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Abstract. The first part of this review deals with the single-
phase approach to the statistical theory of phase transitions.
This approach is based on the assumption that a first-order
phase transition is due to the loss of stability of the parent
phase. We demonstrate that it is practically impossible to find
the coordinates of the transition points using this criterion in the
framework of the global Gibbs theory which describes the state
of the entire macroscopic system. On the basis of the Ornstein —
Zernike equation we formulate a local approach that analyzes
the state of matter inside the correlation sphere of radius
R. =~ 10 A. This approach is proved to be as rigorous as the
Gibbs theory. In the context of the local approach we formulate
a criterion that allows finding the transition points without
calculating the chemical potential and the pressure of the sec-
ond conjugate phase. In the second part of the review we
consider second-order phase transitions (critical phenomena).
The Kadanoff— Wilson theory of critical phenomena is ana-
lyzed, based on the global Gibbs approach. Again we use the
Ornstein — Zernike equation to formulate a local theory of
critical phenomena. With regard to experimentally established
quantities this theory yields precisely the same results as the
Kadanoff— Wilson theory; secondly, the local approach allows
the prediction of many previously unknown details of critical
phenomena, and thirdly, the local approach paves the way for
constructing a unified theory of liquids that will describe the
behavior of matter not only in the regular domain of the phase
diagram, but also at the critical point and in its vicinity.
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1. Introduction

There are many types of phase transitions in nature, and the
more sophisticated the system, the more complex the phase
transitions. In this review we confine our discussion to the
simplest systems — one-component isotropic liquids which
only exhibit the most common first- and second-order phase
transitions (the latter are usually referred to as critical
phenomena). What is the reason for such a choice?

The statistical theory of phase transitions has two
principal tasks:

(1) to explain the mechanism of the phase transition onset,
and

(2) to calculate the parameters of phase transitions from
first principles. This assumes that we must at least be able to
express from the given interaction potential @ the curves of
phase equilibrium p = p(@®) (where p is the density, and
© = kT the temperature), to calculate the heat of crystal-
lization, etc. in the case of first-order phase transitions, and
calculate the coordinates of the critical point p_, O, the critical
indices, etc. in the case of second-order phase transitions.

Now, while the first task may be considered more or less
solved (at least on the qualitative level), the advances in
calculating the parameters of phase transitions from first
principles are rather modest. Obviously, the solution of this
problem must start with the simplest systems.

There is yet another natural question: why is it that
progress in the theory of phase transitions has been so slow
in defiance of the efforts of many scholars? ' What I am going

' Some readers will disagree with this opinion, and perhaps for a rather
good reason. Indeed, today we are able to calculate the curves of first-
order phase equilibrium p(@) for simple fluids using the methods of
numerical experiment, and the methods of the density functional;
K Wilson was even awarded the Nobel prize (1982) for his theory of
critical phenomena. I will try to demonstrate, however, that the two-phase
approach used for calculating the p(©) curves has a number of important
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to say now may sound blasphemous: this is because these
scholars relied on the Gibbs distribution. By definition, a
phase transition is a change in the structure of matter. At the
same time, the concept of ‘structure’ is foreign to the global
Gibbs theory which deals with the state of the entire
macroscopic system. Because of this, it is impossible to
formulate the criteria of phase transitions staying within the
confines of the Gibbs theory. And without knowing these
criteria it will be very difficult to find the coordinates of
transition points and calculate the thermodynamic para-
meters of matter at these points.

In 1914, Ornstein and Zernike [1] formulated a local
approach based on the assumption that the macroscopic
parameters of matter at point r only depend on the
distribution of molecules in the immediate vicinity of this
point (this neighborhood is known today as the correlation
sphere, and its radius as the correlation radius R.; calcula-
tions indicate that usually R, ~ 10 A [2]). Then in 1960,
Morita and Hiroike [3] proved that the Ornstein—Zernike
(OZ) equation can be derived from the same Gibbs distribu-
tion through identity transformations. Accordingly, as far as
rigorousness and consistency are concerned, both approaches
— the global Gibbs approach and the local OZ approach —
are quite similar. However, the Gibbs distribution depends on
the coordinates and momenta of all N ~ oo particles of the
system, whereas the OZ equation defines the two-particle
distribution function G® which only depends on the distance
ria = |r1 — 2| between two arbitrarily selected particles 1 and
2. Obviously, this greatly simplifies the task. But there is
something more than that. Within the framework of the OZ
theory it is very easy to define the concept of ‘microstructure
of matter’, which in turn makes it easy to identify those points
on the phase diagram whereat this structure begins to change.
I will try to show that these two advantages eventually open
new possibilities in the theory of phase transitions.

Section 2 deals with the theory of first-order phase
transitions, and Section 3 with the theory of critical phenom-
ena. Both sections are formatted in the same way: first we
consider the phase transitions from the standpoint of
thermodynamics, then in the framework of the global Gibbs
theory, and finally on the basis of the local OZ equation. Such
presentation is best suited for unfolding the capabilities of
each of these approaches.

2. First-order phase transitions

2.1 Statement of the problem

The physical cause of first-order phase transitions? is well
known: it is the loss of stability by the parent phase. However,
unless we can indicate precisely how this circumstance is
reflected in the equations of statistical mechanics, this
statement will remain an empty sound. And this is currently
a much disputed point. Some authors hold that the transition
points are singularities of the partition function [4, 5], others

drawbacks that severely limit its applicability, and Wilson’s theory cannot
be regarded as a consistent statistical theory, because “‘its reasoning
employs many approximations that cannot be verified” (quoted in back
translation from the Russian edition of R Balescu’s monograph [11,
p. 401]).

2Hereinafter we are going to omit the designation of the ‘first order’
whenever possible. Hopefully, this will not cause any confusion, since the
entire section is devoted to these phenomena only.

believe that there are no singularities at the points of phase
transformations, and that statistical mechanics therefore can
equally well describe both equilibrium and metastable states
[6, 7]; some authors argue that in Gibbs’ theory it is not
possible to define the van der Waals loop, and hence one
cannot use the Maxwell rule for identifying the transition
points [8, 9], while others not only hold an opposite opinion,
but actually find this loop in their calculations [10, 11]; some
authors announce that “the curves of phase equilibrium can
only be localized with the aid of thermodynamic conditions of
equal pressures P, temperatures ® and chemical potentials u
of the conjugate phases’ [12] (such an approach has become
known as the ‘two-phase approach’, since it is based on
comparing the parameters of two phases in equilibrium with
each other), while others successfully pursue the ‘one-phase’
approach that requires knowing the properties of only a single
parent phase [13, 14].

Of special interest is the comparison between the one-
phase and the two-phase approaches. From thermodynamics
it does follow that phases 4 and B of the same substance may
occur at equilibrium with one another only provided that

Py=Pp, ©4=0p, ny=up. (1)

These conditions, however, are by no means specific for phase
transitions — they can equally well be realized in one-phase
systems. Indeed, let us arbitrarily split a one-phase system in
two, and call one part ‘phase A4’, and the other ‘phase B’.
Obviously, the condition of equilibrium of such virtual phases
will again have the form of Eqn (1). As a matter of fact, in
thermodynamics we simply enunciate that phase A4 is in some
way different from phase B, and then start looking for those
points on the phase diagram where our assumption is true.
Since the conditions (1) do not give any indication of where
such points are to be sought, the construction of curves of
phase equilibrium in the two-phase approach implicitly
suggests that all the calculations must be done by the trial
and error method. Assume, for example, that we want to use
the conditions (1) for constructing the curve of crystallization
of a liquid. To do this, we must first use the given interaction
potential to establish the structure of the crystal with which
our liquid can be in equilibrium. This can only be done by trial
and error: first find the free energy of one structure, then that
of another, and so on, until such a structure is found that
minimizes the free energy. This, however, is not enough: one
must repeat all these calculations until the values of density
and temperature are found for a given lattice that satisfy the
conditions of equilibrium between the crystal and the liquid
phase. In the case of complex systems (such as solutions),
these essentially computational difficulties may become
insuperable.

If, however, it is true that the phase transitions occur when
the parent phase loses its stability, then it is not necessary to
calculate the parameters of the second phase, since the parent
phase will lose its stability irrespective of whether the other
phase is or is not in equilibrium with it. This obviously makes
the task much simpler. Because of this, the development of the
one-phase approach is of great practical importance. In
effect, this is what this section of our review is about; we
shall only incidentally touch upon the two-phase approach.
This circumstance is definitive for the way we present the
material here.

Currently the two-phase approach is well validated, and
the discussions are mainly concerned with the technical
difficulties mentioned above. The situation is different with
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the one-phase approach. There are very few practical results,
the algorithm of its realization has not been developed, and
even the very feasibility of this approach is much disputed by
many authors (see, for example, Ref. [12]). So the first thing is
to prove that the one-phase approach has the right to exist.
This is the main purpose of Section 2 of this review.

As will be shown below, the first-order transition points
are the singular points of the partition function. If only
because of this, their description is one of the major problems
in statistical mechanics. They are a concentration of the
strengths and weaknesses of the contemporary theory. To
sort out these problems would essentially amount to drawing
the bottom line of the entire classical statistical mechanics.
Hopefully, the reader will excuse my going into the general
issues. Without such excursions it would be not possible to
present a comprehensive treatment of the subject.

2.2 Phase transitions and thermodynamics

Validation of the one-phase approach ought to start with
finding out what happens with the exact equations of
statistical mechanics at the first-order transition points.
Since we assume that at these points the system becomes
unstable, it would be natural to try and investigate the role of
stability in statistical mechanics.

We know that the Gibbs distribution only holds for stable
systems. After all, this is quite natural, since it is only stable
systems that can be at equilibrium for an indefinitely long
time. By contrast, fluctuations in unstable systems will sooner
or later cause deviations from the initial state. These
deviations will grow, and eventually the system will leave the
initial state.

Out of all possible criteria of stability of the Gibbs
distribution we are only interested now in the criterion of
mechanical stability (0P/0V "), < 0, where Vis the volume of
the entire system. Here the ‘less than’ sign

oP
hual 0 2
(57),° .
corresponds to the state of absolute stability, and the equality sign
oP
(&), ?)
corresponds to neutral equilibrium. Systems with

(0P/dV)g > 0 are unstable (and therefore nonequilibrium),
and are not described with the Gibbs distribution.

Now we would like to know how the density of a
substance is distributed within the volume of the system in
the cases of absolutely stable and neutral equilibrium? To
answer this question we must first note that the concept of
stability lies in essence beyond the framework of the
equilibrium theory, since it admits the possible spontaneous
deviation of the system from the initial equilibrium state.
Because of this, we have to turn to the equations of
hydrodynamics, which, like the Gibbs distribution, follow
from the basic assumptions of the statistical mechanics [2].
These equations contain the gradient of pressure
P =P(p,0), where the density of particles p and the
temperature @ are functions of the coordinate r and time ¢
in nonequilibrium systems. At equilibrium, however, the
pressure gradient must vanish, i.e.

0P(p.0) _ (0P\20 (3P B _
or 00 /, or op @ar_

0, P(r) = const.

(4)

Since @ and p are independent variables, each term in this
expression must vanish independently of the other. To make
the first term equal to zero, it will suffice to set

00(r)

— =0,

> O(r) = © = const, (5)

because the derivative (0P/0@), cannot be equal to zero. The

situation is different with the second term. If the condition of

absolute stability (2) is satisfied, then the derivative (0P/00),

is nonzero, and Eqn (4) can only be made to hold by setting
00(r) N

5 =0 pl)=y=p=const, (6)
r

where p is the mean (with respect to the entire volume V7 of the
system) number density of particles. This means that
equilibrium absolutely stable systems can only be spatially
homogeneous (single-phase); if the equilibrium is indifferent,
then (0P/0p)y = 0, and one cannot say anything about the
distribution of density p(r) over the volume of the system,
based on Eqn (4). To find the form of the function p(r) in this
instance, one has to use the thermodynamic approach. Before
doing this, however, we observe that equality (0P/0p), =0
may hold either over a certain finite interval of densities

p4(@) <p<pp(@), (7)

or at one point
p(6) = p. (8)

Here we shall only be interested in the former case. The latter
situation will be discussed in the third section of this review,
because it relates to critical phenomena.

To find out what happens within the interval (7), we
integrate the known thermodynamic identity dF = —PdV at
® = const, where F is the free energy of the entire system.
Since, according to Eqn (4), we have P = const in this
identity, the integration from p = p 4 to p yields

F(p) = Flpy) = P(V = Va), ©)

where V4 = N/p 4. Setting in this equation V' = Vg = N/py,
we find that

p— Flp,) — Flpg)

Vep—Vy4

Substituting this equation into Eqn (9), and going over
from the global free energy of the system F to the mean
density f'= F/V of free energy over the volume, we get

75 =p fa—1s N PufB—Ppfa
P4 — Pp Pq—Pp

) (10)

where fy = f(p,), /8 = f(pg). Finally, introducing the para-
meter v such that

p=vps+(1=v)pp, 12v=0, (11)
we finally arrive at
JO) =vfa+ (1 =v)fs, 12v>0. (12)
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Hence it follows that in the case of neutral equilibrium, the
mean free energy of matter is a function of the parameter v
rather than a function of the local density p, as in the case of
stable one-phase states.

To clarify the meaning of parameter v, let us derive Eqn
(11)in a different way. Assume that the system consists of two
spatially homogeneous phases 4 and B separated by a clear
boundary. Assume further that the densities of these phases
are, respectively, p, = N4/V4 and pgz= Ng/Vp, where
Viy=V-—Vpg Ny=N— Np. Then the mean density over
the entire system is

Np Vg

LRy (1= )y

NiNA‘i‘NBiNA Vy
- VeV VeV

7 %

where v = V4 /V. Obviously, with v defined in this manner,
this formula coincides with Eqn (11). In the same way one can
derive the formula for the free energy, or for any other
parameter of the system, and they all will be similar to Eqns
(11) and (12).

Discussion. So, after a rather lengthy exercise we have arrived
at results that are familiar at bottom: absolutely stable
systems are spatially homogeneous (single-phase); the sys-
tems in which the state of neutral equilibrium is realized are
always two-phase (in general, multiphase), and so on. In
thermodynamics these results are usually postulated, whereas
we deduced them from equations that can eventually be
derived from the basic postulates of statistical mechanics.
Now, however, something else is of greater importance. For
any extensive parameter 4 we may set 4 = Va. Then from
Eqn (12) it follows that in the range of densities p, < p < pp
the values of

A= Vvay+ (1 —v)ag) (13)

do not depend on the local density of the relevant phase p; this
formula only involves the quantities a4y = a(p ), ag = a(pg)
defined at the ends of the interval. At the same time, outside of
the two-phase interval (that is, for p < p 4, p > pp), Where the
system is absolutely stable, all parameters of matter
A= A(p,0) are functions of the local density p = p.
Because of this, if we plot the values of the local parameters
a as a function of the local density p, we shall find that it is not
defined over the interval p , < p < pg— the values of a(p, ©)
do not enter any equation of equilibrium thermodynamics at
the densities p within this interval (Fig. 1). At the same time,
the functions 4 themselves are continuous functions of p,
since at the ends of the interval the parameter v assumes the
values of 0 and 1. Of no less importance is the fact that the
derivatives 04 /0p have discontinuities at the ends of the two-
phase interval — outside they are nonzero, and zero inside,
since within this interval the parameters of matter do not
depend on p.

