
Abstract. Spatially extended dynamical systems are ubiquitous
and include such things as insect and animal populations; com-
plex chemical, technological, and geochemical processes;
humanity itself, and much more. It is clearly desirable to have
a certain universal tool with which the highly complex behaviour
of nonlinear dynamical systems can be analyzed and modelled.
For this purpose, cellular automata seem to be good candidates.
In the present review, emphasis is placed on the possibilities that
various types of probabilistic cellular automata (PCA), such as
DSMC (direct simulation Monte Carlo) and LGCA (lattice-
gas cellular automata), offer. The methods are primarily de-
signed for modelling spatially extended dynamical systems with
inner fluctuations accounted for. For the Willamowski ±RoÈ ss-
ler and Oregonator models, PCA applications to the following
problems are illustrated: the effect of fluctuations on the dy-
namics of nonlinear systems; Turing structure formation; the
effect of hydrodynamic modes on the behaviour of nonlinear
chemical systems (stirring effects); bifurcation changes in the
dynamical regimes of complex systems with restricted geometry
or low spatial dimension; and the description of chemical sys-
tems in microemulsions.

1. Introduction

1.1 What are cellular automata (CA)?
The history of automata probably goes back to the 60's when
M L Tsetlin and his colleagues published their papers on the
subject [1 ± 7]. Modelling advisable behaviour of biological
systems in an environment, i.e. behaviour allowing a system
to adapt to an environment, Tsetlin introduced a mathema-
tical notion which received the name automaton or finite
automaton. The adjective finite means that the automaton
can only be in a finite number of states. It can perceive a finite
number S of signals from the environment (as a rule, S � 0 or
S � 1) at discrete moments t � 1; 2; . . . ; as a result of which
its state changes. And finally, the automaton can execute a
finite number of actions unambiguously determined by the
state of the automaton. The actions of the automaton
provoke a response S of the environment, closing a feedback
loop. In deterministic automata the signal S determines
exactly a state j to which the automaton transits from the
state i. In probabilistic automata the transition is given by
certain probabilities aij�S�.

The works of American mathematician J von Neumann
on the theory of automata games were the addition to the
theory of isolated finite automata. Trying to model the self-
replication of biological systems, in 1966 von Neumann
invented abstract discrete dynamical systems, which were
given the name cellular automata (CA). A cellular automaton
[9 ± 13] consists of a set of nodes (cells) forming a regular
lattice. A node (or cell) is characterised by a discrete set of
integer variables, which can have a finite number of values.
The cell variables change simultaneously at discretemoments,
following deterministic or probabilistic rules, which can
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depend on the values of variables in the neighbouring cells.
The rules do not change in time.

Comparing CA and ordinary differential equations
(ODE), the main difference between them is that in the case
of CA the rules describing the dynamics of a system are local.
Whereas applying ODE, we are dealing with the rules for
dynamic changes of quantities averaged over the system, i.e.
averages (for instance, concentrations). Hence we believe a
priori the rules to exist. In the case of CA the existence of such
generalised rules (or macrorules) is not required. It is
sufficient to know the rules for dynamic changes in small
micro- or mesoscopic regions (cells) of which the system
consists. What matters is only that the local rules be the
same for all the cells. Another difference of CA from
differential equations (DE) is that the cell variables are not
only discrete but also integer. Discreteness of variables
enables one to consider a large group of discontinuous
nondifferentiable functions. It should be mentioned that the
discrete properties of CA are less pronounced when the values
of variables are large, however they never disappear. There is
always a minimal discrete step for changing a variable.
Whereas in the case of ODE or DE in partial derivatives the
magnitude of the step can be decreased down to indefinitely
small values.

The local character of dynamic rules and the discreteness
of variables in the case of CA allow one to take into account
fluctuations or internal noise of the system in a natural way
without any additional assumptions. To consider fluctuations
in the case of DE one should use stochastic DE and apply
various fluctuation-dissipation relations to solve them. The
latter may be rather a cumbersome procedure [14].

Sometimes a combination of such properties as local
rules and discreteness of variables results in unexpected
behaviour of a spatially extended discrete system. Unex-
pected behaviour (not to be confused with chaotic beha-
viour!) is an additional feature of CA, the term being used
here to characterise mainly qualitative aspects of the
behaviour. There are a large number of papers devoted to
CA (see, for example, Refs [9 ± 13, 15 ± 35]). Some works
deal with the mathematical properties of abstract CA [9 ±
12, 16, 20, 26, 28, 32, 36 ± 42]. Others consider detailed
behaviour of certain reaction-diffusion equations [15, 22 ±
25, 29, 30, 33 ± 35, 43 ± 50].

