infinity in N
implies infinite time of disintegration, so it proves impossible
to construct 3N first integrals by the means considered above.

12. Introducing smooth distribution functions

Equations (38) and expression (35), which resulted from the
asymptotic integration of exact equations (3) and (31),
describe the irreversible dynamics using singular distribution
functions. However, from the practical point of view it is
much more convenient to deal not with generalized but with
genuine (continuous) distribution functions. To describe the
dynamics by continuous distribution functions, we average
Eqns (35), (38) over the ensemble. The transition to a
description by continuous distribution functions can be
thought of as the transition to a probabilistic treatment of
irreversible dynamics, which already emerged in Eqns (35),
(38) as a property of the equations of motion over long time
intervals.

After these preliminary comments we can pass to a
consecutive construction of the probabilistic treatment of
classical particle dynamics. First of all we note that in the
description of irreversible processes in the dynamical systems
that we use, ensemble averaging plays a quite different role
compared to that in the BBGKI hierarchy. As shown above,
irreversibility in the hierarchy of the `extended' distribution
functions naturally appears without introducing an ensemble
of systems provided that only the external noise is taken into
account. The hierarchy


F1�t; 1�
� � f1�t; 1� ; �46�


Fs�1�t; 1 . . . ; s; �s� 1���
�
� X

14 i4 s

d�ri ÿ rs�1�d�vi ÿ vs�1�d�ai ÿ as�1�
�

� fs�t; 1; . . . ; s� � fs�1
ÿ
t; 1; . . . ; s; �s� 1�� ;

s > 1 ; ri 6� rs�1 ; i � 1; s ; �47�

where fs are smooth `extended' s-particle distribution func-
tions satisfying the equations�

q
qt
� bL1

�
f1�t; 1� �

� bQ�1; 2�f2�t; 1; 2� d2 ;�
q
qt
� bL1 � . . .� bLs

�
fs � bQsfs �

� X
14 i4 s

bQÿi; �s� 1��
� fs�1

ÿ
t; 1; . . . ; s; �s� 1�� d�s� 1� ; s5 2; �48�

and

bQs �
X

14 i<j4 s

bQ��i; j� :
Equations (48) are fully similar to those of the BBGKI
hierarchy (7).

Now we use Eqn (35) to obtain a description of the
system dynamics in the limit of large time scales
t4 t� � vch=ach, which is different from Eqns (48). We
introduce the functions

f�k��t1; 10; 100; . . . ; tk; k
0; k00�

� 
F�2 �t1; 10; 100� . . .F�2 �tk; k0; k00�
�
r
; �49�

where the subscript r means that regularized averaging is
considered, i.e. if two arguments of function f �k� coincide with
each other, this means that the product of binary correlation
functions with different arguments was averaged, after which
the limiting transition was performed. The function f �k�

enables functions fk and fk�1 to be represented as integrals
on large time scales t4 t� � vch=ach:

fk�t;1; . . . ; k� �
��1
0

dt1 . . .

��1
0

dtk exp
�
ÿ
Xk
i�1

ti bLi

�
�
�
d10 . . . dk0

�Yi�k
i�1

bQ�i; i 0��
� f �k��tÿ t1; 1; 10; . . . ; tÿ tj; j; j 0; . . . ; tÿ tk; k; k0� ;

�50�

fk�1�t; 1; . . . ; k; k0� �
��1
0

dt1 . . .

��1
0

dtkÿ1

� exp

�
ÿ
Xkÿ1
i�1

ti bLi

��
d10 . . . d�kÿ 1�0

� Yi��kÿ1�
i�1

bQ�i; i 0��

� f �k�
ÿ
tÿ t1; 1; 10; . . . ; tÿ tj; j; j 0; . . . ; tÿ tkÿ1; �kÿ 1�;

�kÿ 1�0; t; k; k0� ; �51�
which follows from Eqn (35).

Thus the integral representations (50), (51) imply that at
t4 t� � vch=ach functions fs and fs�1 are connected by the
equations�

q
qt
� bL1

�
f1�t; 1� �

� bQ�1; 2� f2�t; 1; 2� d2 ;�
q
qt
� bL1 � . . .� bLs

�
fs�t; 1; . . . ; s�

�
�Xi�s

i�1
bQÿi; �s� 1�� fs�1�t; 1; . . . ; s; s� 1� d�s� 1�; s > 1 :

�52�
Note that the system of equations (52) is notably different

from equations (48), which functions fs and fs�1 satisfy at an
arbitrary moment of time. Equations (52) do not contain
terms bQs fs analogous to the terms bLsFs in the BBGKI chain,
which cause problems of correct uncoupling of the BBGKI
hierarchy. The system of equations of the asymptotic
evolution (52) describing relaxation at t4 t� � vch=ach and
containing only integral terms in the r.h.s. is much simpler
than the system of equations (48), which allows relaxation
treatment at any time, so the relation between these two
systems of equations is in order.

13. Two stages of evolution of the `extended'
distribution functions and a weak form
of the H-theorem

Note that the terms bQs fs, s5 2 in general have no small
parameter that allows considering them small compared to
the integral terms in the r.h.s. of Eqn (48). At the same time,
equations (52) differ from (48) in that they do not contain
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bQs fs, s5 2 in the r.h.s. and describe the evolution correctly
only for large time intervals. This leads to the conclusion of
qualitatively different dynamics of the system for
t < t� � vch=ach and t4 t� � vch=ach. Over the time
t � t� � vch=ach, the initial distribution functions
fs�t � 0; 1; . . . ; s�, s5 2 evolve to the functions fs�t; 1; . . . ; s�
that provide smallness of expressions bQs fs�t; 1; . . . ; s� � 0,
s5 2. More precisely, the equalities

lim
t!�1

bQs fs�t; 1; . . . ; s� � 0; s5 2 : �53�

must hold. There is some analogy here with the collision
integral vanishing in the Boltzmann's type kinetic equations
in the process of thermal equilibrium establishing. In the
situation under consideration the fulfillment of Eqn (53) is
due to `forgetting' the initial correlations.