Finally, I would like to point out that the picture which
follows from arguments developed above is in complete
agreement with experiment. Indeed, assume that we take a
cylinder filled with vapor and slowly drive a piston in, thus
changing the mean density of matter. To do this, at first we
need to increase steadily the force applied to the piston to
raise the pressure of vapor in the cylinder. When the density of
vapor reaches the point of vapor—liquid phase transition,
however, the vapor will start to condense, and further
compression will occur without any increase in the pressure.
When finally all the vapor liquefies, further compression will
require increasing the pressure.

A(p)

- N

P4 Pr P

777

Figure 1. Global parameter 4 and local parameters a4 and ap (hatched) vs.
density p.

2.3 Phase transitions and the Gibbs distribution
Now we can see what happens with the Gibbs distribution

)

in the curves of phase equilibrium (here Fis the normalization
constant which has a meaning of free energy, and @; = &(r;;)
is the potential of pairwise interaction between particles).
Accurate to the negligibly small fluctuations, we have
> ®; =E, where E is the internal energy of the system.
Because of this, in the domain of absolutely stable equili-
brium we get

(14)

G=exp|-g(E-F)|=ew|-ge-n|. 09

and in the domain of neutral equilibrium [see Eqn (13)] one
obtains

G= exp{—K [Viea —fa) + (1 =v)(es — /3)] }: G4Gp,

(%
(16)
Gy(r) at0<p<opy,
@mm@:{ﬁU SN
5 1 at 0 < p < pp,
GB(”p’@)i{GB(’) at pp <p.

From Eqn (16) it follows that the Gibbs distribution in the
two-phase region is broken up into the product of two single-
phase distributions G 4 and G, of which one is defined for the
interval p < p,, and the other for p > pp. Each of these
distributions is a one-valued function inside the single-phase
interval; outside this interval the single-phase Gibbs distribu-
tions G4 and G do not depend on the local density of matter
p. At the same time, the total Gibbs distribution G is a
continuous function of the mean density p of the system (the
latter equals the true density of matter p = N/V on the single-
phase portions, and is given by Eqn (11) on the two-phase
portions). However, the derivatives of the total Gibbs
distribution with respect to the local density have disconti-
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nuities at the ends of the two-phase interval, because

1.d"G, 0<
L 1dg Rt P
G[]Eﬁdpk: 0, ) Py <P <pPp, (17)
1 d'G
A dpkB’ pr<p<pc,

since G here depends not on p, but on v (in Eqn (17), the
operator is [k] = (1/k!)("/0p). In other words, the deriva-
tives of the total Gibbs distribution behave like all other local
parameters.

Then it remains to demonstrate that the pressure does not
change in the interval of neutral equilibrium (this is necessary
for satisfying the condition of equilibrium of phases (1)). For
this we use the known formula of statistical mechanics that
establishes the linkage between P and G [11]:

PV:N@—§JVZ Gd;1

ij d d3VN.

(18)

Substituting here G = G4(v)Gp(l —v), and noting that
integration in the two-phase domain must be carried out
separately over the volumes V4 and V3 of each of the phases,
and so the sum »_, ; r;( d®;/ dry) will also fall into two parts
(the sum over all partlcles of phase 4, and the sum over all
particles of phase B), we find after some straightforward
transformations that the pressure P = vP,4 + (1 — v)Pg does
not depend on v, since P4 = Pp. At the same time, from the
thermodynamic identity du = dP/p follows the condition of
the stability of chemical potential over the entire interval
where P = const, dP = 0, which ensures that condition (1)
U, = upis satisfied.

Discussion. So we have established that the single-phase
Gibbs distributions defining all the local parameters of
matter disappear in the phase equilibrium curves. As a
result, for density p > p, (for phase 4) and for density
p < pp (for phase B) the local parameters of these phases
turn out to be indeterminate and are nonexistent from the
standpoint of the equilibrium theory. This alone is an
indication that the curves of phase equilibrium of the first
order correspond to the singularities of the partition function.
Many years ago this was noted by Lee and Yang (see, for
example, Refs [4, 5] which contain the proof of their theorem).
Unfortunately, these authors failed to specify the nature of
the singularity. As a result, this singularity up till now escaped
detection, and the theorem of Lee and Yang was forgotten,
but not refuted.

Another important result is the following: the spatially
homogeneous metastable phases that develop inside the two-
phase density interval p, < p < pp cannot be described by
the Gibbs distribution, because the latter does not depend on
the local density in this interval at all, whereas the state of the
metastable phase must necessarily be a function of p.
Accordingly, in the rigorous theory there is no place for the
van der Waals loop as well.

2.4 Phase transitions and virial series

In this way, the pioneering problem in the theory of first-
order phase transitions — understanding the mechanism of
the phenomenon — is solved. It might seem that now it is not
too hard to solve the next problem — finding the location of
the phase equilibrium curves on the phase plane. This only
requires learning how to calculate the Gibbs distribution

inside the single-phase domains, and then gradually increas-
ing the density until it reaches the threshold where the
appropriate solution disappears. In reality, however, the
task is not that simple.

The most efficient present-day technique for calculating
the Gibbs distribution inside the single-phase regions of the
phase diagram is the numerical Monte Carlo method. On
crossing the curves of phase equilibrium, however, the values
of parameters found by this method do not generally vanish
— the system easily overcools and goes from the absolutely
stable equilibrium state into an unstable (metastable) state
[15, 16]. There are several reasons for this. First, in numerical
calculations the infinite system consisting of N = 10%
particles is always replaced with a finite system consisting of
a few hundreds (rarely thousands) of particles. At the same
time, it is known that the macrophase always loses its stability
because a nucleus of the new phase starts to grow. This
nucleus in the phase equilibrium curve must be of infinite size
and, consequently, must consist of an infinite number of
particles. To describe the incipience of such a nucleus one
needs to consider very large systems that defy the capabilities
of even the most powerful modern computers. Secondly, in
the case of phase transitions between condensed phases (for
example, between liquid and crystal) there appear steric
hindrances in matter — because of this the crystal, for
instance, only melts from the surface; the transition from
one structure to another in the crystal bulk is not possible
because of the too close packing of atoms.

A second method for calculating the Gibbs distribution is
based on the expansion in powers of density:

(19)

where the operator [k] is given by Eqn (17). Substituting this
expression into Eqn (18), we get the sought virial series

PV

o0
Z=—=1 kBii1(©
N@ +kz:;p /H—l( )7

(20)
where Z is the so-called compressibility coefficient, and the
virial coefficients are given by

1 | d(p,/ [k] 3
3N@J Z "y GEdn

Let us consider these equations in greater detail.
Discussion. Analysis of Eqns (20) and (21) leads to at least
three curious conclusions that so far have been overlooked.

Firstly, from Eqn (17) it follows that the virial expansion
is defined only inside the single-phase interval of densities
p < p; at greater densities it ought to diverge (vanish?), since
there we have GXl = 0. Analytical calculations done on the
lattice systems lend credence to this conclusion [17]. The same
thing, however, ought to happen in other systems. For
example, in the case of one-component systems, expression
(20) must diverge in the curves OAC and HP (see Fig. 2).
Within the ‘liquid’ region CBTEH it does not exist, because
this region falls beyond the curve of divergence of the series
OAC. Virial expansions are not equally defined in the crystal
region to the right of the melting curve KDM (see Fig. 2).
Because of this, virial expansions cannot be used for
calculating the pressure and the chemical potential in the
second conjugate phase. If only for this reason, virial

Biy1(0) = Ay, (21)



522 G A Martynov

Physics— Uspekhi 42 (6)
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Figure 2. Schematic phase diagram of a one-component system: 0AC —
vapor condensation curve, CBT — liquid evaporation curve, TEHP —
liquid crystallization curve, KDM — crystal melting curve, C — critical
point, T— triple point. Arrows indicate the region of convergence of virial
expansions.

expansions cannot be used for finding the curves of phase
equilibrium using the two-phase equilibrium condition (1).

But then could the virial expansions not be used for
constructing the curves OAC and HP based on a different
criterion — the divergence of virial expansion? Unfortu-
nately, this is not possible either. In the theory of group
expansions, specially developed for calculating the virial
coefficients (see, for example, Refs [9, 11]), it is demonstrated
that the number of different integrals entering into the kth
coefficient By is approximately equal to 25¢=1/2k! — in other
words, this number increases incredibly fast with k. So it is
usually possible to calculate the first two or three coefficients,
five or six at best. A record number was found for the
potential of rigid spheres

o) = {3

where ¢ is the diameter of the ball. Let us study this instructive
example in greater detail.

Calculations indicate that the Taylor series for the
compressibility coefficient in the system of rigid spheres has
the form [18]

0<r<o,

o<1 <00, (22)

Z=1+4p+10p* + 18.365p° + 28.24p*
+39.5p° +56.5p% + ...,

where p = (rn/6)pa’ (the leading coefficients are not known).
Approximating this equation with the polynomial

Z=1+4p+10p* + 18p> + 28p* + 40p° + 54p° .

Carnahan and Starling noticed that its coefficients can be
expressed as By = k*> + k — 2. Assuming that this holds for
any k, they summed up the resultant series to get

-~ = =3
_ L _ltbrpop (23)
p® (1-p)

This formula describes the pressure in a system of rigid
spheres with exceptional accuracy — the error never exceeds
0.3%, and this over the entire range of densities 0 < p < n/6,
where the system of rigid spheres occurs in the fluid state. This
formula, however, does not give any indication that at
p ~ n/6 there happens a fluid—crystal phase transition in

the system. The reason is obvious: the Carnahan—Starling
formula gives a good approximation to several first terms in
the virial expansion that are definitive for all thermodynamic
functions of the system, but does not carry any information
regarding the behavior of the leading virial coefficients By
with k — oo, which are responsible for the divergence of the
virial series at the point of phase equilibrium. This example
shows that the values of the first few coefficients are not
sufficient for finding the point of divergence of the series; at
the same time, it is impossible to calculate the leading
coefficients that involve an immense number of integrals.

The third comment concerns the structure of virial
coefficients. All integrals entering into the kth coefficients
are taken with respect to coordinates of k particles. As follows
from the above example, in order to calculate the compressi-
bility coefficient to a very high accuracy it suffices to find a
dozen (at worst, a hundred) of the first coefficients — that is,
to take into account the interactions between a dozen (a
hundred) particles not far away from each other (the virial
coefficients are designed in such a way that the integrands
tend to zero very fast as the distance between the particles
increases). This implies that for calculating the local thermo-
dynamic parameters o in a system consisting of approxi-
mately 1023 particles, it is sufficient to take into account the
interactions between several tens or hundreds of particles; all
the other particles of the system do not affect the values of the
local parameters. This circumstance is used to advantage in
the methods of numerical experiment (molecular dynamics
and the Monte Carlo method)[15, 16], whereby the treatment
of the entire macroscopic system is replaced with the
treatment of a microscopic subsystem consisting of a few
particles. The extensive experience gained with such studies
testifies that the study of small subsystems permits calculating
the thermodynamic parameters of matter to within 1 or 2%.
This is good enough for calculating the curves of phase
equilibrium in the context of the two-phase approach, but
absolutely not sufficient for implementing the single-phase
approach.

To summarize, we have to admit that neither numerical
experiment nor the virial expansions are suitable for calculat-
ing the location of phase equilibrium curves by the single-
phase method. And there are no other methods in the Gibbs
theory.

2.5 Fundamental set of equations in the theory of liquids
Hence, we have found that the single-phase approach is not
feasible within the framework of Gibbs’s statistical
mechanics. The only alternative is to go beyond the limits of
this theory. But how? As a matter of fact, the answer has
already been given above: one has to go over from a global to
a local description of the system.

The Gibbs distribution is global in the sense that it
describes the behavior of the entire macroscopic system
consisting of N =~ 10?® particles. At the same time, as soon
as we tried to use the Gibbs distribution for calculating the
pressure, we immediately saw that this only requires knowing
the coordinates of a hundred or so of particles in the
immediate neighborhood of the point where the pressure is
to be calculated (this region is known in statistical mechanics
as the correlation sphere). The result is quite universal: in
order to find the value of any thermodynamic parameter of
the equilibrium system at the given point, one only needs to
know the density distribution of particles inside the correla-
tion sphere around this point. Whatever falls outside this
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sphere does not affect the values of the parameters. The
approach based on studying the distribution of density of
matter inside the correlation sphere we shall call the local
approach.

Currently, the local approach is being developed under

the modest appellation of the ‘theory of liquids’, although it
can be equally well applied to the description of crystals (see,
for example, Ref. [19]). At the same time, the Russian
literature on statistical mechanics (see, for example, Refs.
[20—22]) hardly contains any references to the local
approach. Because of this I deemed it necessary to include a
section dealing with the local theory, even though this topic,
being closely related to the latter, may fall beyond the scope of
our review.
Thermodynamic parameters and the Gibbs distribution. Let us
look more closely at Eqn (18) which relates the pressure to the
Gibbs distribution. Since the magnitude of the latter does not
change when the numbering of particles is changed, Eqn (18)
essentially reduces to the sum of N(N—1)/2~ N2/2
identical integrals. We define the two-particle distribution
function as

1
G® = m[y G(riy.yry) drs..dry, (24)
and rewrite Eqn (18) in the form
1 < d(s
P(p,0) = p@ — <p 2J d£ ) GO (r)dmr? dr (25)
0

(here we have taken into account that, owing to the spatial
homogeneity of the system, the two-particle distribution
function G® only depends on the difference of coordinates
rij = |r; — rj] = r). Similarly, the internal energy of the entire
system [9, 23]

E(p’@) ——N@+ J Z@,}G Fly ooy )d3r1...d3rN (26)

can be represented with the aid of Eqn (24) in the form

E 3 I (*
e(p, @ 2O +- J &(r)G P (r)anr? dr. 27
(0.6) = =30 +30 | (G0 (27)
If P(p,®) and e(p, ®) are known, then all other para-

meters of substance can be calculated from thermodynamic
identities. Therefore, the two-particle distribution function
G @ completely determines the state of matter. In this respect
it is entirely similar to the Gibbs distribution G. At the same
time, G® is a function of just one variable r, whereas G
depends on the coordinates of N =~ oo particles.

Observe now that the interaction potential of particles
&(r) in Eqns (25) and (27) usually decreases with the distance
as r~% — that is, very fast indeed. Because of this, the main
contribution to the local thermodynamic parameters comes
from small distances r < R., where R. =~ 5¢ =~ 10 A is the
radius of the correlation sphere. At r > R, the integrands in
Eqns (25) and (27) vanish. Hence it follows that the particles
outside the correlation sphere do not affect the values of the
parameters of matter.

