
Abstract. A new research direction known as quantum informa-
tion is a multidisciplinary subject which involves quantum me-
chanics, optics, information theory, programming, discrete
mathematics, laser physics and spectroscopy, and depends
heavily on contributions from such areas as quantum comput-
ing, quantum teleportation and quantum cryptography, deco-
herence studies, and single-molecule and impurity spectroscopy.
Some new results achieved in this rapidly growing field are
discussed.

1. Introduction

Due to the rapid development of quantum optics at the end of
the twentieth century, all of us, not only specialists in
quantum physics but also people working far from this field,
have to realize anew the basic statements of quantum theory.
Indeed, quite abstract basic ideas of quantum physics, which
recently seemed to deserve the attention of only a few
specialists, are now important for almost everyone, because
of their new applications in technology and, first of all, in
optical interactions. Quantum computers, quantum telepor-
tation and cryptography, observation and monitoring of
single atoms, ions, molecules, including biological molecules
Ð all these belong to the quantum world. This world is very
difficult to explain in terms of our common classical world of

macroscopic physics. For its description, it requires an
adequate language of quantum mechanics and quantum
field theory.

Quantum mechanics, created in the twenties by Niels
Bohr (1885 ± 1962), Erwin SchroÈ dinger (1887 ± 1961), Wer-
ner Heisenberg (1901 ± 1976), and others, provided physicists
with the recipes for calculating the energy states of atoms and
molecules and the matrix elements of transitions between
these states. However, in addition to this part, which
immediately found applications in practical physics, quan-
tum mechanics contained the `ideological', philosophical
part, which stayed almost `unemployed' until recent years. It
is this part of quantum mechanics that accounts for the odd
nature of the quantum world. In the most complete and clear
form, sometimes with deliberately paradoxical statements,
this part of the quantum theory was presented by Erwin
SchroÈ dinger in his famous paper of 1935 [1], which he
classified as `a paper or a general confession' (``Referat oder
Generalbeichte''). Using modern terminology, it deals with
one of the problems of quantum information. The problem is:
what information about the states of quantum objects can we
get and what happens with the quantum objects while we are
getting this information? More than half of a century passed
before the basic principles formulated by SchroÈ dinger became
necessary for understanding experiments with practical
applications.

In the present paper, we discuss several experiments of this
kind. These are, first of all, experiments on quantum
teleportation, quantum cryptography, and, finally, quantum
computers, which are expected to be extremely beneficial but
very difficult to construct. A certain part of the paper is
devoted to single material particles in quantum optics and the
methods of their detection. These objects can serve as the
elements of quantum computers. In the conclusion, we
consider the problem of decoherence and the possible ways
of solving it, which is crucial for quantum computation. But
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let us first discuss the language of quantum optics and the
statements of quantum theory that are necessary for all
further consideration.

2. SchroÈ dinger and his famous paper of 1935

November 29, 1935. The journal Die Naturwissenschaften
publishes the paper by E SchroÈ dinger ``Modern state of
quantum mechanics'' [1]. The paper was written during
SchroÈ dinger's compelled stay in Oxford (Fig. 1), after his
winning, together with P Dirac, the Nobel prize in physics in
1933. As SchroÈ dinger mentioned, his work originated from
the discussion started on May 15, 1935 by Albert Einstein,
Boris Podolsky, and Nathan Rosen in their paper ``Can the
Quantum Mechanical Description of Reality be Complete?''

[2] and continued by Niels Bohr in his paper with the same
title [3].

In spite of the abstract and complicated style of SchroÈ -
dinger's paper [1], its importance was soon realized by
Russian scientists, and it was immediately translated into
Russian and published in 1936 in Uspekhi Khimii [1]. For
comparison, the English translation appeared only in 1980
[1].

In his paper, SchroÈ dinger analyses difficulties in the
quantum mechanical description of measurement proce-
dures and formulates four basic principles. According to
these principles, the states of quantum objects have the
following properties:

1. Superposition. A quantum state is described by a linear
superposition of the basic states.

2. Interference. The result of measurement depends on the
relative phases of the amplitudes in this superposition.

3. Entanglement. Complete information about the state of
the whole system does not imply complete information about
its parts.

4. Nonclonability and uncertainty. An unknown quantum
state can be neither cloned nor observed without being
disturbed.

Let us briefly comment on each of these statements. But
first let us note that until recently, the third and the fourth
principles were almost unknown to the majority of
physicists and were discussed only in connection with the
Einstein ± Podolsky ±Rosen (EPR) paradox and Bell's
inequalities.

2.1 Superposition and the SchroÈ dinger cat paradox
In contrast to a classical object, a quantum object has
statistical origin. However, the probability nature of a
quantum object cannot be understood as a classical uncer-
tainty connected, for instance, with the incomplete knowledge
about the object. For the description of a quantum object, the
concept of a state is used. By saying that an object is in a
quantum state, we mean that there is a list (a catalogue, in
SchroÈ dinger's language) or, which is the same, a wave
function, a state vector, a density matrix containing the
information about the possible results of measurement on
this object. In the general case, the results of measurement
differ from time to time even if the object is prepared in the
same quantum state. Hence, the state vector should give
statistical information, i.e., distribution functions for the
results of measurement.

As a simple example, consider the state vector for a system
with two orthogonal basic states, j1i and j2i. For instance,
these can be energy states. The state of the object is described
by the state vector (wave function)

jCi � aj1i � bj2i ; �1�
where a and b are complex numbers. In other words, the total
state is given by a linear superposition, and the square
absolute values of the amplitudes a and b are equal to the
probabilities of finding the system in the corresponding states
(jaj2 � jbj2 � 1). As a result of measurement, the coherent
superposition (1) is destroyed and reduced to a new state,
which is determined by the type of measurement. For
instance, an attempt to find the system in state j2i leads to
its perturbation by the measurement device. At the moment
of the measurement, the reduction (projection) takes place,

jCi ) j2ih2jCi ) j2i ; �2�

Figure 1. Erwin SchroÈ dinger was born in Vienna. There he studied, first in

a gymnasium, then in the university until graduation in 1910. SchroÈ dinger

started working in theoretical physics and soon became a professor in

Breslau (now Wroclaw) and then in Zurich, where Einstein had worked

earlier. In Zurich, SchroÈ dinger published works that lead him to

formulating the basic equation of non-relativistic quantum mechanics,

the SchroÈ dinger wave equation. For the development of quantum

mechanics, SchroÈ dinger together with Dirac was awarded the Nobel prize

in 1933. In 1927, SchroÈ dinger was invited to the chair of theoretical physics

in Berlin, previously headed by Planck. When Hitler attained power,

SchroÈ dinger left fascist Germany and accepted an invitation to Oxford. In

1936, he returned to Austria for a short time and headed a chair in Graz,

but after the Anschluss he had to leave his country again. This time

SchroÈ dinger moved to Ireland, to the Institute of Fundamental Research

in Dublin. In 1947, he finally returned to his homeland. But his health was

already failing, and after a long disease he died in Vienna. [The

photograph and biographical note are taken from the anthology Zhizn'

Nauki (Science life) (Ed. S P Kapitsa) (M.: Nauka, 1973).]
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so that after the measurement the system is driven into state
j2i and the initial state is destroyed 1.

A superposition state should be distinguished from a
mixed state, which is described by the density matrix

rmix � jaj2j1ih1j � jbj2j2ih2j : �3�

In fact, state (3) is a classical state, since a system in a mixed
state can be discovered either in state j1i or in state j2i, while
in the superposition state (1), the system can be simulta-
neously discovered in two states. This principal feature of a
superposition statemanifests itself in the interference terms of
its density matrix

r � jCihCj � jaj2j1ih1j � jbj2j2ih2j � ab�j1ih2j � a�bj2ih1j :
�4�

In order to stress the unusual nature of superposition states,
SchroÈ dinger suggests an example disturbing to our common
sense. Following SchroÈ dinger, suppose that a steel chamber
contains a flask with poison that can be broken by means of
somemechanism triggered by the radioactive decay of a single
atom. The box also contains a cat (initially alive), which can
die as a result of the atom's decay. Similarly to the atom
whose state is a superposition of the decayed and non-
decayed states, the state of the cat is also given by the
superposition of the states of an alive cat, j"i, and a dead
cat, j#i: jCi � Lj"i �Dj#i. Since quantum superposition
states are quite frequently observed for microscopic systems,
such as atoms and molecules, but never observed for
macroscopic systems, there must be some effect destroying
the SchroÈ dinger cat states for macroscopic systems. This
effect, which is called decoherence, is considered below.
Note that the problem of pertaining superposition (SchroÈ -
dinger cat) states for mesoscopic systems is a crucial problem,
and its solutionwill give rise tomany applications of quantum
information.

In our further consideration, we use the superposition
state describing a single-photon beam with a given wave
vector, or a single-photon state, j1photoni. The polarization
state of the radiation with a given wave vector can be
represented by a set of two quantum mechanical oscillators,
each of them corresponding to one of the two orthogonal
polarizations (Fig. 2). Denoting the eigenstates of the
oscillator with vertical polarization as jnil and the eigen-
states of the oscillator with horizontal polarization as jmi$,
we introduce two basic vectors,

j1ilj0i$ � jli ; j0ilj1i$ � j$i ;

so that any single-photon state can be decomposed as

j1photoni � ajli � bj$i : �5�

Note that there is a certain ambiguity in the notion of a
superposition state. Indeed, state (5) with a � b � 1=

���
2
p

is a
superposition state if considered in the basis of vertical and
horizontal polarizations, i.e., measured bymeans of polaroids
oriented horizontally and vertically. At the same time, this
state �jli � j$i�= ���

2
p

can be considered as one of the basic
states of the pair:

j%i � jli � j$i���
2
p ; j&i � jli ÿ j$i���

2
p ; �6�

which corresponds to a measurement with the polarizers
oriented at 45� and 135�. In this case, it evidently cannot be
considered as a superposition state. Therefore, any quantum
state is a superposition one since it is a superposition state in
any basis where it is not a basic vector.

