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Abstract. This review presents the fundamentals of the method
of integral equations of the theory of liquids. One of the central
problems of the theory, the definition of bridge-functionals, is
analyzed. Some applications of the method of integral equations
to simple liquid systems are discussed, and the problem of
description of complex polyatomic classical systems is consid-
ered.

1. Introduction

After the publication of the excellent review of Barker and
Henderson in 1976 [1], the impression could appear that the
problems of the theory of at least simple liquids were solved.
Indeed, by this time several approximate integral equations
had been obtained for the binary distribution function, which
have been used for qualitative and quantitative studies of
many properties of simple liquids. The Percus— Yevick (PY)
equation [2—4], which in many cases produces a good
agreement with numerical experiment, was considered the
most accurate. For this reason, it seemed that the method of
integral equations developed at that time provided, in
conjunction with the perturbation theory [1] and numerical
experiments [1, 5—8], adequate studies of the macroscopic
parameters and structural features of classical liquids.
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The further systematic use of known approximate integral
equations — PY, hypernetted-chain (HNC) [1, 9, 10], the
middle-spherical approximation (MSA) [I, 11], and some
other less known approximations showed, however, that
their accuracy and predictability are inadequate for quanti-
tative, and in some cases even qualitative description of
liquids.

Of more importance is another circumstance: none of
these equations were conclusively theoretically substantiated,
although they are based on the exact but unrealizable systems
of equations of Bogolyubov—Born—Green—Kirkwood -
Ivone (BBGKI) [6]. For this reason, even after the publica-
tion of review [1] the search for more substantiated and exact
approximations and procedures for finding the distribution
function was continued [12—22]. Note that this theoretical
problem is not completely solved even now and it represents
one of the central problems of the theory of liquids. Never-
theless, recent achievements in this field form a good basis for
real physicochemical studies of at least simple liquids.

In addition, after publication of review [1], all the most
important and interesting parameters of simple systems
seemed to have been described and understood. This
impression was enhanced by a great number of calculations
performed by the methods of molecular dynamics and Monte
Carlo. However, the accumulation of the results of numerical
experiments, which persists to the present, and attempts to
construct various theoretical models of the behavior of
classical liquids in specific situations, for example, upon
phase transitions, critical phenomena, etc. show that we still
are far from understanding many features in the behavior of
simple liquids. Even such a simple and well-studied model
liquid as a hard sphere system, remains enigmatic in many
respects. For example, the process of crystallization of this
system is not clear. Inert gases are known to crystallize in a
cubic close-packed structure, whereas, according to calcula-
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tions of the Lennard—Jones (LJ) liquid, they should crystallize
in a hexagonal structure. It is assumed that this can be
explained by the neglect of many-body interactions. But
how can the crystallization of a hard sphere system be
described, if it can occur, and what is the type of structure
formed? How can this problem naturally be taken into
account in the theory?

The possibility of the existence of metastable states in a
hard sphere system remains unclear. Such problems as the
behavior of liquid systems near a surface and within restricted
volumes, the structure of long-range correlations, the
structure of liquids in the transition region, etc., are open for
studies.

Absolutely new problems appear in the description of
properties of systems with nonspherical interaction potentials
between molecules, such as, for example, systems with dipole—
dipole interactions or systems of polyatomic molecules,
including solutions. Here, in addition to conventional
problems, new problems appear related to the description of
interactions and the construction and solution of the
corresponding systems of equations.

2. Approximate equations of the theory
of liquids

2.1 Exact equations of the statistical mechanics of liquids

In the statistical mechanics of liquids, the system of linked
integro-differential BBGKI equations [6] for a /-body dis-
tribution functions

OVig(ri,...r) +g(ry,....r)ViU(ry, ... 1))

+HJV1<1')1,/+1g(rh'«',r/7l‘1+1)dl‘1+1 =0 (1)

tion function (/ = 1, 2, 3...00); n :N/V is the density of
particles in the system; ® = kT is the temperature;

Ulr,om) =Ugy = Y &t > @ (2)
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is the potential energy of the group of / particles; @;(r;) is the
energy of a particle located at the point r; in an external field;
and ®;(r;, 1)) is the pair interaction energy of particles i and j.
In the additive approximation (2), thermodynamic para-
meters of the system are completely determined under any
conditions only by the unary g(;y and binary g, distribution
functions. Their determination represents one of the central
problems of the statistical mechanics of liquids. One can
easily see that system (1) cannot be solved directly. One of the
first suggested approximations is based on the superposition
hypothesis of Kirkwood

8123 = g12823813 (3)

resulting in the integral Bogolyubov — Born —Green equation
for the binary distribution function. However, this equation
proved to be inadequate for the description of liquid systems
at middle and high densities [1, 6].

As was shown by Martynov [23, 24], a chain of the
BBGKI equations under conditions (2) can be transformed
to an exact system of two integral equations for the unary and
binary distribution functions

o =or) = nng(rz)C(llz)(rl,rg)drg +1Ina, 4)

hip(ri, 1) = C(lzz)(rurz)

(5)
+n [g;(r3)C(123>(r1,r3)h23(r2,r3)dr3 s

where g; = exp(—®;/0 + ;), w; is the unary thermal poten-
tial, g; = g:gj(1 + hy) is the binary distribution function,
hij = exp(—®;;/0 + w;) — 1 is the total correlation function,
wj; is the binary thermal potential, and « is the activity. The
direct correlation functions

1
') = (hyy — on2) 32 [wlz +B§12>}, (6)

¥ =hy—wn+BY (7)

contain the bridge-functionals

which represent an infinite series of irreducible diagrams, in
which each line denotes the multiplication of the integrand by
h(r;), and each dark point indicates multiplication by ng; and
simultaneous integration over dr;. The open points determine
the dependence of the diagrams on the moving coordinates r,
and r,. Note that formally no other equations are required for
the determination of the major distribution functions,
because these function are completely expressed in terms of
the unary and binary distribution functions and thermal
potentials [24]. Although a new form of the exact equations
for the distribution function contains an infinite series of
diagrams, it is more convenient for the construction of
various approximations. Note also that the possibility of
obtaining the fundamental exact system of Eqns (4) and (5)
was first pointed out by Morita and Hiroike as early as 1960
[25]. The same system was obtained in a less compact form by
Arinshtein and Abrosimov [26].

2.2 General problem of the choice of bridge-functionals
and thermodynamic consistency of approximate
approaches

In the case of spatially homogeneous systems, w; = 0, and
g; = 1, and all the functions entering Eqns (4) and (5) become
dependent on the argument r; = |r; — r;|. Equation (5) takes
the form of the usual Ornstein —Zernike (OZ) equation

)’(1‘12) = /’l(l‘12) - C(ru) = I?JC(2) (r13)h(r23)dr3 . (10)

The required radial correlation function g(rj;) has the
form
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In this case, Eqn (4) reduces to the definition of In @ that is
the excess chemical potential

Ina=pu* = —41'anC(l>(r)r2dr7 (12)

where = 1/kT. Equation (10) is not closed, because it
contains two unknown functions 4(r) and C®)(r). Taking
into account Eqns (7) and (11), one can see that Eqn (10)
becomes closed if the bridge-functional B®[A(r)] is defined.
Because it is impossible to sum up an infinite series, the search
for an adequate and physically substantiated approximation
of the bridge-functional B still remains one of the
important problems in the construction of approximate
theories of liquid.

After the determination of the distribution function, the
thermodynamic parameters of the system can be calculated
using the known expressions [1, 24]. The total internal energy
is described by the expression

00
5=t

3 &(r)g(r; n,@)4m*2dr ,

(13)

0

the compressibility factor (the equation of state), in accor-
dance with the virial theorem, has the form

vir __ P _ n > ,dé(r) 2
_M_l mj@ "4 g(r)dnradr, (14)

and the reduced isothermal compressibility is

on K o )

1= kT<ﬁ>T: i 1 + 4mn L h(r)r=dr

0 -1
= [l - 4Tth C(r)rzdr} , (15)

0

where k = n~!(9n/dP) is the isothermal compressibility and
ki = 1/nkT is the isothermal compressibility for an ideal
liquid.

From Eqn (15), the compressibility factor can also be
obtained:

Zcomp _ ljn an.
nJo

(16)

The compressibility factor can be determined in another
way. Because [27]

o F
E=-T*—== 17
(¢77), ()
where F'is the Helmholtz free energy, we have
F—F, Jl/ r (1 >
— = Ed(=). 18
T o EUT (18)

Here, Fj is the free energy of the state chosen as the origin.
Now, by integrating numerically Eqn (18) and differentiating
with respect to the density, we can obtain the compressibility
factor ZF and other thermodynamic quantities. Such a
procedure was used, for example, in papers [28, 29] for the
determination of virial coefficients and the equation of state
using the PY equation. In turn, Fj can be found by integrating

along isotherms of the compressibility factor:
n

o J 2 (19)

NkT )y n

Thus, the total set of thermodynamic parameters can be
obtained using any of the three expressions (13)—(15) directly
relating the distribution functions with thermodynamics. In
the case of exact values of the distribution function, all the
three methods are equivalent, i.e., the numerical values of the
thermodynamic parameters should be the same to the
accuracy of the rounding error. When the correlation
functions are obtained from approximate equations, the
situation is fundamentally different. The use of approximate
functions g(r) in expressions (13)—(15) results in a mismatch
between the thermodynamic parameters. Thus, now we have

Zvir ?é 7 comp 7& ZE. (20)

The degree of closeness of the thermodynamic parameters
(the thermodynamic consistency) is, as a rule, a criterion for
the theory’s quality. Another criterion for the theory’s quality
is the degree of agreement with the results of numerical
experiments. Note, however, that the fulfillment of separate
simple pair conditions