1.2 What are CA needed for?
Themain peculiarities of a complicated dynamical system can
often be described by simple rules. The desire to reveal the
simplest local rules underlying the behaviour of a complicated
dynamical system accounts for much favour held by CA. The
problem is similar in a sense to the inverse problem of
chemical kinetics which is to determine the rules underlying
the behaviour of a system from the data on its functioning in
time.

CA are most effectively used to describe various phase or
bifurcation transitions, when fluctuations must be taken into
account, or when cooperative behaviour of the system is
determined by local behaviour of its elements. They are also
suited to consider the transition processes when the system
becomes highly heterogeneous and one can hardly find any
averages, relevant to determine the state of the system. To
illustrate the application of CA for the investigation of
complicated systems we point out the following cases. CA
are used to analyse fingerprints [42, 51], to describe phase
transitions in physico-chemical systems [52], to analyse the

`free motion ± jam' transitions occurring in cities [53], to
investigate the formation of various structures (for example
shell patterns of sea molluscs and zebra strias) [26, 41, 54], to
consider the collective motion of organisms (bees, slugs,
birds, etc.) [19], to find the optimal path for searching
numerous distributed objects [32], and in many other cases
[18].

Probabilistic CA are applied to a wide range of problems
concerned with the influence of fluctuations on the behaviour
of nonlinear dynamical systems with critical or bifurcation
points. These problems are traditionally solvedwith the use of
a master equation and the Langevin equation (see, for
example, [55]). However an analytical solution to the
equations can be found only in a few special cases, such as
simple `point' systems consisting of one or two variables. The
application of the master equation to spatially extended
systems of the `reaction ± diffusion' type is well known [43,
56 ± 60] but presents great mathematical difficulties.

When dealing with reaction ± diffusion ± convection pro-
blems where fluctuations must be taken into account
traditional approaches are unsuitable. In this case some
special CA are applied. They will be described in detail in
Sections 6 ± 8. Here we only indicate that in describing
turbulent motion use is made of the models of cells or CA,
where each cell represents a microelement of fluid (coarse
grained structure of fluid) [61 ± 63].

1.3 Types of CA
CA can be classified as deterministic and probabilistic, homo-
and heterogeneous (the latter can describe fractal structures),
simple abstract and complicated ones applied to describe
detailed behaviour of actual systems. The classification can be
based on some other criteria as well. For example, Gutowitz
[41, 42] divides CA into two groups, i.e. those functioning on
infinite and finite lattices. In deterministic CA the state of a
cell at eachmoment is unambiguously determined by the state
of this cell and its neighbours at the previous moment. Such
CA are referred to as simple or classical ones. Sometimes CA
are described by rules written as ordinary differential
equations. In this case the states of cells are determined by a
set of variables, whose values can be any real numbers. The
differential equations are solved for each cell separately
during a certain period Dt, each cell being able to have
various initial conditions. We will designate such CA as CA-
ODE. This type of CA is closely related to DE in partial
derivatives.

CA, where the states of the cells at each moment of time
are determined by probabilities, are called probabilistic CA
(PCA) [64, 65]. In the classical PCA the rules of transitions
are abstract and not related directly to actual processes
occurring in the system under study. In the past decade
considerable study has been given to CA, in which the
probabilities of transitions are straightforwardly derived
from the processes under consideration, for example, from
diffusion processes or real chemical reactions. In modelling
or simulating a process, a randomiser generates a random
number y �0 < y < 1� for each cell of the CA, which is
compared with the probability W of occurrence of the
process. When y <W, the process takes place. The exam-
ples of CA of this type are the method of reactive lattice gas
(LGCA), direct simulation by Monte Carlo (DSMC), and
the method of probabilistic CA using the Monte Carlo
procedure. All the methods and ways for obtaining W will
be described below.
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The methods of complete molecular dynamics (MD),
where the dynamics of all the particles of the system are
studied, can also be assigned to CA. Such investigations are
cumbersome and therefore deal with a small number of
particles considering them in a small spatial region over a
short time interval. There are some examples of the applica-
tion of MD to systems far from equilibrium [66 ± 68]. The
LGCA, DSMC, and PCA models are intermediate between
complete MD and macroscopic description with the use of
reaction ± diffusion equations such as CA-ODE and DE in
partial derivatives.