2.2 Entangled states
In addition to superposition states, SchroÈ dinger considers the
so-called entangled states, which describe the state of a
composite system whose parts can be spatially delocalized.
States of two systems could serve as examples of entangled
state: the state of a field and the atom emitting it (Fig. 3) or a
quantum system formed by two single-photon beams with
different wave vectors (Fig. 4). Each state of such a photon
pair can be represented as a superposition of four basic states,

j11 � 12i � Clljli1jli2 � C$$j$i1j $i2
� Cl$jli1j$i2 � C$lj$i1jli2 : �7�

1 Note that measurement, i.e., interaction with a macroscopic measure-

ment device, is an irreversible process in principle. During this process, the

state of the measured object changes (reduction takes place). Reduction,

like other physical processes, has its own characteristic time scale, specific

for each individual measurement. However, the process of reduction is

very short, so the question of its internal dynamics, i.e., of the possibility to

`see it with one's own eyes', is usually ignored, although in some

measurements, for instance, in quantum tomography of ultrashort

pulses, it is of course of interest.

j2ilj0i$ � llij j1ilj1i$ � l$ij j0ilj2i$ � $$ij

j1ilj0i$ � lij

l

j0ilj0i$ � 0ij
j0ilj1i$ � $ij

$

Figure 2. A light beam with a fixed wave vector is equivalent to two

harmonic oscillators corresponding to two orthogonally polarized modes

of the electromagnetic field. A single-photon state of this beam is given by

a superposition of two energy-degenerate states of polarized photons jli
and j$i. A two-photon state of this beam is in the general case a

superposition of three energy-degenerate states, two of them representing

pairs of photons with equal polarizations , j lli and j$$i, and the third

one representing a pair of orthogonally polarized photons, jl$i.

j i j i j iField
Field

Initial state Interaction Final state

Atom Atom

Figure 3. As an example of an entangled state, consider the state of a

composite system: two-level atom ± field. Suppose that the atom is

crossing the area of interaction with the field, for instance, a cavity. After

a short period of interaction, the atom and the field become spatially

separated. However, the state of the whole system stays entangled: the

state of the atom is strictly correlated with the state of the field,

jCi � jatomi1jfieldi1 � jatomi2jfieldi2. Note that the lifetime of such

entangled state may be much larger than the interaction time.
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In the general case, the photon from the first beam is
connected with the photon from the other one, since the total
state vector is not given by the product of the single-photon
state vectors. This connection, which is much stronger than in
the case of classical correlation, manifests itself in experi-
ments with photon pairs in Bell states. Bell suggested these
states in 1964 [4] in relation to the EPR paradox. The states

jF�i � jli1jli2 � j$i1j$i2���
2
p ; �8a�

jFÿi � jli1jli2 ÿ j$i1j$i2���
2
p ; �8b�

jC�i � jli1j$i2 � j$i1jli2���
2
p ; �8c�

jCÿi � jli1j$i2 ÿ j$i1jli2���
2
p �8d�

form the basis of the Bell states. Each one of these entangled
states has a remarkable property: as soon as some measure-
ment projects one of the photons onto a state with definite
polarization, the other photon immediately also becomes
polarized. For instance, in the case of jC�i states, if one of
the photons is registered with the polarization $, the other
one turns out to have the orthogonal polarization l. How can
a measurement over one particle have an instant effect on the
other one, possibly placed at a large distance? Einstein, as well
as many other outstanding physicists, did not accept this
viewpoint. In his definition, this meant `the action of ghosts at
a distance'. However, this behavior of entangled states has
been demonstrated in numerous experiments [5, 6].

Entangled states have another paradoxical property,
which was pointed out by SchroÈ dinger in Ref. [1]. According
to one of his principles, complete information about the state
of the total system still does not give us complete information
about the states of its parts. Suppose that we are going to find
out the state of a particle in one of the pairs (8), say, in Eqn
(8d). Then we have to average the density matrix of the pure,
i.e., the most determinate, state

jCÿi � jli1j$i2 ÿ j$i1jli2���
2
p

over the states of the second particle. The resulting density
matrix of the first particle,

r�1� � Sp2
ÿjCÿihCÿj� � ÿjli11hl j � j $i11h$ j�=2|�����������������������{z�����������������������}

mixture

�9�

is apparently the density matrix of a mixed state, which is not
maximally determinate.

2.2.1 How can one generate entangled states? Entangled
photon pairs can be obtained experimentally via cascade
decays in atomic systems [7] or parametric processes invol-
ving resonant fluorescence where two pump photons give
birth to a pair of entangled photons o1 and o2,
2o0 ! o1 � o2. The quantum correlation for such photons
has been predicted theoretically in Ref. [8] and observed
experimentally in Ref. [9]. Recently, the possibility of
obtaining entangled states for massive particles, atoms, has
been demonstrated in experiment [10]. At present, the most
popular source of entangled photons is spontaneous para-
metric decay (spontaneous parametric down-conversion) in
crystals with quadratic nonlinearity [11, 12]. In this process,
an ultraviolet pump photon decays into a pair of red photons
with approximately equal energies, so that the energy and
momentum conservation laws are satisfied, �hop � �hos � �hoi,
�hkp � �hks � �hki, where �hoj and �hkj �j � p; s; i� are the energy
and momentum, respectively, of the initial (p) and the two
output photons, called the signal (s) photon and the idler (i)
photon. By using crystals with quadratic nonlinearity and
type-II phase matching (Fig. 5), one can easily obtain
polarization-entangled states in the directions 1 and 2, which
are determined by the intersections of phase matching cones
for ordinary and extraordinary photons (Fig. 5b). In these
directions, one can observe Bell states of the form (8) [13].

2.2.2 How can one measure (project) entangled states? A Bell
state can be distinguished from the other Bell states due to
their different symmetry. Among the four states (8), the first
three have bosonic symmetry since transmutation of particles

1

2

� j11 � 12i

Figure 4. Two single-photon beams forming entangled photon pairs.

Optic axis of the crystal

1 2

Type II

kp

k1

k2

z

a

b

e

o

Figure 5. (a)Momentum conservation inside the crystal, also called `phase

matching', is achieved due to the crystal birefringence, which allows the

dispersion to be compensated. As a result, the idler and signal photons

form a rainbow of colored cones where conjugated photons are emitted in

opposite directions with respect to the pump beam. In the case of type-I

phase matching, the signal and idler photons have the same linear

polarization, which is orthogonal to the pump polarization, and their

cones are concentric with the pump beam. In the case of type-II phase

matching, conjugated pairs are formed by a photon with extraordinary

polarization and a photon with ordinary polarization. In this case, the

cones of signal and idler photons have different axes. For uniaxial negative

crystals, like BBO, the axis of the cone of extraordinary photons lies

between the pump beam and the optic axis, while the axis of the cone of

ordinary photons is on the opposite side of the pump beam (all the axes

and the pump beam are in the same plane). (b) The image of down-

converted light emitted by the crystal. Numbers 1 and 2 denote the

directions in which polarization-correlated pairs are emitted. In these

directions, there is no definite polarization; all we know is that the

polarization is different for beams 1 and 2.
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1 and 2 does not change the signs of their wave functions. The
last state (8d) is fermionic: transmutation of 1 and 2 changes
the sign of its wave function. This specific feature of the state
jCÿi � �jli1j$i2ÿ j$i1jli2�=

���
2
p

also reveals itself in the
intensity interference of beams 1 and 2 (Fig. 6). In Figure 6,
both detectors click only if the entangled photon pairs are in
the fermionic polarization state jCÿi. This is a well-known
feature of two-photon interference on a beam splitter [14]: in
the case of a spatially symmetric wave function, the
beamsplitter sends both particles into the same output
beam, while in the case of a spatially antisymmetric wave
function, the two particles are directed into different output
beams. Photons have bosonic statistics; therefore, conserva-
tion of the total symmetry requires that the spatial part of the
polarization-fermionic wave function jCÿi should be anti-
symmetric. A measurement distinguishing the fermionic state
from the four states (8) is called a Bell state measurement
(BSM) .

2.3 The impossibility of cloning quantum states
Since the measurement device destroys the initial quantum
state, one can consider a quantum state as a very sensitive
object that `keeps secret' all information about itself. The
uncertainty principle is one of the manifestations of this
ability. Another typical manifestation is the theorem about
the nonclonability of a quantum object [15]. Cloning means
creation of an exact copy of an object with the conservation of
it's initial (and unknown) state.

Suppose that we have a device for cloning photons. This
device reproduces photons with given properties (photons in
a given state). If we mean polarization states, the effect is
described by the transformation

jRIijli ) jRFVijlli ;
jRIij$i ) jRFHij$$i ;

where jRIi is the initial state of the cloning device, jRFVi,
jRFHi are its final states after cloning photons with vertical
and horizontal polarizations. In other words, instead of a
single photon with a given polarization we obtain two
photons with the same polarization (Fig. 2). However, if we
try to clone a photon with a polarization that is neither
horizontal nor vertical, for instance, ajli � bj$i, then the
transformation will be

jRIi
ÿ
ajli � bj$i�) ajRFVijlli � bjRFHij$$i : �10�

Even under the condition of equality jRFVi and jRFHi, the
transformed state does not represent two photons polarized
at the angle j � arctan b=a. Indeed, creation of a single
photon polarized at the angle j � arctan b=a, i.e. at the
state ajli � bj$i could be realized by applying the creation
operator b�j � aâ�V � bâ�H to vacuum, where â�V, â�H are
creation operators for the photons polarized vertically and
horizontally. They correspond to the right and the left
harmonic oscillators in Fig. 2. Two photons with the same
polarization can be obtained from the vacuum by twice
applying this creation operator:

�b̂�j �2���
2
p j0i � a2j lli � b2j$$i �

���
2
p

abjl$i : �11�

For all nonzero a, b, state (11) does not coincide with the field
part of state (10), i.e., a single quantum object cannot be
cloned.

3. Quantum teleportation

In the end of 1997, Anton Zeilinger and his colleagues [16]
performed an experimental realization of teleportation, the
dream of science fiction novelists. The term `teleportation'
means that an object disappears at some place and appears at
another place, at some distance. Although the idea of
quantum teleportation, i.e., transporting a quantum state
from one object to another one, was suggested by Charles
Bennett and colleagues in 1993 [17], it was the experiment [16]
and another experiment following it [18] that attracted public
attention.

From the classical viewpoint, teleportation means gaining
all possible information about the properties of an object and
then transposing these properties onto the reconstructed
object. However, this procedure is forbidden in the quantum
world because of the above-formulated postulates of projec-
tion and destruction of state during measurement. There
exists another method of passing a quantum state from one
object to another. Briefly, transmission of an unknown
quantum state from Alice to Bob (traditional names used in
quantum cryptography) is performed as follows:

Alice has a particle in some unknown quantum state jci.
`Teleportation' means that Alice destroys the state jci at her
location but some particle at Bob's location is put into the
same state �jci�. Neither Bob norAlice get information about
the state jci; moreover, Bob does not know that some state
was teleported onto his particle. In order to tell Bob about the
teleportation, Alice should use a classical information
channel.

In this scheme, the principal role is played by photon pairs
in entangled states. They provide the quantum information
channel between Alice and Bob. Suppose that particle 1 (a

D1

D2

F�;C� Cÿ

Figure 6. Scheme for observing intensity interference. Polarization-

entangled beams emitted by the crystal are mixed on a 50% beamsplitter

and registered by two detectors. Photocounts from the detectors are fed to

the coincidence circuit. For each photon from any beam, there are two

possibilities, either to be reflected or to be transmitted by the beamsplitter.

The probability of a photocount is given by the square absolute value of

the sum of the corresponding quantum amplitudes. The unitary transfor-

mation performed by the nonpolarizing beamsplitter concerns only the

spatial part of the photon wave function. Photons are bosonic particles;

therefore, the spatial part of the wave function is symmetric for the

bosonic polarization states jF�i, jC�i and antisymmetric for the fermio-

nic state jCÿi. Two-photon interference on a beamsplitter demonstrates

that two photons are directed by the beamsplitter into the same beam for

the case of a symmetric wave function and into different beams for the case

of an antisymmetric wave function. Hence, a coincidence of photocounts

from two detectors projects the state of a photon pair onto the fermionic

state jCÿi.
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photon), which is to be teleported by Alice, is initially in the
polarization state jci1 � ajli1 � bj$i1 (Fig. 7). Alice is
connected with Bob by means of photon pairs prepared by
an EPR source in entangled states

jCÿi23 �
jli2j$i3 ÿ j$i2jli3���

2
p : �12�

Photons 2 are sent to Alice and photons 3 are sent to Bob. The
joint state of photons 1 and 2 meeting at Alice's station is the
product of jCi1 and jCÿi23,

jCi1jCÿi23 � jCÿi12
aj$i3 � bjli3

2

� jC�i12
ÿaj$i3 � bjli3

2

� jF�i12
ÿbj$i3 � aj li3

2

� jFÿi12
bj$i3 � ajli3

2
: �13�

Consider the wave function (13) for three particles, two of
them belonging to Alice and one to Bob. If Alice projects the
states of the particles 1 and 2 onto the state jCÿi12, then the
state of particle 3 at Bob's station is immediately reduced to
the state of the first particle, jCi3 � aj$i3 � bjli3. In other
words, by measuring Bell states formed by mixing photons 1
and 2 on a beamsplitter and by registering the coincidences of
photocounts from the detectors F1 and F2, Alice performs an
immediate reduction of photon 3 to the initial state of photon
1, i.e., teleportation! Several features of quantum teleporta-
tion deserve additional comments.