Equation (53) for s � 2 is of special interest. Note that all
equalities considered above remain valid when substituting
the operators bQ�i; j� by the operators bQ��i; j�. However, on the
one hand, Eqn (53) holds, and on the other hand after this
substitution, expression bQ2 f2 (by definition,

bQ2 � bQ�) enters
into Eqn (41), but the one-particle distribution function is not
zero. From the mathematical point of view we meet here the
well-known phenomenon of nonuniform convergence. How-
ever in view of the importance of the question we wish to
discuss it in more detail. Note that despite the validity of Eqn
(34), the integral� bQ��1; 10� exp�ÿt bL10 �g�10� dv10

should not necessarily tend to zero or become small.
Conversely, due to a non-linear in v10 term in bQ��1; 10� and
differentiation with respect to a10 that lead to a term t 2

emerging, this integral may even tend to infinity at large t.
Coming back to expression (41), it is easy to see that after this
substitution a finite contribution to this integral arises due to
the neighborhood of the point a10 � 0. These expressions are
very difficult to operate with. However, the form of kinetic
equations we use, which has a direct physical sense but is
somewhat more awkward due to the difference between
operators bQ�i; j� and bQ��i; j�, has no such difficulties.

At t5t� � vch=ach evolution is described by equations
(52), with fs, s5 2 all the time very accurately satisfying Eqn
(53). Consequently, the disappearance of the term bQs fs, s5 2
in the r.h.s. of Eqn (48) when studying evolution over large
time scales, i.e. when transiting to Eqns (52), is justified by the
large value of t=t�. Such a different role of integral and out-of-
integral terms in the r.h.s. of Eqn (48) becomes natural if we
notice that these two different types of terms appear in
principally different ways [see comments preceding Eqn (37)].

Thus one more treatment of irreversible relaxation in
dynamical systems arises. Any set of initial multi-particle
distribution functions evolves `towards' functions which
approximately satisfy Eqn (53) . The latter statement should
be considered as a weak form of the H-theorem, which is
however valid in systems with arbitrary value of interaction.

Note that in finite-size systems the transition to the second
stage of evolution can be absent in the absence of external
noise and under suitable boundary conditions. This can be
checked using considerations similar to those used in the
section devoted to time irreversibility. We can not enter into
more detail in the present paper, but note that in this way a
natural interpretation of the results of numerical modeling
presented in [3] can be suggested.

It should be stressed that the appearance of two qualita-
tively different stages of evolution is obtained using the
`extended' distribution function formalism. Below this issue
will be addressed on the basis of the treatment of kinetics by
standard distribution functions.

We recall that Bogolyubov's method supposes that all
multi-particle distribution functions become functionals of a
one-particle distribution function beginning from some time
moment. This assumption naturally leads to different stages
in the evolution of distribution functions. The first stage lasts
until this time moment, the second stage starts after this time.
In some papers the second stage is subdivided into two
substages, kinetic and hydrodynamic [15]. Such an `axio-
matic' approach leads to some difficulties, the most well-
known being the so-called `non-adiabaticity' of slow modes.
If in the system there are modes with large characteristic
times, they have no time to follow the evolution of one-
particle distribution functions and require a special consid-
eration. For example, hydrodynamic modes show this
feature. A lot of papers address this issue. In our approach
presented in this paper we have proved (not supposed!) that
starting from some time moment, a one-particle distribution
function (and below we shall see that higher-order distribu-
tion functions as well) is expressed through a two-particle
distribution function. In this approach, no `non-adiabaticity'
problem for slow modes appears, but the kinetic equations
obtained turn out to be much more complicated.

14. Uncoupling the system of equations
of the asymptotic evolution

The asymptotic evolution equations (52), as well as the
BBGKI hierarchy, represent an infinite set of coupled linear
integro-differential equations relating s- and �s� 1�-particle
distribution function for arbitrary natural number s. First we
use a not very rigorous but visual means of uncoupling kinetic
equations (48) and (52), which allows us to understand the
physical sense of the uncoupling, and then we point to a more
formal approach. One can try to find solutions to Eqn (52) in
the form

fs�t; 1; . . . ; s� �
Yi�s
i�1

f1�t; i� ; �54�

but such distribution functions are in no way subject to
relations (53). Of course, in some dynamical systems having
small parameters, the treatment of dynamics with the use of
Vlasov's equations, which result from Eqns (54), can be well
justified. However, in the general case another approach is
required to uncouple kinetic equations (48) and (52). To this
end, we use a small parameter that appears in the system
dynamics at large time scales due to large value of t=t� and
provides the transition from Eqn (48) to (52).

In the Appendix we consider in more detail the way of
uncoupling the equations for the extended distribution
functions. However, it seems relevant here to discuss the
main differences of this method of uncoupling from those
based on the idea of `molecular chaos', i.e. on the representa-
tion of higher-order distribution functions through a one-
particle distribution like Eqn (12) and (13). The `molecular
chaos' hypothesis assumes the possibility at any time moment
of considering atoms non-correlated before collisions. It is
this physical assumption that is equivalent to factorizations
(12) and (13) and the like for higher-order distribution
functions. Here the non-trivial part of the hypothesis is just
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that it is valid at any time moment. In other words, it is
necessary to prove the validity of such an approach over large
time scales when interparticle interactions are present. The
justification of the possibility of such a consideration
represents the main (but not the only) problem when
constructing kinetic equations. Attention should be paid to
the `molecular chaos' hypothesis being not allowed by the
choice of `general position' initial conditions. This hypothesis
is a significant dynamical assumption and requires a suffi-
ciently deep study of multi- particle system dynamics.