Fundamental set of equations (FSE). We see that the problem
of calculation of the thermodynamic parameters reduces to
finding the two-particle distribution function G (r). But
how can one find it? For this purpose, Morita and Hiroike [3]

used a formula (24) which expresses G@ in terms of the
integral of the Gibbs distribution G, and a similar formula for
the one-particle distribution function G(!). Expanding G in
powers of the den51ty p, they also constructed a virial series
for the functions G = 3 ka i =1, 2. According to the
Lee— Yang theorem, this series must be umformly convergent
[4, 5]. Therefore, its terms can be grouped in an arbitrary way
without compromising the convergence of the series itself.
Taking advantage of this circumstance, Morita and Hiroike
regrouped the series for G in such a way that it turned into
the equation of constancy of chemical potential

1= 0ln(pa) = OIn pG(r))

—@pJ GW(r)GW(ry,ry) d*ry = const, (28)
v

and the series for G became the generalized OZ equation

h(l‘lz) = C(2)(l’12) + pJ G<l)(l‘3)c(2)(r13)h(l’23) d37'3 . (29)
14

In the case of spatially homogeneous media, when
p(r) = poGI(r) = py = N/V, GI) =1, the first equation
degenerates into the definition of the logarithm of the
activity coefficient In a, and the second into the conventional
OZ equation

h(ri2) = G (r2) + PJVC“)(rm)h(rzs) d’rs. (29a)

Subsequently we shall refer to the set of equations (28), (29) as
the fundamental set of equations (abbreviated FSE). Here

) =62~ 1 = exp| T vt 1 G0

is the so-called general correlation function, w(r) is the
thermal potential, and

) = hr) — olr) — 5 hA) o) + BYG], (1)

—o(r)+ B () (32)
are the direct correlation functions of the first (C(")) and the
second (C?) orders, which include the bridge functionals of
the first (B(")) and the second (B?)) orders (the latter are the
infinite series of integrals whose integrands involve the
products of general correlation functions /(r)). The structure
of bridge functionals is formally known [24], so the OZ
equation may be considered as closed. However, it is not
possible to make straightforward use of the exact series for
B, since they contain too large a number of integrals, each
of which is rather complicated. So in practice the bridge
functionals are approximated to some kind of a simpler
expression. On these grounds it is sometimes said that the
local OZ approach is approximate, whereas the approach
based on the Gibbs distribution is rigorous. This statement
presents a misconception.

FSE and the Gibbs distribution. As noted above, the FSE was
originally obtained from the convolution of the virial series. If
we expand it again, we return to the expression from which it
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taken in their most general forms, the Gibbs distribution and
the FSE are completely equivalent. In practical calculations,
however, we never deal with exact expressions: we cut off the
virial expansions that follow from the Gibbs distribution at
the third or fifth term, being unable to calculate the terms that
follow, and in the OZ equation we replace the exact values of
bridge functionals with approximated. Both the procedures
lead to approximations whose accuracy we, strictly speaking,
cannot assess a priori.

In this respect the two approaches differ little. There is,

however, one important distinction. It is impossible to extend
the domain of applicability of virial expansions by replacing
the exact higher terms with approximations, because we know
nothing of what these terms look like. By contrast, the form of
bridge functionals is known at present sufficiently well from
numerical experiments, and in principle it is not difficult to
approximate it with an analytical expression. (Of course, it is
not an easy thing to find a close practical approximation
ensuring a good fit over a broad range of parameters.) Today
there are several approximations, accurate within a few
percent over the entire phase plane including the region
CBTEH (see Fig. 2) of liquid phase [25—38]. This proves
that the local approach based on the OZ equation is more
flexible and better suited for practical calculations than the
global Gibbs approach. After all, this ought to be expected,
since the reduction of the OZ equation to the closed integral
equation only requires approximating just a single bridge
functional which depends on just one variable.
FSE and the condition of mechanical stability. In order to
demonstrate that FSE yields the same exact results as the
Gibbs distribution, let us consider the problem of mechanical
stability of an equilibrium system. With this purpose we apply
a Fourier transform to the OZ equation (29):

(k) = JV W (r) exp (—ikr) d*r = 4nj W)

0

o sin kr

i dr,

1

Y(r) = w

JV lZI(k) exp (ikr) &3

2n)* Jo kr

where by iy we need to mean both C(r) and /(r). As a result,
we get

1 J A sin kr (33)

1 . h(k)

(34)

Hence it follows that points 1 + ph(k) = 0 are singular. They
divide the entire k plane, over which the OZ equation is
defined, into two half-planes not connected with one another.
Since we are only interested in that part of the phase diagram
where all functions entering into the OZ equation are regular,
we obviously have to consider either the half-plane
ph(k) > —1, or the half-plane ph(k) < —1. Only the upper
half-plane, however, includes the points corresponding to the

3 This statement is not exactly true. In the case of virial expansions we can
formally calculate the next term of the series and thus assess the accuracy
of the resulting expression. In practice, however, this possibility cannot be
realized, because we are incapable of calculating the higher terms in the
expansion. In the case of bridge functionals, however, it is always possible
to estimate the accuracy of the results by checking their thermodynamic
consistency. This method is much more efficient than the calculation of
leading terms of the virial expansion.

state of rarefied gas. Because of this, we must select the upper
half-plane as a physical one. Observe that the isothermal
compressibility kg by definition is [23]

1 (0p 1 ~

Therefore, on the upper half-plane we have kg > 0, and
1/ke = p(0P/0p), is also always positive [since p = N/V,
and hence dp = —(N/V?)dV, this inequality reduces to
(0P/dV)q < 0; see Eqn (2)].
FSE and the structure of matter. Transferring from the global
description of the system to the local approach, we can not
only reproduce the known results, but also get a new insight
into the physics of the phenomenon. Numerous examples will
be given later; here I only want to discuss the concept of the
‘structure of matter’.

Obviously, one phase of a substance differs from another
phase of the same substance only in structure. Because of this,
the concept of ‘structure’ ought to be fundamental in the
theory of phase transitions. Surprisingly, we do not find this
concept altogether in the Gibbs theory. This does not mean,
of course, that the Gibbs distribution does not actually
describe a structure: one can, for instance, calculate this
distribution by the Monte Carlo method and then process
the results in an appropriate fashion. But what is the
‘appropriate fashion’? The Gibbs theory gives no indications
to this effect. Nature, however, abhors vacuum, and the
scientific literature abounds with recipes for processing the
results of numerical experiments. Some authors identify the
structure with the instantaneous set of coordinates of all
particles [39], some other describe it with the Voronoi—
Delone polyhedrons [40], yet others use the concept of the
network of hydrogen bonds permeating the entire volume of
liquid [41], etc. Widely acclaimed has become the so-called
percolation theory of phase transitions, in which it is
anticipated that a phase transition is associated with the
formation of a macroscopically extended network of bonds
at the transition point. Some of these theories are internally
consistent and usable. The question is how constructive they
are, and what they add to our understanding of the nature of
the phenomenon?

Now let us see what the local approach tells us about the
structure of matter. In the general case, the local approach
leads to a system of two equations (FSE) in two unknown
functions: the one-particle distribution function GV (r), and
the two-particle distribution function G (r,). The first of
these describes the averaged distribution of the density of
matter p(r) = p,G V) (r) in the laboratory frame firmly nailed
to the center of mass of the entire macroscopic system. Under
such circumstances, the vector rin G(!) can assume any value
inside the volume of the system V, the function itself
describing the structure of matter on the macroscopic scale.
In the case of gaseous or liquid phases, this structure is the
same at any point of the macroscopic system, and therefore
G (r) = const.* In crystals, GV (r) is a periodic function of
r.

(35)

By contrast, the two-particle distribution function
G<2)(r12) characterizes the averaged distribution of the

41t is unforgettable that this constant changes abruptly upon transition
from the gaseous to liquid phase. Since the physical meaning is ascribed
not to the function G itself, but rather to the product p = poG U, it is
sometimes assumed that G!) = 1, and then the jump is experienced by the
constant p,, which is essentially the same thing.
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density of matter in a moving frame rigidly bound, for
instance, to the center of mass of particle /. In this frame we
shall count how often other particles appear at the distance
ri2 = |r; — ra| from the center of particle /. Averaging the
results obtained (over time or over the ensemble — which
does not matter much, since these two methods of averaging
are equivalent by dint of the ergodicity hypothesis), we find
the two-particle distribution function G ?)(r,), whose values
in the case of spatially homogeneous systems do not depend
on the coordinate r of the first particle. Obviously, the two-
particle distribution function G®(r|,) defined in this manner
describes the structure of matter only within the correlation
sphere. Outside of the latter, in accordance with the condition
of correlation damping [23], we have

w—0,h—0 G» =1 for rp— oo, (36)
and the density of matter is p(r) = p,G ¥ (r12) — p, = const.
The absence of correlations between the positions of particles
located fairly far from one another indicates that no threading
networks of hydrogen bonds, and no percolation throughout
the entire macroscopic system, are possible on the micro-
scopic level. This statement is not, however, precisely
accurate. Of course, in the instant photograph obtained in
numerical experiments one can always discern a solid network
of bonds between all particles. This network, however, will
change from one photograph to the next, whereas the
structure of matter, like any other parameter of the equilibrium
system, cannot depend on time. Accordingly, it can only be
found by averaging all instantaneous (random) photographs.
This is principally important, because all the physical
methods for measuring the structure of matter only respond
to the averaged values of coordinates of particles.

So, the state of matter in the local approach is described by
two structures: macroscopic (function G(V(r)), and micro-
scopic (function G®(rjy)). Since FSE simultaneously
includes both distribution functions, and neither of them
can be eliminated, this set of equations puts the macroscopic
and microscopic structures into a one-to-one correspondence.
Unfortunately, this linkage is often overlooked. For example,
in the theory of gases and liquids, where G(V(r) = 1, every-
thing reduces to finding the microstructure [that is, the
function G®(r},)]. Conversely, postulated in the theory of
solids are usually the parameters of the crystal lattice (which is
equivalent to setting the function G (!)(r)), while the micro-
structure is often neglected at all. This does not mean, of
course, that the interaction between particles is not taken into
account in the treatment of certain problems in the solid-state
theory. This interaction is taken into account, but not in terms
of the distribution functions. In the long run this puts up an
ideological barrier between the theory of liquids on the one
hand, and the theory of solids on the other. This situation
cannot be tolerated, because the nature of processes that
occur in these objects is often the same. If, for example, one
looks at the critical phenomena from the standpoint of the
theory of liquids, and — independently — from the
standpoint of the theory of solids, it is hard to explain why
the critical indices have the same values in liquids and in
solids. When we recall, however, that, according to statistical
mechanics, the correlation sphere must be present in all
bodies (including crystals), and that its radius goes to infinity
at the critical point, then it is no wonder that the same cause
(infinite correlation radius) has the same effect — identical
values of critical indices.

The lack of clear conceptions of the two structures also
leads to confusion in the theory of first-order phase
transitions. Since the concept of microstructure is usually
associated with gases and liquids, and the concept of
macrostructure with solids, the gas (liquid)—solid phase
transition is often interpreted as transformation of micro-
structure to macrostructure and vice versa. Now if macro-
structure in solids is macroscopically extensive, why could
not liquids feature networks of hydrogen bonds of infinite
extent (or equally extended percolations)? The fact is that in
the case of first-order phase transitions the macrostructure
of a crystal described by a periodic one-particle distribution
function GV (r) turns abruptly into the macrostructure of a
liquid with G(V(r) = const, whereas the microstructure of a
solid body described by a two-particle distribution function
G<2>(r12) transforms into the microstructure of a gas
(liquid), which is also described by a two-particle distribu-
tion function.

Now one final remark. The two-particle distribution

function is sometimes identified with the radial function
which only depends on the distance r1, = [r, — ;| between
the particles. This is only true for noble gases, whose particles
are spherically symmetric. In the general case, the two-
particle distribution function depends not only on the
distance rjp between the particles, but also on the mutual
orientation of particles described by five angular coordinates.
As a result, the microstructure of substances comprised of
asymmetric molecules will be described by a two-particle
distribution function of six variables: the distance r and five
angles. The problem is how to visualize such a structure. But
this, as they say, is a different kettle of fish.
Discussion. We see that in statistical mechanics there are two
approaches: the global approach based on the Gibbs
distribution, and the local approach based on FSE. In terms
of consistency and universality, these two approaches are
equivalent. This does not mean, however, that they are
identical: what cannot be formulated or justified in the
framework of the Gibbs theory (for example, the concept of
the structure of matter), can be validated in the context of the
local approach; whatever cannot be calculated in the frame-
work of the Gibbs theory (for example, the parameters of
dense gases and liquids), can be calculated using FSE, etc. We
shall prove these (and other) advantages of the local approach
with concrete examples later on.

2.6 Phase transitions and the fundamental set of equations
Now let us return to the problem of phase transitions, and see
how FSE can helps us in moving forward in this direction.
Two-phase approach. Consider a system comprised of gas (A4)
and liquid (B) phases in equilibrium with each other. We fix
the origin at the interface, and direct the z-axis perpendicu-
larly to the latter. Then the one-particle distribution function
G will be a function of only the z coordinate. At z = 400
this function will define the density of the gas phase
ps = poGV(+00), and at z = —oo the density of liquid
pp = poG(—00). Since each phase far enough from the
interface is spatially homogeneous, equation (28) of con-
stancy of chemical potential becomes

Inp, — pAJ Cf(il)(r) dEr=1Inpy — pBJ Cé”(r) d*r, (37)
v v

and Eqn (29) for the two-particle distribution function falls
into two equations — one for phase 4, and the other for
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phase B:

hA(r12>:c,§2><m>+pA[ COra)ha(rs) d®rs,  (38)
V

h3<m>:c,§2><rlz>+p3j COrshy(rn) s (39)
|4

In the rigorous theory, Eqn (38) with the given p, (and the
given temperature O and interaction potential @(r)) defines
unambiguously the value of 414, and thus the Value of C( )in

Eqn (37), and pg in Eqn (39) defines /5 and CB in Eqn (37)
As a result, Eqn (37) reduces to

ta(pa, ©) = ug(pg, ©) (40)

[see Eqn (1)]. At the same time, the pressure constancy
condition
PA(pA7 @) = PB(va @)

must be satisfied, where the pressures are calculated by Eqn
(25):

(41)

1
Pa(ps;0) = ps0 — ¢’
o0 D(1
XJ dd( )G(z)(I 04> )4nr2dr, (42)
0 r
1,
Pg(pp, ©) = pp0O ~sPs
X Jo rddi')Glgz)(r; pB,@)4Tcr2 dr. (43)

Itis clear that the two equations (40) and (41) uniquely define
the values of the two densities p , and pp. Thus, the FSE lead
to the same conditions of two-phase equilibrium as do the
thermodynamic considerations [see Eqn (1)]. If one of the
phases features a crystalline structure, the conditions of
equilibrium (41), (42) remain the same, but this time G(!) at
z = oo will be not a constant but a function of the coordinate
r.

The results of calculations using formulas (37)—(43) for
the Lennard —Jones (LJ) potential

a(r) — 40 K) Cﬂ

are shown in Fig. 3. We see a perfect fit between the numerical
experiment and the calculations based on integral equa-
tions — at least for the vapor condensation curve for
0 /e < 1.15 (the left-hand branch in Fig. 3). The fit is slightly
worse for the liquid evaporation curve (the right-hand branch
in Fig. 3), but the error still does not exceed a few percent. At
O /¢ > 1.15, the agreement is not as good, because we are
approaching the critical point where both the numerical
simulation and the calculations with integral equations are
less reliable. And yet, the overall agreement is still there.
Single-phase approach (virial expansions). Now let us see what
happens within the density range p, < p < pp. We set
p=p,+dp, and expand P(p,O) and u(p, O) in Eqns (40)
and (41) in a power series of dp. As a result, we get

(aP(pAv @)) —0 (aﬂ(Pm e
dp o )

)

(44)

(45)
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Figure 3. Curves of condensation and evaporation of an LJ liquid.
Numerical experiment: o — results of Ref. [42],  — results of Ref. [43].
Integral equations: — — results of Ref. [33], --- — results of Ref. [32].

This means that inside the interval p , < p < pj the quantities
P and p do not depend on the density p. However, this
obviously is contrary to the initial OZ equation, which
involves p as a literal parameter. The only way out of this
complication is to assume that the OZ equation has no
solution over the interval p, < p < pg. This assumption is
in complete agreement with our conclusions based on the
Gibbs distribution (see above). It is not surprising that the
solution of the OZ equation vanishes: from the theory of
integral equations we know that the eigenvalues (in our case
the density p) of integral equations may feature breaks within
the confines of which the equations admit no solutions (see
any textbook on integral equations).