(1) The teleportation procedure does not violate the
nonclonability theorem for a single quantum object. As
soon as Alice performs the Bell state measurement, photon 1
becomes a component of the polarization-entangled pair of

photons 1, 2. Hence, it is not an individual particle any more.
Its initial state jCi1 is destroyed.

(2) Quantum information can be passed from photon 1 to
photon 3 at any distance. At present, the largest achieved
distance between entangled photons is about 10 kilometers.

(3) At the moment of measurement, Alice is aware of the
teleportation going on, while Bob is not. Indeed, teleporta-
tion can occur without passing Bob any information about it.
Moreover, Alice may not know the state of photon 1
transmitted by her.

(4) A classical information channel is required for
informing Bob about the teleportation of the unknown state
onto photon 3.

(5) Suppose that Alice performs a complete Bell state
measurement and identifies, in addition to the fermionic state,
the three bosonic states, each of them occurring with
probability 25%, and sends this information to Bob through
the classical channel. Then, by means of an appropriate
operation performed over photon 3, Bob can transform its
state into the initial state of photon 1 for any result of Alice's
measurement. If this procedure is omitted and Alice only
projects for the fermionic state, then teleportation occurs only
in 25% of all trials. This fact has been demonstrated
experimentally in Ref. [16].

The experimental scheme used in Ref. [16] is shown in
Fig. 8. Correlated photons 2 ± 3 connecting Alice with Bob
were generated via type-II parametric down-conversion in a
nonlinear crystal from a UV femtosecond pulsed pump.
Photon 1 whose state was to be teleported was generated
from the reflected pump beam. The Bell state measurement
for photons 1 and 2 was performed by mixing these photons
on a beamsplitter and registering coincidences of photo-
counts from detectors F1 and F2. The polarization properties
of Bob's photon were analyzed by means of a polarizing
beamsplitter and two detectors D1 and D2.

Teleportation was experimentally demonstrated by regis-
tering coincidences of photocounts from detectors F1 and F2

and one of Bob's detectors (triple coincidences). Suppose that
photon 1, which is to be teleported, is polarized at 45�, and
Bob's polarizing beamsplitter is sending ÿ45�-polarized light

Alice Classical
information

Bob

2 3

1

F1 F2

jCi1

jCi3

jCÿi23 � �jli2j$i3 ÿ j$i2jli3�=
���
2
p

� aj$i1 � bj li1

Source of EPR photon pairs

Figure 7. Principal scheme of teleportation. Alice is going to transpose the

state of particle 1 onto some particle at Bob's station. Alice and Bob get

photons 2 and 3, which form an EPR pair in the entangled state jCÿi23.
Alice performs the Bell state measurement over particles 1, 2. This way she

also projects the state of particle 3 at Bob's station. In one case of four,

detectors F1 and F2 `click' simultaneously, so that Alice knows that the

state of particle 3 becomes the same as the initial state of photon 1, i.e., that

teleportation of the state jCi1 occurs. Alice can tell Bob about this through

the classical channel. Moreover, if Bob gets the information through the

classical channel and performs an additional unitary transformation over

his particle, the state jCi1 will be teleported with 100% probability after

each Bell state measurement performed by Alice.

Pump

Initial
state

Polarizer

Source
of photon pairs Teleported

state

1

2

D1
D2

F2

F1

4 3
P©Bob

Alice

Figure 8. Scheme of the quantum teleportation experiment [16]. Correlated

photons 2 and 3 connecting Alice and Bob were produced by a nonlinear

crystal via type-II parametric down-conversion from a UV femtosecond

pulsed pump. The reflected pump generated photon 1 whose state was to

be teleported and photon 4, which was used as a time reference. The Bell

state measurement for photons 1 and 2 was performed by mixing them on

a beamsplitter and then registering by the detectors F1 and F2. The

polarization properties of Bob's photon were analyzed by means of a

polarizing beamsplitter and two detectors D1 and D2.
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to detector D1 and �45�-polarized light to detector D2. Then
a coincidence of photocounts from F1 and F2 means that
photon 3 is polarized at �45�, i.e., a photocount comes from
D2 and not from D1. Hence, if triple coincidence counting
rates (D1F1F2) and (D2F1F2) are registered as functions of the
delay between photons 1 and 2, which is varied by shifting the
mirror reflecting the pump, one should expect a gap with
complete suppression of coincidences for (D1F1F2) and no
dependence for (D2F1F2). Outside the teleportation domain,
i.e., for delays between photons 1 and 2 so large that these
photons hit F1 and F2 independently, the probability of triple
coincidences is constant and equal to 50%� 50% � 25%
(50% is the coincidence probability of photons 1 and 2 and
50% is the probability that photon 3, which in this case has no
definite polarization, hits D1 or D2.) The experimental data
obtained in Ref. [16] confirmed these predictions, both for the
case of photon 1 polarized at 45� (Fig. 9a, b) and for the case
of photon 1 polarized at ÿ45� (Fig. 9c, d). Teleportation was
also performed for photons in superpositions of these
polarization states: 0�, 90�, and circularly polarized photons.

Realization of quantum state teleportation opens new
possibilities for transmitting `fragile' superposition states at
large distances without loss of coherence. Solving this
problem is crucial for the development of quantum compu-
ters. In addition, quantum teleportation is important in
connection with some fundamental problems, such as, for
instance, information exchange in complex spatially sepa-
rated molecular structures, including biological ones.

The importance of paper [16] and the subsequent
experiments2 [18] is clear from the fact that since, the

information aspects of quantum mechanics have been
treated not only as leading to `gedanken experiments' but
also as `practically important'. In addition, the teleportation
experiments demonstrated once again that the `classical'
interpretation of quantum mechanics, which is based on the
notions of `superposition' and `reduction' and which so far
predicted correctly the results of experiment, was confirmed
once again. As any quantum mechanical measurement fixes
one of the possible realizations arising from the originally
prepared state, Alice's measurements ensure that Bob gets
photon 3 in the original state of photon 1. This is only one of
the possibilities that appear from the initial state of the three
photons, two of which (2 and 3) are originally in an entangled
state generated by a common source. Here one should not
forget that in quantum mechanics, the possibilities for
arbitrary initial states are not necessarily described by
positive probability distribution functions, i.e., their descrip-
tion cannot be reduced to classical probability theory. Of
course, an alternative interpretation, based on classical
probabilities, can be found for certain experiments, measure-
ments, and states. At present, it is unclear, however, if this is
possible in the general case. Themodern state of this point can
be found in Ref. [19].

4. Quantum cryptography

One of the most practical aspects of quantum information is
quantum cryptography. The aim of cryptography is secret
information exchange between two stations (Alice and Bob),
so that any attempt of eavesdropping messages or breaking
the secret code would be unsuccessful. This problem is almost
solvable by modern methods of classical cryptography, for
instance, in the framework of a `symmetrical' cryptosystem
based on a secret code.

In this system, Alice and Bob, and nobody else, have a
secrete code, i.e., a sequence of randomnumbers, for instance,
decimals,

K � f12793 41169 42357 . . .g :

According to some fixed rule, each alphabet letter is put into
correspondence to a decimal number. Alice sends to Bob a
message where each letter is replaced by a corresponding
number. In this simple form, the procedure has no defense
and can be easily broken. The obtainedmessage in the form of
a sequence of numbers

P � f73997 68279 65867 . . .g

is then encoded, i.e., a digit from the code is added to each
digit from themessage. As a result, digits in the junior decimal
orders form the cryptogram

C � f85680 09338 07114 . . .g ;

which can be transmitted through an open channel (tele-
phone, etc.). After receiving the cryptogram, Bob decodes it
using the code K and obtains the message P. Note that the
above sequences K, P, and C are taken from a real message
sent by CheGuevara fromBolivia to FCastro Ruz in Cuba in
1967 [20].

In 1994, C E Shannon, using information theory, proved
that such a cryptosystem is absolutely secret if the secret code
is truly random and is used only once [21]. However, the
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Figure 9. Triple coincidence counting rates, D1F1F2(ÿ45�) and

D2F1F2(�45�), as functions of the delay between photons 1 and 2. The

delay is varied by moving the mirror reflecting the pump pulses. The

teleported photon 1 is polarized at �45� (a, b) and at ÿ45� (c, d).

2 When the present paper was under consideration of the Editorial Board,

two experimental papers appeared in which non-conditional quantum

teleportation was realized using squeezed bimodal optical fields [Furusa-

wa A et al. Science 282 706 (1998)] and the total quantum teleportation of
the hydrogen atom magnetic states to the states of chlorine atom inside a
single trichloroethylene molecule was performed (Nielsen M A, Knill E,
Laêamme R, http: //xxx.lanl.gov/archive/quant-ph/ 9811020).
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practical realization of this system faces serious difficulties.
One of them is the creation and transmission of a large secret
code for each message. These difficulties could be avoided by
using some physical channel, which would be secret due to
certain physical principles. This is exactly what quantum
physics provides us with.

The possibility of organizing such a secret channel is
based, like quantum cryptography, on the impossibility of
cloning a single quantum object. If the secret code is
transmitted via the states of single quantum particles, it
cannot be eavesdropped, since any measurement would
destroy quantum states. This event can be registered by
using a special agreement (protocol) between Alice and Bob.
One of the possible protocols can be organized by encoding
polarization states of photons in two alternative non-
orthogonal bases 3 [22]. The secret code is transmitted in two
stages (Fig. 10).

1. First, Alice and Bob discuss the encoding (for instance,
photons with polarizations 0� and 45� correspond to a zero
and photons with polarizations 90� and 135� to a unity). Then
Alice randomly changes polarization of photons sent to Bob
through the quantum channel.

2. Bob measures the polarizations of received photons
using an analyzer with the orientation randomly changed
from 0�, 90���� to 45�, 135����.

3. Through the open channel, Bob tells Alice which
measurement he performed over each photon, and Alice
tells him if the choice was correct or not.

4. Leaving in the whole sequence only correctly chosen
measurements, Alice and Bob create a secret code.

If an eavesdropper tries to find out the secret code, he
would cause discrepancies between the codes obtained by
Alice and Bob. Alice and Bob can discover this by comparing
randomly chosen digits of the code; if the errors exceed the

level determined by the detectors, they conclude that there has
been an attempt at eavesdropping.

Another possible protocol for transmitting the quantum
code is provided by phase modulation with interferometric
detection [22] based on the interference of a single photon
with itself in a setup formed by two Mach ±Zehnder
interferometers (Fig. 11). A photon sent by Alice can hit
Bob's detector within one of three separate time intervals,
depending on its path. The first time interval corresponds to
the case `short arm of interferometer A ± short arm of
interferometer B'. The second interval corresponds to two
indistinguishable cases `short arm of A ± long arm of B' and
`long arm of A ± short arm of B'. The third interval
corresponds to the case `long arm of A ± long arm of B'.