Now we wish to address this point from a somewhat
different point of view. Notice that in the BBGKI hierarchy
this is the non-integral terms in the r.h.s. of Eqn (5) that can
violate the `molecular chaos' hypothesis while the integral
terms in the r.h.s. of Eqn (5) do not lead to any difficulty when
justifying this hypothesis. The transition to the extended
distribution function changes the situation in a principal
way. Indeed, in equations for the extended distribution
functions (48) there are non-integral terms that are fully
analogous to terms in the BBGKI hierarchy, which create
difficulties in justifying the `molecular chaos' hypothesis.
However, it is a purely formal similarity. The point is that
on large time scales these terms in the equations for the
extended distribution functions vanish according to the weak
form of theH-theorem [see Eqn (53)]:

lim
t!�1

bQs fs�t; 1; . . . ; s� � 0; s5 2 :

Thus, introducing the extended distribution functions
radically changes the problem of uncoupling the infinite
chain of coupled equations describing multi-particle system
dynamics. It turns out that the use of the extended distribu-
tion functions enables us to effectively eliminate the terms
preventing the uncoupling in the large evolution time scale
limit. Considering this we arrive at a closed kinetic equation
for the two-particle distribution function�

q
qt
� bL1 � bL2

�
f2�t; 1; 2� � bQ��1; 2� f2�t; 1; 2�

�D�t; 1; 2� �D�t; 2; 1� ; �55�

and also at the equations allowing higher-order extended
distributions to be calculated through the two-particle
distribution function�

q
qt
� bL1 � . . .� bLs

�
fs � bQs fs

�
X

14 i4 s

fsÿ1�t; 1; . . . ; iÿ 1; i� 1; . . . ; s�

�
� bQÿi; �s� 1�� f2�t; i; �s� 1�� d�s� 1�; s5 3 ; �56�

Expressions (55) and (56) answer Ulenbeck's question on
the possibility of expressing all distributions through the two-
particle one [15]. Indeed, relation (41) enables the one-particle
distribution to be expressed through the two-particle one,
Eqn (55) is a closed equation for the evolution of the two-
particle distribution, and equations (56) provide us with the
possibility to express the higher-order distributions via the
two-particle one. To avoid misunderstanding we point out
that the special role of the two-particle distribution function is
caused by only systemswith two-particle interaction potential
being considered in the present paper.

15. Physical sense of the `extended' distribution
function formalism

Let us discuss the physical reasons for the possibility of
finding a closed kinetic equation for the extended distribu-
tion functions.

Note that any extended distribution function contains the
`information' which can be obtained only knowing all the
infinite chain of ordinary distribution functions (indeed, even
a one-particle distribution function enables ah i2n to be
computed for any n, although to calculate this average
�2n� 1�-particle standard distribution function F2n�1 should
be specified).

In real systems with an infinite number of particles even
the entire infinite chain of multi-particle distribution func-
tions does not totally describe the dynamics. We specially
emphasize that such a situation takes place only forN � �1.
Note that to compute the value of jajrh i where r is a non-
integer number in an N-particle system the function FN

should be used.
Thus the information on the non-integer moments of the

acceleration is lost in systems with an infinite number of
particles when treating them by standard distribution func-
tions. The latter seems strange if we note that in the equations
of motion the transition to the limit N! �1 occurs
comparatively easily, and the function r becomes a function
determined over infinite space, i.e. r becomes a very
`unpleasant' object from the point of view of mathematics.

At the same time, the information on the non-integer
moments of accelerations is contained in the extended
distribution functions. However, even the entire infinite
chain of distribution functions does not contain all the
information on the classical system dynamics. Considering
non-integer moments of, e.g., derivatives of the acceleration
can check it. The incompleteness of treatment of dynamics by
functions fs, s5 1 makes the time irreversible character of
relations (41) natural. The presence of additional information
in f2 compared to that contained in the whole infinite chain of
standard multi-particle distribution functions permits us to
understand why closed kinetic equations can be found
comparatively easily for f2.

16. Additional constraints on the `extended'
distribution functions

Kinetic equations for the `extended' distribution functions are
obtained from equations (27), which follow from the
equations of motion. However, the order of the system of
equations (27) is 9N, i.e. exceeds that of the equations of
motion, which is 6N. Therefore, solutions of system of
differential equations (27) depend on 9N independent con-
stants, while those of the true differential equations of motion
depend only on 6N arbitrary constants (3N coordinates and
the same number of velocities at the initial moment of time).
Thus it is necessary to exclude from consideration the
solutions of Eqn (27) that do not correspond to any real
motions of physical particles. For this, it is enough to take
into account that the particle acceleration at the initial time is
determined by Newton's second law. The `non-physical'
solutions also exist for kinetic equations (48), (52) and they
can be rejected by imposing similar constraints on the
extended distribution functions. For example, the one-
particle distribution function must be additionally subjected
to the condition
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a1F1�t; 1� � ÿ 1

m

�
qU�r1 ÿ r2�

qr1
F2�t; 1; 2� d2 ; �57�

which according to Eqn (35) reduces at t5t� � vch=ach to

a1

��1
0

exp�ÿt bL1�
� bQ�1; 2�F2�tÿ t; 1; 2� d2 dt

� ÿ 1

m

�
qU�r1 ÿ r2�

qr1
F2�t; 1; 2� d2 : �58�

Note that if Eqn (57) is initially satisfied, it holds in future as
well. Thus relation (58) should be considered as a bound on
the initial conditions.