Zvir: Zcomp; Zvir _ ZE; Zcomp _ ZE (21)
still does not mean that the approximate theory has an
adequate accuracy leading to agreement with the results of
computer simulations Z<s. The question of the required
number of independent relations yielding the criterion for
thermodynamic consistency was discussed in papers [30, 31].
It was shown that only two relations can be independent. The
definition of the isothermal compressibility establishes the
thermodynamic consistency between the virial pressure and
compressibility

1 anir
(n,T) = ( ) .
¢ comp al’l p

The second criterion is the Maxwell relation between the
internal energy and pressure

aj —T2i f
ov), =~ ar\T),’

The final criterion is [30, 31]
e r 0d(r) ) 0gM 1 2.
I(n,0) —J {C(r) 0 ar {2g(1)+n » r-dr=0,

0

(22)

(23)

(24)
10.0) = [ {000 et 0|
%aq;(‘r) {g(r) - @ag’—(@")} }r2dr =0. (25)

The derivatives g, = 0g/0n and gg = 0g/0O of the
correlation functions can be found from the corresponding
equations obtained by differentiating the OZ equation. The
properties of these derivatives also will be determined by the
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conditions of the closure of the OZ equation. Note that two
fundamental criteria for the thermodynamic consistency can
be also constructed using two other thermodynamic identities
including E, P, k. The functions g, and g7 can be used for the
calculation of thermodynamic parameters of a substance,
which are not directly related to the radial correlation
function g(r). For example, we have for the heat capacity

OFE OF 3 o 2
Cy = (a_T)V_ (6_T>n = sz + 2N L O(r)gr(r)rdr

(26)
or, since
og\ g |® ow
(7),= 57+ %] 7
then [32]
Cy 3 < P(r) &(r) 0w ,
N 2721th0 ) g(r)[@ +@6@ redr. (28)

Such a method for determining the heat capacity is much
more efficient and accurate than the numerical derivative
OE/0T.

2.3 Local approximations of the method of integral
equations

According to Eqns (8) and (9), the values of bridge-
functionals at point r, separated from point r; by the
distance ri, are not only determined by the density at point
; but depend on the density distribution in its vicinity. For
example, the first diagram in Eqn (9) can be written in the
form

B§2>(1’12) = I12J h13h14h23h24h34dr3dr4 . (29)

v

It is obvious that the integration over the coordinates of
the third and fourth particles is equivalent to accounting for a
change in the density in the vicinity of points 1 and 2, i.e., it is
equivalent to accounting for nonlocal effects. The passage to
approximate equations is based on the replacement of the
nonlocal bridge-functional B(r) = B[h(r)] by the local bridge-
function B(r) = B(h(r)) [13] or local bridge-functions B(y(r))
and B(w(r)). A rigorous theoretical substantiation of the
possibility of the equivalent replacement of the bridge-
functional by bridge-functions is absent. Nevertheless, at
present there is no other way to exploit the fundamental
system of equations. In the HNC equation, which is most
often used compared to other approximations, the bridge-
functional is altogether zero: B(r) = 0[9, 10]. In this case,

@
g=e><p<—5+y), )=o. (30)

The correlation function g can be expanded into an
infinite series of diagrams [33], in which a series representing
the bridge-functional B[A(r)] is a part of the total series.
Diagrams corresponding to the bridge-functional are
strongly coupled and, therefore, short-ranged [34]. For this
reason, neglecting the bridge-functional results in the dom-
ination of the long-range terms in g. This explains a good
results obtained for the long-range interaction potentials in
the HNC approximation.

Another local equation, the PY equation

B=—[exp(w) —1—ow]=In(1+7y) -y, y=explw)—1,
o (1)
g= eXP<—k—T)(V+ 1)

(32)
is also widely used. This equation describes the properties of
systems with the short-range interaction potential in good
agreement with numerical experiments. On the whole,
however, the thermodynamic consistency of both the HNC
and PY equations proves to be poor. Note that the PY
equation can be obtained by a partial summation of the
diagrams of a certain class in the expansion of the function
g(r), however, it is impossible to estimate the value of the
diagrams neglected [35].

It is known from the diagrammatic expansion of the direct
correlation function C(r) that C(r — o0) — —@/6 at large
distances. This fact was used as an approximation at short
distances as well. Asaresult, the MSA was formulated as[1, 11]

[}
C(}):_E’ r>a; h(r)=-1, r<a, (33)
where o is the hard core diameter. This means that
¢ .
B = () + ofr) - 22 (34)

The MSA equation is used in calculations of the proper-
ties of systems of particles with hard core. To expand the
region of application to the case of particles with soft core,
the potential is decomposed into the purely repulsive and
purely attractive parts

&(r) = &1 (r) + O2(r) .

In one such decomposition suggested in Ref. [36], the
attractive part @, is treated as a correction in the construction
of the corresponding approximations of the perturbation
theory

(35)

D(r)— @ 'min), T < Fmin ,
o) = {0( ) () ¥ > Fmin (36)
_ (D(rmin) , < Fmin,
22(r) = {45(1‘) ;T2 Fmin, (37)

where rpin 1S the coordinate of the potential minimum. By
introducing the new function I'(r) = y(r) — @2 (r), the MSA
for soft spheres (SMSA) can be represented in the form [37]

B(r) =In[l +I'(r)]-I(r). (38)

Such a representation resembles the PY approximation,
with

g(r) =exp(=pP1)(1+1). (39)
For r > rmin, we obtain the usual MSA equation (33).

By analyzing the first diagram in expansion (9), we can
assume that the major contribution related to the distance r34
is provided by the values h(r4) = —1. Based on this
assumption, we obtain

Pt

(40)
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At the same time, the expansion of the function w(r) starts
from the term [23]

w12 :nJh13/123d(3)+... (41)

These considerations and also studies of the properties of
bridge-functionals in the vicinity of the critical point allowed
the MS closure to be formulated in the form [14, 15]

|
Blr) = 50" = (142" -

“/_17 (42)

[
g(r) = exp —5—&—(14—2)))1/2—1 (43)

As will be shown below, this closure not only provides
high thermodynamic consistency in many cases but also
possesses an internal criterion describing the boundaries of
the existence of the liquid phase.

By introducing the new variable

Q(r) = w(r) = nfds(r)
in Refs [38, 39], similarly to Eqn (38), a closure in the form

(44)

1
B= 3@ = [1+2(y—np)] Vnpdy —y -1, (45)

P
g =exp —5—1— [1 +2(y - nﬁ@z)]l/2+nﬁ@2 — 1] (46)

was suggested.

The necessity of the introduction of the potential term to
the bridge-function in order to define the latter more
adequately is governed by two circumstances. The representa-
tion of the bridge-function in the form B = B(h(r)) leads to
uncertainty in the region where /(r) = —1, i.e., inside the
particle core, and requires additional conditions. At the same
time, according to Eqn (11), the quantities ®/6 and o (or y)
enter into g(r) formally on equal grounds (in fact w is the
solution of the OZ equation for given @, n, and T, and thus
implicitly depends on @). The numerical experiments [40, 41]
on the determination of bridge-functionals also showed that it
is impossible to construct bridge-functions adequate to the
bridge-functionals using only functions w or y. This idea was
realized using a phenomenological bridge-function in the
form [42, 43]

1 5r+11 -
_ 2=
B(I') = r2{1+<7r+9>r}

by decomposing the potential into the repulsive and attractive
parts in a different way. Despite a seemingly complex and not
quite clear form of approximation, it rather accurately
describes the LJ system, including the evaporation—condensa-
tion lines.

(47)

2.4 Self-consistent approximations

The local approximations described above are not versatile.
Their thermodynamic consistency varies depending on the
thermodynamic state of the system under study. For this
reason, in a number of closures parameters were introduced
into the bridge-function whose variations could provide the
best thermodynamic consistency. These approximations
represent in fact fittings and their theoretical value is low.
However, they can yield reliable numerical results required

for physicochemical calculations. The idea of self-consistency
is well illustrated by the example of the Rogers-Young (RY)
closure [44]

exp[fr)y()] -1

B(r) = ln{l + 10 } y(r). (48)
Here, f(r) = 1 — exp(—ar) is the function including the self-
consistent parameter a. For r = 0, we have f{r = 0) = 0 and,
as one can see from Eqn (48), the PY closure is realized. For
large distances, f(r = co) = 1, and closure (48) simulates the
HNC closure. Thus, closure (48) realizes the advantages of
the PY closure at small distances and of the HNC closure at
large distances. In this case, the parameter « is chosen based
on the thermodynamic consistency between the virial equa-
tion (14) and the compressibility equation (16). Closure (48)
proved to be rather successful for the description of systems
with a purely repulsive soft potential of the type 1/r”. In
other cases, it is less adequate.

Another interpolation closure (Zerah—Hansen) relates the
HNC approximation at large distances r to the SMSA
equation at small distances [45]. In this case, the interpola-
tion concept is used in combination with the decomposition
of the potential according to Eqn (35)

asgr)] {1 L SPLANT()]-] } |

fr)
where the function f{r) has the same meaning as in the closure
(48).
One more popular closure (Verlet) has the form [46]

) =exp| - (49)

1y2

B=-
214+ ay

, (50)

where « is also an empirical parameter. Note that expression
(50) forms the basis of approximation (47).