Due to the indistinguishability of the two paths of
photons fitting the second interval, there must be interfer-
ence depending on the phase difference FA and FB for
modulators monitored by Alice and Bob. Indeed, the
probability of detecting a photon within the second interval is

PB / cos2
�
FA ÿ FB

2

�
:

Hence, if Alice and Bob use the phases �FA, FB� � �0:3p=2�
for the zero-bits and �FA; FB� � �p=2; p� for the unity-bits,
they obtain an analogue of the polarization encoding
described above.

At present, the most convenient medium for the quantum
channel is an optical fiber. Through an optical fiber,
cryptograms can be sent at distances over 100 km. Since
optical fiber has considerable birefringence fluctuations, the
`polarization version' of quantum cryptography is connected
with certain difficulties and interferometric detection is
preferable.

Experimental realization of quantum cryptography is
possible under some additional requirements: small losses in
the quantum channel [optical fiber has low losses in the IR
range for wavelengths 1.3 mm (0.3 dB/km) and 1:55 mm];
operation of photodetectors in the photon counting regime
(for the chosen wavelength of 1:3 mm, existing Ge or InGaAs
avalanche photodiodes under some conditions [23] can be
used for this purpose); and no amplifiers introduced into the
channel. (From the nonclonability theorem, it follows that an
amplifier in the quantum channel leads to the same effect as
an attempt at eavesdropping.)

At present, there are two experimental setups for quantum
cryptography [23, 24]. In Ref. [24], the quantum code was
transmitted through a standard optical fiber (Swiss Telecom)
under Lake Geneva over a distance of 23 km. The length of
the code transmitted during the 11 hours of the session was 20
kbit; there were 1% of errors, mostly caused by the
germanium photodiode.

Alice

Classical (open) channel

Quantum channel

�
�l

$

\

/

Bob

No Actions Secrecy

1 A! B 1 0 0 1 0 0 1 1 secret

l / $ \ $ $ l l quantum channel

2 B measures � � � � � � � � open channel

l l / \ $ / / l secret

3 A! B: type
of measurement
A! B: correct

H H H H open channel

4 A and B create
a code

l \ $ l secret

1 1 0 1

Figure 10. Procedure of quantum cryptography with polarization encod-

ing.

3 Each of the digits is encoded by two polarizations to guarantee secrecy.

Using only one basis leaves only one quantum channel for transmitting the

code from Alice to Bob. But in this case, even if Alice transmits a random

code, Bob has no possibility to check whether it is correct or broken by

eavesdropping attempts.

Alice

Bob

F¡ FB

Figure 11. The scheme of quantum cryptography with phase modulation

and interferometric detection.

442 S Ya Kilin Physics ±Uspekhi 42 (5)



Above, we considered only a single type of protocol for
classical and quantum cryptography. There exist many other
protocols. One of them, RSA, is the most popular cryptosys-
tem with open code transmission. It was suggested by
R Rivest, A Shamir, and L Adelman [25] (the abbreviation
RSA is formed from their initials). In this protocol, two secret
codes are used: one code for encoding and another code for
decoding. In addition, there is an auxiliary code transmitted
through open channels, which is the product of large prime
numbers (containing more than 200 digits). The secrecy is
ensured by the fact that factoring large numbers is a
complicated computational problem, and with modern
facilities, it cannot be solved in a reasonable time. Recently,
an attempt to solve the mathematical part of this problem led
to the suggestion of a fast procedure that could be realized in
so-called quantum computers. For these devices to be
constructed, a consolidation of efforts in many fields of
physics is required: quantum optics, solid state physics, laser
physics, and spectroscopy.

5. Quantum computations and computers

5.1 Reversible and irreversible classical processors
Before presenting the basic principles of quantum computa-
tions and quantum computers, for a more clear demonstra-
tion of their peculiarities we briefly describe some aspects of
the work of ordinary, classical computers. Classical compu-
ters as devices for calculations must operate with numbers.
The simplest device which can represent numbers should have
two stable states. For instance, conductors can be in two
states: when there is no current, which corresponds to 0, and
when the current is present, which corresponds to 1. Such
devices can perform operations over numbers written in
binary codes. For example, the natural number 9 is written
in the binary code as 1001 � �1� 23� � �0� 22��
�0� 21� � �1� 20�, and numbers are summed according to
the table

0� 0 � 0,
0� 1 � 1,
1� 0 � 1,
1� 1 � 0 (1 in the next digit, `in the mind').

At present, there are a lot of devices that can perform this
operation. As illustrative example consider a mechanical
version of a summing device (Fig. 12). This device consists
of gates and connecting channels. Balls can move along the
channels under the action of gravity. When moving, the balls
turn the gates into one of two possible positions; the T-state of
a gate corresponds to 0, while the turned l-state corresponds
to 1. There are two types of gates in the device: gates A and C
shown by the gray hatching, which fix the state of the channel
in which they are located, and the gates B shown by the black
color, which are logical gates of the summation of two bits.
Indeed, each of the gates B has one input channel (to the left)
and two output channels (to the right). Among the output
channels, the lower one corresponds to the bit of carrying to
the next digit and the upper one is used for ball removal. If the
presence of a ball at the input of gate B corresponds to 1 and
its absence to 0, this logical unit acts according to Table 1.
This indeed is equivalent to the operation of two-bit
summation if the state of the input B is treated as the first
bit and the second term is the initial state of gate B. Then the
final state of the gate B together with the final state of the
carrying bit is the result of the summation. Combining such

logical gates in a network by connecting the bit-carrying
channel to the input of the next-digit logical gate, we obtain a
processor for summing arbitrary numbers (Figs 12a ± c).

The operation of such a processor has an important
feature. This processor will perform the summation opera-
tion even without the gates A and C. In this case, the
operation of the summator will be irreversible. Indeed, for
the transformation `two inputs! one output' (the initial state
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Figure 12. Mechanical scheme of a summing processor with balls. The

device consists of gates and connecting channels. Balls can move along the

channels under the action of gravity.Whenmoving, the balls turn the gates

in one of two possible positions. AT-state of the gate corresponds to 0, and

the turned l-position corresponds to 1. There are gates of two types: gates

A and C, which are denoted by gray hatching, record the state of the

channel where they are installed, and gates B, colored black, serve as

logical gates of two-bit summation. (a) The original state of the processor:

the states of the gates (B4, B3, B2, B1) `encode' the number 5=101; the balls

at the input `prepare' another number 3=11. (b) The state of the summing

processor after the action of a ball from the first digit: the number 1 is

written down in the register fAig, and the number 110 (5+1) in the register

fBig. (c) The final state of the summing processor after the action of a ball

from the second digit: the register fAig contains the initial number 11. The

register fBig is turned into the state corresponding to the sum 101+11 =

1000 (5+3=8).

Table 1.

Initial state
of the gate B
entrance
(ball ì 1,
no ball ì 0)

Initial state
of gate B
(T � 0 ; l � 1)

Final state
of gate B

Final state of the

bottom output

channel

(bit-carrying

channel)

0
0
1
1

0
1
0
1

0
1
1
0

0
0
0
1
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of gate B input, the initial state of gate B input Ð the final
state of gate B), the information at the output is not sufficient
for determining what was at the input (cf. the second and the
third rows in Table 1) and thus to reverse the operation.
However, in 1973, Charles Bennett [26] showed that all logical
operations needed to design a computer (there are only
42 � 16 of them for logical gates `two inputs! one output')
can be made reversible. For the summation operation, the
initial bit states should be conserved, i.e., transformations like
�a; b� ! �a0 � a; b0 � a� b�, where the prime means the
final input or output state, should be used. In 1980 Tom
Toffoli found [27] how one can describe reversible calcula-
tions using the traditional language of Boolean logical gates,
such as AND, OR, etc., but having the property of
reversibility. One such logical gate, which was shown later
to be very important for quantum calculations, acts like a
controlled NOT (reversible XOR). The bit b (target bit)
changes its state if and only if the state of the control bit a
corresponds to 1; the state of the control bit remains
unchanged (Fig. 13a). Toffoli also showed that an arbitrary
reversible processor can be constructed using only a single
logical gate, Toffoli's universal three-bit gate (Fig. 13b). In
this logical block, the state of the target bit (c) changes if and
only if both variable control bits (a and b) correspond to 1.
Figure 12 can be also used to demonstrate the reversibility of
the classical summator. Adding to the consideration the gates
A and C, which are used to fix the states of the inputs (Ai) and
carrying bits (Ci) in each digit, we get a reversible summator.
Indeed, if we invert this device around the horizontal axis
(Fig. 12c) and consecutively `let in' the balls which fell into the
evacuation channels, the final state of the device after the balls
have passed coincides with the initial one.

A logical network (Fig. 14) demonstrating the time
evolution of bit states can equivalently describe the opera-
tion of such a reversible summation processor. The idea of a

quantum processor is a single step ahead of such a logical
network of bit states. R Feynman made this step [28, 29] in
eighties when he realized that reversible computation net-
works can operate, instead of classical bit states, with
quantum states of systems governed by reversible Hamilto-
nian dynamics. This time can be considered as a beginning of
quantum computers history.

5.2 Quantum computers
Quantum computers are physical devices performing logical
operations over quantum states by means of unitary
transformations that do not violate quantum superposi-
tions. In the most schematic form, the work of a quantum
computer can be represented as a sequence of three opera-
tions:

(1) recording (preparation) of the initial state;
(2) computation (unitary transformations performed over

the initial states);
(3) reading out the result (measurement, or projection, of

the final state).
(1) A normal numerical computer operates with bits,

Boolean variables, that take values 0 and 1. At each stage of
calculation, each bit has a definite value, which can be
measured. At the first stage, the initial data should be written
into the register (a set of bits), each bit having a definite value
(0 or 1).

A quantum computer operates with quantum states. The
simplest state that plays the role of a bit in a classical
computer is a qubit, or a quantum information bit, which is
the state of a quantum systemwith two basic states j0i and j1i.
The general state of this system is a superposition

jqi � c0j0i � c1j1i ;

a

b

c

a 0

b 0

c 0

a b c a 0 b 0 c 0

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

ba

b

a 0

b 0

a b a 0 b 0

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

a

Figure 13. (a) Graphic representation and truth table for an elementary

controlled-NOT gate: bit b (the target bit) changes its state if and only if

the state of the control bit a corresponds to 1, with the control bit state

remaining unchanged. Each horizontal line represents the state of a single

bit changing in time from left to right. The symbols on two lines connected

with the vertical line mean the joint action of two gates on these bits.

Clearly, the truth table for this logical gate, which is also called

EXCLUSIVE OR (XOR), corresponds to the table of two-bit addition if

in the latter the carrying bit is not taken into account. (b) The graphic

representation and the truth table for Toffoli's three-bit logical gate, which

is universal for constructing reversible Boolean logic. Its action reduces to

changing the target bit c state provided that both invariable control bits (a

and b) correspond to 1. Each horizontal line represents the state of a single

bit, which changes in time from left to right. The symbols near the three

lines connected with the vertical linemean joint action of the three gates on

these bits.
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Figure 14. Logical scheme of a reversible summator with the mechanical

scheme shown in Fig. 12. The horizontal lines correspond to the states of

the digit bits of two numbers to be summed, (A4, A3, A2, A1) and (B4, B3,

B2, B1), as well as to the carrying bits, (C4, C3, C2, C1). The digit-summing

blocks represent an operation that can be performed by a ball falling on the

gates Bi in the mechanical scheme: the gate Bi changes its state provided

that a ball is present in the channel Ai; if the state of the gate Ci before the

interaction corresponded to 1, the ball is carried into the next digit along

the transmission channel changing the state of the gate C that originally

had the state 0.Carrying blocks perform the controlled-NOT operation by

changing the state of gate Bi�1 with a ball that entered the i� 1th summing

gate from the carrying bit channel Ci.
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which is something different from a Boolean 0 or 1. A qubit is
a quantum superposition of two numbers, zero and unity!
Qubits can be realized in any physical system with two
quantum states: photon polarization states, electronic states
of isolated atoms or ions, spin states of nuclei, lower states of
quantum dots, and so on.