We recall that expression (35) itself is valid only for
`physical' and solutions close to them (27). Indeed, the
transition from Eqn (32) to (35) is possible only provided
that vch increases in time more slowly than acht, which is
violated for the solutions (27) that strongly differ from those
having a physical sense. If consider only `strictly' physical
solutions for an isolated system, vch does not depend on time
at all. Thus expression (35) is necessarily valid for physical
solutions and closed to them.

17. Transition to Boltzmann's equation

Let us ascertain that equations (55) and (56) allows the
transition to Boltzmann's equation. First of all, note that
Boltzmann's equation does not allows the correct description
of fluctuations and takes into account only binary collisions
[10]. However, many specific features of particle motion are
explicitly accounted for in Boltzmann's equation (it is
sufficiently to note that Boltzmann's equation explicitly
contains not the interparticle interaction potentials but the
binary collision cross-sections). Thus the problem of the
transition from Eqn (55) and (56) to Boltzmann's equation
is separated into two stages. First, it is necessary to specify
which approximation in equations (55) and (56) Boltzmann's
equation corresponds to, and second, in this approximation it
is necessary to make a transition to the parameters that enter
Boltzmann's equation. The first stage has a principal meaning
and the second stage is of a purely technical character.

First of all, we point to the approximation in which the
transition from equations (55) and (56) to Boltzmann's can be
performed. To this aim we shall find the solutions in the form

fn�1; 1; . . . ; n� � Fn�t; 1ÿ; . . . ; nÿ�F �d�n �t; 1�d�; . . . ; n�d�� ; �59�
where fn is the extended n-particle distribution function, Fn is
the ordinary n-particle distribution function, F

�d�
n is a new

function subjected to the condition�
F �d�n �t; 1�d�; . . . ; n�d�� dan � F

�d�
�nÿ1��t; 1�d�; . . . ; �nÿ 1��d�� ;

i � �ri; vi; ai�, iÿ � �ri; vi� and i �d� � �ri; ai�. Note that neglect-
ing fluctuations, solutions of the form (59) must exist in
equations (55) and (56) at least for local thermodynamic
equilibrium. Indeed, due to the local thermodynamic equili-
brium, velocities are separated from accelerations according
to the Gibbs distribution for classical particle systems, and
due to neglecting fluctuations one can state that this
`separation' occurs at any time, not on average in time.

Now substitute expressions for fn given by Eqn (59) into
equations (5) and (56). Integrating the resulting equations

over accelerations with account of the additional constraints
that appear in analogy with (57), yields equations of the
standard BBGKI hierarchy for the functions
Fn�t; 1ÿ; . . . ; nÿ�, and integrating over velocities enables us
to arrive at equations for the functions F

�d�
n �t; 1�d�; . . . ; n�d��.

Note that the equations for the functions F
�d�
n �t; 1�d�; . . . ; n�d��

depend on integrals contained in the integrands
Fn�t; 1ÿ; . . . ; nÿ� and the equations for Fn�t; 1ÿ; . . . ; nÿ�,
which coincide with the standard BBGKI hierarchy, are
independent of the functions F

�d�
n �t; 1�d�; . . . ; n�d��. Thus any

justified means of uncoupling the standard BBGKI hierarchy
near the thermal equilibrium state neglecting fluctuations
enables the determination of both functions
F
�d�
n �t; 1�d�; . . . ; n�d�� and Fn�t; 1ÿ; . . . ; nÿ�, i.e. allows the

corresponding solutions of Eqn (55) and (56) to be found.
Consequently, in this particular class of solutions (59),
equations (55) and (56) indeed transit to Boltzmann's
equation. In other words, the closed form kinetic equation
(55), being more general compared to Boltzmann's kinetic
equation, enables the applicability region of the latter
equation to be specified from the point of view of the degree
of non-equilibrium of the medium, which can still be
described by Boltzmann type kinetic equations.

18. Time irreversibility and the probabilistic
treatment of dynamics

Let us turn once again to the relation between time
irreversibility and the probabilistic treatment of dynamics.
The method discussed in this paper allowed us to introduce
irreversible evolution as a property of dynamics on large time
scales. The transition to the probabilistic treatment of
irreversible dynamics of a multi-particle system required a
sufficiently detailed description of the event space. The lack of
any information on the event space is a significant short-
coming of the approach to deriving Boltzmann's equation
using the molecular chaos idea; this shortcoming was noted
by M A Leontovich [10].

Time irreversibility has only been shown as a property of
the operator bT to transform solutions of one system of
equations into solutions of another system of equations. The
transition to smooth distribution functions has permitted us
to formulate the weak form of the H-theorem, i.e. to find a
class of functions `toward which' initial multi-particle
distribution functions evolve. At the same time, we have not
managed to construct Lyapunov's functional for the irrever-
sible equations obtained. In fact, it is hard to expect some
value increasing in time at each point of space to be associated
with equation (55). Indeed, since equation (55) correctly
describes fluctuations, it admits evolution in different direc-
tions, both toward an equilibrium (a stationary state) and
away from it. To avoid confusion, we point out once again
that equations of Boltzman's type admitting the H-theorem
can not correctly take into account fluctuations [10]. This
follows at least from the fact that when deriving these kinetic
equations the true interparticle interactions are substituted by
an interaction with particles of an `averaged' ensemble
representative.