In this way, the points p , and py are the points where the
solution of the OZ equation vanishes. At these points the virial
series must diverge. In the case of Gibbs distribution we were
unable to identify these points, because this theory did not
allow us to calculate the higher coefficients of the expansion
that are responsible for the singularity. In the case of FSE,
however, we can use the theory of integral equations for
calculating the approximate values of the virial coefficients
[44]. Let us reproduce here the argumentation of Ref. [44],
which is a good illustration of the method for solving
problems of this kind.

First, we need to get an approximation for the bridge
functional (used for this purpose in Ref. [44] is the generalized
Martynov —Sarkisov (MS) closure B® = —a(p, ©)w?*(r)
[28]; of course, other approximations are also possible). The
next step is to expand in the powers of density p both the OZ
equation itself

k—1

= CH(r;0,0) + ZJ Cll(ri3;0,0)
V

i=0

h [k (1‘12; O7 @)

X /1["717i](r23;0,@)d3r, k=0,1,.. 00, (46)
and the constant a(p, @) = 3%, pkal¥l (@), which gives
clH = h[k](r;O, o) —w[k](r;(), o)
ko 4
— > d0,0){w?(r;0,0) 1 (47)

i=0
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(here the operator [k] is defined by Eqn (17)). Starting with
k = 1, these equations are linear in C% and /¥, and their
successive solution does not pose any big problem. The
constants a¥/(@) are found in Ref. [44] from the conditions
of thermodynamic consistency of the solution. The latter can
be found from the obvious condition which states that the
values of virial coefficients By found by substituting /¥ into
the formula for the pressure (25) must coincide with the values
of the same coefficients calculated from the expression for
isothermal compressibility [23]

1 oP 00
Z (Y o1 - C2(r)4 2dﬂ>. 48
o p<ap)@ p ( pJO (r)dmr= dr (48)

Based on the above relations, several tens of the virial
coefficients By (@) for the LJ potential were calculated in Ref.
[44]. The comparison of the first four of them with the
coefficients found by the method of group expansions
indicates that the accuracy of the theory based on FSE is
quite satisfactory (Fig. 4). Such a comparison cannot be
performed for the higher coefficients, since the Gibbs theory
does not allow their calculation. Unfortunately, the calcu-
lated coefficients were not yet sufficient for reliably locating
the points of divergence of the virial series p(@). As we know,
the latter can be found from the tests of convergence of
Cauchy and d’Alembert:

p(0) = lim {/B(0),

Jim (49)
However, the substitution of the calculated values of By ()
into these expressions always resulted in that the value of
p(O) calculated from one test of convergence was different
from the value of p(@) calculated from the other test. Because
of this, in Ref. [44] an extrapolation technique was used,
based on the principle illustrated in Fig. 5. The curve p(0)
was plotted from the extrapolated data (Fig. 6). It was found
that this curve lies close enough to the vapor condensation
curve calculated by the two-phase method. The former is
somewhat shifted to the right of this curve, which is explained
by the fact that we are dealing with an approximate rather

B(0) B; x,x—xxx""‘x'"_"—"—x—x—x—x_x__x
0 0E Ry =z —k
- X XX X Xe o X X e
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— /$/
e
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-5 ] | 1
0.8 1.2 1.6 2.0
O/
Figure 4. Temperature dependence of the first four virial coefficients
By (0) for the LJ potential: — — results obtained with group expansions
[45]; = — = — results obtained with FSE [44].
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Figure 5. Extrapolation of virial coefficients B, (@) to the limit 1/k — 0:
1 — Cauchy’s test of convergence, 2 — d’Alembert’s test of convergence
[44].
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Figure 6. Vapor condensation curves obtained from numerical experiment
(curve I [46]), and from divergence of the virial series (curve 2 [44]), and
spinodal (curve 3 [46]).

than an exact solution. On approaching the critical point, the
curve of divergence of the p(@) series levels out, in complete
agreement with the predictions of the theory of critical
phenomena.

General solution of the Ornstein—Zernike equation.
Obviously, the solution of the OZ equation does not exist to
the right of the curve of divergence of the virial series. The
solution does not vanish, however, when the OZ equation is
solved numerically — with the same closure but without series
expansion. Instead, the solution always extends into the two-
phase domain where, according to the arguments developed
above, it does not exist. This is because the singularity
appearing in the curve of phase equilibrium is very weak,
and it is very difficult to detect it in numerical simulation
without knowing in advance what it looks like. Here only
analytical study of the problem can help, which we start with
getting the general solution of the OZ equation [47]. Here we
briefly describe the technique developed in Ref. [47].
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From Eqn (33) it follows that, since /(k) sin(kr)k is an
even function of k, we have

I (> .
) = s L (i) sin (k) dic
Ly e (50)
=3 oy Jioo h(k) sin(kr)k dk .
Now, since sin(kr) = —i[exp (ikr) — cos(kr)k], where

cos(kr)k is an odd function, we can rewrite Eqn (50) using
Eqn (34) in the form

rh(r) = %

Jm h(k) exp (ikr)k dk

—0

1 J*OO C(k)
20 2n)? ) 1= pC(k)

The integral on the right-hand side of Eqn (51) can be
found with the theory of residues. To do this, we need to go
over from the real values of k& to the complex values
k =k +ik”, and close the real axis k', over which the
integral is taken in Eqn (51), in the complex plane with an
arc of infinite radius. Then we find the locations of poles in the
upper half of the complex plane, bounded from above by this
arc, and by the real axis k’ from below. Let the coordinates of
poles of the integrand in Eqn (51) are given by k; = iz;, where
zj = o + ;. Then, obviously, the poles of the integrand in
Eqn (51) w111 be given by zeros of the denominator — that is,
by the equation 1 = pC(k ) or, with due account for Eqn (33),
by

exp (ikr)k dk . (51)

+00
| — 4TCPJ () S sin 1zjr 2dr
0 IZI
or
+00 h
1= 4Tth C(r)S 2 gy (52)
0 Zr

(first expressed in Ref. [48]). Since the integrand in Eqn (51) is
the fraction &(k)/y(k), where ¢ =kC(k)exp (ikr),
Y =1 — pC(k), then from the theorem of residues we get

1
rh(r) = %XI: R;. (53)
The residue is
(k) k;C(kj) exp (ik;r) izexp (—zr)
Ri=—1 — 4 = 54
A pC'(k)) p2C'(iz)) G4

(here we have noted that C (kj) = 1/ p). Finally, we find that

iz exp z,
h(r) =— < A;
) ;Mpo’(izj) Z

exp

(55)

Since, by definition, the Fourier transform of the direct
correlation function is (see Eqn (33))

oo ) sin {cr )

rodr, (56)

dm:%J

0

j=1,2,3, ...

its derivative with respect to k is

. oo coskr sinkr
’ _ | _ 2
C(k)_4nJ, C(l)< 3 2r >r dr.

(57)

Setting here k = iz;, we get the sought expression for the
amplitudes [47]

72
= +0o0 ! : (58)
2(2mp)? L C(r)[ch(zr) — sh(zr)/zr]r* dr

If z; is a real number, then this formula does not require any
modifications. If z; is a complex number, in Eqns (55) and (58)
one must set A4; = A4;+id] and separate the real and
imaginary parts in all expresswns This eventually leads to
rather cumbersome equations which we do not reproduce
here: the main idea is clear enough from the above results. The
passage from the real roots of the transcendental equation
(52) to the complex roots does not really change anything.
Vanishing of solutions of the Ornstein— Zernike equation. The
transcendental algebraic equation (52), like any transcenden-
tal equation, has an infinite number of roots z; = a; 4 1if;,
We know very little of their behavior. As a
matter of fact, they have only be studied in one paper [48],
where these roots were examined in different approximations
for a system of rigid spheres with the potential (22), without
any reference whatsoever to phase transitions. Nevertheless,
this work provides the basis for formulating a certain
hypothesis concerning the mechanism of vanishing of the
solution of the OZ equation in the curves of first-order phase
transitions.

Table 1 gives the values of ¢, f; found in the hypernetted-
chain approximation (HNC) where weset B = 0,and in the
MS approximation in accordance with whom B® »?/2.
Calculations in Ref. [48] were done for dlfferent densmes
p = pa’, where p = N/V is the mean number density of
particles. We see that at all densities p the majority of
coefficients o fall within a rather narrow interval

Ao = Omax — (59)

Omin
(we do not exclude the possibility that more accurate
calculations will give Ao = 0). At the same time, at high
densities (p > 0.2) we can observe the appearance of
individual ‘dropouts’ from the corridor Ao, whose absolute
value o quickly decreases with increasing density. In all
likelihood, there is an infinite number of such dropouts.
Judging by Table 1, every fifth root qualifies as a dropout, i.e.

(60)

e .
% = Osjs

and, curiously enough, this result does not depend on the
approximation in which the OZ equation is being solved.’
What is more, the absolute values of ocl’-‘ and the relevant
imaginary parts ﬁj* are approximately the same for the
‘dropouts’, whereas the values of regular roots o;, f; differ
rather considerably in different approximations. As far as we

can see, the following inequality always holds for the

3 The exception seems to be the Percus— Yevik approximation, where there
are no dropouts at all. This assumption, however, has yet to be proved.
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Table 1. Roots of the transcendental equation in HNC and MS approximations [48].
p=0.1 p=05 p=09
HNC MS HNC MS HNC MS
% B % B; % B % B; % B % B;
4.26 0.72 3.73 1.47 3.73 0.68 4.13 0.75 2.70 1.68 3.77 1.44
421 2.13 3.67 2.90 3.90 2.20 4.10 2.28 3.13 2.83 3.70 2.93
4.11 3.54 3.56 4.20 3.86 3.73 4.06 3.78 2.83 4.60 3.62 4.48
3.84 4.70 3.62 5.21 3.80 5.30 4.05 5.30 2.77 5.90 3.36 6.00
4.27 5.58 1.77 6.00 1.70 5.88 0.80 6.92 0.70 6.82
3.81 7.83
3.50 9.41
3.56 10.9
3.50 12.5
1.83 12,7
3.70 14.3
Note: ‘Dropouts’ were marked with bold italic.
‘dropouts’: r — oo the direct correlation function is
* * 1 1 2
% <%y O e e? m 5[ exp(-ain)] (64)

The general pattern of the distribution of poles is given in
Fig. 7.
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Figure 7. Schematic distribution of roots of the transcendental equation
(52) for the system of rigid spheres with density p = 0.9, calculated in the
MS approximation [48].

Now let us turn to the transcendental equation (52), which
we write out in the form

R o 00
1:4np“ C(r)Shﬂrzdr—i-J C(r)

0 Zjr R zjr

shz;r

r dr} . (62)

According to Eqn (32), in this expression we have
C=h—w+B®. In Eqn (62) we put R so large that at
r > R the potential @(r) can be regarded as equal to zero
(recall that the potential varies as ® ~ (¢ /r)° for r — oo, and
at r > (2—3)o the condition ¢ =0 is satisfied). In this
approximation 1 =expw — 1 = Zle //j!and

(63)

Assume first that B() = 0. Retaining in Eqn (63) only the
principal term o’/ with the lowest power, we find that as

In the second integral in Eqn (62) this expression is multiplied
by sh(oyr) /o = exp(oyr) /201, where o, is a regular root from
those falling within Aa (for simplicity, we disregard the
imaginary part that describes oscillations of the distribution
function). Obviously, the second integral in Eqn (62) will
converge only if

20] > a5 (65)

otherwise it diverges and goes infinite. Then, of course, the
transcendental equation itself is no longer valid. Simulta-
neously, the integral in the denominator in Eqn (58) also goes
to infinity, since it is also equal to

[-Le

and
J ~ f 3 (A4°) exp(~25i7) explogr)rdr (66)
R R
As a result, for the density at which
20(:1&1 =%, (67)
the amplitude 4; becomes zero:
4,20, (68)

and the corresponding term will disappear from the overall
sum h(r) =), A;exp(—aor)/r. This will happen very
smoothly and insensibly, because the divergence occurs at
the largest distances r = 1/2auyi,, and develops gradually as
we approach the point where condition (67) is satisfied.®
Obviously, in the regular group of roots the terms with
o R omax Will be the first to disappear, then the roots with
o < olmax Will follow, and so on, all the way to the roots with
o = otmin. After that all the roots of the regular group will be

®The weak divergence of the virial series at the points of the first-order
phase transition was also pointed out in Ref. [17], where the Gibbs
distribution (not the OZ equation!) was used for getting the exact
expressions for the virial coefficients By (©) of the lattice gas at k — oco.
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gone, and /A(r) will only contain one term dominated by the
‘dropout’. Then, however, it will no longer be possible to
satisfy the condition at r = 0, where 47 = —1. This means that
the density at which all the regular roots disappear is the point
where the solution vanishes — that is, the point of the phase
transition.

So far we have assumed that B =0. In the MS
approximation, when the bridge functional B® = —w?/2
compensates the quadratic term in the expansion of A, the
principal term in the expansion of C with respect to w (the
term that falls off at infinity at the slowest rate) is that with o?.
As a result, in place of Eqn (67) we get 3a} = o;. If the bridge
functional also compensates the cubic term in the expansion
of h with respect to w, then in this equality we shall have 4 in
place of 3, and so on.

Discussion. In this section we have shown that the local theory
based on FSE is capable of the following:

(a) in the context of the two-phase approach, calculating
the curves of vapor condensation and liquid evaporation
p = p(O) with good enough accuracy;

(b) calculating the leading terms of the virial expansion,
and showing that this series diverges in the vapor condensa-
tion curve in complete agreement with the ideas of the single-
phase approach;

(c) analyzing the asymptotic OZ equation and establish-
ing the general criterion of vanishing the solution of the
complete OZ equation [see Eqn (68)].

All this allows the guidelines for converting the single-
phase approach into a working tool for calculation of the
curves of phase equilibrium to be put forward. And, what is
equally important, we have used this example to demonstrate
that the theory based on FSE is capable of delivering
fundamentally new results.

2.7 Metastable states
Strictly speaking, it is impossible to make any conclusions
concerning the nonequilibrium metastable states, based on
the results of the equilibrium theory. The only thing we can
speak about is the peculiarities of the transition from the
thermodynamically stable state to the metastable state.
Thermodynamic limit. From a macroscopic standpoint, there
is no clear-cut distinction between equilibrium and meta-
stable systems: the former last forever, and the latter (say,
glasses) for hundreds of years. This is not a distinguishing
feature. Compared with the only characteristic microscopic
time parameter — the time of chaotization of the system,
7/~ 10712 s — a century is the same as eternity. At the same
time, statistical mechanics has a way of telling one from the
other, because it describes systems occurring at thermody-
namic equilibrium, and does not describe a metastable
system. How does this happen? What are the restrictions
that automatically exclude metastable systems from consid-
eration?

The matter is that statistical mechanics is formulated in
the so-called thermodynamic limit

N

N— o0, V—oo at p:I—/:const. (69)
In other words, by definition it only deals with infinitely large
bodies. The passage to the thermodynamic limit in statistical
mechanics is necessary because it is only then that its
predictions become unambiguous. In systems of finite size
the distributions of particles, differing from the Gibbs
distribution, may also be present (see Ref. [23]), and it is

impossible to decide which of the possible distributions is
realized in each particular case, because this depends on the
configuration of particles that has spontaneously sprung up
in the system.