The advantage of operating with qubits can be noticed
even at the first stage of computation. If the initial number is
written into a classical register consisting of w bits, w
operations are required, since for each bit, the values of 0 or
1 should be set. As a result, only a single number of lengthw is
written. After w unitary operations performed over each
qubit in a quantum register (a device consisting, for
instance, of w quantum dots, see Fig. 15), a coherent
superposition of all Q � 2w states of the total system,
quantum register, is prepared. This way, instead of a single
number, we obtain 2w possible readings of the register, a
coherent superposition of all possible numbers written in it.
Naturally, this property can be used for quantum parallel
calculations.

(2) Applying unitary transformations, which play the role
of logical operations, to the prepared quantum states we

obtain a quantum processor. The role of connections (wires)
is played by qubits and the role of logical blocks (gates)
constituting the whole computation process is played by
unitary transformations. This concept of quantum proces-
sing and quantum gates together with universal quantum gate
(analogous to the Toffoli's gate in classical computation)
have been proposed by D Deutsch in 1989 [30]. Recently, it
was shown that one- and two-bit gates are sufficient for
obtaining all the necessary set of transformations [31 ± 34].
In particular, these are the negation operation NOT
(quantum analog of gates A and C in classical summator on
balls),

bTNOT � j0ih1j � j1ih0j ; �14�

acting on a single qubit and transforming its state into

bTNOTj0i � j1i ; bTNOTj1i � j0i ;

and the controlled-NOT, or exclusive-OR (XOR) operation
(quantum analog of gates B in classical summator on balls
considered above),

bTXOR � j0i11h0jbI2 � j1i11h1j bT2NOT ; �15�

acting on two qubits so that the first of them stays unchanged
and the second one changes depending on the state of the first
one. For instance,

bTXOR

ÿ
aj0i1 � bj1i1

�j0i2 � aj0i1j0i2 � bj1i1j1i2 ; �16�

i.e., the operation bTXOR transforms superposition states into
entangled ones and vice versa. A quantum analog to the
logical Toffoli gate (controlled ± controlled NOT) (Fig. 13b)
acts on three qubits according to the relation

bTToffoli

ÿ
aj0i1 � bj1i1

�ÿ
gj0i2 � dj1i2

�ÿ
mj0i3 � nj1i3

�
�
h
aj1i1

ÿ
gj0i2 � dj1i2

�� bgj0i1j0i2
iÿ
mj0i3 � nj1i3

�
� bdj1i1j1i2

ÿ
mj1i3 � nj0i3

�
: �17�

Quantum logical blocks combined together and acting on
qubit states in a certain order form a quantum network.
Taking the scheme of the reversible summing processor as an
example (see Fig. 12) and considering two-level systems
instead of gates, with interactions corresponding to unitary
transformations (15) ± (17), one obtains (see Fig. 14) the
simplest quantum network, a summator.

(3) The operation of reading the result in a classical
computer does not differ from any other operation in the
course of computation. Computation can be stopped at any
stage, with the intermediate result read and then computation
resumed. In a quantum computer, this is different. The final
result of a quantum computation is the state of the quantum
register after all unitary transformations. This state is a
coherent superposition of all states possible for this register.
Evidently, we cannot obtain all probability amplitudes Cj in
the decomposition of this superposition state. According to
quantum theory, all that we can get from this single quantum
object is a set of quadratic forms

P
i; j CiC

�
j Ri j given by the

measurement of some physical value corresponding to the
operator R. It is also clear that the final result of a quantum
computation would fluctuate from run to run. However, even
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Figure 15. Quantum computers. These are physical devices performing

logical operations on quantum states by means of unitary transforma-

tions, so that quantum superpositions are not destroyed during the

computation. Schematically, the work of a quantum computer (b) can be

represented as a sequence of three procedures: recording (preparation) of

the initial state; computation (unitary transformations performed on the

initial state); and output of the result (measurement, projecting of the final

state). In contrast to a normal numerical computer (a), which operates

with bits, Boolean variables taking values 0 or 1, a quantum computer

operates with qubits, quantum information bits, which are states of a

quantum systemwith two basic states, j0i and j1i. Physically, qubits can be
realized with any systems that have two quantum states. These can be

polarization states of photons, electronic states of isolated atoms or ions,

spin states of nuclei, lower states in quantum dots, and so on. The result of

a quantum computation should be treated as some probability distribu-

tion and measured in many repeated trials. (c) A quantum register is

formed by the states of several qubits. For w qubits in a register, the

number of states of the register is Q � 2w.
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under such conditions, quantum computers can essentially
accelerate calculations for some mathematical problems.

5.2.1 Quantum computers and mathematical problems. When
Feynman first noticed the possibility of constructing a
processor based on quantum mechanical principles [29], it
was not clear in what mathematical problems it would have
advantages over usual processors. The first realistic example
was found by P W Shor in 1994 [35]. Shor suggested an
algorithm for factoring a large n-digit number; the proposed
algorithm allowed the calculation time to be reduced from the
exponential value exp n1=2, which is necessary in the case of
classical computers, to the polynomial value (n2) required by
a quantum computer. Factoring integers belongs to the class
of mathematical problems where the solution is sought from
among an exponentially large number of candidates.

The problem of factoring can be reduced to finding the
period of an auxiliary function. This function is the residual of
dividing a power function ax by an integer number N:

fN�x� � ax modN :

For instance, for a � 11, N � 15, the values of fN�x�
corresponding to x � 0; 1; 2; 3 are equal to 1, 11, 1, 11,
respectively, i.e., the period of the function 11x mod 15 equals
2. Further, the procedure of finding prime divisors is reduced
to the following operations: 11� 1 � 10; 12; 15ÿ 10 � 5;
15ÿ 12 � 3.

Shor showed that the procedure of finding the period of a
periodic function is considerably simplified by using a
quantum computation. The following operations should be
performed (Fig. 16):

(A) Preparation of two registers, one of them for the
arguments (the x-register) and another one for the values of
the periodic function, for instance, the integer-valued func-
tion fN�x� � ax modN. Let the number of qubits in the x-
register be w, then this register contains Q � 2w possible
states, which will be further denoted as jnix (Fig. 16). The
number of qubits can be exponentially smaller than the period
r of the function fN�x�. The y-register contains the same
number of bits. Let us denote its basic states as jmiy. The x-
register, initially in the ground state, is put, after rotating each
qubit by 45�, into the state of uniform superposition

1����
Q
p ÿj0ix � j1ix � j2ix � j3ix � . . .� jQÿ 1ix

�j0iy :
Further, by performing an appropriate unitary transforma-
tion Uf, the state is transformed into the entangled state of
two registers,

1����
Q
p ÿj0ixjfN�0�iy � j1ixjfN�1�iy � j2ixjfN�2�iy
� j3ixjfN�3�iy � . . .� jQÿ 1ixjfN�Qÿ 1�iy

�
: �18�

This state is schematically shown in Fig. 16b as some periodic
function, so that each point in the plot corresponds to a pair
of integer numbers �n;m � fN�n�� denoting the term
jnixjfN�n�iy in the sum (18); with n on the horizontal axis, m
on the vertical.

(B) Next, a discrete Fourier transform is performed over
the states of the x-register. The corresponding unitary
transformation of the basis,

TFT � 1

Q

XQÿ1
n�0

XQÿ1
k�0

exp

�
2pikn
Q

�
jkixxhnj ; �19�

applied to the state (18), leads to a new state of both registers,

XQÿ1
k�0

Xr
m�0

DkmjkixjfN�m�iy ; �20�

where the amplitude of each state in the x-register,

Dkm �
XGm

l�0
exp

2pik�lr�m�
Q

� exp
2pikm
Q

� exp�2pikrGm=Q� ÿ 1

exp�2pikr=Q� ÿ 1
; �21�

has a maximum at k � pQ=r (Fig. 16c). Evidently, it is
supposed that the total number of states, Q, is not multiple
of the period r. In Eqn (21),

Gm �
�
Q

r

�
� y�Qmod rÿm� ;

i.e., Gm is either equal to the number of periods r in the total
number of states Q or exceeds this number by unity,
depending of whether the residual of dividing Q by r is larger
than m or not.

m

n

br

m

k

c
Q/r

k

dk% pQ/r

m

y
-r
eg
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r
j0i

n

a

x-register in the state j1ix � j2ix � :::� jQÿ 1ix

Figure 16. Obtaining the period of a periodic function by means of a

quantum computation. (a) Preparation of independent states of two

registers, x and y. The abscissa correspond to the numbers n of the basic

states jnix in the x-register, the ordinates denote the numbers m of the

states jmiy in the y-register. The line shows the numbers of the states in two

registers that form the initial state. (b) Entangled state of two registers (18),

with the numbers of connected states of registers x, y forming a discrete

periodic function m�n� with the period r. (c) The same state but with the

basis of the x-register changed by the discrete Fourier transform (19). Due

to the function periodicity, only states with numbers k localized in the

vicinity ofQ=r form the entangled state in the new basis. (d) Because of this

localization, several measurements of the x-register state are sufficient for

determining the period r.
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(C) The result of measurement (or measurements) of the
state of the x-register is approximately given by the ratioQ=r,
since the amplitudes Dkm are localized near these values
(Fig. 16c). Hence, we obtain the period r.

Note that applying a discrete Fourier transform to the
problem of finding an unknown period is analogous to
measuring the period of some lattice using the diffraction of
X-rays or neutrons. However, if the problem of factoring a
200-digit number were solved by means of diffraction, we
would need a crystal with period 10200 A and size 10400 A and
radiation with a wavelength 1A. Naturally, this is hardly
possible.

There exist other mathematical problems where solutions
are sought from among an exponentially large number of
candidates. Recently, a method of solving another problem
was proposed, with the time of calculation reduced dramati-
cally by using quantum computation. This is the problem of
searching among the elements of a database with each
element answering YES/NO to a query [36]. At the same
time, a lot of similar problems are still waiting for solutions.
These are, for instance, combinatorial problems and, in
particular, the salesman problem [37]: to find the shortest
path connecting n points with known distances between pairs
of points, so that each point is passed only once. Other
problems of this type are calculations of the optimal way of
supplying shops with goods, consumers with electricity,
building ring electric communications and so on. Searching
for new algorithms of solving these problems by means of
quantum computations is one of the most significant
problems of quantum information theory. Another signifi-
cant problem is the correction of errors generated in the
course of computation. Since quantum states are very
sensitive to external perturbations, the correction of errors
in quantum computers is much more important than in
classical ones [38, 39].

5.2.2 Quantum computers and physical problems. At present,
the creation of a quantum computer is first of all a physical
problem. One of the difficulties is the fast decay of super-
position states, with their turning into mixed states. This
process is called decoherence, and the analysis of its nature
resolves the SchroÈ dinger cat paradox (see Section 6). The
effect of decoherence imposes restrictions on the physical
elements used in optical computers: the coherence times of
quantum states should exceed the time of calculation. Hence,
there are two possible ways of avoiding the decay of
coherence: to find a quantum system isolated from the
surroundings or to increase the coherence time artificially.