Another approach in the self-consistent procedures is
based on the concept of the versatility and similarity of the
bridge-functionals for all the potentials. Then, the bridge-
function determined for some of the potentials can be also
used, in a renormalized (consistent) form, for the description
of systems with other interaction potentials. As a reference
system, a hard sphere system is chosen, for which reliable
estimates of the bridge-functions exist obtained both in
numerical experiments and from integral equations. This
approach is formulated in the form of the modified hyper-
netted-chain equation (MHNC) [12]

B(r) = Bps(r), (51)

g(r) =exp <f g +y+ BhAs) , (52)
where By, is the bridge-function of a hard sphere system. An
analytic expression for By, was presented in a paper by
Malijevsky and Labik [47] for all densities up to the density of
close-packed hard spheres. In the earlier MHNC versions
[12], the effective parameter ¢ was determined either from
criteria of the thermodynamic consistency or using the
procedure based on the principle of the minimum Helmholtz
free energy [48]. In later papers [41, 49], ¢ was determined by
the method based on the equality of the second derivative of
the free energy for the system under study and the reference
system.
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Closure (42) was modified [22] to the form

B(r) = [1+ay(r)]"“=p(r) - 1. (53)

Fora = 1, this closure reduces to the HNC case; fora = 2,
Eqn (42) is obtained.

Recently, a new self-consistent procedure [30] was
suggested, in which

B=—a(w— pdy)*,

1 - [1 +2(V_ﬂ¢2)]1/2}7 (54)

g= CXP{ —pP1 — 5
a
where a was determined from the general principle (24), (25),
taking into account the consistency of the correlation
functions g(r) with their derivatives g,(r) and gr(r).

We considered above not all the available approximations
and approaches used in the theory of liquids. Nevertheless, we
can conclude that at present the theoretical basis of the
approximate equations of the theory of liquids is developed
insufficiently. Many of them are semi-phenomenological and
often are even heuristic. At the same time, all the set of
approaches and approximations provides a rather exact
description of at least simple liquid systems and yields
adequate structural and thermodynamic properties. On
passing to more complex systems, many of these approaches
are difficult to use. First of all this concerns the self-consistent
procedures, which require the variation of a great number of
fitting parameters. Restrictions also appear in the use of local
approximations.

3. Thermodynamic and structural parameters of
simple liquids

3.1 A hard sphere fluid

A hard sphere fluid has been studied very carefully. It
represents a good object for comparison of different
theories. The potential of hard spheres can be written in the
form

o= {5

According to Carnahan and Starling (CS) [50], the
relations

r<o,

r>ao. (55)

R l+n+n*—n

7S = — 56
nkT (1 =)’ >
8n — 9 + 3’

i =———, (57)

(1—n)’

1 P —2?

- 1= a__lzL ”4, (58)

X on (1—n)

hold, which are considered the most exact. Here,

n = mno’ /6 = np/6 is the packing coefficient and p = na3 is

the reduced density. The virial equation of state takes the
form

vir__ n (% ,d@(r)
Z"M=1 6J0 7 ar

g(r)dnrtdr =1+ %nng(a) . (59)

Therefore, the equation of state is determined by the value
of the correlation function at a single point » = ¢. In this case,
the danger appears that in the approximate theory the
situation is realized when the values of the correlation
function prove to be close to the real values only in the
vicinity r = ¢, being distorted in other regions of r. This may
result in an erroneous estimate of the accuracy of the theory.
At the same time, Z™P is substantially determined by
average and long distances. For this reason, the criterion for
thermodynamic consistency means in fact the matching of
different parts of the correlation functions.

Figure 1 shows the typical bridge-function for a system of
rigid spheres calculated in the MS approximation (42), and
Fig. 2 presents the typical correlation function. One can see
minor differences from the results of numerical experiments.
The MS equation is considered the thermodynamically most
consistent equation for a hard sphere fluid in the class of local
approximations, which is evident from the data presented in
Tables 1 and 2.

-1.0

Figure 1. Bridge-function B(R) for a hard sphere fluid (p = 0.8): (—)
numerical experiment; (- - -) B = (—1/2)w? (w(R) is taken from Ref. [51];
here and in other figures, R = r/0).

1\,
1 2V3 4 R
0.8

0.6

Figure 2. Radial correlation functions g(R) for a hard sphere fluid

(p = 0.884): —— Eqn (42); (x) molecular dynamics data [52].

3.2 The well potential
The well potential is more realistic than that of hard spheres.

It contains a short-range attractive part along with the
repulsive part:

(60)
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Table 1. Compressibility factor for a hard sphere fluid.

Table 3. Virial compressibility factor Z"'* for the well potential.

p Closure ZVir zcomp A pe  Closure p=04 p=05p=06 p=07 p=0.8 p=0.9
0.1 HNC 1.241 1.239 0.0 HNC][53] 2.642 3533 4818 6.710 9.569 14.020
PY 1.239 1.240 } 1.240 PY [54] 2481 3.173  4.091 5.323 7.001 9.330
MS 1.240 1.240 MS [55] 2.527 3277 4303 5723 7.722 10.590
Numerical 3220 4220 5.630 7.650 —
0.2 HNC 1.565 1.545 experiment
PY 1.550 1.555 } 1.553 [53]
MS 1.550 1.553
0.1 HNC 2.343 3,153 4373  6.222  9.063 13.531
0.3 HNC 2.010 1.934 PY 2213 2850 3.740 4986 6.731 9.191
PY 1.954 1.973 } 1.967 MS 2205 2.839 3736 5.018 6.869 9.574
MS 1.954 1.964
0.3 HNC 1.749 2397 3486 5252 8.069 12.566
0.4 HNC 2.63 2.43 PY 1.684 2217 3.050 4.304 6.124 8.703
PY 2.48 2.54 } 2.518 MS 1.602 2.033 2706 3.744 5.326 7.719
MS 2.51 2.52
0.5 HNC 1.168  1.655 2.608 4.292 7.088 11.617
0.5 HNC 3.52 3.07 PY 1.171  1.608 2391 3.653 5.533 8.196
PY 3.17 3.31 } 3.262 MS 1052 1.323  1.815 2.647 3992 —
MS 3.24 3.28 Numerical 1.350 1970 3.200 5.080 —
experiment
0.6 HNC 4.79 389
PY 4.09 4.38 } 483 0.7 HNC 0.619 0944 1.749 3346 6.122 10.684
MS 4.24 4.31 PY 0.680 1.027 1.756 3.019 4.939 7.654
MS 0.548 0.702 1.085 1.721 —
0.7 HNC 6.67 4.96
PY 5.32 5.90 } 5710
MS 5.61 5.70
3.3 The Lennard —Jones potential
0.8 HNC 9.52 6.39
PY 7.00 8.12 } 7.750 The Lennard —Jones potential
MS 7.60 7.74 2 6
o(r) :48{(f> —<f> ] (63)
0.9 HNC 13.92 8.33 r r
PY 9.33 11.50 10.746 . . . .
MS 10.42 10.61 is quite close to a real potential. It was used in many papers for

Table 2. Reciprocal compressibility % <@> for a hard sphere fluid.
T

on
p CS [50] MS (42) HNC PY
0.1 1.513 1.513 1.509 1.513
0.2 2.270 2.266 2.223 2.28
0.3 3.392 3.381 3.250 3.42
0.4 5.065 5.11 4.67 5.15
0.5 7.591 7.73 6.66 7.82
0.6 11.467 11.50 9.47 12.00
0.7 17.539 17.53 13.58 18.70
0.8 27.307 26.89 19.61 29.60
0.9 43.546 41.65 28.67 48.30

Here, o is the diameter of the hard core, A is a coefficient
determining the range of attractive forces, and ¢ is the well
depth. Then,

ACEE +§T[p [xy(o') —(x— 1)/13)/(/10')] ) (61)
% — _2np J;G g(r)Adr, (62)

where E* is the excess (nonideal) part of the internal energy,
x =exp(¢/kT), and y =exp[w(r)]. Table 3 shows for
comparison the results of calculations of the virial compres-
sibility factor in the supercritical region. Note that, according
to the numerical experiment, T} = kT, /¢ = 1.26. The PY
theory predicts 7%, = 1.20, while according to Eqn (42),
T =122

studying the properties of systems consisting of rare gas
atoms and sometimes of more complex molecules, thus
being in fact a central object of application of all theories of
simple liquids. Figures 3—7 present some excess thermody-
namic functions of the LJ liquid obtained in the MS
approximation (42). The isolines of thermodynamic func-
tions on the 7, p plane include the lines of the ideal states, i.e.,
the lines where excess functions vanish: Z = 1; y = 1; and
Gibbs free energy G* = 0. The ideal curves describe the
thermodynamic states in which the repulsive forces are
compensated by the attractive forces. One can see from the
figures that all the ideal curves are more or less close to
straight lines. To study this question, we consider the van der
Waals equation

nkT 5

P= an”,

1—bn
where b is a parameter taking into account the impermeability
of particles, and « is a parameter responsible for attraction.
Equation (64) written in terms of the dimensionless quantities
1=T/Tg and v =n/ng, where kT = a/b; Ty is Boyle’s
temperature; ng = 1/b is the Boyle’s density of particles, has
the form

(64)

B :v(r+v—1)
z-1 (1 —v)

One can easily see from Eqn (65) that the compressibility
factor Z = 1 is realized on the straight line 7 =1 — v. The
linear dependence of the ideal compressibility factor was
found by Holleran [56] in many systems that can be described
by the Lennard — Jones potential. Note that the van der Waals

(65)
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Figure 3. Heat capacity C* = Cy/Nk—3/2 of the LJ system.

T/Ty
1.0
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1 1 1 1 N
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p/ps

Figure 4. Isolines 7 = T(p),_.... of the compressibility factor Z = P/nkT
for argon (—) and the LJ model (---). The Boyle’s temperature and
density are 7g = 3.418 and py = 1.1, respectively.

equation is insufficient for the description of many properties
of liquids, but it confirms the experiment. Note also that
neither of the effective and self-consistent approximations
predicts a strict linear dependence of the ideal compressibility
factor. Even accounting for many-body forces and quantum
effects does not improve the situation. As for the linear
behavior of other ideal lines, there are no theoretical
considerations at all.