In order to understand why condition (69) is so important
for the theory of phase transitions, let us consider a system in
which the pressure and the temperature are maintained
constant. The probability of occurrence of the system in the
given phase state is W o exp(®/0), where @ = Ny is the
thermodynamic potential of the system, NV is the total number
of particles, and p is the chemical potential. Accordingly, the
probabilities ratio for realization of phases 4 and Bin such a
system is

= exp |- g5 (0~ @)= exp |- F (s )] . (0

For any finite N this ratio is also finite, which means that the
system may, in principle, occur in either one of the two states.
At N = oo, however, the situation is different: with uz > py
we have W, /Wpg =0, and therefore the probability of
realization of the phase 4 is zero (an impossible event), and
that of the phase B is one (a certain event). Conversely, with
g < Ly, the probability of realization of the phase A4 is one,
and that of the phase B is zero. And only with p, = up, the
realizations of both the phases 4 and B are equiprobable (the
two-phase state of the system).

The same conclusion can be reached in a different way.
Let us mentally divide the entire system into N, identical
volumes wy, so that V' = Nyvg. Let the probability of the
nucleus occurring in volume vy be Wy. Then the probability
W = Ny W, of occurrence of at least one nucleus in the entire
system (which is sufficient for starting a phase transition) for
any arbitrarily small but finite W} is unity, because Ny — oo
(a certain event). And only with W, = 0 (the state of stable
thermodynamic equilibrium), the overall probability W of
occurrence of the nucleus does not depend on Ny — it is equal
to zero as before.

We see that it is the passage to the thermodynamic limit in
statistical mechanics (which deals with the discrete model of
matter) that removes ambiguity from the problem of finding
the points of phase transition. In this respect statistical
mechanics is essentially different from thermodynamics
which deals with the model of continuous medium. The
concept of a ‘particle’ can only be introduced here by a tour
de force. Usually this is accomplished by adding another
postulate which states that the free energy F (or some other
characteristic function of the system) depends not only on p
and O, but also on several macroscopic parameters ;.. Let one
of these parameters have the meaning of the total number of
particles N. Then one can introduce the derivative
u=(0F/0N), o and call it the chemical potential. If,
however, we turn to the BBGKY hierarchy 7, which lies in
the basis of the entire statistical mechanics, we find that after
passage to the thermodynamic limit it only retains two
independent literal parameters — p and ©. Because of this,
all other parameters &, including the number of particles N,
are functions of density and temperature. This is easy to see if
we look at the more general case of reacting systems. They
obey the law of mass action, which states that the concentra-
tions of individual components N, (and, therefore, the total

7The Bogolyubov—Born—Green —Kirkwood — Yvon hierarchy of equa-
tions [49].
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number of particles N = >, N;) are functions of p and © [20].
Another example is the order parameter, a concept widely
used in the theory of critical phenomena (see Section 3). In the
case of liquids, this parameter is identified with the length of
the two-phase interval of densities Ap = p ,(O) — pg(O) (see
Eqn (7)), a quantity that is by no means arbitrary in statistical
mechanics — it has to be determined either from the Gibbs
distribution or from the solution of FSE (the latter, as we
know, do not involve any &;; they only include the interaction
potential &(r) and the literal parameters p and ©).

Thus we see that in statistical mechanics all the macro-

scopic parameters of the system, including &, depend on p
and O, and this is a functional dependence. It is defined by the
integrals of the distribution functions G) = G')(r; p, @),
each of which is itself a function of p and ©. Instead of this, in
thermodynamics the parameters £, are regarded as indepen-
dent variables, like p and @. In most cases the introduction of
these parameters gives a correct description of the phenom-
enon and does not lead to any significant mistakes or
contradictions. It seems likely that the discrepancy between
thermodynamics and statistical mechanics relates only to the
metastable states: the former describes them, the latter does
not.
Mechanism of the loss of stability. To understand the
mechanism of the loss of stability we must return to the
results of the preceding section. The solution disappears
because just one root (out of the infinite set) becomes too
small and thus violates condition (68), while all the other
roots behave disciplined. Besides, the amplitude of the root
that ‘violates an order’ vanishes at the time of breach, so the
disappearance of the root occurs unnoticed. It is easy to
overlook this event in numerical simulation — the more so
because the smallest roots correspond to the largest distances,
where all functions are practically equal to zero. That is the
reason why attempts to find the point where the solution
disappears usually fail, and the solution easily jumps over into
the metastable region. The ‘weak’ divergence of the virial
series at the transition point is also seen from the analytical
solution obtained in Ref. [17] for the lattice model of liquid.

2.8 Summa summarum

Let us give the sum and substance of our discussion. Based on
thermodynamics, we have shown that the single-phase
approach has reason to exist. Further analysis revealed,
however, that this approach cannot be realized within the
framework of the global Gibbs approach. More promising is
the local approach based on the fundamental set of equations
(FSE). Using the latter, we established that the virial series
diverge in the vapor condensation curve in full agreement
with the Lee — Yang theorem. Besides, analyzing the asymp-
totic behavior of the OZ equation we found one of the
possible mechanisms of the solution disappearance. It would
be too early, however, to speak of having validated the single-
phase approach. We must check thoroughly whether this
mechanism allows defining the transition points, or there is an
alternative mechanism by which the solutions may disappear.
This, however, is a task for the future.

3. Critical phenomena

3.1 Statement of the problem
In 1982, K G Wilson won the Nobel Prize for development of
the theory of critical phenomena. As I was told by one

celebrated theoretician: “This means that the problem is
solved; nothing’s left to be done here”. I, however, dare to
disagree with this opinion.

It is true that the classical Widom —Kadanoff— Wilson
theory (WKW) permitted calculating the critical indices in
full agreement with experiment [50]. The experimenters
working, for example, with solutions are less interested in
the critical indices than in the values of concentration and
temperature at which the critical point will occur in the system
under consideration, in how the system will behave in the
neighborhood of this point, etc. These questions are not
answered by the WKW theory — and cannot be, because
this theory is based on the assumption that all properties of
matter at the critical point are determined by the behavior of
particles located far away from one another — at such
distances for which the interaction potential is ®(r) = 0. We
know, however, that it is the interaction potential that
determines the distinctive properties of matter. Therefore,
the neglect of the short interparticle distances, for which
&(r) # 0, automatically precludes the possibility of studying
the individual features of critical phenomena.

Theoreticians have their own reasons to be disap-
pointed — many concepts of this theory lack sufficient
validation (see below). On top of that, almost all results of
the classical theory of critical phenomena are based on
discrete lattice models like the Ising model, for which the
Gibbs distribution can be calculated exactly or almost
exactly. At the same time, liquids belong to continuous
media, and the results obtained with discrete lattice models
can only be applied to them after careful analysis.

In the long run the WKW theory is based on the global
Gibbs distribution (and on numerous additional assump-
tions). At the same time, as shown in the preceding section,
passage to the local OZ equation gives extra insight into the
mechanism of first-order phase transitions. It would be only
natural to wonder what this approach could add to our
understanding of second-order phase transitions (i.e. critical
phenomena). This section of the review is devoted to this
problem.

The first attempt to use the OZ equation for describing
critical phenomena was undertaken by the authors of this
equation themselves as early as 1914. Later, however, their so-
called classical critical indices were found to be rather
different from the experimental values [51]. At that time this
was not much of a surprise, because the OZ equation was
regarded as a definition of the direct correlation function
rather than as an equation. If a definition does not apply to a
particular case, so much the worse for it. As I said, however,
in 1960 Morita and Hiroike proved that the OZ equation
directly follows from the Gibbs distribution [3] (see also Refs
[52, 53]). If so, then the OZ equation should yield precisely the
same results as the Gibbs distribution. For a long time,
however, this statement escaped proof: the OZ equation
always led to the classical critical indices. Therefore, summar-
izing the current state of the theory of critical phenomena, M
Fisher had all grounds to state that ““... the integral equations
cast essentially no light on the issue of Ising-type versus
classical critical behavior” 3 (from Abstract submitted to the
NATO Advanced Study Institute “New Approaches to Old
and New Problems in Liquid State Theory”, Patti Marina,
Messina, Sicily, 7—17 July 1998).

8 The integral equations threw little light on the problem of the transfer
from classical critical indices to Ising-type indices.
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We shall shortly demonstrate that, with a more careful
analysis, the OZ equation will yield not only all the results of
the WKW theory, but also many previously unknown
features of critical phenomena, practically without any
additional hypotheses. As a matter of fact, the only addi-
tional assumption is the approximation of a bridge func-
tional, without which the calculation of critical indices would
have been impossible. As stated in Section 2, however, such
an approximation is inevitable not only in the case of critical
phenomena, but actually in the case of any attempt to go
beyond the limits of the theory of rarefied gases. This is true
irrespective of whether we are using the Gibbs distribution or
the FSE.

3.2 Critical phenomena and thermodynamics

In Section 2 we studied a case when the condition of neutral
equilibrium (0P/0p), = 0 is satisfied over a finite interval
p4 < p < pg. Now we shall consider the case when

oP
(f) 0 ()
op Jo
at a single critical point
P = Pe> @:@C (72)

Since, by definition, we are only dealing with equilibrium
systems, the latter condition implies that at any other values
of p, O the system is absolutely stable. Accordingly, for all
points that lie in the isotherm @, = const, with the exception
of the critical point itself, we have (0P/0p), > 0 (see Eqn (2)).
This is compatible with Eqn (71) only provided that the
critical point is the point of inflection of the isotherm
P(p, O,.), and therefore

2

(&),

00 Jo
at this point. Since at equilibrium we have P = P(p, ©), the
two conditions (71) and (73) uniquely define the coordinates
of the critical point p,, O (given, of course, that we know the
equation of state P(p, ©)).

Now let us see what can be said about the properties of
matter at the critical point, remaining in the framework of
thermodynamics and phenomenological approach.

From the thermodynamic theory of fluctuations and Eqn
(71) it follows that at the critical point the rms density
fluctuation is [20]

0 oP 71/2_ B B
oc{@(ap>9} =oc0 at p=p, O =06,. (74)

(73)

The latter means that the microscopic density fluctuations
become macroscopic with the amplitude close to the mean
density p = N/V. This conclusion is brilliantly confirmed by
the experiment, since liquids at the critical point always
feature opalescence.

The experiment also indicates that many parameters of a
substance behave in a nonanalytical way in the neighborhood
of the critical point (recall that, by contrast to this, in the
regular part of the phase diagram all the macroscopic
parameters can be expanded in the analytical Taylor series
in powers of density [4]). For example, the heat capacities in
the neighborhood of p., @, vary as

C[D7 CV X ?éy N (75)

where o = 0.11 is the critical index, and ¢g = (O — 0.)/6O..
The density difference between gas and liquid phases varies as

A 0, 0>0,, 6
p=p4—PpX 4. o<o., (76)

where f§ =~ 0.33 is another critical index. The isothermal
compressibility varies as

Ko X &g (77)

where y & 1.23 is a third critical index. The pressure varies as

AP=P—P.ox&), (78)
where 0 ~ 4.6 is a fourth critical index. In addition, we can
define the critical index v that describes the behavior of the
correlation radius near the critical point:

R, x g, (79)
where v = 0.63, and the critical index # that describes the
asymptotic behavior of the two-particle distribution function

exp(—A4r)

@)
GO = 1+ A==

(80)
where n =~ 0.05. There may also be other critical indices (all
the above values of critical indices were found experimentally
[51D).

From purely thermodynamic considerations one can
establish a number of similarity relations between the critical
indices [11]:

a+2+7>2, (81)
y=p6-1), (82)
Q-nyv=y, (83)
51

—> —_ R

322 (84)

and so on. The experiment reveals, however, that these
relations are invariably realized as equalities rather than as
inequalities [for instance, (2 —#)v =y]. Thermodynamics
cannot explain why this is so.

Calculation of critical indices with the aid of the van der
Waals equation of state in this approximation (which is
usually referred to as classical) gives . =0, f = 0.5,y = 1.0,
0 = 3, n = 0. Although the classical values of critical indices
are close to the experimental, there still is some difference.

The first attempt to construct a purely thermodynamic
theory of critical phenomena was made by Landau [20, 54].
The pivotal concept in his theory is the order parameter &,
which is defined as a macroscopic parameter of the crystal
that is equal to zero in the symmetric crystalline phase, and is
other than zero in the asymmetric phase. Obviously, in the
case of liquids the order parameter ought to be identified with
Ap,i.e. &£ = Ap; the symmetric phase with the liquid above the
critical isotherm, where Ap = 0, and the asymmetric phase
with the two-phase region of the phase diagram below the
critical isotherm [see Eqn (76) and Fig. 2]. The next
assumption is that the free energy of the system is a function
of three parameters: p, @ and ¢ [that is, F = F(p,0,¢)],
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whereupon the free energy is expanded in ¢:
F=Fy+FREE+Fét+ .

It can be proved that the odd terms in this expansion are
equal to zero, and that the coefficients are
F;(©) = Fy + Fe9+... Hence we get the equation of state

(85)

OF
AP:(—) =2Feg 4 ... + 4F4E + ...
o ) o

(86)
If we now set AP = 0 in this expression, we immediately find
that at the critical point £ = Ap sg 2, which corresponds to
the classical index. In a similar way one can prove that in
Landau’s theory all the indices assume their classical values
[20, 11].

Seeking to improve Landau’s theory, Widom [46] found
that if the equation of state is written out in the form

AP =cy(0,¢77), (87)
where Y is a homogeneous function of the power vy of the
variables © and &'/, satisfying the condition

V(20,28'0) = iy, ¢, (88)
then, in complete agreement with experiment, we shall have
an ‘equality’ sign in place of the ‘greater than or equal to’ sign
in all similarity relations (81)—(84) considered above (for
more details see Ref. [11]).

Discussion. Today the concept of the order parameter is used
quite extensively. Therefore, it would be worthwhile to
discuss this issue in greater detail.

As indicated above in Section 2.6, in a consistent
statistical theory there is no place for the order parameter,
because neither the Gibbs distribution, nor the FSE contain
any macroscopic parameters other than p and @ [and, of
course, the interaction potential @(r)].

Let us see now what happens with the liquid at the
temperatures @ < @., when the matter occurs in the two-
phase state (region below curve ACB in Fig. 2). However
narrow the two-phase interval £ = Ap might be, the mean
pressure inside this interval remains constant (P = const) and
therefore the free energy inside this interval is given by F = V£,
where the density of the free energy f, according to Eqn (12), is
a function of the volume fraction v of the system, occupied by
one of the phases, and not a function of the order parameter
Ap.

One might argue that there are always huge heterophase
fluctuations in the two-phase region near the critical point,
which add to the value of the free energy. This is true indeed,
but the contribution of these fluctuations depends on the
surface tension ¢ rather than the order parameter £ = Ap. As
a matter of fact, the smaller ¢, the more vigorous is the process
of splitting the continuous liquid phase into separate droplets,
and the stronger are the heterophase fluctuations.” Therefore,
the initial postulate of Landau’s theory (85) is hardly valid at
O < 0O..

This means that Landau’s theory does not apply to
liquids: it does not describe altogether the homophase
fluctuations occurring at @ > 0., and in all likelihood gives

9 Observe that neither thermodynamics nor the statistical mechanics of
today can offer any more or less consistent theory of heterophase
fluctuations.

a wrong description of the heterophase fluctuations in the
two-phase system at & < O..

Quoting from R Balescu (see Ref. [11], p. 365), Widom’s
theory is a ““...purely phenomenological thermodynamic
theory based on assumptions that have no fundamental
validation”. The main advantage of this theory is that “the
simplicity of the theory and successful predictions made on its
basis have stimulated further investigations” (ibid.), this time
on the statistical level. We are going to discuss these
investigations now.