Possible types of isolated quantum systems are summar-
ized in Table 2. Isolation of field quantum systems, modes of
electromagnetic field, is possible in high-Q microcavities of
optical [40] and microwave [41] ranges. Such cavities, with
sizes of several millimeters, allow coherence of superposition
quantum states to be maintained for times from seconds to
microseconds, with the number of photons per mode varying
from unity to a hundred [42]. Another promising method of
field isolation is using surface modes like `whispering
galleries' mode on microspheres of synthetic silicon [43]. For
those modes, it was possible to achieve a quality factor of
order 109 ± 1010, which corresponds to a coherence time 1 ±
0.1 ms [44]. A novel isolation method is using three-dimen-
sional periodic dielectric structures, called photonic crystals
[45, 46], which perfectly `confine' photons from certain
frequency bands. The localization of photons in photonic

crystals is so high that a single atom interacting with a
photonic crystal should manifest suppression of sponta-
neous decay and inversion-free generation of coherent
monochromatic sub-Poissonian radiation [47, 48]. Among
several candidates to photonic crystal materials, the most
perspective at present is synthetic opal [49, 50].

The isolation of single massive particles, such as atoms,
molecules, and ions, was historically preceded by one-
dimensional isolation in beams (Table 2). Among other
isolation (localization) methods, let us mention the following:

(1) Quadrupole ion traps, called Paul traps [51] of various
configurations, which can keep a single ion (the endcap trap
[52] illuminated by laser beams [53]) or several ions (ring
quadrupole traps [54]). The last sort of trap is also considered
as a possible realization of quantum registers [55]. A two-bit
quantum computer was successfully realized in an experiment
with a single cooled beryllium ion [56].

(2) Optical traps for neutral atoms [57, 58]. Observation of
Bose ± Einstein condensation [59] suggests that this object can
be also useful for quantum computation.

(3) Methods of matrix isolation of molecules in poly-
crystalline and amorphous media [60] and gels [61], impurity
centers in crystals [62], and molecules in spatially organized
structures such as DNA [63], proteins [64], photosynthetic
antenna complexes [65]. Considerable progress in the study of
isolated molecular systems is due to the fast development of
single-molecule experimental and theoretical spectroscopy
[66 ± 68].

(4) Quantum dots [69].
(5) As a promising object for quantum computation, one

can use spin molecules, which are considerably isolated from
the surrounding due to the screening effect. In this case,
coherence times can reach several seconds. For a large
number of molecules, for instance, kept in solution, a
quantum register would have 2n states, where n is the number
of spins in a single molecule and not the number of molecules
in the solution [70]. Probably, themolecules can be considered
as a natural elementary quantum computer. The first
experimental realizations of logical blocks have been per-
formed using the nuclear magnetic resonance of three nuclear
spins (proton and carbon spins of trichloroethylene) [71].

Table 2. Localization of single quantum systems.

Field Matter

Microcavities:
optical [40];
microwave [41, 42]

Cavities for
`whispering gallery'
modes [43, 44]

Photonic crystals
[45 ë 50]

Beams
Ion traps::
Paul trap [51];
end-cap [52, 53];
quadrupole ring traps [54]

Laser traps [57, 58]

Naturally isolated
systems:
molecules in amorphous and polycrystalline
matrices [60, 61];
impurities in crystals [62];
molecules in biological structures [63 ë 65]
(investigation method: single-molecule
spectroscopy [66 ë 68])

Quantum dots [69]

Nuclear spins of molecules [70 ë 72]
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First quantum algorithm has been demonstrated in Ref. [72]
on nuclear spins of chloroform molecule. This quantum
algorithm is analogous to well-known game with coins 4.
Note that there is a principal difference between computa-
tions on quantum objects distributed in some medium and
isolated quantum objects. This is analogous to the difference
between an experiment with an ensemble of objects and an
ensemble of experiments with a single object.

Among other physical problems connected with the idea
of quantum computations, let us mention the search for
physical processes realizing logical operations. The XOR
operations can be performed by means of single ions
interacting with microwave fields in cavities [73, 74] or ions
oscillating in traps [55, 56]. There is a promising method of
dynamical monitoring of quantum tunneling by means of
laser radiation [75].

If optical fields are used not only for transmission but also
for logical operations, it is important to develop methods of
measuring their quantum states, which can have forms of
complex superpositions. These possibilities are provided by
quantum tomography [76] and various methods of quantum
non-demolition measurements [77]. In devices operating with
photon-number field states, such as, for instance, nodes of a
quantum information network, one faces a set of problems
connected with sub-Poissonian field generation [78]. Experi-
mental methods of generating sub-Poissonian fields are based
on using either unitary transformations [79] or non-unitary
(projection) transformations [80 ± 85].

Sometimes, the quantum object used for computation
cannot be properly isolated, and the errors caused by its
interaction with the environment destroy quantum coher-
ence. In these cases, one can use various methods of quantum
error correction, such as increasing the number of informa-
tion channels with further correction based on some protocol
[38, 39], regularization of the interaction with the environ-
ment [86 ± 90], feedback methods [91 ± 94], and passive
methods [95]. All these methods solve the decoherence
problem, which was illustrated so brightly by the SchroÈ din-
ger cat paradox [1].

6. The problem of decoherence

There are some general features of the decoherence process,
which manifests itself as a fast transformation of a pure state
into a mixed state because of the interaction between the
quantum system and the surrounding. As an isolated
quantum object, let us consider a harmonic oscillator, which
can represent a field in a cavity or an ion oscillating in a trap.
Let the initial state of the oscillator be a superposition of two
coherent states, both corresponding to the same complex
amplitude.We obtain an example of the SchroÈ dinger cat state
(Fig. 17). To make this object explicit, one can use Wigner's
quasiprobability function

W�b�� 1

p2

�
d2x Sp

n
r_ exp

�
x� a_�ÿ b�� ÿ x�� a_ÿ b��o :

�22�

Its two-dimensional plot contains complete information
about the wave function of the object represented by the
harmonic oscillator (a photon, a phonon, or any other
quantum system). For classical states, this function is equal
to the joint probability distribution function in the variables
`coordinate x-momentum p' (b � x� ip). In particular, for
the state

jc�i � N
ÿjai � exp iyj ÿ ai� ;

Nÿ2 � 2
�
1� cos y exp�ÿ2jaj2�� ; �23�

theWigner functionW�b� has twomaxima localized at points
b � �a and indicating the probabilities of finding the system
in the states jai or j ÿ ai. In addition, there is an interference
structure at b � 0, which for some arguments takes negative
values. This structure appears due to quantum interference
terms jaihÿaj exp�ÿiy� � j ÿ aihaj exp iy in the density matrix
of the state (23). It is this structure that indicates that the state
is nonclassical.

Relaxation caused, for instance, by the escape of photons
from the cavity with the rate g, leads to a specific change in the
state of the oscillator: first, the interference part disappears,
and the superposition state turns into a mixed state, and then
the mixed state gradually becomes the vacuum state (Fig. 18).
Moreover, the rate at which the interference terms
tÿ1decoh � 2gjaj2 decay is higher, the larger the size of the state
(22), determined by the amplitude a. This feature of
relaxation, first pointed out by W H Zurek [86], explains
why superposition states are easily observed in the micro-
scopic world but are never observed for macroscopic objects,
i.e., why we never observe the superposition of a dead cat and
an alive cat. However, this fact still gives no solution to the
problem of avoiding decoherence. To find the solution, the
relaxation process should be investigated in detail.

4 In a well-known game, your partner has a coin in his hand and you are

asked to determine if this coin has two different sides or they are the same.

Clearly, after having seen different sides of the coin, you give the answer.

But is it possible to give the correct answer having seen only one side of the

coin? Modeling such a situation with nuclear spin states of a chloroform

molecule, the authors of paper [72] gave the answer in one run of the

quantum processor. They used the spin states of hydrogen nuclei as an

indicator of which side of the coin has been looked at (the spin up or

down), and the spin states of carbon nucleus as an indicator of the result of

observation.

Size of the `cat'

a

b

Figure 17. (a) Wigner function of the superposition formed by two

coherent states with the phases differing by p. The two peaks correspond

to the coherent states jai and j ÿ ai. The distance between the peaks

determines the size of the SchroÈ dinger cat, i.e., indicates how macroscopic

the state is. (b) The projection of theWigner function. A specific feature of

theWigner function for the state jai � exp�iy�jÿ ai is the interference part
at the center of the phase plane. Because of the quantum nature of the

state, there are points where its Wigner function takes negative values.
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6.1 Relaxation as a nonunitary evolution of a state.
Quantum reservoirs engineering
Any kind of relaxation is due to the interaction of the system
with the reservoir, which is an object with many degrees of
freedom and a broad continuous energy spectrum. This
provides a unidirectional transfer of excitation from the
system to the reservoir. A standard model for the reservoir is
a large number of harmonic oscillators with distributed
eigenfrequencies oi and creation and annihilation operators
b�i , bi. The states of the system and the reservoir, initially
independent, become entangled because of the interaction. As
a result, the initial superposition state of the system loses its
individuality and becomes a mixed state. The details of this
transition depend on the specific form of the interaction
between the system and the reservoir. Suppose that the
quantum system, represented by an oscillator, interacts with
the reservoir via the Hamiltonian

Hint � A�a; a��G� � A��a; a��G ; �24�

where A�a; a�� is a function (nonlinear in the general case)
of the creation and annihilation operators for the oscillator
and G � �h

P
i gibi is a linear function of the reservoir

operators. Although Hamiltonian (24) is not universal, it
still describes numerous physical situations. First, for a
linear interaction, A�a; a�� � a, and the relaxation is
described by the equation

_r � g
2
�2ara� ÿ a�arÿ ra�a� �25�

for the density matrix of the oscillator a averaged over the
initial vacuum state of the reservoir. The constant
g � pr�o�jg�o�j2 is the energy relaxation rate, r�o� is the
density of states for the reservoir. Solving Eqn (25), we can
obtain the density matrix as a function of time and predict
possible results of measurements performed over the oscilla-
tor a. For instance, the initial superposition
jc�i � N�jai � exp iyj ÿ ai� evolves, according to Eqn (25),
as

r�t� � 1

2

ÿjatihatj � j ÿ atihÿatj
�

� 1

2
exp

n
ÿ 2jaj2�1ÿ exp�ÿgt��o

�
h
exp iyj ÿ atihatj � exp�ÿiy�jatihÿatj

�i
; �26�

this dependence describes a slow decrease in the amplitude
at � a exp�ÿgt=2� and a fast, with the rate tÿ1decoh � 2gjaj2,
transition into a mixed state.

In the general case of a nonlinear interaction between the
oscillator a and the reservoir, relaxation is described by the
kinetic equation

_r � g
2

ÿ�A; rA�� � �Ar;A��� : �27�

From this equation, in combination with theHamiltonian
(24), it follows that the relaxation of the oscillator a
considerably depends on the form of the interaction
A�a; a��. Indeed, the eigenstates jCiA of the interaction
operator A�a; a�� stay non-perturbed by the interaction with
the reservoir and form the so-called `pointing basis' [86],
which determines the specific form of the relaxational
evolution. Hence, by using various forms of the interaction
operatorA�a; a��, one can create various `pointing bases' and
thus vary the relaxation process and, moreover, obtain
various stationary states as a result of the relaxation. Several
well-known examples of `quantum reservoir engineering' are
given in Table 3.