19. Conclusions

The problems emerging when relating kinetic theory and
mechanics reduce to two main difficulties of quite different
nature. Firstly, these are difficulties due to using probabilistic
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concepts and the relaxation notion in classical mechanics;
secondly, the difficulties related to the necessity of determin-
ing class of dynamical system to which kinetic theory results
can be applied [2]. To solve these problems, different
approaches are suggested, which are based, as a rule, on
sufficiently complex properties of dynamical systems. They
appeal to the notions of dynamical chaos, phase spacemixing,
ergodicity, etc. In comparison with these fairly complex
theories, which often use deep results of dynamical system
theory, B B Kadomtsev's ideas relying upon clear physical
concepts seem somewhat naive at the first glance. So even
more unexpected is the fact that the elaboration of these ideas
provides us with an answer to the questions which have not
been answered for a long time using other approaches.

First of all, we note thatKadomtsev's ideas, which require
`external noise', enable a clear description of the reasons for
irreversibility to appear in statistical mechanics. Indeed, in a
systemwith a large number of particles there are particles that
interact with other particles of the system more weakly than
with the external noise. This implies that the acceleration
caused by the interaction with the external noise is greater
than the acceleration due to interaction with other particles.

The number of such particles is small because of the
smallness of interaction with the external surroundings, and
their acceleration is mainly determined by the uncontrolled
value of the external noise. So from the physical point of view
it would be desirable to construct a description (let it be
approximate) of the dynamics of the system that neglects
these particles because of their small number relative to the
total number of particles in the system.

The problem is that at different instants of time different
particles fall into the class of low-acceleration particles. To
handle this technical difficulty, it is convenient to introduce
particle acceleration as a new `independent' variable and
consider the problem in the `extended' phase space thus
formed.

In the present paper we have shown that neglecting these
`weakly coupled' particles in fact leads to irreversible
dynamics, which turn out universal, i.e. independent of the
specific external noise. From the mathematical point of view
the problem of description of the dynamics of a multi-particle
system neglecting low-acceleration particles was considered.
Such a setting of the problem is new in kinetic theory and its
interpretation relies upon Kadomtsev's ideas on the external
noise role in establishing irreversible dynamics.

Let us discuss in more detail the principal role of low-
acceleration particles. Notice that the external noise affects,
of course, both the small number of low-acceleration particles
and other particles of the system. Thus amulti-particle system
consists of a large number of particles (almost all particles of
the system) for which the external noise is only a small
perturbation, and of a small number of particles (small
because of the small value of the external noise) whose
acceleration, oppositely, is determined mostly by the external
noise.

So the question arises as to what is more significant for
dynamics of the system on large time scales, the external noise
effect on a small number of particles which is comparable
with the interparticle interaction, or the small (compared to
the interparticle interaction) influence of the external noise on
other particles of the system.

In the framework of the formalism discussed in this paper,
neglecting the relatively small number of particles with a low
acceleration due to interaction with other particles of the

system in comparison with the acceleration due to the
external noise, leads to the selection of a certain type of
solution for distribution functions (see Section 11). After that
the external noise effect on other particles can be accounted
for by a perturbation theory constructed for these solutions.
Interestingly, the possibility of phase `breaks' due to system
interaction with the external irreversible surrounding and of
the selection of a certain type of solutions, was recognized
earlier in quantum mechanics.

In paper [1] Kadomtsev wrote: ``Now assume that the gas
under consideration weakly interacts with an irreversible
external surrounding. The first and main effect of such an
interaction is the violation of the precise phase relations
between converging and diverging waves. A so-called phase
break occurs. A corresponding effect can be called the
`collapse' of the wave function''.

Kadomtsev believed that the `first and the main' effect of
the interaction with the external irreversible surrounding is
that the induced phase `break' (the violation of exact phase
relations) differently affects the `converging' and `diverging'
waves. In fact, Kadomtsev's argumentation is very sophisti-
cated, and statements pulled out of the context can be
erroneously understood. Nevertheless, we cite one of the
main results of his analysis. With account of interaction
with the irreversible external surrounding, only some solu-
tions of the SchroÈ dinger equation describing multi-particle
problem dynamics have physical sense.

Consider this point in more detail. Note that the
SchroÈ dinger equation is a first-order equation in time, so
specifying the initial conditions determines absolutely the
subsequent evolution of the system. However, the account of
a small external noise, i.e. some action on the system, makes it
open. On large time scale only such solutions of the
SchroÈ dinger equation that are stable in some sense with
respect to this noise `survive'. Other solutions are `attracted'
to them, which does not violate any dynamical principle, since
the account of the external noise makes the system open and
dissipative.

This is the possibility of the gradual transformation of
some solutions to the SchroÈ dinger equation into other ones
under the action of the external noise, i.e. the `attraction' of
unstable with respect to the external noise solutions to `stable'
ones, that leads to a specific principle of `selection' of
solutions and introduces irreversibility into quantum
mechanical problems [1].

Here the possibility of irreversibility emerging by the same
mechanism (due to the selection of solutions of the required
type) in classical mechanics remained completely unnoticed.
Probably, such a situation emerged due to the linearity of the
SchroÈ dinger equation and `wave' analogs being apparently
quite natural, while equations of motion in classical
mechanics are non-linear. However, Liouville's equation,
the BBGKI chain equations or equations for the `extended'
distribution functions are also linear equations, which makes
it not surprising that irreversibility appears in a similar way.

Using Kadomtsev's understanding of the problem of
statistical mechanics foundation we managed to show that
irreversible evolution appears in the `extended' distribution
function formalism as a natural property of the dynamics of
a system of classical particles on large time scales. The
probabilistic treatment of dynamics in this time interval is
only a convenient formal tool that allows us to avoid using
generalized function formalism. The larger the time scales
(t4 t�), the more justified the use of this treatment seems. A
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kinetic equation is obtained that describes evolution of the
`extended' two-particle distribution function and provides
us with an analytical description of irreversible dynamics of
the system of classical particles. Thus dynamical considera-
tion makes it possible to justify the `molecular chaos'
hypothesis and to find a form for it that can be used not
only for gases.