3.3 Critical phenomena and the Gibbs distribution
(Kadanoff — Wilson theory)

In this presentation of the Kadanoff— Wilson (KW) theory I
shall follow the scheme proposed by Balescu [11], skipping
almost all of the equations. The majority of references in this
section will also be to this book (its Russian translation).

Developing Widom’s ideas on the microscopic level,
Kadanoff put forward the hypothesis of universal similarity.
According to this theory, the entire system near the critical
point can be divided into separate blocks, assuming that the
correlation between the particles in the block is approxi-
mately the same as the correlation between the blocks. Within
the block, however, the correlation is mainly determined by
the interaction potential, whereas this potential cannot affect
the correlation between the blocks. Obviously, here we are
dealing with a very strong (and unproven) assumption, which
is fundamental for the entire theory, because it is needed for
formulating the same similarity relations as those following
from the Widom’s similarity hypothesis.

The next step is Kadanoff’s assumption that all sub-
stances can be divided into a number of classes, so that the
substances of the same class behave in the same way near the
critical point. As a matter of fact, this assumption postulates
(without proof!) the universality of critical indices.

Kadanoff’s formulas of the theory of universal similarity
contain some functions whose form was simply guessed. To
define these functions, Wilson constructed a set of differential
equations. In fact, he used the same ideas of interaction
between the blocks as suggested by Kadanoff. Subsequently,
Wilson’s system of equations became known as the renorma-
lization-group (RG) equations. To solve this system, Wilson
assumed that the functions entering these equations are
analytical even at the critical point. As a result, he managed
to demonstrate that a system of differential equations with
analytical coefficients can naturally lead to critical singula-
rities, which is of course an outstanding achievement. It
turned out, however, that “the laws of similarity are very
weakly related to the Hamiltonian™ of the system, because
they mainly “reflect the intrinsic characteristics of the RG
equations” ([11], p. 386). On top of that, in order to solve the
RG equations Wilson makes some assumptions which “‘are
not always quite comprehensible” ([11], p. 392). In particular,
he very boldly assumes that the dimensionality of space d can
be used as small parameter of the theory when solving the RG
equations. Nevertheless, all this train of assumptions even-
tually leads to surprisingly exact values of the critical indices.
Summing up, Balescu very cautiously writes: “Wilson’s
theory may not be the last word in the theory of critical
phenomena. His constructions use many approximations that
sometimes cannot be proved. In addition, Wilson’s similarity
laws may be not universal, although a broad class of models
and real systems seem to comply with them... The prospects
offered by this theory for solving this difficult problem [that
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is, the problem of construction of the theory of critical
phenomena — Author] are esthetically so attractive that this
theory ought to be at least partially true” ([11], p. 401).
Discussion. So, building on Widom’s phenomenological
hypothesis, Kadanoff and Wilson were able to construct —
with the aid of sometimes ‘very strong’ additional assump-
tions — a theory of critical phenomena that would not only
establish the linkage between different critical indices, but
also calculate the absolute values of these indices in good
agreement with experiment. And since it is experiment that is
the supreme judge of any theory, there is little doubt that the
KW theory is correct. The concern is about something else:
namely, whether this is a statistical theory? In other words,
whether it is possible to deduce it from first principles (that is,
from the Gibbs distribution) without any additional hypoth-
eses? The answer to this question is negative.

Indeed, Kadanoff started with replacing the actual
Hamiltonian of the system in the Gibbs distribution, that
depends on the interaction potential of particles, with the
‘block Hamiltonian’ that does not depend on the interaction
potential at all. Then Wilson changed the statement of the
problem in such a way that “‘the laws of similarity are very
weakly related to the Hamiltonian” (and hence with the
Gibbs distribution). Instead, they mainly “reflect the intrin-
sic characteristics of the RG equations” — that is, those
equations that were added by Wilson to the initial Gibbs
distribution. This construction can hardly be called a
consistent statistical theory.

Recall, however, that the KW theory was developed in the
late 1960s—early 70s. The prevalent opinion at the time was
that any statistical theory must necessarily be based on the
Gibbs distribution. The FSE-based alternative was already
known, but was still regarded as controversial — the more so
because the rather numerous attempts to use the OZ equation
for calculating the critical indices always ended up with the
erroneous classical values [50]. As we have seen, however, the
Gibbs distribution gives too broad (global) a description of
the system. In particular, it does not explicitly define the
concept of structure, which is pivotal for the theory of phase
transitions of both the first and the second order. To make up
for this shortfall, Kadanoff had to forcibly change the form of
the Hamiltonian to take into account those changes of the
structure that occur in the neighborhood of the critical point.
This, however, was not enough and Wilson had to make
further arbitrary assumptions, which eventually made the
theory inconsistent. The desire to build only on first principles
eventually led to a renunciation of them.

By contrast, the local approach based on FSE deals with
the distribution functions that just define the structure of
matter. Because of this, in the local theory one need not
postulate the simple concept of, for instance, the correlation
radius R, — it arises in a natural way (the turning of R. to
infinity was one of the postulates of the KW theory). We shall
see that the local approach (which, as I have stated more than
once, is no less rigorous than the global Gibbs approach)
allows the construction of a much simpler (both mathemati-
cally and physically) and much more consistent theory of
critical phenomena.

3.4 Critical phenomena and virial expansions

The critical point C lies at the very top of curve OACBT of the
phase equilibrium of the first order (see Fig. 2) and, like all
other points of this curve, is a singular point of the partition
function. Because of this, the virial series in the critical

isotherm © = O, at p = p, must diverge. This divergence,
however, has several salient features.

Calculating the fifth virial coefficient of Lennard —Jones
(LJ) liquid by the methods of group theory, Barker et al. [45]
found that the five-term  equation of  state
P= Z/i:o p*Bi(©), supplemented by conditions (71), (73)
which define the coordinates of the critical point on the phase
diagram, yields

N e
pe=—0> =025+005 —=128+0.05

V £ (89)

[the parameters ¢ and ¢ are given by Eqn (44)] in very good
agreement with the numerical experiment. This implies that
the remaining terms of the virial expansion do not give any
correction to the values of Eqn (89), which can only be if they
are identically equal to zero. Because of the immense technical
difficulties, however, it was impossible to check this hypoth-
esis remaining within the framework of the Gibbs approach.

In Ref. [44], this problem was solved by the methods of the
theory of liquids using the OZ equation [see Eqns (46)—(49)].
The results bore out the hypothesis by Barker et al., since at
least the next 25 virial coefficients in the critical isotherm were
equal to zero (see Fig. 8), and not only for the LJ potential,
but also for the rectangular potential well

oo, O<r<r,
@(}’) = 7(15(), rn<r<r,
0, m<r<oo.

A five-term polynomial, however, cannot diverge at the
critical point, which seems to contradict the statement made
above. As we can see from Fig. 8, however, as the number k of
the virial coefficient increases, we have for the derivative
dB(©)/dO — oo at ©® = O.. Accordingly, the condition of
divergence of d’Alembert’s power series (49) can be written
out in the form

B.(0) dBi(6)/d6 oo

OH)=Ilm——=1lm —"FF——— — — .
,0( ) k—o0 Bk+| (@) k—00 dB/c+1(@)/d@ o0

B (0)

0.5 |

—1.5

-2.0

0.6

Figure 8. Leading virial coefficients By (@) with k = 3, 4, ..., 12.
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This relation may well define the coordinate p, of the critical
point (which, of course, cannot be rigorously proved by
numerically solving the OZ equation).

Now we ought to pay attention to yet another feature of
the results obtained in Ref. [44]. As follows from experiment,
near the critical point the curve of phase transitions is
described by the formula Ap ~ %%, that is a very flat
parabola [see Eqn (76)]. The diagrams in Fig. 6 generally
support this conclusion, although the accuracy is too poor to
make any quantitative conclusions. At the same time, the
coordinates of the critical point itself are very close to those
given in Eqn (89). This and the good agreement between the
shape of the curve and the experimental results bring one to
the conclusion that the coordinates of the critical point
calculated from the virial expansion [see Eqn (89)] are more
accurate than those following from numerical experiment
(which for an LJ liquid gives p, =0.34+£0.02, O/¢=
1.34 4 0.02 [49]).

3.5 Asymptotic Ornstein— Zernike equation

Starting with this section we embark on the local description
of critical phenomena, based on the OZ equation. Since all
phase transitions (including critical phenomena) are asso-
ciated with the behavior of the two-particle distribution
function G®(r) at large distances'?, we shall start by
deriving the asymptotic OZ equation. First, however, I
would like to explain more precisely what I mean by the
asymptotic behavior.

In the overwhelming majority of cases, the interaction
potential @(r) at large distances decreases as @ ~ (a/r)°,
where ¢ is the diameter of particles (with the exception of
Coulomb systems, which we leave out of the consideration).
Because of this, at r > (2—3)o we may safely set @ = 0. Given
this, we assume that the asymptotics of the distribution
functions start with r = R, where

®(r) = {@(r) for r <R, (90)

0 for r > R.

This condition does not impose any restrictions on subse-
quent results, because R can be made as large as desired (but
finite).

This said, let us turn to the OZ equation (29a). We fix the
origin at the point r, direct the z axis along the vector r;,, and
go over to spherical coordinates. As a result, the OZ equation
becomes

00

C U
h(V) = C(V) + 27T,p [ C(}’13)I‘%3 dl’13 [ h(r23) Sil’l 1913 d’l913 s
Jo Jo
where ¥3 is the polar angle between the z axis and the vector
ri3, and r = ryp is the distance between particles / and 2.

Solving the triangle formed by particles 7, 2, 3, we find

Pty =

3 = \/1'2 + V%3 — 2rriz3cos s, cosvhz = 2
13

Using these results, we rewrite the OZ equation in the form

W) = C(r) + @Jm C(z)zdzrt h()e de

rJo |r—1|

10For simplicity, we shall further on drop the superscripts  of the
distribution function G®, bridge functional B®@, and direct correlation
function C@.

(we have set t = ri3, T = rp3). To eliminate the modulus sign in
the lower limit of the inner integral, we differentiate this
equation with respect to r, getting

% {r[h(r) = C(r)] }=2mp {— Lr) C(t)h(r —t)(r — t)tdt

+ Joo [C(r+ t)h(1) + C(O)h(r + 1)] (r + 1)tdr. (91)
0

Observe now that in the asymptotic region we have

h(r) =explo()] — 1 =o(r) + ..., (92)

C(r) =h(r) — o(r) + B(r) = la)z(r) + ...+ B(r),

o (93)

and, as follows from the diagram expansion of the bridge
functional, the function B(r) at large distances decreases at a
rate not slower than that of »?(r). Currently, however, we are
only interested in the terms linear in & =~ w, because they give
the main contribution to the asymptotic behavior. Accord-
ingly, the direct correlation function C on the left-hand side of
Eqn (91) can be dropped.
Given Eqns (92), (93), we have

r@ [C(r+ Oh(1) + COM(r + 0] (r + )t
0

~ J:O C(O)h(r + 1)(r+ t)edr.

Also, we rewrite the first integral on the right-hand side of
Eqn (91) in the form

f C(Oh(r — )(r — e dt = fﬂ +Jr

0 0 r/2

Setting in the second of these integrals ¢/ = r — 7, and going to
the limit r — oo, we get

Jr C()h(r—1)(r—t)rdt — J

0 0

00

C(t)h(r — t)tdt

o0

+Jw Clr = D) (r — f)rdt ~ j ClOYh(r — £)(r — )edt.

0 0
Substituting these expressions into Eqn (91) and setting
W = rh(r), we obtain the sought asymptotic OZ equation [49]
dy(r o0
#z%tpj COW@r+1)—y(r—1)]edr.

r 0

(94)

Discussion. Obviously, the solution of Eqn (94) has the form
of = exp(—A4r). Substituting this into Eqn (94), and
cancelling out the exponential, we get the transcendental
equation for finding the damping coefficient A:
0 )
- 4an e 2 gy, (95)
0 Ajt
which exactly coincides with that obtained earlier from the
analysis of the general solution of the OZ equation in the
regular domain of the phase diagram [see Eqn (52); in Eqn
(95) we replaced the complex root z; with 4; to emphasize that
we shall be mainly interested in the real-valued roots]. Thus, it
is the asymptotics of the OZ equation that determine the form
of eigenfunctions /; = A;exp(—4;r)/r used in the expansion
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of the general solution to the OZ equation [see Eqn (55)]. The
amplitudes A; of this expansion are given by Eqn (58), which
we shall rewrite in the form
23
A= 5 s
%%wfj Clt/3;)[cht — she/aF di
0

; (96)

replacing r by ¢ = 4;r in the integrand of Eqn (58).

3.6 Regular asymptotics of distribution functions !!

in the critical region

From Eqn (48) and definition of the critical point (71) it
follows that the following equality is always satisfied at the
critical point itself:

1 —4an C(n)Pdr=0.
0

97)
Obviously, it is compatible with the transcendental equation
(95) only under the condition

1

)“:Oa RC:T:ooa (98)
A
where R, is the correlation radius. Since as A — 0 the width of
the corridor AA = Amax — Amin [S€€ Eqn (59)] also tends to
zero, the real parts of all exponentials in the general solution
of the OZ equation (55) are practically the same, and can be
factored out of the sum. Then the regular asymptotics of the
general correlation function /(r) become !2
h(rg)(,,) ~ w(rg>(,,) =4

for 1 —0. (99)

exp(—Aar)

r

The next question is how the amplitude 4 of the
degenerate regular asymptotics (99) behaves upon approach-
ing the critical point? Since the latter is given by Eqn (96), we
have to examine the behavior of the direct correlation
function C(r) in the critical region.

Observe now that the critical point C lies in the curve of
phase equilibrium of the first order (see Fig. 2). So at this
point, like at any other point that belongs to the curve of
phase equilibrium of the first order, the regular component of
the function A(r) must turn to zero. From the OZ equation
(29) it follows that the regular component of the direct
correlation function C(r) must vanish simultaneously. We
know, however, that the pressure, chemical potential, and
other parameters at the critical point remain finite and do not
vanish. This can only be possible if the regular component in
the neighborhood of the critical point is supplemented by the
distinctive critical component of the distribution function. To
take this into account, we set

7~ ) = pire) 4 p©) - plo) — glre) 4 gle)

C) — clw | c© (100)

" Hereinafter by regular asymptotics we shall mean the asymptotics of
distribution functions in the regular domain of the phase diagram — that
is, in the domain where the absolutely stable single-phase states of the
system are realized. The behavior of the asymptotics in the critical region
will be referred to as degenerate. As we shall see, in the critical region the
regular asymptotics are supplemented by the distinctive critical asympto-
tics.