Table 4 summarizes the results of calculations of thermo-
dynamic functions performed based on several most often
used approximations and presents for comparison the results
of numerical experiments. One can see that some theories
predict close results, which are also close to the numerical
data. Table 5 presents the results obtained using the local
equation (45) [38, 39].

T/Ts
9
10 |
0.5
| | | |
0 025 0.50 0.75 100 p/pg

Figure 5. Isolines of the inverse compressibility y ' =1 — pC(0) (' =0
corresponds to the critical point).

G*/NKT =0

p

Figure 6. Isolines of the excess Gibbs free energy G*/NkT = const.

3.4 Long-range correlations in liquids

For along time, the main problem of the theory of liquids was
the search for distribution functions and the study of short-
range order features. It was assumed that the only region
where the long-range order is responsible for the properties of
liquid systems is the vicinity of the critical point. However,
many other properties and phenomena in liquid systems are
determined namely by the asymptotic properties of correla-
tion functions. These are, for example, the properties of the
systems at phase interfaces and within restricted volumes,
solvation effects in colloidal systems, wetting, and many other
phenomena. A remarkable feature of the asymptotes is their
versatility. For example, in a binary solution consisting of
molecules of the type 4 and B, the short-range order is
characterized by three types of correlation functions A4,
BB, and AB = BA. At the same time, the asymptotes of all the
three correlation functions are the same. This surprising fact
has a rigorous theoretical substantiation [24, 58].
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Figure 7. Isolines of the excess enthalpy H*/NkT = const.

Table 4. Thermodynamic parameters of the LJ liquid for different closures
[30] (T* = 1.35;p = 0.85).

Closure AL 1/ 1/ycmp  —E*/Ne
HNC (30) 4.869 30.29 10.29 5.311
PY (31) 3.620 21.24 13.09 5.589
SMSA (38) 2.328 18.21 25.39 5.751
Zerah—Hansen (49) 2.823 20.78 20.58 5.676
Vompe —Martynov (53) 2.873 21.20 21.32 5.661
MS (42) 2.35 — — —
Monte Carlo [57] 2.864 — — 5.67

Table 5. Thermodynamic parameters of the LJ liquid [39] obtained by the
Monte Carlo method [57] and using Eqn (45).

p E*/NS Zvir ﬁ/—‘*

[57] (45) [57] (45) [57] (45)

At temperature 7% = 3.0

0.6 -3.37 —3.37 1.94 2.00 1.21 1.24
0.7 —3.81 —3.80 2.63 2.67 2.09 2.11
0.8 —4.10 —4.11 3.66 3.65 3.41 3.40
0.9 —4.17 —4.25 5.14 5.02 5.28 5.26
1.0 —3.95 —4.12 7.18 6.90 7.85 7.87
1.1 —3.33 —3.66 9.91 9.39 11.30 11.50
At temperature 7% = 2.0
0.6 -3.73 -3.74 1.40 1.49 0.07 0.11
0.7 —4.29 —4.29 2.11 2.19 0.89 0.92
0.8 —4.74 —4.75 3.27 3.30 2.27 2.28
0.9 —5.02 —5.06 5.04 497 4.41 4.43
1.0 —5.03 -5.14 7.62 7.33 7.53 7.66
1.1 —4.68 —4.91 11.18 10.57 11.89 12.36
At temperature 7% = 1.0
0.6 —4.24 —4.21 —0.55 —0.33 -3.90 —3.83
0.7 —4.91 —4.87 0.00 0.24 —3.54 -3.49
0.8 —5.54 —5.50 1.25 1.53 —2.36 —2.24
0.9 —6.06 —6.03 3.57 3.79 0.12 0.37

As early as the beginning of the century, Ornstein and
Zernike qualitatively explained the critical opalescence by
means of the asymptotic form of the total correlation function

h(r) — A expr(—acr)

, I'— 00.

(66)

They assumed that the Fourier transform of the direct
correlation function C(k) can be expanded in a Taylor series
at k = 0. Then, retaining only the first terms of the expansion

C(k) = CV(0) + K*CP(0) + ... (67)
and using the OZ equation in k-space
1
we obtain Eqn (66).

Upon approaching the critical point, o« — 0 and the
correlation radius R, = 1/a — oo, which explains the
enhancement of forward scattering upon approaching the
critical point.

One can see from analysis of the pair correlation function
h(r) that forn — 0 and r — oo w(r) — 0. Then,

h(r) — —B&(r), r— oo. (69)

At the same time, it was shown that for a hard sphere fluid
(always) [59] and the well potential or another cut-off
potential (for example, the cut-off Lennard-Jones potential),
the asymptotic decrease of correlation functions at high
densities is oscillatory [60]. It was also found that for the
short-range (cut-off) potentials, there exists the Fisher—
Widom (FW) line (named after the authors who first noted
the possibility of the existence of such a line) on which the
monotonic decrease in the correlation functions transforms
to an oscillatory decrease [60]. The general approach based
on the OZ equation allows one to predict the asymptotic
behavior of correlation functions. The OZ equation can be
written in the form

r+t
h(s)sds.

[r—1]

rh(r)2 = rC(r) + 2nn J:j

C(t)tdtJ (70)

By differentiating in the inner integral and taking into
account that C(r) — —p®(r), r — oo, we can obtain, after
some transformations, the asymptotic form of the OZ
equation

d(n(r) _ 2rmJOCC(t)Z[(V +Oh(r+ 1) = (r = Dh(r — )] dt
dr 0

_ ,d(#(")’) o Jw (OBl + D0 + 1)
r 0

—(r=0)®(r—1)]}dr. (71)
At low densities (n — 0), a solution is the correlation
function (69). For short-range potentials, r > R., and
&(r) =0, and the right-hand side in Eqn (71) vanishes. The
equation itself becomes linear and homogeneous. The direct
substitution of rh(r) = Bexp(ir) and A = +f + i« into the
homogeneous equation (71) yields the solution

rh(r) = By exp(iinr),

m=1

(72)
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where the infinite set a,,, f5,, is determined by a system of two
transcendental equations [59]
(73)

o= 4nn JOC C(x)sh(ox) cos(fx)xdx,
0

B = 4mn J:C C(x)ch(ox) sin(fx)x dx.

(74)

Now, it is necessary to add a particular solution of a linear
inhomogeneous equation to the general solution (72) of the
homogeneous system (71). As was shown in Ref. [61], it has
the form

h(r) = =7’ Bo(r) . (75)

This expression is an example of the so-called long-range
asymptotes [24, 60]. The total solution has the form

> B exp(idmr)
r

h(r) = — 1’ Bo(r). (76)

One can easily see that a solution of Eqns (73) and (74) can
be found only for C(r) = 0 in the region r > R., as follows
from the condition C — —f&. This corresponds, however, to
a search for the general solution (71), i.e., a search for
solutions of the homogeneous equation means in fact a
search for solutions in the region r > R.. This means in
essence that the direct correlation function can be repre-
sented in the form

_[C(r), r<Re,
C(r)*{_/gqs(r), r> Re.

(77)

Note that the direct correlation function is significant only
within a rather short interval of r. For this reason, the total set
Jm = £, + 1o, describes in fact the function /(r) at medium
distances as well. As r increases, only components with small
values of w, remain in the competition. In this case,
depending on the thermodynamic state, either a purely
imaginary solution with monotonically decreasing asymp-
totes of /i(r) can be realized or a pair of conjugated complex
solutions characterized by an oscillatory decrease. At low and
medium densities, monotonically decreasing components
dominate, which are governed by the cooperative effects of
the short-range attractive potential. As the density increases,
the packing effects controlled by a hard core result in
dominating oscillations. At a certain density npw at the
specified isotherm, the decrement o, of the monotonic
decay becomes equal to the decrement o; of the oscillatory
decay, resulting in the transition from one decay regime to
another. The change in the decay regime is described in the
n, T plane by the Fisher—Widom line. The action of the
potential part of the asymptotes suppresses both types of
exponential decay, exemplifying the long-range asymptotes
(75).

Thus, the Lennard—Jones potential and other potentials
of this type are characterized by three regions corresponding
to different types of competitive asymptotic behavior,
resulting in different asymptotes depending on the condi-
tions. Note that at a critical point, cooperative effects are
dominant. They also appear when @ =0 and r > R.. The
condition of their existence is the presence of attractive forces
at least within a finite region, for example, the presence of a

potential well. Because the potential of hard spheres does not
have such a region, the critical point and the evaporation-
condensation phase transitions are absent in this system.
Note that a crystallization type phase transition exists in a
hard sphere fluid, because this transition is determined by the
packing effects related to the hard core. It is for this reason
that the crystallization-melting phase diagram does not
contain a critical point, and the lines tend to infinity.

Table 6 presents the roots of Eqns (73) and (74) with the
lowest values of o for a hard sphere fluid [59]. All the three
approximations presented are qualitatively the same. At low
densities, a fast decay is observed (o is large) with a random
long-range order. Upon approaching the crystallization
point, the decay of correlation functions becomes slow and
the degree of long-range order increases.

Table 6. Roots of the 2 = f§ + iz asymptotes for a hard sphere fluid with
the minimum value of o.