In this paper we have ascertained that the development of
B BKadomtsev's ideas on the nature of irreversibility leads to
a novel setting of the problem of foundation of statistical
physics, and have also already permitted us to solve some
problems, which can not be solved by other methods.
Unfortunately, in spite of a physical clarity and the possibi-
lity of a formal description, Kadomtsev's ideas have not yet
beenwidely recognized and generally accepted.Undoubtedly,
they are of a great interest and possibly represent the most
adequate approach to solve this problem.

20. Appendix

Note first of all that the BBGKI hierarchy, as well as the
systems of equations (48), (52), can be treated by different
means. They can be considered as being evolutionary
equations for multi-particle distribution functions. How-
ever, a different point of view is possible. Since the equation
for an s-particle distribution function contains an �s� 1�-
particle distribution function, it can be considered as an
integro-differential equation that allows the determination
of �s� 1�-particle distribution function using function fs,
s5 1. Notice that the latter point of view is possible only for
a system with an infinite number of particles N � �1. In a
system containing a finite number of particlesN the equation
for an N-particle distribution function, which coincides with
Liouville's equation, does not allow such an interpretation. In
addition, the second interpretation of coupled infinite chains
appeals to the problem of solvability of the corresponding
linear integro-differential equations.

Bogolyubov's method of uncoupling uses both these
interpretations of the BBGKI hierarchy. To calculate the
function G2 determined according to Eqn (13), it is sufficient
to require that the equation for the two-particle distribution
function, which is considered as an integro-differential
equation relative to the function G3, has a solution G3 5G2.
The function G2 found in this way permits us to determine F2

according to Eqn (13) and to obtain, as was shown by
Bogolyubov, Boltzmann's kinetic equation and its analogs
for other media.

To apply Eqns (48) or (52) to the final part of the first and
second stages of the evolution by the `extended' distribution
functions, we subject the three-particle distribution function
to the integro-differential equation� bQ�1; 3� f3�t;1; 2; 3� d3� � bQ�2; 3� f3�t; 1; 2; 3� d3

� f1�t; 1�
� bQ�2; 3� f2�t; 2; 3� d3� f1�t; 2�

�
� bQ�1; 3� f2�t; 1; 3� d3 : �A:1�

In other terms, we write down evolutionary equations for f1
and f2 in the form�

q
qt
� bL1

�
f1�t; 1� �

� bQ�1; 2� f2�t; 1; 2� d2 ; �A:2�

�
q
qt
� bL1 � bL2

�
f2�t; 1; 2�

� f1�t; 1�
� bQ�2; 3� f2�t; 2; 3� d3� f1�t; 2�

�
� bQ�1; 3� f2�t; 1; 3� d3 : �A:3�

Equation (A.1) will be used as the integro-differential
equation to determine f3 and Eqn (48) for s5 3 will be
considered as integro-differential equations for the functions
fs�1, s5 3:�

q
qt
� bL1 � . . .� bLs

�
fs�t; 1; . . . ; s�

�
�Xi�s

i�1
bQÿi; �s� 1�� fs�1�t; 1; . . . ; s; s� 1� d�s� 1�; s5 3 :

�A:4�

First of all, we note that in a system with an infinite
number of particles N � �1 equations (A.1) ± (A.4) do not
contradict the integral relation between functions fs and fs�1,
s5 1�

fs�1
ÿ
t; 1; . . . ; s; �s� 1��d�s� 1� � Nfs�t; 1; . . . ; s� : �A:5�

Thus the question of the existence of an ensemble with
dynamical properties described by Eqns (A.1) ± (A.4)
reduces to the problem of the solvability of the correspond-
ing integro-differential equations that determine fs, s5 3.
Unfortunately, with the literal understanding, equation (A.1)
has no solutions. Considering, for example, a system of
particles with infinitely strong repulsion at zero distance can
easily check it. In this case f3 � 0 at r1 � r2 and the l.h.s.
vanishes at r1 � r2, whereas the r.h.s. of Eqn (A.1) takes a
non-zero value. However, for our purposes it is sufficient if
there is a solution to Eqn (A.1) in the small parameter limit
providing the transition from Eqn (48) to Eqn (52). Simple
physical considerations allow us to ascertain that a solution of
Eqn (A.1) thus understood really exists.

Instead of a system of particles described by the
Hamiltonian (1), let us consider a related new system of
particles with the potential of interparticle interactions g2U,
mass gm, and concentration n=g, where g! �0. Note that as
g! �0 the evolution of multiparticle distribution functions
is described by just the system of equations (52). Thus the
second stage of the evolution of extended distribution
functions means that inside this time interval the system of
particles can be treated in a `continuous' limit, and the larger
the value of t=t�, the more accurate such a description is.
Consequently, the study of distribution functions of the
actual problem can be substituted by the study of the
distribution function of the `continuous' model. For a fixed
characteristic velocity of particles with mass gm, the
`temperature' is gT and the energy of binary interaction of
particles of the `continuous' model is determined by the value
g2U as g! 0. In the considered `continuous' model the
effective temperature gT is much exceeds the binary interac-
tion energy g2U. This enables the studied infinite chain of
equations for the extended distribution function to be
uncoupled. Thus in the `continuous' model an ensemble
must exist for which the following relations hold
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� bQ�1; 3� f3�t; 1; 2; 3� d3 � f1�t; 2�
� bQ�1; 3� f2�t; 1; 3� d3 ;

�A:6�� bQ�2; 3� f3�t; 1; 2; 3� d3 � f1�t; 1�
� bQ�2; 3� f2�t; 2; 3� d3 :