2. Simple or classical CA

As indicated above, the main problem of the description of a
macrosystem by CA is to find local rules for the elements of
the system, which would enable the ensemble of elements to
reproduce the evolution of the phenomenon under considera-
tion. Looking over a multitude of the rules for simple CA (the
number of various CA is of the order of �kk�d, where k is the
number of various states of an elementary cell, and d is the
number of neighbours), Chate and Manneville [69] demon-
strated that the global behaviour of some CA is not directly
related to the local dynamics of the CA constituents (this is a
manifestation of the unpredictability of CA). The question
arises as to how we can find the local rules for the system
constituents such that the ensemble of the constituents
reproduces the desired dynamics of the system? The answer
still remains unclear.

Classifying CA by their behaviour, Wolfram [10 ± 12] sets
off four groups of CA. The first group includes CA which,
irrespective of the initial configuration, arrive eventually (in a
finite number of steps) at a homogeneous configuration. The
second group contains CA, which in the course of evolution
generate simple periodical structures for any initial config-
urations. CA of the third group produce chaotic structures
varying in time. The appearance of the structures follows
some statistics, which are independent of the initial condi-
tions. It can be said that the deterministic chaos generated by
these CA wipes off the memory of the initial conditions. The
last group includes CA which can generate travelling soliton-
like structures. The behaviour of these CA depends on the
initial configuration of the system, therefore they can be used
to produce memory units for computer calculations. These
CA do not follow mean-field statistics, their collective
behaviour is not a mere `sum of the evolution' of the elements
of the system. This classification is purely phenomenological,
it does not provide any recipes for the construction of
appropriate rules of CA evolution. Some other phenomen-
ological criteria of classification of numerous rules for
evolution of simple CA are also available [70 ± 72].

Classical CA are used in problems of signal filtration [73],
in cryptography [51], in problems of crystal formation, in the
study of processes of aggregation and cluster formation [74],
and in many other fields. However, our main interest is to
describe the kinetics of complicated chemical reactions with
due regard to diffusion and convection. As a rule, the exact
quantitative solution of such problems is found with the use
of complicated probabilistic CA. We will consider them in
detail in Sections 4 ± 8. Nevertheless, sometimes simple CA
allow one to explain qualitatively the dynamics of such
systems [14, 75 ± 79].

An example of the application of simple CA to the
reaction ± diffusion problems is the model developed by

Oono and Kohmoto [75 ± 78] where each cell of the auto-
maton, if it is not connected with neighbouring cells, is
governed by cyclic dynamics, moving in time around the
circle 0ÿMÿ1ÿ0, whereM is a positive number.

To investigate a two-dimensional variant of such CA, we
write the symbol A�i; j; t� for the state of a cell with spatial
coordinates i and j at the moment t. The variable A�i; j; t� can
take one of the three values 0, 1, andM, and evolves as:

A�i; j; t� 1� � F
ÿ

�A�i; j; t�� ;
�A�i; j; t� � a

X
�k; l�2O

A�k; l; t�
N

� �1ÿ a�A�i; j; t� ; �1�

where the symbol O denotes the nearest vicinity of the cell
with coordinates i and j, while N is the number of cells in the
vicinity. In the case of a rectangular lattice O can be taken to
include four neighbouring cells having a common face with
the cell under consideration, or eight neighbouring cells
having common nodes. The parameter a characterises the
diffusion coefficient (the greater is the diffusion coefficient,
the higher is the parameter a 2 �0; 1�),

F�x� �
1 ; if 1:54 x ;
0 ; if 0:54 x < 1:5 ;
M ; if x < 0:5 :

8<: �2�

Depending on the parameters M and a the automaton of
Oono and Kohmoto can fall into one of Wolfram's classes.
The studies of the two-dimensional variant at various M and
a revealed spiral waves or moving objects like the gliders in
the game `Life' (the rules for the game `Life' are considered in
Ref. [80]). In the one-dimensional case, waves which
annihilate upon collision or are reflected by each other were
found [75 ± 77].

As an example of simple but probabilistic CA applied to
the reaction ± diffusion ± convection problems we consider an
activator ± inhibitor system. In Refs [14, 79], the system
included the following reactions:

A! 2A �autocatalysis� g ; �3�
A� In! 0 �annihilation� k0 ; �4�

! A �increase in the activator C1 ; �5�
concentration�

! In �increase in the inhibitor C2 : �6�
concentration�

Under the condition C1 > C2 these reactions adequately
represent autocatalytic growth of the activator A in the well
known oscillating reactions such as Belousov ±Zhabotinski|̄
(BZ) reaction or Briggs ±Rauscher (BR) reaction. The system
of ODE describing reactions (3) ± (6), suggests that when the
concentration of the inhibitor �In� decreases to the critical
one:

�In�cr �
g
k0
; �7�

the concentration of the activator begins to increase auto-
catalytically in a homogeneous system with good stirring.