Approximation p = 0.1 p=0.5 p =09

o p o B o p
PY 4.07 4.76 1.67 5.89 0.68 6.80
HNC 3.84 4.70 1.77 6.00 0.80 6.99
MS 3.56 4.20 1.70 5.88 0.70 6.80

3.5 Definition of the chemical potential in approximate
theories of liquids

A rigorous method of the definition of the chemical potential
for liquid systems is based on the Kirkwood formula [61]

put = pJ; di meg(r, A)dnr?dr, (78)

)

where fu* is the excess (configuration) chemical potential
corresponding to the work of transfer of a separated particle
to some position in the system. The chemical potential is
described by the expression

=’ +In(pA%). (79)
Here, A = h/(2nmkT)"? is the thermal wavelength. The
definition of the chemical potential by expression (79)
assumes, first, the repeated calculation of the radial correla-
tion function g(r,4) depending on the parameter A of the
interaction switching; and, second, the numerical integration
over the interaction parameter. The chemical potential can
also be found using the known thermodynamic relations

B "1 (0BP
ﬁ“ﬁ“‘)Lp(ap),; dr,

B
m=pi = [ o(3; ) ar

where 10 is the ideal part of the chemical potential.
Expressions (80) and (81), as well as expression (78),
assume that the properties of the sequence of states are
preliminarily determined. In addition to these problems, the
problem of the thermodynamic consistency of pressure P and
energy E exists. The fundamental system of Eqns (10) and (12)

(80)

(81)
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allows one to reduce the problem to the determination of the
parameters of a single state of the system. Indeed, according
to Eqn (12), we have

B =—p J:o{lz —o— %h(w + B [(r)}}4m’2 dr. (82)

Here, the closure problem is related to the determination of
the bridge-functionals B(). It is obvious that the bridge-
functional B(") should be unambiguously determined by the
closure of B). Below, this relation is determined explicitly.

The problem is solved simply and unambiguously in the
case of the HNC closure B() = B® =0, and we obtain the
expression for the chemical potential [62]

o 1
Bliine = pJ 4mr? dr <§ hy +7y— h) (83)
0

which is consistent with the HNC equation.

A comparative analysis of the diagrammatic expansions
of B (w) and B® (w) showed that, to a good approximation
[63],

1

B (o(r) =3B% (o). (84)

An expression equivalent to Eqn (82), but permitting the

selection of B to be precisely linked with the selection of
B@ | was found in the works [64, 65]

o 1 1
[)’,u*:pJ 4nr2dr{(—h2——hC7C’)+B<2)
o 2" T2

! 0BA(r,2)
+JO dih(z,i)T} . (85)
Comparison of Eqns (82) and (85) shows that
2 0B (r, 1)
Wy == (e ) — 2 @)y
B0 = o | s E - B0 (s6)

Unlike relation (78), we can directly integrate expression
(85) over the parameter A. To do this, it is necessary to make
some assumptions with respect to the properties of the bridge-
functionals B® and the path of integration over the
parameter A. The basic requirement imposed on the bridge-
functionals is the existence of the dependence in the form
B(r) = B(y(r)). We saw that many approximations, for
example, (31), (42), (48), (50), and (52) possess this property.
At the same time, the bridge-functional can be expressed in
the form B(r) = B(w(r)). As we will see below, the estimate of
the integral in expression (85) is affected by the choice of the
approximate form and the integration path. In a linear
homogeneous approximation,

h(r,A) = Ah(r), C(r,1) = 2C(r). (87)

However, the dependence can be different, which is
equivalent to a change in the integration path. The problem
of the choice of the integration path is substantial namely
for approximate equations. According to Refs [64, 65], in
the case of the exact closure of the OZ equation, the
problem disappears due to the independence of the integra-
tion path. However, as was already mentioned, an exact
bridge-functional cannot be simply expressed by functions

depending only on y or w [40, 41]. Consider the integral in
Eqn (85)

! B (! 0B (y(r, 1)) dy(r, 1)
L ain(r, ) P JO azh(r. ) P LT
(83)

It follows from Eqn (87) that y(r, 1) = Ay(r). Then, taking
into account Eqn (86), we obtain, after simple transforma-
tions,

! 68(2)(r A h(r) 7 dB® (y)
dih(r, ) ———"—~ = dy .
L (r,2) oy y(r) L vy Oy

If the form B = B(w(r)) is used under the condition
o(r,A) = Aw(r), we obtain the similar but not equivalent
expression

(89)

din(r, ) =02 = B0

0 o o(r) dowo

! 3BO(r, 2)
J 0 0w 0

h(r) J“ 0B (w) .

Expressions (89) and (90) predict the results, which are
closer to each other, the more exact the approximation used,
so that the difference can also serve as a measure of the
thermodynamic consistency. In the PY approximation, the
results are

:Blu]*)Y(y) = Butine

00 2
+4an r2dr{B(2)+$[y71n(1+“/)]7%}, (91)

0
ﬁ:ul*)Y(w) = ﬁ:uT-INC

* o M (pe, @ Lo
+4np| rdr<{BY+—(B“09———-B . (92)
0 (00] 2

In the MS approximation, we have

Bims(y) = Bitne +

[>° 3 3—|—cu4/8
4 2q g 3o /8 93
+ anO r r{ Py ;o (93)

00 2
sy = B +4m0 [ ParB® -n % o9
0

Because for the MS closure, B?) = (—1/2)»?, we imme-
diately obtain that B(") = (1/3)B®, in accordance with the
analysis performed in Ref[63]. Note that this correspondence
is rigorously valid only for approximation (94), whereas in
other cases the coefficient at B(>) changes between 1/2 and 1/3
[66].

Tables 7 and 8 present the results of calculations of the
chemical potential for a hard sphere fluid and the LJ liquid
[67]. The values of ﬁui{ds(w for hard spheres virtually coincide
with the reference values [)50], although they are less accurate
for the LJ fluid, which confirms the inadequacy of representa-
tion of bridge-functionals in the form neglecting the interac-
tion potential. One can see from Tables 4 and 5 that
accounting for @, allows one to adequately predict the values
of the chemical potential, which is very important in studies of
phase transitions.
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Table 7. Chemical potential fu* for a hard sphere fluid.

p [50] HNC PY(y) PY(w) MS(y) MS(w)
0.1 0.46 0.47 0.46 0.46 0.46 0.46
0.2 1.03 1.05 1.02 1.02 1.03 1.03
0.3 1.74 1.81 1.71 1.72 1.72 1.73
0.4 2.65 2.81 2.53 2.61 2.57 2.62
0.5 3.81 4.15 3.52 3.75 3.63 3.75
0.6 5.33 6.00 4.71 5.31 4.96 5.26
0.7 7.36 8.59 6.13 7.54 6.65 7.30
0.8 10.15 12.31 7.84 10.93 8.83 10.13
0.9 14.10 17.84 9.88 16.42 11.67 14.22
Table 8. Chemical potential fu* for the LJ system (7" = 3.0).

p Monte Carlo HNC PY(y) PY(w) MS(y) MS(w)

[57]

0.6 1.21 1.69 1.02 1.22 1.12 1.24
0.7 2.09 2.87 1.61 2.08 1.83 2.07
0.8 3.41 4.57 2.38 3.39 2.79 3.29
09 528 6.94 3.37 5.38 4.08 4.99
1.0 7.85 10.15 4.60 8.41 5.78 7.36
1.1 11.30 14.40 6.09 13.09 8.04 10.52

4. Phase diagram of the Lennard —Jones (LJ)
system

In thermodynamics, the curves of the first-order phase
transitions are usually determined by comparing the pressure
P and chemical potentials u of the two coexisting phases. But
is such a comparison possible in reality? Indeed, for the
density n <ny (where ny is the density on the phase
equilibrium line), there are no nuclei of phase B inside phase
A (density fluctuations in a stable one-phase region are not
nuclei of a new phase, as can be the case in the metastable
region) and, hence, molecules of phase 4 cannot be compared
with molecules of phase B. Along with the procedure of
comparison, the phase equilibrium can be described using a
realistic mechanism of the loss of stability, which appears
upon approaching the phase transition points, irrespective of
whether or not the system is in contact with another system.
This brings up the question: What are the features of the
beginning of the loss of stability? But, of course, the phase
equilibrium curves determined from the condition of the
phase coexistence and from conditions of the loss of stability
should coincide, otherwise the uniqueness theorem for the
Gibbs distribution would be violated.

4.1 Two-phase approach to the problem of phase
equilibrium

Figure 8 shows a typical phase diagram for the reduced
temperature 7 and density p. Here, C is the critical point, B
is the triple point, AC is the condensation curve, CB is the
evaporation curve, BN and KM are the crystallization and
melting curves. Curve ACB is called the binodal or the phase
equilibrium (transition) curve. Curve A’CB’ is the spinodal,
in each point of which the condition

%: | —nJC(r)dr3 ~0 (95)

is satisfied, i.e., the compressibility on the spinodal and at the
critical point tends to infinity. The region between curves

0.5 ] 1

Figure 8. Phase diagram of the LJ system.

ACB and A’CB’ represents a region of the metastable one-
phase states. According to the van Hove theorem [68], the
region of metastable states is inaccessible in the thermody-
namic limit N — oo, V' — oo, p = const and the limit of the
one-phase states is the binodal. The region of two-phase states
is located below the binodal. Finite systems can also have
one-phase metastable states, whose region is limited by the
spinodal. Note that the Gibbs distribution is absolutely valid
only in the thermodynamic limit, so that the fundamental
system of equations (4) and (5) or (10) and (12) is also
rigorously valid only in the thermodynamic limit. Table 9
presents the results of the thermodynamic (two-phase)
approach used for the prediction of vapor-liquid phase
equilibrium, which proved to be in fact identical for closures
(45) and (47) [39, 43]. Here, P* is the reduced pressure:
P* = Pg*/e, p* is the reduced chemical potential:
= p*T* 4+ T*In p. Note that these results also completely
agree with the numerical experiments [69, 70].

Table 9. Parameters of the vapor—liquid phase equilibrium in the LJ system
[43].