�A:7�

Equalities (A.6), (A.7) and the relation of the `continuous'
model with evolution of a real system of particles on large
time scales provide the solvability of Eqns (A.1), (A.4) in the
above sense. In other words, the existence of an ensemble that
satisfies to Eqns (A.6), (A.7) for the `continuous' model
provides solvability of integro-differential equations (A.1)
and (A.4) in the limit of large t=t�. We stress once again that
functions f1 and f2 evolve in such a way that the region of 27-
dimensional space (1, 2, 3) where solutions of the integro-
differential equations (A.6), (A.7) exist shrinks with increas-
ing t=t�. Therefore, in the limit of large ratio t=t� the
transition from Eqn (48) to (A.1) ± (A.4) is fully justified. By
solving Eqn (A.2) with respect to f1 at t5t� � vch=ach, which
leads to Eqn (41), and by substituting the obtained expression
for f1 into Eqn (A.3), we get a kinetic equation for the
function fs, s5 2 (see explications below),�

q
qt
� bL1 � bL2

�
f2�t; 1; 2� � bQ��1; 2� f2�t; 1; 2�

�D�t; 1; 2� �D�t; 2; 1�; �P:8��
q
qt
� bL1 � . . .� bLs

�
fs � bQs fs

�
X

14 i4 s

fsÿ1�t; 1; . . . ; iÿ 1; i� 1; . . . ; s�

�
� bQÿi; �s� 1�� f2�t; i; �s� 1��d�s� 1�; s5 3 ;

D�t; 1; 2� �
��1
0

exp�ÿt bL1�
� bQ�1; 10� f2�tÿ t; 1; 10� d10 dt

�
� bQ�2; 20� f2�t; 2; 20� d20 :

Note that Eqn (A.8) is a non-linear kinetic equation
relative to function f2 and equations for higher- order
distribution functions are linear integro-differential equa-
tions.

We specially note that the terms bQ�s fs, s5 2 are kept in
Eqn (A.8) and its analogs for higher-order distribution
functions. If only the second stage of evolution is to be
described, such terms must be omitted. However, the
description of the final stage of evolution requires these
terms to be conserved as well. Notice that kinetic equation
(A.8) is simultaneously the definition of the ensemble these
kinetic equations describe. Indeed, the uncoupling used is
justified in the limit of an infinitely large time, i.e. when Eqn
(53) is satisfied. From this point of view, these kinetic
equations describe such an ensemble in which the termsbQ�s fs, s5 2, vanishing on finite time scales, yield corrections
to functions fs, s5 2 in accordance with the equations under
consideration. Note that the kinetic equations obtained do
not contradict relation (A.5).

The method described in the main text of the paper
represents another approach to justifying the uncoupling of

equations for the extended distribution functions. Note that
expressions (A.6) and (A.7) are valid a priori for such
ensembles in which distribution functions are close to a set
of d-functions, in other words, in ensembles which are
composed from a narrow neighborhood of some point of
the phase space. This can always be achieved for the initial
moment of time. Let us choose the neighborhood to be
sufficiently narrow that by the time the non-integral terms in
the chain of equations become small enough according to Eqn
(53), equations (A.6) and (A.7) are again satisfied with a good
accuracy. However, then equations (A.6) and (A.7) will be
held in future as well, which allows us to perform uncoupling
according to the scheme discussed above.

Note that in the approach used the `interaction' between
particles of different ensemble representatives appeared from
using only equations of motion, after obtaining the irrever-
sible dynamics [see Eqns (41), (52)]. However, the irreversi-
bility in (A.8) can also be interpreted in the language of the
`intersystem' interaction introduced by Eqn (A.1). Thus it is
shown that the irreversibility that results from only the
dynamics of a system of classical particles in the limit of
large times, can be interpreted as an `interaction' between
particles of different representatives of the ensemble, i.e., as
explained above, in agreement with the `molecular' chaos
hypothesis. Therefore, the approach used permits us to justify
the `molecular' chaos hypothesis and to formulate it correctly
Eqn (A.1) when the interparticle interaction is not small.

The physical reason for the possibility of effective use of
factorization (A.1) is that the integro-differential equation
(A.1) has no solutions for r1 close to r2. However, for
U�r� ! 1, when r! 0, a tiny fraction of particles approach
each other so closely. The impossibility of constructing a
solution due to the smallness of the number of particles is not
a significant obstacle.

Notice that Eqn (A.8) can be arrived at by a different way.
According to Eqn (35), function f3 for t5t� � vch=ach can be
written as

f3�t; 1; 2; 3� �
��1
0

exp�ÿt bL1�
� bQ�1; 10�

� 
F2�tÿ t; 1; 10�F2�t; 2; 3�
�
d10 dt : �A:9�

Assuming that the substitution

F2�tÿ t; 1; 10�F2�t; 2; 3�

�
� 
F2�tÿ t; 1; 10��
F2�t; 2; 3�

�
; �A:10�

is permitted in the integrand of expression (A.9), we again
arrive at equation (A.8). However, factorization (A.10) is
invalid in the general case, which follows at least from the fact
that at t � 0 the l.h.s. of expression (A.10) is symmetric
relative to any permutation of the groups of variables
1; 10; 2; 3, and the r.h.s. is not. However, in some problems
with a small parameter, such values of tmostly contribute to
the integral (A9), in which the quantities F2�tÿ t; 1; 10� and
F2�t; 2; 3� can be considered independent, which allows us to
justify Eqn (A.10).

Note that if function f2 slowly changes over the time
t� � vch=ach, functions D�t; 1; 2� and D�t; 2; 1� allow an
appreciable simplification. By computing the integral over t
that determines these functions, we can neglect the time
dependence of the two-particle distribution function, i.e.