12Broadly speaking, this expression must be multiplied by a certain
function ¢(r) that describes oscillations of /(r). In all likelihood,
however, to a good accuracy one may assume that ¢(r) = 1 (which has
yet to be proved).

and assume that all the regular components vanish at the
critical point:

K8 = e — pte) L cte) — ¢ for p=p, O=06..
(101)

Observe now that in Eqn (96) we have C(#/4) in the integrand.
Obviously, as 4 — 0 the argument of the direct correlation
function is ¥ = /1 — oo for any finite 7. Because of this, the
main contribution to Eqn (96) comes from large distances, for
which, as we have seen, C(*) ~ C©), B(>) ~ B© Let
B© = Kn®, C© =Kh°, (102)
where K and § are certain constants (the superscript (*) on
~ w is dropped). At this stage these assumptions should be
regarded as hypothetical. In the sections to follow, however,
we shall give numerous proofs of this hypothesis, and find
formulas for the constants in Eqn (102). Assuming that the
problem has a unique solution, we may regard this as the
proof of hypothesis (102).
Observing that in the nearest neighborhood of the critical
point we have /= Aexp(—Ar)/r, and substituting this
expression into Eqn (102), we get

c© G): ;L“K[Ae"p(_mr (103)

At

Substituting Eqn (103) into Eqn (96) we arrive at

i o h s 17!
Ao = 370 {2(2np)2KJ exp (—o1) <cht - S—tl)tZ*O dt} .
0

To simplify this expression, we set

5—-0=n(1+9), (104)
where 7 is a new constant. As a result, we get
A=A, (105)
where
Ao(p,0) = [2<2np)21<
X J:C exp (—o1) <chz — &Zt) 120 dt] R (106)

is a constant independent of 4.
Discussion. Now let us closely inspect what we have learned.
Using only the asymptotic OZ equation, the definition of
isothermal compressibility (48) that is well known in
statistical mechanics, and the purely thermodynamic defini-
tion of the critical point as a point where (0P/0p)y = 0, we

(a) demonstrated that the correlation radius at the critical
point goes infinite (this fact is postulated in the Kadan-
off — Wilson theory);

(b) proved that the amplitude of regular asymptotics upon
approaching the critical point tends to zero as 4 = 174, and

(c) corroborated the law of similarity (known actually
from the time of J van der Waals), which states that all
substances in the neighborhood of the critical point behave in
a similar way. This follows from the fact that in the
neighborhood of the critical point, where /4 is small enough,
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the asymptotics of the two-particle distribution function for
all substances irrespective of their nature is G =
1 + Aexp(—4r)/r).

Finally, I would like to draw attention to one curious
feature of the results obtained. It is easy to show that in Eqn
(106) the expression in square brackets goes to infinity as soon
as the parameter ¢ becomes equal to 5;at > 5, the amplitude
of the regular asymptotics is zero. Can this be related to the
fact that every fifth root in the general solution is a ‘dropout’
(see Table 1 above)?

3.7 Critical asymptotics of distribution functions

Now we need to find the form of the critical asymptotics, for
which we have to go back to the asymptotic OZ equation. We
shall seek its solution in the form

v = DT (107)

where # and D are two new constants [we shall see that n
coincides with the constant introduced in Eqn (104)].
Substituting Eqn (107) into Eqn (94), we get

p exp(—Ar) exp(—4r)
T IROE

_ > exp[—A(r +1)] _exp[=A(r—1)]
=2np L C(t){ L — = }tdt,

and, cancelling out exp(—Ar), we arrive at

Ao

M + pln
B o (r+ 0)"exp(Ar) — (r — t)" exp(—A)
=2mp L C(1) CETL tdt

=2np J:O % {[exp(4r) — exp(—11)]
+ " [exp(At) + exp(—At)|t + ... }tdt.

Since C() is a short-range function that practically turns to
zero at r > 20 (where ¢ is the diameter of particles), the
integral in this expression is taken over the range of short
distances 0 < ¢ < 20. We, however, are currently interested in
the domain of large distances r > 20, where we can safely set
(r? — )" = r?. As aresult, up to terms of the order of 1 /1>,
the above relation reduces to

Ao

ol

A o0 hit
:—4an o2 2 dr
r 0 At

;/I {oe]
+ m“ﬂp Jo C(t)ch(ir) dr.

Equating the terms containing the same powers of r, we get
two conditions
P00

Adr, 1:4an C(t)ch(Ar)F dr,
0

o0 shit
1=4 >
P Jo C(1) I

(108)

which must be satisfied simultaneously in order that Eqn
(107) be a solution of the asymptotic OZ equation. In the

critical region, where 1 = 0, these conditions indeed coincide.
In the regular domain of the phase diagram, however, where 4
is nonzero, the solutions of type (107) with # # 0 are not
possible, because the two conditions in Eqn (108) are not
compatible with one another. Because of this, in the regular
domain of the phase diagram the critical asymptotics as given
by Eqn (107) must vanish, which presumes that the amplitude
D must go to zero.

Since the asymptotic OZ equation is linear with respect to
the unknown function i, its general solution, which holds in
both the regular and critical domains of the phase diagram,
can be written in the form

exp(—A4r)

+D rl+n ’

h(oc)(r) — "4, exp( ’)
r

(109)

where, according to the arguments developed above, one
finds

A= A"Ay — 0, D # 0 in the critical region, and

A # 0, D = 0 in the regular region.

Equation (109) defines the general form of the asympto-

tics of correlation function / over the entire phase diagram [in
the regular region, the principal term A exp(—Ar)/r is broken
up into numerous similar terms with different A, and A4y; see
Eqn (62)].
Discussion. In this section we have demonstrated that near
the critical point the asymptotic OZ equation generates
solutions different from those in the regular domain of the
phase diagram. These solutions arise automatically, without
making any additional assumptions. They follow from the
OZ equation itself and the condition (71) that defines the
coordinates of the critical point on the phase diagram. The
solution, however, is not completely defined — we do not
know the amplitude D in Eqn (107), the amplitude of the
critical direct correlation function K in Eqn (102), and the
values of the critical indices # and . To find them, we must
turn to the second thermodynamic condition (73) that
defines the location of the critical point on the phase
diagram.

3.8 Implications of the condition (0> P/dp?), =
First of all, let us demonstrate that all the expressions
obtained in the preceding section automatically satisfy at
/A = 0 not only the first thermodynamic condition (71) (with
the aid of which they have actually been derived), but also the
second thermodynamic condition (73), which we shall modify
as follows.

Differentiating both parts of Eqn (48) with respect to p,
we get

00

o’p

pa—p2 =-0 {411,01 C(nfde+ 4an

C,(0F dt] ,
0 0
where C, = p(0C/0p) is a new unknown function. By virtue
of the second thermodynamic condition (73) and Eqn (97),
this equation at the critical point is reduced to

o0

1+4an C,(Pdt=0. (110)

0

Obviously, this is completely equivalent to the original
condition (9*P/0p?)g = 0.

Now let us prove that the same relation follows directly
from the asymptotic OZ equation for 1 — 0. With this
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purpose we differentiate Eqn (94) with respect to p:

dy,(r)
dr

—2mp J:O C(O) [, (r+1) =y, (r — 1)]2dr

_ dy(r) nprcp(t)[,/,(rﬂ)—n/x(r—t)]tdz, (111)
dr 0

where i, = p(0y//0p), and the right-hand side contains the
known function [see Eqn (109)]

W(r) = rh®(r) = —e"pfﬁ’) .

Aexp(—Air)+ D (112)

Substituting the first term of this expression (that is,
exp(—Ar)) into the right-hand side of Eqn (111), we arrive at

dys,(r)
dr

~omp Joc COY [, (r+ 1) — v, (r — )] et

0
= —exp(—4r) [Z + 4np JOC Cp(t)sh()tt)tdt} . (113)
0

Obviously, in this case i, must also be sought in the form
of exp(—A4r). Substituting this solution into Eqn (113), and
cancelling out by Aexp(—Aar), we get

At 2 (l+4npj Cp(t)%t dl)
0 At

1—411:pj C(t)Tt dt =
(114)

According to Eqn (61), the left-hand side of this equation is
zero. Then the right-hand side should be zero too:

o0 hAt
1+4an Cp(t)s—tzdt:O.
0

o (115)

Substituting the second component of function  (that is,
exp(—Ar)/r") into the right-hand side of Eqn (111), we come
to the conclusmn that the asymptotic OZ equation is also
satisfied, as long as

1+4an C,(t)ch(A)*dr = 0. (116)
0

As A — 0, equations (115) and (116) both reduce to the same
equality (110), which is equivalent to the second thermo-
dynamic condition (73). At the same time, condition (110)
guarantees that the solution (109) of the asymptotic OZ
equation (94), found in the preceding section, satisfies
simultaneously equation (111) differentiated with respect to
p. As ought to be expected, equations (115) and (116) can be
derived directly from formulas (108) by differentiation with
respect to p.

Now let us find the constants K and A. Since y(r) is a sum
of two terms, the general solution of Eqn (111) must be a sum

exp(—4r)

Wp (r) =Apexp(=ir)+ D, i , (117)

where 4, and D, are new constants. And since
¥, = p(0y/dp), the same expression can also be derived
directly from Eqn (109), but under the condition 4, =
2(04/0p) = 0,4 =(0). Setting A(O)=LO.+AO) =
A(0.) + 4 (0.)AO", and taking into account that A(6.) = 0,
we come to the known relation in the theory of critical

phenomena

(@) = const g, , (118)
where v is a new critical index, and g9 = (0 — O.)/6O..
Setting At = ¢, we rewrite Eqn (115) in the form

4 t \ sht
1+ ”"J cp(f)s—ﬁdz:o.
A 0 y) t

Hence it follows that as 4 — 0 the main contribution to
the integral comes from the asymptotic values of C,( ) for
r — oo. This allows us to replace in Eqn (115) C, w1th C,) ,
and get

o0 ht
P 2 dr =

1+4 C>)(1
+ "pJO RlOR

(119)

From similar considerations, we can also transform Eqn (95)
into

shit ,

1f4anmc< ()—z dr = (120)

0
Since both of these relations define the value of one and the
same parameter A, they must coincide with each other. This
can only happen if either CO(r)=—-C (1), or

C®) = —p(dC*®) /dp). The solution of this equation gives us
C™(r;p, 0c) = &C‘*)(m pes Oc) = %Cé“”(r)- (121)
Since C(*® , the same differential equation can be

rewritten as

pa—I:w‘5+K6w‘i’11)2—i: —Ko’ . (122)
Since, by definition, ® = w(r) is a function of r, and the
constant K does not depend on r, equality (122) can only hold
when w, = p(0w/0p) = puw, where pis a certain new constant
(not to be confused with the chemical potential!). Substituting
uw(r) into Eqn (122), and reducing the relation obtained by

w’, we get the equation

oK

paz—(l—t-,tté)[( (123)

whose solution has the form K = (p./p)' . Substituting this

expression into Eqn (106) for A4y, we find that
Ay ~ p=#9)/(1+9) Therefore, one finds
04 04y — ud
A, = 7:"7~7 Ao = udy. 124
p =P o ap 1+o 0 = HAo (124)

This equality only holds when u = —1. As a result, we finally
get

ow P P
Wy = ,0&: _w(r;p7@C) :;Cw(r;pm@C) E;cha
1-5 (125)
K= <&> 7 Ao:&A& p="epe. (126)
p p p

whence it follows immediately that

C®) = Ke® =Le 0 =Pe o)

P P
[see Eqn (121)].
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Discussion. In this section, using only the asymptotic OZ
equation and the second thermodynamic condition (73), we

(a) showed that when the correlation radius R, goes to
infinity, both conditions defining the location of the critical
point on the phase diagram are satisfied simultaneously;

(b) established that the correlation radius R, = 1/ at the
critical point depends only on the temperature @;

(c) found the value of the constant K = (p,/p) ~° in the
formula C(®) = Kw?, which turned out to depend only on the
density p, and

(d) defined the constants 4y and D as functions of the
density p (see the same Eqn (126)). So far, however, we have
not found the values of the constants 4§ and D in these
formulas.

1-0

3.9 Similarity relations

Let us now demonstrate that similarity relations can be
expressed directly from the OZ equation without any
additional assumptions. With this purpose we consider the
OZ equation written out in the space of wave vectors [see
Eqns (33), (34)]

o0 shit

0 -1
h(z)Tﬂdz:{l—MpJ C(t)%tzdt} :

l+4an I
0

0
(127)

Since large distances r — oo correspond to 4 — 0, we expand
sin /¢ in A and retain the first nonvanishing term to rewrite the
left-hand part of Eqn (127) in the form

00 M "t 00
1+4an h(t)ﬂtzdt—dj%npj h(t)* dt
0 At 0
an[ W) ()2 dr, (128)
0

where we have dropped the 1 and replaced & with A(>),
because the integral [° A (1) ds diverges at the upper
limit when 4 — 0 [the latter because the isothermal compres-
sibility goes to infinity at the critical point; see Eqn (35)]. Since
h*) is given by Eqn (109), we can substitute this expression
into the integrand in Eqn (128) and get

o sin At

h 2d
(1) P t~dt

1—|—4an
0

M
— 4mp, [A§ + DT(2 - n)}}—z , (129)
where I'(z) = [;° exp(—&)&! d¢ is Euler’s gamma-function.
Then, going to the limit 4 — 0 in the right-hand side of
Eqn (127), we can write

© in A
[ sin [tzdt

l—4mp | C(2)

Jo

— {1741:;)] C(l)tzdt}+%/124ﬂ:pj C(ntde+ ...
0 . 0

According to Eqn (97), the expression in square brackets here
is equal to zero, and therefore

2 de

©  sini
1—4an Joll) Pt
O }vt

/{2 00 . 12 00 (00) 4
—>?4np C(nt dtz3—4np C¢de + ...
: 0

Here, with due account for Eqns (109) and (126), one finds

o _ Pe jo014) exp(—01)

(00) —
¢ = Ko P 1o(14n)

(1A + DY, 1" = Jr.
(130)

As a result, after some straightforward transformations we
get

00 sin At = 1 5ol
1—4 ¢ 2 de T 131
[ w2 ] SN (E1)
where
> n 4c c\9 5—5(141) ds
Se=| exp(=or) (145 + D)t n - (132)
0

and 5 — 6(1 +#) > 0. Equating expressions (129) and (131),
and cancelling out the resultant expression by 472, we obtain

1
4 AS + D°TI'(2 — A = /157(5(]+6) )
npc[ 0 ( ’7)] 4ntp,S.

(133)
This equality will hold only if the powers of lambda are the
same on both sides of Eqn (133) — that is, when
n =15—96(1 4+ n) or, in the more conventional form, when

1-9

2_p=3 .
=155

(134)

This last expression coincides with Eqn (84), with the
replacement of the > sign by the = sign. This just confirms
our earlier assumption that the constant # defined by Eqn
(104) represents a critical index. In addition, from Eqn (133) it
follows that

1

AG+DI2—n)=—-5—, 135
0 2-mn (4mp.)7S. (135)
where, according to Eqns (106) and (126), we have
. 00 h —1/(1+9)
AS = |:2(2‘rcpc)2J exp(—d1) (Cht - st) 0 dt]
0
(136)

Since Af = A5(6), and the index # in Sc = Sc(J,n) can be
expressed via 6 with the aid of Eqn (134), equation (135)
represents a transcendental equation that defines the ampli-
tude of the critical asymptotics D¢ as a function of J; the
amplitude D¢ = D¢(9) does not depend on 6.

Apart from Eqn (134), the OZ equation can be used for
expressing other similarity relations. Since, for example, the
isothermal compressibility kg is given by Eqn (48), from Eqn
(131) it follows that as 2 — 0 we have

L ,-en

S 1
~ 4np.5.6" (137)

Ko

By definition, however, kg ~ ¢g’, where y is a new critical
index. But since A ~z¢gp [see Eqn (118)], then kg ~
2@ e e and hence

) e

y=v(2—1n). (138)
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This is another well-known similarity relation. In a similar
way one can obtain some other (possibly all) relations. There
is, however, an alternative approach.