T* psl pliq ﬁx P*

0.7 0.0026 0.8379 —4.200 0.0018
0.8 0.0071 0.7940 —4.045 0.0054
0.9 0.0158 0.7467 -3.915 0.0128
1.0 0.0305 0.6945 —3.812 0.0256
1.1 0.0535 0.6333 —3.739 0.0451
1.2 0.0870 0.5508 —3.698 0.0717

4.2 One-phase approach to the problem of phase
transitions

As was mentioned above, the one-phase approach involves a
search for features indicating the loss of thermodynamic
stability of the one-phase system. Some such features are
known, for example, the empirical Lindeman rule, according
to which a crystal starts to melt when the root-mean-square
deviations of an atom from its equilibrium position exceed
15%. Similarly, the empirical Hansen—Verlet rule [71] states
that crystallization of simple liquids occurs when the
structural factor S(k) = 1 + nh(k) reaches the value 2.85 for
some k. The question is whether a consistent procedure for
determining the phase equilibrium lines can be constructed on
the basis of the fundamental equations and their approxima-
tions? According to the van Hove theorem, the rigorous
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equation (10) should have a solution over the entire region of
existence of the homogeneous stable phase, whereas the two-
phase region cannot be described by Eqn (10) only. From this,
the so-called one-phase hypothesis follows [72, 73], according
to which the lines of disappearance of the physical solution of
the OZ equation should be the phase equilibrium lines.
However, in the case of approximate equations the situation
can be different. Indeed, in general, the approximate OZ
equations can no longer correspond to the thermodynamic
limit, which means the possibility of the existence of physical
solutions in the metastable region as well. It is this circum-
stance that makes possible, however strange it may be, the
existence of the two-phase transition in the case of the
intersection of the P—p-lines of one phase with the P—pu-
lines of another phase. These lines appear due to the existence
of solutions in the metastable region as well.

The disappearance of physical solutions at the bound-
ary of phase equilibria is not typical for most approx-
imate equations and self-consistent procedures [29,
74—77]. At present, it is established that the solution of
approximate equations in the region of stable one-phase
states is unique and independent of the algorithms and
procedures of searching for solutions. Upon the transition
to the metastable region, solutions can depend on the
conditions of searching for them, resulting in the appear-
ance of many non-physical solutions. However, the region
of confusion is so great that the possibility of the phase
transition can be indicated only qualitatively. The situa-
tion is also aggravated by the fact that distribution
functions obtained, as a rule, in the numerical form
contain no features suggesting the difference between the
metastable and stable regions.

Nevertheless, some closures, namely, (42) and (45) some-
times have physical solutions, which disappear in the region
adjacent to the phase equilibrium lines [38, 39, 67, 73, 78]. For
example, the solution of the OZ equation with the closure (42)
is written in the form

w(r):—l—i-\/TZ/(r)

(the second solution corresponding to a minus sign in front of
the root does not satisfy the condition of the correlation
weakening w — 0, r — oo, and, therefore, should be dis-
carded). If we denote by rpi, the point on the r-axis at which
y takes the minimum value, then the limiting values are

1
Ymin = 755 Mmin = —1.

(%)

©7)

Calculations for a hard sphere fluid [73] showed that, in
accordance with the structural criterion (97), the disappear-
ance of the physical solution occurs when the density
p = 1.02. According to the data of various numerical
experiments, the phase transition occurs in a hard sphere
fluid at densities 0.95—0.98. It was shown in Ref. [79] that
upon melting of a crystal of hard spheres, the value wpi, = —1
corresponds to the density 1.02.

5. Approximate equations for multicomponent
polyatomic systems

Molecular polyatomic systems represent quite complicated
objects for theoretical studies. When the interaction between
molecules can be represented in the form of an additive
scheme of atom—atom (site—site) interactions

M, My

Uocﬂ = Z @a;[i,-7

oif;

(98)

the concept of the atom-atom correlation functions can be
introduced to the theory. Here, o; is the ith atom of molecule
o, f; is the jth atom of a molecule f§, and M, and My are
numbers of atoms in each of the molecules. The Site-Site
Ornstein — Zernike (SSOZ) equations or the Reference Inter-
action Site Model (RISM) developed by Chandler and
Andersen [80] are the most useful in practice. The theoretical
drawbacks of this method are well known. First of all, they
stem from the fact that, unlike the OZ equation, which is
rigorous for systems of monoatomic molecules, its SSOZ
analog for polyatomic molecules is approximate itself [81].
Other, more rigorous systems of equations [§2] based on exact
virial expansions require substantial simplifications because
of their great complexity, which makes them approximate as
well.

5.1 Formulation of equations in the atom—atom
approximation

The SSOZ equations can be conveniently written in k-space,
in which they have the algebraic form (68), with

Ck) = 4n JOC C(r) sinkrdr (99)

ko

and, similarly, for A(r).

Consider now a two-component mixture of monoatomic
molecules of type dand s. The OZ equations for such a system
are still rigorous, and we obtain in k-space

haa(k) = Caa(k) + naCaa(k)haa(k) + nsCas(k)hsa(k) , (100)
hds(k) = Cds(k) + ndCdd(k)hd,\'(k) + n‘\'Cd,\'(k)h,\l\'(k) 3 (101)

hys(k) = Cys(k) + ngCoq(k)has(k) 4+ nsCys(k)hss (k) , (102)

where ny = Ny/V and ny = N,/ V are densities of particles of
the type d and s, respectively. Note that hy = hy and
Cy = Cyq. Equations (100)—(102) can be written in the
matrix form

hik) = C(k) + C(kynh(k), (103)
in which
hk) = (Zd,d Zd) "= (’61 3) (104)

In the m-component atomic system, Eqns (103) will
contain matrices C(k), h(k) and n of order m x m. Formally,
a molecular system can be treated as atomic one, in which
atoms of different types are separated by fixed distances. Such
an approach is implemented by introducing matrices of the
intramolecular correlation functions [83, 84]

viPk) =9

y

(105)

where R;;is the intramolecular distance between atoms i and j.
Now, a system of the SSOZ equations can be written in the
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general form

ihit = AVCAV + iV Cithi. (106)

If the distances Rj; are large, the matrix V' transforms to
the unit matrix 7, and the system of equations (106) trans-
forms to the system (103). In the case of an infinitely diluted
solution, system (106) is decomposed into three systems of

matrix equations
Y (k) = n VA (k) VT — nC(k) V] =C4(k) ,(107)

7¥(k) = VO [V 4 ()] = (k) (108)

(k) = V[C (k)V* + C(k)nh® (k)] -C*(k).  (109)

The superscripts d and s refer to a solvent and a solute,
respectively. As before, §(k) = h(k) — C(k), V¥ and V* are
structural matrices of a solvent and a solute. Now, the system
(107)—(109) can be solved successively, first for ¢ of the pure
solvent and then for the cross functions. The numerical
solution of integral equations based on a combination of
direct iterations and the Newton—Raphson method is
described in papers [81, 84].

5.2 Water

The number of papers devoted to the study of the properties
of water, hydration, and hydrophobic effects continues to
increase. This is explained, on the one hand, by the necessity
of explaining the well-known anomalous properties of water
[85] and on the other, by the role that the water structure plays
in a variety of physicochemical and biological processes.

The anomalous behavior of the thermodynamic functions
of solvation (hydration) is manifested in the apparent
discrepancy between the values of the chemical potential
and thermodynamic solvation energy. Indeed, the experi-
mental values of the thermodynamic solvation energy of
nonpolar molecules are negative, suggesting that the dissol-
ving process is energetically profitable. At the same time, the
values of the chemical dissolving potential are strictly
positive, indicating that dissolving of nonpolar molecules is
thermodynamically unprofitable. The positive chemical
potential and the negative thermodynamic energy result in
the large negative values of the solvation entropy, and thus
the dissolving of nonpolar molecules is related to the water
structure, whose basic elements represent hydrogen bonds.
For this reason, the description of water properties became
one of the central problems of the theory of complex liquids.

Most models of water used in theoretical studies are
models of rigid molecules with fixed charges Ze, i.e., they
neglect vibrations of atoms in a molecule and polarization.
These are the Simple Point Charge (SPC) [86], Transferable
Intermolecular Potential with 3 Points (TIP3P) [87], TIP4P
[88], MCY (after the authors’ names) [89], SPC/E [90] models,
and some others. The interaction of molecules is described by
the n-center atom-atom potential in the form

ZyZg, e A“,/j/ Ca,./;/.

r 12 76

By = 7 (110)

where 4,5 and C,,5, are coefficients of the non-valence atom-—
atom interactions. These models are based in fact on involved
quantum-chemical calculations, which are approximated by

simple expressions of the type (110). However, it is such
approximations that allow one to use, on the one hand, the
available theoretical models and, on the other hand, to obtain
information on the thermodynamics and structure of com-
plex systems in general. The scientific literature devoted to the
numerous studies in this field may be a subject of special
consideration.

Table 10 presents parameters of the water molecule for
some models, and Table 11 lists the excess thermodynamic
parameters of water at temperature 25° and a density of
0.997 g cm™! calculated in the HNC approximation. Note
that other closures have not been used in studies of water
properties, because the HNC approximation predicts well the
properties of systems with long-range interactions (the first
term in Eqn (110) corresponds to the long-range Coulomb
component of the potential). One can see from Table 11 that
the scatter in the values of the chemical potential determined
using different models is the largest compared to that for
other thermodynamic parameters. This is explained by the
fact that the chemical potential is very sensitive to the
accuracy of the correlation function at small distances,
whereas the HNC approximation is less accurate namely in
this region. Here, we see once more that different thermo-
dynamic functions are controlled by different ranges of the
correlation functions. Thermodynamically consistent proce-
dures for systems of polyatomic molecules have not been
developed so far.

Table 10. Parameters of the water molecule [91] for some models.