588 S N Gordienko Physics ±Uspekhi 42 (6)



write�
q
qt
� bL1 � bL2

�
f2�t; 1; 2� � bQ��1; 2� f2�t; 1; 2�

�D�t; 1; 2��D�t; 2; 1� ; �A:11�
where

D�t; 1; 2� �
��1
0

exp�ÿt bL1�
� bQ�1; 10� f2�t; 1; 10� d10 dt

�
� bQ�2; 20� f2�t; 2; 20� d20 :

Thus, in the case considered, the evolution of the two-particle
distribution function is fully determined by its value at the
same moment of time.

Additional conditions, which should be imposed on the
`extended' distribution functions to select physically reason-
able solutions (see the main text), can be used to transit to the
description of the dynamics by the standard distribution
functions. To obtain the standard s-particle distribution
function from the `extended' s-particle distribution function,
the latter should be integrated over all accelerations. Con-
sidering the above, we integrate the equation for the s-particle
distribution function from the system of equations (48) over
all accelerations which are present in the function fs, which
yields

q
qt

�
fs�t; 1; . . . ; s� da1 . . . das

�
� bL1fs�t; 1; . . . ; s� da1 . . . das � . . .

�
� bLs fs�t; 1; . . . ; s� da1 . . . das � 0; s5 1 : �A:12�

In view of the fact that for all distribution functions analogs
to expression (53)

ai fs�t; 1; . . . ; i; . . . ; s� � ÿ 1

m

Xj�s
j�1; j6�i

qU�ri ÿ rj�
qri

� fs�t; 1; . . . ; i; . . . ; j; . . . ; s� ÿ 1

m

�
qU�ri ÿ rs�1�

qri

� fs�1
ÿ
t; 1; . . . ; i; . . . ; s; �s� 1�� d�s� 1� ; �P:13�

are fulfilled, the expression�
ai fs�t; 1; . . . ; i; . . . ; s� da1 . . . das ;

which enters Eqn (A.12), can be rewritten with account of
Eqn (A.13), after which equations (A.12) exactly transform
into the BBGKI chain of equations. Note that integrating the
asymptotic evolution equations (52) over all accelerations, we
again get equation (A.12), and the use of Eqn (A.13) again
leads to the BBGKI hierarchy. Thus the description of
relaxation processes by the standard distribution functions
is too rough to note two principally different stages of the
evolution, which we considered above in detail. It is due to
this fact that, without making use of equations for the
`extended' distribution functions, the `hidden' small para-

meter relating to a large value of t=t� and leading to the
transition from Eqn (48) to (52) remains unnoticed, which
enables the disruption of the infinite chain of equations using
Eqn (A.1) and the transition to Eqn (55). However, if the
uncoupling is possible, it can be performed without using the
`extended' distribution functions.

Indeed, as follows from the considerations that led us to
Eqn (A.6), (A.7), these relations somewhat stronger than
Eqns (A.6), (A.7) are satisfied:

f1�t; 1�
� ��

v2 ÿ v3;
q
qr2

�
qU�r2 ÿ r3�

qr2

�
f2�t; 2; 3� d3

�
� ��

v2 ÿ v3;
q
qr2

�
qU�r2 ÿ r3�

qr2

�
f3�t; 1; 2; 3� d3 ; �A:14�

f1�t; 2�
� ��

v1 ÿ v3;
q
qr1

�
qU�r1 ÿ r3�

qr1

�
f2�t; 1; 3� d3

�
� ��

v1 ÿ v3;
q
qr1

�
qU�r1 ÿ r3�

qr1

�
f3�t; 1; 2; 3� d3 : �A:15�

Let us integrate Eqns (A.14), (A.15) over the accelerations a1,
a2 to transit in these expressions from the `extended' to the
standard distribution functions

F1�t; 1�
� ��

v2 ÿ v3;
q
qr2

�
qU�r2 ÿ r3�

qr2

�
F2�t; 2; 3� d3

�
� ��

v2 ÿ v3;
q
qr2

�
qU�r2 ÿ r3�

qr2

�
F3�t; 1; 2; 3� d3 ; �A:16�

F1�t; 2�
� ��

v1 ÿ v3;
q
qr1

�
qU�r1 ÿ r3�

qr1

�
F2�t; 1; 3� d3

�
� ��

v1 ÿ v3;
q
qr1

�
qU�r1 ÿ r3�

qr1

�
F3�t; 1; 2; 3� d3 : �A:17�

Thus equations (A.16), (A.17) should be considered as
integral equations for the determination of function
F3�t; 1; 2; 3�, and the evolution of functions F1�t; 1� and
F2�t; 1; 2� is described by the first two equations of the
BBGKI hierarchy:�

q
qt
� bl1�F1 � bL�1; 2�F2�t; 1; 2� d2 ; �A:18�

�
q
qt
� l̂1 � l̂2

�
F2� bL2F2 �

� X
14 i4 2

bL�i; 3�F3�t; 1; 2; 3� d3 :

�A:19�
The system of equations (A.16) ± (A.19) is an analog of the

kinetic equation (A.18), however for irreversibility to be
introduced and a closed form equation for F2 to be
obtained, it is necessary to explicitly find a solution to the
integral equations (A.16), (A.17) and to study the character of
solutions (A.18), (A.19) at t5t� � vch=ach. Now the advan-
tages of the `extended' distribution functions become clear.
Firstly, for this formalism no explicit solutions to equations
(A.6), (A.7) have been necessary, and secondly, the one-
particle distribution function has easily been expressed
through the `extended' two-particle distribution function,
which easily permitted us to obtain time irreversible
dynamics.
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