From first principles we have deduced at least two
similarity relations (134) and (138), which precisely coincide
with those following from Widom’s similarity hypothesis (87)
and Eqn (88). In this way we have proved the validity of this
hypothesis. Now we can use this hypothesis for calculating all
other similarity relations as was done by B Widom himself.
Discussion. In this section we established certain relations
between the critical indices directly from the asymptotic OZ
equation, thus confirming Widom’s (but not Kadanoff’s!)
similarity hypothesis. In addition, we obtained Eqn (135) that
defines the amplitude of the critical asymptotics
D = (p./p)D° [see Eqns (109) and (126)], and found that the
amplitude of isothermal compressibility in the neighborhood
of the critical point depends not only on the amplitude of the
regular asymptotics 4, but also on the amplitude of the
critical asymptotics D. This result is important so far as it
indicates that, although the regular asymptotics degenerates
in the neighborhood of the critical point, its contribution to
the thermodynamic functions cannot be neglected.

3.10 The critical Ornstein— Zernike equation

If we now take a close look at the expressions obtained so far,
we shall see that with the aid of the asymptotic OZ equation
(94) and two conditions (71) and (73) defining the location of
the critical point on the phase diagram we have expressed
almost all the unknown parameters of the theory, with the
exception of the critical index ¢ (and therefore all the critical
indices expressible in terms of J through the similarity
relations). This source of information (that is, the asymptotic
OZ equation) is exhausted d and it is unlikely that we should
get anything essentially new from this equation. Because of
this, for calculating the values of critical indices we can only
turn to the complete OZ equation (29a) that, unlike the
asymptotic equation, describes the behavior of the distribu-
tion function at both short and long interparticle distances. In
other words, we must assume that the concrete values of all
critical indices are determined by the behavior of the
distribution function at small distances. This statement is
sacrilegious in itself, because it is common knowledge that the
critical indices are determined by the long-range interactions
[11, 50]. If, however, we look at the problem from the
standpoint of local statistical mechanics, there is nothing
preposterous in this statement. Indeed, from Eqns (52) and
(58), which determine the shape of the asymptotics in the
regular domain of the phase diagram, it follows that the
values of 2 and A4 are expressed in terms of the integrals of the
direct correlation function C(r), which is only defined at small
distances r < Rg. It is these distances where the potential @ is
solely nonzero shape the asymptotic behavior at large
distances r > R, where @ = 0. This result may be regarded
as a consequence of the main postulate of Gibbs’s statistical
mechanics, which holds that the interaction potential @
determines all the properties of matter, because

Gwexp[—%za;j] .

Obviously, this postulate must also work in the critical region.
This implies, however, that the values of @/l the critical indices
must be determined by the shape of the potential @ — that is,
by small distances » < R. This is why the values of the critical

indices in the local approach can only be found from the
complete OZ equation (29a).

There are other reasons as well. The key role of small
distances is visible in other equations of statistical mechanics.
For example, according to Eqn (27), the internal energy e per
particle is

E 3 1 (* @
e:N:§@+§pL @(r)exp{—%—l—w(r)}4nr2dr,

and hence the heat capacity at constant volume is

Lo (fey 3,1 J”@W
v~ \ee), 272", "o

X exp {—%—i—w(r)] {%—s— @ag)—g)}4nr2 dr. (139)

The interaction potential in the integrand here is ®(r) = 0 at
r > R. Accordingly, the integrals in Eqns (27) and (139) are
only taken over the range of small distances r < R; the long-
range distances does not give any contribution to cj. At the
same time we know that heat capacity ¢y has a singularity at
the critical point [see Eqn (75)]:

cy~egt, (140)
where o = 0.11 is the critical index. Since Eqn (139) is a
rigorous consequence of the postulates of statistical
mechanics, the value of the critical index « is obviously
determined by the behavior of the distribution function at
small distances.

We can also give another example. We know that the
pressure P is linked to the distribution function through
Eqn (25):

< do(r)

1
P=p@——p| r
P 6pJ0’ dr

G(r)dmr? dr.

Here it is assumed that the value of P is determined by the
short-range distances r < R. At the same time, in the critical
region for the pressure we have the following expression

P(p,0) = P(p,, @) + const &) , (141)
where ¢, = (p — p.)/p.. Hence it follows that the index 0 is
also shaped at small distances. The classical theory of critical
phenomena has no explanation for these facts. From the
standpoint of the local approach, however, they are quite
natural, since in this approach it is assumed that a// the
properties of matter are determined by the small distances
r<R.

So, in order to calculate the concrete values of the critical
indices, we must turn to the complete OZ equation (29a). As I
indicated, however, it is practically unclosed, and must be
supplemented with the equation of closure (which is generally
typical for the theory of liquids). In this case the freedom of
selecting the equation of closure is limited, because in
accordance with condition (102) at the critical point itself
the asymptotics of the direct correlation function are given by

C™)(r) = (r) (142)

[recall that, according to Eqn (126), we have K =l atp = p_].
So the freedom only concerns the way in which this expression
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isextended to small distances » < R. The simplest assumption
is that Eqn (142) holds at all distances 0 < r < co. Then the
critical OZ equation becomes

h(r) = o (r) + p L/a)(s(|r —r3))h(jr2 — r3)) &rs. (143)

This equation contains the unknown critical index J, which
can be determined from the expression

00

1-— 41'cpJ @’ () dr=0, (144)

0

following from the thermodynamic condition (97) that
defines the location of the critical point on the phase
diagram, and the equation of closure (142). If it turns out
that Eqn (144) holds only approximately, we shall have to
slightly adjust the closure (142) at small distances. I would like
to emphasize once again that this procedure is typical for the
theory of liquids.

3.11 Summa summarum

Now we can compare two approaches: the global approach
based on the Gibbs distribution, and the local approach based
on the OZ equation. Observe first of all that whenever it was
possible to use both approaches for finding the critical
parameters of liquids, the results were the same. No
difference could be detected, which once again proves that
the two approaches are equivalent. There is, however, one
fundamental distinction: everything that had to be postulated
in the global approach (for example, the passage of the
correlation radius to infinity, the universal properties of
asymptotics of the distribution function, etc.), in the local
approach was inferred from first principles (that is, from the
OZ equation). In this way, the local approach provides a basis
for the assumptions made by Kadanoff and Wilson in the
constriction of their theory. It also throws new light on some
of these assumptions.

The central assumption is Kadanoff’s hypothesis of
universal similarity of all systems at the critical point. On
these grounds, the real Hamiltonian which is a function of the
interaction potential of particles, is replaced by the block
Hamiltonian that does not depend on the form of the
potential. We saw that at large distances the distribution
functions of all substances irrespective of the potential form
exhibit one and the same asymptotic behavior [up to the
magnitudes of constants 4y and D, which may differ for
different substances; see Eqn (108)]. If the task is limited to
describing only those effects that depend on the asymptotics
of the distribution functions, then such a hypothesis is quite
sound. Many things (including the concrete values of the
critical indices), however, essentially depend on the behavior
of the distribution functions at small distances (see Section
3.10). Then one certainly cannot use the block Hamiltonian.
In the local approach, the postulate of universality of
distribution functions is replaced by the much more lenient
assumption of the universal asymptotics of the direct
correlation function [see Eqn (142)]. The behavior of C(r) at
small distances is restricted here by only one additional
condition (144) replacing the conditions of thermodynamic
consistency of the solution. This is enough to ensure that the
asymptotics of the distribution function are universal at large
distances as well. At the same time, no restrictions are
imposed on the general dependence of the distribution

functions on the potential (such dependence, as we have
seen, can only arise at small distances).

The next major step relates to the calculation of critical
indices. Since the original Hamiltonian in the Kadan-
off—Wilson theory is replaced by the block Hamiltonian
that does not depend on the interaction potential, it becomes
necessary to introduce the RG equations that are lacking a
statistical foundation (statistical mechanics does not admit
the existence of equations that do not depend on the
interaction potential — the only exception is the theory of
an ideal gas). In the local approach, the RG equations are
replaced by the OZ equation which obviously contains the
interaction potential as one of its parameters. As a result, we
come up against a new problem — since the RG equations do
not depend on the potential, the resulting critical indices will
automatically be universal. But the behavior of solutions of
the OZ equation is not yet clear. The critical indices may show
some kind of dependence on the potential; this issue, however,
calls for further analysis.

It is well known that the critical indices are practically the
same for liquids and for crystals (see Ref. [S1]). In the
Kadanoff—Wilson theory this fact is simply postulated (by
using the same block description for both liquids and solids),
while in the local approach it has to be clarified. Such
clarification was actually given in Section 2.5, where we
discussed the concept of structure. Briefly, it runs as follows.
The crystalline state of matter is always described by the
fundamental set of two equations (28), (29), which define two
distribution functions G") and G ®). The former describes the
symmetry of the crystal lattice, and the latter the mutual
correlation of particles sitting at the adjacent lattice sites.
Accordingly, GV is defined over the entire (infinite) volume
of the crystal, while G®@ differs from unity only at small
distances (since the correlation only exists between closest
neighbors). At the critical point, the correlation radius of
crystals goes up to infinity in exactly the same way as in
liquids, and the same cause leads to the same effect — the
onset of infinite fluctuations.

An important concept in the contemporary theory of
critical phenomena is the Ginzburg criterion, which actually
defines the boundary of the critical region as the region
dominated by fluctuations [55]. In the local approach this
criterion is naturally replaced by another one, wholly based
on the results described above. Indeed, let us turn to Eqn
(109), which describes the asymptotics of the correlation
function in both the critical and regular regions. Assume
that the boundary between these two regions lies at the value
of A =4, when the two terms in Eqn (109) give the same
contribution at r = ¢ (where o is the diameter of particles).
Then we immediately find

j_ D l/nN D 20
o a'l Ay = a'l Ay

(here we have used the empirical value of y ~ 0.05 = 1/20; see
Eqn (80)). Of practical interest is not so much the parameter 4
as the parameter ¢g = (0@ — 0,)/0O,; taking into account that
4 ~ &y [see Eqn (118)] we get

) D 1/vy D 32
b0~ oAy - oAy )

Here we have taken into account that v ~ 0.63 [see Eqn (79)].
Since ¢'/2° ~ 1, the boundary between the regular and the

(145)

(146)
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critical regions is mainly determined by the ratio D/A,.
Obviously, the physical meaning of Eqn (146) is the same as
that of the Ginzburg criterion.

The critical region defined by Eqn (146) is, as a rule, quite
small. At the same time, it is known that the influence of the
critical point extends over a fairly large portion of the phase
diagram. This is explained by the fact that in this quasi-critical
domain of the phase diagram the values of the parameter A«
are still small enough. So, even though the contribution from
the critical asymptotics here can be disregarded, the corridor
for the regular asymptotics

.
Al = )~max - ﬂvmin

remains quite narrow. As a result, all the constants are 4, =~ A.
This allows us to factor exp(—Ar) out of the sum in Eqn (55) to
find the a/most-universal asymptotics

(00) n Aexp(—),r) ‘
r

w

(147)

Presumably, as long as this relation gives a good approxima-
tion to the asymptotics of the correlation functions, the laws
of similarity (the same for all liquids) hold in the regular
domain of the phase diagram. But, of course, far from the
critical point where the set of roots A; of transcendental
equation can be different for each particular substance, one
cannot expect to observe any similarity whatsoever. This
probably explains the futility of all attempts to construct a
universal equation of state good for all substances over the
entire regular domain of the phase diagram, going back in
time to the classical work of J van der Waals.

And one final remark. At a temperature ® < O, the
system is two-phase (see Fig. 2). Such states are not described
either by the single-phase Gibbs distribution (see Section 2.3)
or by the OZ equation, which admits no solution in the
density range (see Section 2.5). So, the description of matter
below the critical temperature cannot be based, strictly
speaking, either on the Wilson theory or on the local
approach using the OZ equation. New ideas are needed in
these circumstances.

4. Conclusions

This review is devoted to the problem of phase transitions. So
it is natural that phase transitions were the focus of our
attention. There is something, however, that is of no less
importance. We have demonstrated that the problem of phase
transitions cannot be solved within the framework of the
global Gibbs approach. It is necessary to go over to the local
description based on the fundamental set of equations (FSE).
In no way is this a departure from the main ideas of statistical
mechanics, because the local approach follows from its
postulates as rigorously as the global approach of Gibbs
(although one may hear objections to this). To some extent I
have proved this statement in Section 2.5; now [ would like to
summarize the discussion concerning the equivalence of the
two approaches. I believe that this is an issue of major
importance.

Classical statistical mechanics is based on the Newton
equations that describe the motion of each separate molecule
of matter. Through identical mathematical transformations
this set of equations is first converted into the Liouville
equation, and then into the hierarchy of BBGKY equations.
In equilibrium systems the distribution function does not

depend on time, and the more general nonequilibrium
BBGKY hierarchy degenerates into the equilibrium hierar-
chy. The Gibbs distribution is the solution of the last equation
in this hierarchy, whereas FSE is a convolution of the entire
equilibrium hierarchy into a system of two integral equations
for the one-particle and two-particle distribution functions.
In either case there are no approximations or simplifications,
so both the Gibbs distribution and the FSE rigorously follow
from the original Newton equations (I gave a comprehensive
treatment of this issue in Ref. [2]). These facts support my
argument in favor of the equivalence of the two approaches.

‘Equivalent’, however, does not mean ‘identical’. Each
approach has its own advantages; it throws light on particular
sides of the phenomenon, and each has its scope of
applicability.

As a matter of fact, equilibrium statistical mechanics has
to solve four main problems:

(1) to validate the laws of thermodynamics;

(2) to learn to calculate the structure and

(3) thermodynamic parameters of matter, as well as

(4) to find the location of curves of phase equilibrium on
the phase diagram.

The first of these problems was brilliantly solved by
W Gibbs with the aid of his distribution function that gives
a global description of the system. The local approach can
also be used for this purpose, but the relevant proof will be
much less elegant and efficient.

The concept of the ‘structure of matter’ can only be
defined within the framework of the local approach; in
Gibbs’s theory there is no room for that. The structure of a
particular substance can also be calculated in the context of
the local approach based on FSE. However, the Gibbs
distribution today allows this to be done much more
efficiently (I refer to the Monte Carlo method). One should
bear in mind, however, that the Monte Carlo method is
concerned not strictly with the pure Gibbs approach, but
rather with a kind of ‘hybrid’ approach. The calculations are
always performed here not for the entire system of N = co
particles, but for small subsystems containing several hun-
dreds or thousands of particles. In essence, this is a deviation
from Gibbs’s global description. And, what is no less
important, all calculations actually employ the concept of
distribution functions that forms the basis of the local
approach [see Eqns (18) and (25), as well as (26) and (27)].

The same can be said about the third problem: when the
structure is known, the thermodynamic parameters of matter
are found by simple integration.

Finally, the key role in solving the fourth problem belongs
to the local approach, and there are several reasons for that.
Firstly, the very concept of ‘phase transition’ implies that
there is a change in the structure of matter — which is a
natural part of the local approach, and completely foreign to
Gibbs’s theory. Secondly, all phase transitions are associated
with the onset of infinitely large fluctuations (recall that the
nucleus of the new phase being in equilibrium with the parent
phase must have an infinitely large radius). All this indicates
that we have to study the behavior of a very large number of
particles simultaneously, which is very hard to do in Gibbs’s
theory. In the local approach this yet requires analyzing the
asymptotic behavior of the distribution function, which does
not pose any great difficulty.

Referring to the current situation with phase transitions,
we may say that new prospects have been opened for the
theory of first-order phase transitions, and for the theory of
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critical phenomena. This is perhaps the most important
achievement.

The author is grateful to V I Roldugin for fruitful

discussions, and wishes to thank the Russian Foundation
for Basic Research for financial assistance without which this
work would not have been accomplished.
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