Model Ro_u, A op-_o-H, deg Dipole moment
(Debye)
Experiment 0.957 104.52 1.85
SPC 1.000 109.47 2.27
SPC/E 1.000 109.47 2.35
MCY 0.957 104.50 2.19
TIP3P 0.957 104.52 2.34

Table 11. Thermodynamic parameters of water in the SSOZ-HNC
approximation [91].

Model Experiment MCY SPC SPC/E TIP3
—E, keal mol ™! 9.90 [7] 8.80 9.90 9.90 9.91
—F, kcal mol™! 5.74 7] 3.74 5.15 4.93 5.22
—u, kealmol™!  6.32[92] 2.03 2.50 2.52 2.70

Table 12 presents two close variants of the potential of the
SPC model of water, for which the atom—atom correlation
functions ho_o, ho_u, and hy_y are shown in Fig. 9 [93].
Analogous calculations based on other models of water were
performed in papers [94, 95]. The largest difference in the
behavior of the correlation functions is observed for O—H.
Although the peaks of the correlation functions correspond-
ing to the hydrogen bond are qualitatively similar, their
amplitudes are different. The rearrangement of the water

Table 12. Parameters of the potential of the SPC model of water [91].

ey C070,6 /‘1070,12 CO—H76 1‘104{,17
kcal A mol~' kcal A mol™! kcal A mol™! kcal A mol™!

0.41 625.731 629624 0 225.18

0.41 625.000 624000 0 900.00
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Figure 9. Total atom—atom correlation functions /o_o (a), ho—u (b), and
hy-n (¢). The solid and dashed curves are related to the water model
corresponding to the first and second rows in Table 12. The distance R is
given in A.

structure during the dissolving of molecules is characterized
first of all by the rearrangement of hydrogen bonds in a
hydrate shell. It is obvious that these effects related to the
correlation function for O—H mainly determine the thermo-
dynamics and structure of solvation. The contributions
depending on the two other functions for O—O and O—-H
are negligible.

Attempts have been made to use, along with rigid models
of water, flexible models that describe the intramolecular and
intermolecular interactions in the same way. In this case,
water is treated as a mixture of hydrogen and oxygen atoms in
the ratio 2: 1, which interact with neighboring atoms in the

molecule and atoms of other molecules in the same way [96,
97]. The empirical form of the potentials is chosen to provide
the existence of stable molecules. The possible advantages of
this model lie in its substantial simplification compared to
other models and the passage from the SSOZ approximation
to the exact OZ equations for mixtures. However, this
approach has not found wide application because of the
problems in the construction of adequate potential functions.

Note that even the potentials used for the description of
simple systems, for example, the Lennard—Jones potential are
the model ones. The degree of adequacy of such models is
perpetually discussed in the literature. The problem of the
theory of liquids mainly consists in the description of the
systems with prescribed model potential functions.

5.3 Solvation of molecules

By ‘solvation’ (hydration) we mean the changes in a solution
caused by transfer of an isolated molecule from a gaseous
(ideal) medium to a fixed position in the solution. It is obvious
that these changes mainly occur in the vicinity of a solute
molecule. The type of the changes yields information on the
properties and structure of the solvent itself. The excess
chemical solvation potential in the atom—atom representa-
tion has the form

MM

Ly ]
B =na Yy J d%{i (h;;’) —5hi = Cif' + By
LJ

M wd el 9B
—Hl“’ZJd%%J dyy GU , (111)
i Vi v

where the summation is carried out both over the number of
atoms in the solvent molecule and the number of atoms in the
solute molecule. The thermodynamic energy of interaction of
the solute molecule with the solvent is described by the
expression

{o.0)
Eg=ng Y L 4 drdy (Y + 1) (112)
ij

Note that here we consider for simplicity the case of the
one-component molecular solvent. In the case of the multi-
component solvent, the summation is performed over all the
components of the solvent. Two cases should be distinguished
for the excess solvation entropy. The first one corresponds to
dissolving at a constant volume (density):

ou'
Sy =— = )
(&),

and the second one to dissolving at a constant pressure:

(113)

o
Sp=—1= . 114
r=-(3), {19
Then, the solvation energy is
3 /T)
Eso v — £ =u TSn s 115
and the solvation enthalpy is
3(us/T)
Hyy=— =1 +1TS 116
sol a(l/T) lus + P ( )
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The solvation enthalpy and energy are related by the
expression [91, 98]

ot
Hsolv - Esolv = T(SP - Sn) = TO‘P”( at ) ) (117)
T

on

where op is the thermal expansion coefficient of a pure
solvent. Note that E is not equal to E,y. One can easily see
this by the example of the HNC closure. Indeed, by
substituting Eqn (111), for B =0, in Eqn (115) and taking
into account (113), we obtain, after some transformations,
[98]

Table 13. Thermodynamic parameters of solvation of hydrocarbons.

Hydro-  Method Hions uw, —E;,
carbon kcalmol™!  kcalmol~!  kcal mol™!
Methane Experiment —3.30 2.01 —
Numerical —5.02 2.3 2.89
experiment
HNC 1.56 8.72 1.75
MS -2.27 1.21 2.60
Equation (53) —1.98 2.02 2.50
Ethane  Experiment —4.72 1.84 —
Numerical — — 4.80
experiment
HNC 1.33 12.30 3.49
MS —4.19 1.62 4.49
Equation (53)  —4.02 1.83 4.47
Propane Experiment —5.38 1.96 —
Numerical — — 6.60
experiment
HNC 2.20 17.50 4.46
MS —5.41 2.35 5.76
Equation (53)  —5.61 1.98 5.79

Egory =1 ZJ &*rd(hy + 1)
¥

+ %ZJ d*r(Cydrhy — hydrCy) . (18)
7

One can see from Eqn (118) that the thermodynamic energy
E; (the first term on the right-hand side) represents only a
fraction of the solvation energy. The second term takes into
account variations in the structure of the solvent itself during
the dissolving process, 07 meaning the derivative of functions
C and & with respect to 7.

It was shown in Ref. [91] that the MS closure (42) and the
version (53) yield more correct results than the HNC equation
in calculations of the solvation of nonpolar molecules. Table
13 presents the results of calculations of solvation of simple
hydrocarbons under standard conditions at 25°C, and Table
14 lists the thermodynamic functions of solvation of mole-
cules of rare gases [93] obtained in the SPC-MS approxima-
tion. One can see from these tables that the HNC equation
inadequately describes the short-range order effects, to which
solvation of nonpolar molecules belongs, whereas the MS
closure and the version (53) yield more plausible results. Note
that other approximations have not been used for these
purposes. However, solvation of salts and polar molecules
was adequately described in the HNC approximation [98, 99].

6. Conclusions

In this review, the possibilities of approximations used in
the theory of liquids are shown and problems encountered
using them in the description of classical liquids are
considered. In combination with numerical experiments,
these approximations form a reliable basis for solving
problems related to simple liquids. Many interesting pro-
blems inherent in simple liquids, such as the behavior of

Table 14. Thermodynamic parameters of solvation of molecules of rare gases [93].

Gas Method 1w, Holy, —Sp, —Su, Eolv, E,
kcal mol~! kcal mol~! kcal (mol deg)™! kcal (mol deg)™! kcal mol~! kcal mol~!
Neon HNC 4.89 1.43 11.63 12.59 1.14 —0.003
4.83 1.32 11.76 12.74 1.03 —0.03
MS 1.54 —0.83 7.97 8.63 —1.03 —0.49
1.73 —0.76 8.34 9.03 —0.96 —0.50
Experiment [92] 2.67 —0.35 10.12 11.96 —0.89
Argon HNC 7.00 1.07 19.93 21.59 0.58 —1.51
6.90 0.88 20.18 21.85 0.38 —1.55
MS 0.78 —2.63 11.43 12.37 —-291 —2.24
1.08 —2.65 12.54 13.58 —2.96 -2.25
Krypton Experiment 2.00 —2.38 14.71 16.55 —-2.93
HNC 7.57 0.65 23.23 25.16 0.08 -2.39
7.45 0.51 23.29 25.22 —0.07 —2.44
MS 0.17 -3.77 13.22 14.32 —4.09 -3.20
0.52 -3.69 14.13 15.30 —4.04 -3.22
Experiment 1.66 -3.20 16.30 18.14 —3.75
Xenon
HNC 9.69 0.42 31.11 33.69 —0.35 -3.72
9.53 0.25 31.14 33.72 —0.52 —3.78
MS —0.63 =575 17.19 18.61 —6.18 —4.78
—0.16 —5.48 17.84 19.32 —5.92 —4.81
Experiment 1.33 -3.85 17.40 19.24 —4.40

Note: two rows of values for the HNC equation and the MS closure are obtained for the two potentials of water (see Table 12).
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systems in an external field and restricted volumes, etc.
remained beyond the scope of this review. However, the
basic theoretical and practical problems of the theory are
related to the study of polyatomic liquid systems, which
cannot be examined by means of the methods and approx-
imations applied to simple liquid systems. The situation is
additionally complicated by the fact that in this case the
computing possibilities of numerical experiments are limited,
which hinders the development of criteria of accuracy and
likelihood for approximate approaches.