Note that replacing the harmonic oscillator by a set of N
two-level systems, which represent a quantum register, one
can find a subspace of the register states that is completely
orthogonal to the states of the reservoir. Such states of the
register would not be perturbed by the reservoir. Several

a b c d

Figure 18. Evolution of theWigner function for a quantum harmonic oscillator with damping. The initial state of the oscillator is jai � exp�iy�jÿ ai. The
Wigner function is shown at t � 0 (a), 1=16g (b), 1=4g (c), 1=g (d); a � 2. Decoherence manifests itself in the fast decay of the interference part of the

Wigner function in the course of relaxation.

Table 3. Various`system-reservoir' interactions for quantum reservoirs
engineering.

Type of interaction `Pointing basis' Stationary state References

A � a� a� � x Coordinate
eigenstates

Vacuum [86]

A � a2 Even and odd
coherent states

Vacuum [87]

A � �a� a��aÿ a� Even and odd
coherent states

Even and odd
coherent states

[88 ë 90]

A � a�a Fock states Vacuum [90]

A � a�a�aÿ n� Fock states Fock states [90]

A � exp�ipa�a�a Yurke ë Stoler
superposition
states

Vacuum [91 ë 93]
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special cases have been considered in Ref. [95]. On the other
hand, there is a strong correlation between the states of a
single two-level atom and the reservoir, for instance, radia-
tion. Due to this correlation, the atom dynamics can be varied
by changing the state of the field. For instance, if one of the
reservoir modes (a resonance mode) is initially in the Yurke ±
Stoler state, jai � ij ÿ ai, and the other reservoir modes are in
the vacuum state, the entangled nature of joint states leads to
the effect of quantum instability, which manifests itself in the
exponential growth of the transition dipole moment of the
atom [96], instead of the usual Rabi oscillations.

6.2 Relaxation as a quantum stochastic process.
Purity of conditional states
Relaxation of the oscillator a can be also considered as a
result of averaging of quantum stochastic processes of
excitation transfer from the oscillator a to the oscillators of
the reservoir. In each process of this kind, such as, for
instance, the escape of a photon from a cavity, a quantum is
passed from the oscillator a to the reservoir. As a result, there
is an instant change, reduction, of the state of the oscillator a.
The absence of quantum exchange between the acts of
reduction, which occur at random time moments, does not
mean that the state of a remains constant. Indeed, the longer
we wait for the next quantum to be emitted, the higher the
probability that oscillator awill be in the ground state; hence,
its amplitude should decrease during such periods. Such a
sequence of reductions and intervals of non-unitary evolution
is studied by the theory of continuous quantum measure-
ments or quantum jumps [97 ± 99]. In the case of relaxation
with linear interaction, this sequence of random events is
described by the conditional state vector of the oscillator a
after transmitting exactly n quanta to the reservoir at time
moments t1; t2; . . . ; tn belonging to the interval �0; t�:
jccond�t�i � gnS�t; tn�aS�tn; tnÿ1�a . . . aS�t1; 0�jc�0�i ; �28�

where S�ti; tiÿ1� � expfÿga�a�ti ÿ tiÿ1�=2g is a non-unitary
operator of the evolution between two sequential reductions
at tiÿ1 and ti. Emission of quanta at time moments ftig results
in the reduction of the state. If jc�0�i � jc�i, then this effect,

a
�jai � exp�iy�j ÿ ai� � a

�jai � exp�iy�j ÿ ai� ; �29�

increases the relative phase y by p, but the state remains a pure
superposition state. The non-unitary evolution S�ti; tiÿ1�
between quantum emissions reduces the amplitude a expo-
nentially, so that the conditional state

jccond�t�i � N�ga�n�ja exp�ÿgt=2�i
� �ÿ1�n exp�iy�j ÿ a exp�ÿgt=2�i� �30�

remains pure throughout the whole evolution period, and its
coherence is preserved! Conservation of purity for condi-
tional states in the course of relaxation does not contradict the
above consideration of the density matrix decoherence: if the
conditional density matrix jccond�t�ihccond�t�j is averaged
over random realizations of quantum emissions, we immedi-
ately obtain the result (26), which means that the information
about the state of the system is partially lost. It is also evident
that the first emission event occurring after the average
waiting time equal to the decoherence time,
tdecoh � 1=2gjaj2, is sufficient to erase the quantum inter-
ference terms.

6.3 Correcting errors by means of feedback
Relaxation considered as a quantum stochastic process also
shows that although decoherence is a serious obstacle for
quantum information processing, it can still be overcome. In
order to correct the errors and uncertainties caused by the
interaction of the quantum object with the surroundings, it is
not necessary to know the state of the surroundings. It is quite
sufficient to control the times of quantum emissions from the
object to the surroundings and to return the system after each
reduction into its initial state by means of some unitary
transformation [91 ± 93].

For the case ofYurke ± Stoler coherent states jai � ij ÿ ai,
this protocol of error correcting should be carried out by
rotating the phase of the oscillator a by 180� [91]. Then the
sequence of events in the quantum stochastic process would
consist of alternating stages of non-unitary evolution (the
absence of emissions), reduction, and phase variation,

jccond�t�i � gnS�t; tn� exp�ipa�a�aS�tn; tnÿ1�
� exp�ipa�a�a . . . exp�ipa�a�aS�t1; 0�jc�i : �31�

Due to the correcting procedure, which can be realized by the
back action on the oscillator a (Fig. 19), not only the
conditional state but also the unconditional state of the
oscillator, obtained by averaging over random realizations
of emissions, remain pure superpositions,

jc�t�i � 1���
2
p ���a exp�ÿgt=2��� i

��ÿ a exp�ÿgt=2��� : �32�
In this case, the only sign indicating the existence of relaxation
is the exponential amplitude decay (energy relaxation).

Note that the density matrix of the state (32) satisfies an
equation similar to Eqn (27):

_r � g
2

��
Ap; rA�p

�� �Apr;A�p
��
; �33�

where the nonlinear interaction operators Ap � exp�ipa�a�a
and A�p � a� exp�ÿipa�a� belong to the class of generalized
creation and annihilation operators Aj � exp�ija�a�a,
A�j � a� exp�ÿija�a�, whose eigenvectors, generalized
coherent states, have extraordinary quantum properties [92].

The experimental scheme for the proposed decoherence
correction is evident [93] (Fig. 19). The inter-cavity field,
initially in the Yurke ± Stoler state, is continuously registered
by a high-efficiency detector. From each photocount of the
detector, a signal is fed through a feedback to the phase
modulator, which changes the field phase by p. If this
procedure is continued, the superposition state in the cavity

Modulator Detector

Figure 19. Slowing down decoherence by means of an error-correcting

feedback. The intra-cavity field, initially in the Yurke ± Stoler state, is

continuously detected by a high-efficiency detector. Each photocount is

converted into a signal on the phase modulator, which changes the phase

of the field by p. If this procedure is repeated continuously, the super-

position state is preserved as long as there are some photons in the cavity.

450 S Ya Kilin Physics ±Uspekhi 42 (5)



is conserved as long as there remain some photons in the
cavity.

Suppression of decoherence by means of feedback is a
universal method and can be applied to all systems with
continuously controllable losses (local nodes of a quantum
computer). At present, in addition to Refs [91 ± 93], there are
some other suggestions in this direction [94]. If the control of
losses is difficult, as in the case of transmission through
quantum channels, one should use quantum error-correcting
methods based on duplicating transmitted qubits [38, 39].

7. Conclusions

Quantum informatics is developing remarkably fast. The
`scientific race' for new achievements in quantum informa-
tion has involved, joined and enriched several fields of
science, such as discrete mathematics and quantum
mechanics, computer science and quantum optics. More-
over, it has given practical importance to studies that
previously seemed to be far from practical applications, such
as the investigation of single quantum objects: atoms and ions
in high-finesse cavities and traps, molecules and impurity
centers in polymer and crystallinematrices. All this stimulates
such a rapid development of new approaches, methods, and
materials that it is hardly possible to keep up on current
publications. A useful source of information are electronic
publications and e-preprints available on the Internet earlier
than the corresponding hard copies [100].

In conclusion, it should be mentioned that in spite of the
`famous names' and the long period separating us from the
basic paper by SchroÈ dinger [1], the real development of
quantum information, with its practical importance for
human society, is being started only now. An extremely
important contribution to the development of this field was
made by B B Kadomtsev, whose death became known to us
when this paper was under consideration by the Editorial
Board. B BKadomtsev believed that informational aspects of
quantum theory must be considered in detail. His last
monograph [101] is devoted to the problems of quantum
information theory.

Acknowledgements. The author is grateful to the Belarus
Republic Foundation for Basic Research for supporting
work in the field of quantum information and to its Chairman
A S Rubanov for his suggestion to write this review, to V S
Burakov for an invitation to visit the seminar of the Belarus
Physical Society and deliver a talk that had considerable
influence on this work, to P AApanasevich, D BKhoroshko,
V N Shatokhin, A P Nizovtsev, T M Maevskaya, D S
Mogilevtsev, T B Karlovich, and V A Zaporozhchenko for
cooperation, and also to H Walther, P Berman, M Raymer,
G Bjork, C von Borczyskowski for fruitful discussions. With
gratitude, acknowledged is partial financial support of the
National ScienceFoundationof theUSA (grantNSF9414515
`Spectroscopy of single molecules'), Volkswagen Foundation
(grant 1/72 171 `Two-level systems in single-molecule spectro-
scopy'), INTAS (grant 96 167 `Generation of single photons
and synthesis of quantum states'), and the National Scientific
Council of the USA (Twinning program `Quantum tomogra-
phy and other reconstructive measurement methods in
quantum optics') are acknowledged.

References

1. SchroÈ dinger E Naturwissenschaften 23 807, 823, 844 (1935) [Trans-

lated into Russian: Uspekhi Khimii 5 390 (1936); translated into

English: Proc. Am. Philos. Soc. 124 323 (1980)]

2. Einstein A, Podolsky B, Rosen N Phys. Rev. 45 777 (1935)

3. Bohr N Phys. Rev. 48 696 (1935)

4. Bell J S Physics 1 195 (1964)

5. Clauser J F, Shimony A Rep. Prog. Phys. 41 1881 (1978)

6. Greenberger D M, Horne M A, Zeilinger A Phys. Today 46 (8) 22

(1993)

7. Aspect A, Grangier P, Roger G Phys. Rev. Lett. 47 460 (1981)

8. Apanasevich P A, Kilin S Ya Phys. Lett. A 62 83 (1977); J. Phys. B

12 L83 (1979)

9. Aspect A et al. Phys. Rev. Lett. 45 617 (1980)

10. Hagley E et al. Phys. Rev. Lett. 79 1 (1997)

11. Zel'dovich B Ya, Klyshko D N Pis'ma Zh. Eksp. Teor. Fiz. 9 69

(1969) [JETP Lett. 9 40 (1969)]

12. Burnham D C, Weinberg D L Phys. Rev. Lett. 25 84 (1970)

13. Kwiat P G et al. Phys. Rev. Lett. 75 4337 (1995)

14. Feynman R P, Leighton R B, Sands M The Feynman Lectures on

Physics Vol. 8 (London: Addison-Wesley, 1964)

15. Wootters W K, Zurek W H Nature (London) 299 802 (1982)

16. Bouwmeester D et al. Nature (London) 390 575 (1997)

17. Bennett C H et al. Phys. Rev. Lett. 70 1895 (1993)

18. Boschi D et al. Phys. Rev. Lett. 80 1121 (1998)

19. Klyshko D N Usp. Fiz. Nauk 168 975 (1998) [Phys. Usp. 41 885

(1998)]

20. Bennett C H, Brassard G, Ekert A K Scientific Am. 267 26 (1992)

21. Shannon C E Bell Syst. Tech. J. 28 657 (1949)

22. Bennett C H Phys. Rev. Lett. 68 3121 (1992)

23. Hughes R J et al. Contemp. Phys. 38 149 (1995)

24. Muller A, Zbinden H, Gisin N Europhys. Lett. 33 335 (1996); 33 586

(1997)

25. Rivest R, Shamir A, Adleman L "On digital signatures and public-

key cryptosystems", MIT Laboratory for Computer Science Tech-

nical Report MIT/LCS/TR-212 (1979)

26. Bennett C H IBM J. Res. Dev. 17 525 (1973)

27. Toffoli T, in Automata, Languages and Programming (Eds J W de

Bakker, J van Leeuwen ) (New York: Springer, 1980) p. 632

28. Feynman R P Int. J. Theor. Phys. 21 467 (1982)

29. Feynman R P Found. Phys. 16 507 (1986) [First published in Opt.

News 11 (February 1985); Translated into Russian Sov. Phys. Usp.
149 671 (1986)]

30. Deutsch D Proc. R. Soc. London Ser. A 425 73 (1989)

31. Schumacher B Phys. Rev. A 51 2738 (1995)

32. DiVincenzo D Phys. Rev. A 51 1015 (1995)

33. Barenco A et al. Phys. Rev. Lett. 74 4073 (1995)

34. Sleator T, Weifurtner H Phys. Rev. Lett. 74 4087 (1995)

35. P W Shor, in Proc. of the 35th Ann. Symp. of the Foundations of

Computer Sci. (Ed S Goldwasser) (Los Alamitos, CA: IEEE

Computer Society, 1994) p. 124

36. Grover L K Phys. Rev. Lett. 79 4709 (1997)

37. Ore O Theory of Graphs (American Mathematical Society Collo-

quium Publ., Vol. 38) (Providence: Am. Math. Soc., 1962) [Trans-

lated into Russian (Moscow: Nauka, 1968)]

38. Shor P W Phys. Rev. A 52 R2493 (1995)

39. Ekert A, Macchiavello C Phys. Rev. Lett. 77 2585 (1995)

40. Kimble H J, in Cavity Quantum Electrodynamics (Ed P Berman)

(New York: Academic Press, 1994) p. 203

41. Raithel G et al., in Cavity Quantum Electrodynamics (Ed P Berman)

(New York: Academic Press, 1994) p. 57

42. Davidovich L et al. Phys. Rev. A 53 1295 (1996)

43. Braginsky V B, Gorodetsky M L, Ilchenko V S Phys. Lett. A 137

393 (1989)

44. Collet L et al. Europhys. Lett. 23 327 (1993)

45. John S Phys. Rev. Lett. 58 2486 (1987)

46. Yablonovich E Phys. Rev. Lett. 58 2059 (1987)

47. Kilin S Ya, Mogilevtsev D S Laser Phys. 2 153 (1992)

48. Kilin S Ya, Mogilevtsev D S Opt. Spektrosk. 74 974 (1993) [Opt.

Spectrosc. 74 579 (1993)]

49. Bogomolov V N et al. Phys. Rev. E 55 7619 (1997)

May, 1999 Quantum information 451

http://www.turpion.org/info/lnkpdf?tur_a=ufn&tur_y=1998&tur_v=41&tur_n=9&tur_c=441


50. Romanov S G, Johnson N P, De La Rue D M Appl. Phys. Lett. 70

2091 (1997)

51. Fischer E Z. Phys. 156 1 (1959)

52. Scharma C A et al. Opt. Commum. 101 32 (1993)

53. Hoffges J T et al. J. Mod. Opt. 44 1999 (1997)

54. Birkl G, Kassner S, Walther H Nature (London) 357 310 (1992)

55. Cirac J, Zoller P Phys. Rev. Lett. 74 4091 (1995)

56. Monroe C et al. Phys. Rev. Lett.75 4714 (1995)

57. Minogin V G, Letokhov V S Davlenie Lazernogo Izlucheniya na

Atomy (Laser Light Pressure on Atoms) (Moscow: Nauka, 1986)

[Translated into English (New York: Gordon and Breach Science

Publ., 1987)]

58. D J Wineland, C E Wieman, S J Smith (Eds) Atomic Physics 14

(New York: AIP, 1994 )

59. Anderson M A et al. Science 269 198 (1995)

60. T Basch�e, W E Moerner, M Orrit, U P Wild (Eds) Single-Molecule

Optical Detection, Imaging and Spectroscopy (Weinheim: VCH,

1996)

61. Dickson RM et al. Science 274 966 (1996)

62. Gruber A et al. Science 276 2012 (1997)

63. Wennmalm S, Edman L, Rigler R Proc. Natl. Acad. Sci. USA 94

10641 (1997)

64. Dickson RM et al. Nature (London) 388 355 (1996)

65. Tietz C et al. J. Chem. Phys. (1999) (in print)

66. Pirotta M et al. Spectroscopy Europe 9/4 16 (1997)

67. Kilin S Ya et al. Phys. Rev. B 56 24 (1997)

68. Kilin S Ya et al. Phys. Rev. A 57 1400 (1998)

69. Ekert A, Jozsa R Rev. Mod. Phys. 68 733 (1996)

70. Gershenfeld N, Chuang I Science 275 350 (1997)

71. Laflamme R et al. Quantum Computation/Cryptography at Los

Alamos Ð http://qso.lanl.gov/qc/ (March 1998 )

72. Chuang I L et al. Nature (London) 393 143 (1998)

73. Turchette Q A et al. Phys. Rev. Lett. 75 4710 (1995)

74. Kilin S Ya, Krinitskaya T B J. Opt. Soc. Am. B 8 2289 (1991); Phys.

Rev. A 48 3870 (1993)

75. Kilin S Ya, Berman P, Maevskaya T M Phys. Rev. Lett. 76 3297

(1996)

76. Leonardt U et al. Opt. Commun. 127 144 (1996)

77. Braginsky V B, Khalili F Ya Quantum Measurement (Cambridge:

Cambridge Univ. Press, 1992)

78. Rarity J G, Tapster P R, in Quantum Optics of Confined Systems

(NATO ASI Series, Ser. E, No 314) (Eds M Ducloy, D Bloch)

(Dordrecht: Kluwer Acad. Publ., 1996) p. 47

79. Kilin S Ya, Horoshko D B Phys. Rev. Lett. 74 5206 (1995)

80. Golubev YuM, Sokolov I VZh. Eksp. Teor. Fiz. 87 408 (1984) [Sov.

Phys. JETP 60 234 (1984)]

81. Yamamoto Y, Imoto N, Machida S Phys. Rev. A 33 3243 (1986)

82. Fofanov Ya A Kvantovaya Elektron. 12 2593 (1989)

83. Khoroshko D B, Kilin S Ya Zh. Eksp. Teor. Fiz. 106 1278 (1994)

[JETP 79 691 (1994)];Opt. Spektrosk. 82 913 (1997) [Opt. Spectrosc.

82 838 (1997)]

84. Yamamoto Y et al. Prog. Opt. 28 88 (1990)

85. Jann A, Ben-Aryeh Y J. Opt. Soc. Am. 14 11 (1997)

86. Zurek W H Phys. Today 44 (10) 36 (1991); Phys. Rev. D 24 1516

(1981); Phys. Rev. D 26 1862 (1982)

87. Gerry C, Hach E E Phys. Lett. A 174 185 (1993)

88. Garraway B R, Knight V Phys. Rev. A 49 1266 (1994); 50 2548

(1994)

89. Filho M R L,Vogel W Phys. Rev. Lett. 76 608 (1996)

90. Poyatos J F, Cirac J I, Zoller P Phys. Rev. Lett. 77 4728 (1996)

91. Horoshko D B Kilin S Ya Phys. Rev. Lett. 78 840 (1997)

92. Kilin S Ya, Horoshko D B, Shatokhin V N Acta Phys. Pol. A 93 97

(1998)

93. Kilin SYa,HoroshkoDB J.Mod.Opt. 44 2043 (1997);Opt. Express

2 347 (1998)

94. Vitali D, Tombesi P, Milburn G J Phys. Rev. Lett. 79 2442 (1997)

95. Zanardi P, Rasetti M Phys. Rev. Lett. 79 3306 (1997)

96. Kilin S Ya, Shatokhin V N Phys. Rev. Lett. 76 1051 (1996); Zh.

Eksp. Teor. Fiz. 111 1174 (1997) [JETP 84 647 (1997)]; Opt.

Spektrosk. 82 972 (1997) [Opt. Spectrosc. 82 893 (1997)]

97. Davies EBQuantumTheory of Open Systems (NewYork: Academic

Press, 1976)

98. Kilin S YaKvantovaya Optika, Polya i ikh Detektirovanie (Quantum

Optics, Fields and Their Detection) (Minsk: Navuka i Tehnika,

1990) [Translated into English (New York: Gordon Breach, 1988)]

99. Kholevo A S Izv. Vyssh. Uchebn. Zaved. Matematika (8) 3 (1982)

100. Quantum computations and cryptography in Los Alamos, http://

qso.lanl.gov/qc/;

Quantum computations and cryptography in Oxford, http://

eve.physics.ox.ac.uk/QChome.html;

Laboratory of theoretical and quantum computations, Montreal

University,

http://www.iro.umontreal.ca/labs/theorique/index_en.html;

Quantum computations in IBM, http://www.research.ibm.com/xw-

quantuminfo;

Introduction to quantum computations,

http://chemphys.weizmann.ac.il/~schmuel/comp/comp.html;

Quantum computations in Australian National University, http://

aerodec.anu.edu.au/ qc/index.html;

Quantum information, http://vesta.physics.ucla.edu/ smolin;

Archive on quantum computations, http://feynman.stanford.edu/

qcomp/;

Preprints on quantum information in the archive of Los Alamos,

http://xxx.lanl.gov/archive/quant-ph/;

Preprints on quantum information in the archive of ICTP, Trieste,

http://www.ictp.trieste.it/indexes/preprints.html;

Quantum optics, http://master.bas-net.by/

101. Kadomtsev B B Dinamika i Informatsiya (Dynamics and Informa-

tion) (Moscow: Uspekhi Fizicheskikh Nauk, 1997); 2nd ed.

(Moscow: Uspekhi Fizicheskikh Nauk, 1999)

452 S Ya Kilin Physics ±Uspekhi 42 (5)


	1. Introduction
	2. Schroedinger and his famous paper of 1935
	2.1 Superposition and the SchrÎdinger cat paradox
	2.2 Entangled states
	2.3 The impossibility of cloning quantum states

	3. Quantum teleportation
	4. Quantum cryptography
	5. Quantum computations and computers
	5.1 Reversible and irreversible classical processors
	5.2 Quantum computers

	6. The problem of decoherence
	6.1 Relaxation as a nonunitary evolution of a state. Quantum reservoirs engineering
	6.2 Relaxation as a quantum stochastic process. Purity of conditional states
	6.3 Correcting errors by means of feedback

	7. Conclusions
	References