References
1. BarkerJ A, Henderson D Rev. Mod. Phys. 48 587 (1976)
2. PercusJ K, Yevick G J Phys. Rev. 110 1 (1958)
3. Throop G J, Bearman R J Physica 32 1298 (1966)
4. TagoY J. Chem. Phys. 60 1528 (1974)
5. Metropolis N A et al. J. Chem. Phys. 21 1087 (1953)
6.  Fisher I Z in Statisticheskaya Teoriya Zhidkostei (Statistical Theory
of Liquids) (Moscow: Fizmatgiz, 1961)
7. Sarkisov G N, Dashevsky V G, Malenkov G G Mol. Phys. 27 1949
(1974)
8. Alder B J, Wainwright T J. Chem. Phys. 27 1208 (1957)
9. Van Leeuwen J M J, Groeneveld J, De Boer J Physica 25 792 (1959)
10. Morita T, Hiroike K Prog. Theor. Phys. 23 1003 (1960)
11. LebovitzJ L, Percus J K Phys. Rev. 144 251 (1966)
12.  Rosenfeld Y, Ashcroft N' W Phys. Rev. A 20 1208 (1979)
13. Weyland A Phys. Lett. A 98 113 (1983)
14.  Martynov G A, Sarkisov G N Dokl. Akad. Nauk SSSR 260 1348
(1981)
15.  Martynov G A, Sarkisov G N Mol. Phys. 49 1495 (1983)
16. Haymet A D J, Rice S, Madden W G J. Chem. Phys. 74 3033 (1988)
17.  Attard P J. Chem. Phys. 95 4471 (1991)
18.  Vompe A G, Sarkisov G N, Martynov G A Zh. Fiz. Khim. 68 197
(1994)
19.  Martynov G A, Vompe A G Phys. Rev. E47 1012 (1993)
20. Duh D-M, Haymet A D J J. Chem. Phys. 97 7716 (1996)
21.  Lee L L, Ghonasgi D, Lomba E J. Chem. Phys. 104 8058 (1996)
22. Ballone P et al. Mol. Phys. 59 275 (1986)
23.  Martynov G A Mol. Phys. 42 329 (1981)
24. Martynov G A Fundamental Theory of Liquids (Bristol: Adam
Hilger, 1992)
25.  Morita T, Hiroike K Prog. Theor. Phys. 25 537 (1961)
26. Arinshtein E A, Abrosimov B G Zh. Strukt. Khim. 9 1064 (1968)
27. Landau L D, Lifshitz E M Statisticheskaya Fizika (Statistical
Physics) (Moscow: Nauka, 1964) [Translated into English (Oxford:
Pergamon Press, 1984)]
28.  Henderson D, Chen M Can. J. Phys. 48 634 (1970)
29. Henderson D J, Barker J A, Watts R O IBM. J. Res. Dev. 14 668
(1970)
30. Vompe A G, Martynov G A Zh. Fiz. Khim. 68 433 (1994)
31.  Vompe A G, Martynov G A J. Chem. Phys. 100 5249 (1994)
32. Sarkisov G N, Martynov G A Zh. Fiz. Khim. 60 257 (1986)
33.  Balescu R Eguilibrium and Nonequilibrium Statistical Mechanics
Vol. 1 (New York: Wiley, 1975) [Translated into Russian (Moscow:
Mir, 1978)]
34. Hansen J P, McDonald I R Theory of Simple Liquids (London:
Academic, 1986)
35.  Croxtone K Physics of Liquid State [Translated into Russian
(Moscow: Mir, 1978) ]
36. Weeks J D, Chandler D, Andersen H C J. Chem. Phys. 54 5237
(1971)
37. Madden W G, Rice S A J. Chem. Phys. 72 4208 (1980)
38.  Martynov G A, Sarkisov G N, Vompe A G J. Chem. Phys. 110 3961
(1999)
39.  Vompe A G, Martynov G A, Sarkisov G N Dokl. Ross. Akad. Nauk
358 329 (1998)
40. Llano-Restrepo M, Chapman W G J. Chem. Phys. 97 2046 (1992)
41. Llano-Restrepo M, Chapman W G J. Chem. Phys. 100 5139 (1994)
42.  Duh D-M, Haymet A D J J. Chem. Phys. 103 2625 (1995)
43.  Duh D-M, Henderson D J. Chem. Phys. 104 6742 (1996)
44. Rogers FJ, Young D A Phys. Rev. A 30 999 (1984)

45.
46.
47.
48.
49.
50.
51
52.
53.
54.

55.
56.
57.
58.
59.
60.

61.
62.
63.
64.
65.
66.
67.

68.

69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.

86.

87.
88.
89.

90.

91.
92.
93.
94.
95.
96.
97.
98.
99.

Zerah G, Hansen J P J. Chem. Phys. 84 2336 (1986)

Verlet L Mol. Phys. 42 1291 (1981)

Malijevsky A, Labik S Mol. Phys. 60 663 (1987)

Lado F, Foiles M, Ashcroft N W Phys. Rev. A 28 2374 (1983)

Lee L L, Shing K S J. Chem. Phys. 91 477 (1989)

Carnahan N F, Starling K E J. Chem. Phys. 51 635 (1969)

Torrie G M, Patey G N Mol. Phys. 34 1623 (1977)

Alder B J, Hecht C E J. Chem. Phys. 50 2032 (1969)

Henderson D, Madden W G, Fitts D J. Chem. Phys. 64 5026 (1976)
Smith W R, Henderson D, Murphy R D J. Chem. Phys. 61 2911
(1973)

Sarkisov G et al. J. Chem. Phys. 99 2926 (1993)

Holleran E M J. Chem. Phys. 47 5318 (1967)

Nicolas J J et al. Mol. Phys. 37 1429 (1979)

Evans R et al. J. Chem. Phys. 100 591 (1994)

Martynov G A, Sarkisov G N J. Chem. Phys. 93 3445 (1990)

Leote de Carvalho R J F et al. J. Phys.. Condens. Matter 6 9275
(1994)

Kirkwood J G J. Chem. Phys. 3 300 (1935)

Singer S J, Chandler D Mol. Phys. 55 621 (1985)

Kiselyov O E, Martynov G A J. Chem. Phys. 93 1942 (1990)
Kjellander R, Sarman S J. Chem. Phys. 90 2768 (1989)

Lee L L J. Chem. Phys. 97 8606 (1992)

Chen X S, Forstmann F, Kasch M J. Chem. Phys. 952832 (1991)
Sarkisov G N, Vompe A G, Martynov G A Dokl. Ross. Akad. Nauk
351218 (1996)

Uhlenbeck G E, Ford G W Lectures in Statistical Mechanics
(Providence: American Mathematical Society, 1963) [Translated
into Russian (Moscow: Mir, 1965)]

Lotfi A, Vrabec J, Fischer J Mol. Phys. 76 1319 (1992)
Panagiotopoulos A Z Mol. Phys. 61 813 (1987)

Hansen J P, Verlet L Phys. Rev. 184 151 (1969)

Martynov G A, Sarkisov G N Kristallografiya 34 541 (1989)
Martynov G A, Sarkisov G N Phys. Rev. B 422504 (1990)
Cummings P T, Monson P A J. Chem. Phys. 82 4303 (1985)
Lomba E Mol. Phys. 68 87 (1989)

Schlijper A G et al. J. Chem. Phys. 98 1534 (1993)

Watts R O J. Chem. Phys. 50 1358 (1969)

Schmidt A B Phys. Rev. A 45 7636 (1990)

Kincaid J M Mol. Phys. 34931 (1977)

Chandler D, Andersen H C J. Chem. Phys. 57 1930 (1972)

Monson P A, Morris G P Adv. Chem. Phys. 77 451 (1990)
Chandler D, Silbey R, Ladanyi BM Mol. Phys. 46 1335 (1982)
Cummings P T, Stell G Mol. Phys. 46 383 (1982)

Labik S, Malijevsky A, Vonka P Mol. Phys. 56 709 (1985)
Eisenberg D, Kauzmann W The Structure and Properties of Water
(London: Oxford, 1969)

Berendsen H J Cet al., in Intermolecular Forces (Dordrecht: Reidel,
1981) p. 331

Jorgensen W L J. Chem. Phys. 77 4156 (1982)

Jorgensen W L et al. J. Chem. Phys. 79 926 (1983)

Matsuoka O, Clementy E, Yoshimine M J. Chem. Phys. 64 1351
(1976)

Berendsen H J C, Grigera J R, Straatsma T P J. Phys. Chem. 91 6269
(1987)

Lue L, Blankschtein D J. Phys. Chem. 96 8582 (1992)

Ben-Naim A, Marcus Y J. Chem. Phys. 81 2016 (1984)

Sarkisov G N, Tikhonov D A Zh. Srukt. Khim. 37 735 (1966)
Pettit B, Rossky P J J. Chem. Phys. 77 1451 (1992)

Tanaka H J. Chem. Phys. 88 1512 (1987)

Ichiye T, Haymet A D J J. Chem. Phys. 89 4315 (1988)

Duh D-M, Perera N, Haymet A D J J. Chem. Phys. 102 3736 (1995)
Yu Hsiang-Ai, Roux B, Karplus M J. Chem. Phys. 92 5020 (1990)
Perkyns J, Pettit B M Biophys. Chem. 51 129 (1994)



	1. Introduction
	2. Approximate equations of the theory of liquids
	2.1 Exact equations of the statistical mechanics of liquids
	2.2 General problem of the choice of bridge-functionals and thermodynamic consistence of approximate approaches
	2.3 Local approximations of the method of integral equations
	2.4 Self-consistent approximations

	3. Thermodynamic and structural parameters of simple liquids
	3.1 A hard sphere fluid
	3.2 The well potential
	3.3 The Lennard--Jones potential
	3.4 Long-range correlations in liquids
	3.5 Definition of the chemical potential in approximate theories of liquids

	4. Phase diagram of the Lennard--Jones (LJ) system
	4.1 Two-phase approach to the problem of phase equilibrium
	4.2 One-phase approach to the problem of phase transitions

	5. Approximate equations for multicomponent polyatomic systems
	5.1 Formulation of equations in the atom--atom approximation
	5.2 Water
	5.3 Solvation of molecules

	6. Conclusions
	References