The simplest PCA is a one-parametric model, where the
state of each cell is characterised only by an integer number S
together with integer coordinates i and j. In modelling the
activator ± inhibitor system the numberS can be related to the

May, 1999 Study of spatially extended dynamical systems using probabilistic cellular automata 415



ratio between the concentrations �A� and �In�: the larger S, the
higher �A� and the smaller �In�. Let us consider the ways for
describing diffusion, turbulent stirring, and chemical reac-
tions. Diffusion can be treated in two different ways
depending on the spatial scale assigned to an elementary
cell. If the cell is believed to be rather large and includes a lot
of particles (hundreds, thousands and more), the influence of
fluctuations can be ignored. In this case diffusion mixing
between neighbouring cells can be described by the averaged
formula [14]

S1�t� 1� � S2�t� 1� � S1�t� � S2�t�
2

; �8�

where S1�t� 1� and S2�t� 1� are the states of two adjacent
cells at a discrete moment t� 1.

In the opposite case when the cell is of nanosize and
contains only few particles (perhaps, zero), diffusion should
be described in a probabilistic manner as follows. Let us
determine a probability W�S1;S2jS 01;S 02� that at the moment
t� 1 the states of two randomly chosen neighbouring cells are
S 01 and S 02 under the conditions S1 � S2 � S 01 � S 02, where S1

and S2 are the states of these cells at the moment t. In
determining W�S1;S2jS 01;S 02� one can proceed from either of
two different views of mass exchange. According to the first
one [79, 81], the number of particles in a cell may change by no
more than one as a result of mass exchange between
neighbouring cells (one-step model). Within the other
approach [33, 34] the number of particles may change
arbitrarily. What matters is only that the final distribution
of the cells over the states coincides with the corresponding
equilibrium distribution, which is the Poissonian or binomial
in most cases. In our consideration we are dealing with the
one-step model. According to the model, the probability
Wÿ�S1;S2� that as a result of mass exchange the state S1 will
decrease by one and the state S2 will increase by one is
determined as

Wÿ�S1;S2� �W�S1;S2jS1 ÿ 1;S2 � 1�

� S1

S1 � S2

�
1ÿ S2

Smax

�
: �9�

The probability W��S1;S2� of the inverse process is deter-
mined in a similar way

W��S1;S2� �W�S1;S2jS1 � 1;S2 ÿ 1�

� S2

S1 � S2

�
1ÿ S1

Smax

�
; �10�

where Smax is the maximum number of particles in a cell. In
the limit t!1 we get an equilibrium binomial distribution
of the cells over the states. The intensity of the diffusion is
given by the number ND�N0 of randomly chosen pairs of
neighbouring cells per unit time, where ND is a real number,
while N0 is the total number of cells in the automaton.
Varying ND (for example, from 0 to 1), we can regulate the
intensity of the diffusion over a wide range.

Turbulent motion can be considered as a combination of
turbulent pulsations of various scales [82]. At small Reynolds
numbers Re the system exhibits only large-scale pulsations,
comparable with the size of the system. As Re rises, the scale
of pulsations progressively decreases. To model the large-

scale pulsations on the basic lattice of size N�N (for
example, N � 28, N0 � N�N), squares of size ln � ln �
2 n � 2 n, where n � 7, were chosen randomly. After that
four quadrants of each chosen square were rearranged
randomly. An increase in the intensity of stirring was
simulated by successive additions of progressively reduced
scales of turbulent motion, i.e. by additional selection of
squares with side ln � 2 n, where n � 6; 5; . . . ; 1, and corre-
sponding rearrangement of their quadrants (Fig. 1). The
numbers Nn of samples of squares with side ln in a unit time
were fitted so that the velocity of themotion of a fluid element
should satisfy the Kolmogorov ±Obukhov law for each scale
of the motion [82]. It was found in Ref. [14] that
Nn � 28�7ÿn�=3. Figure 2 plots patterns of turbulent stirring
for a black square. It is seen that in four steps the black square
is divided into a huge number of small fragments filling the
whole of the volume.

To simulate chemical reactions (3) and (4) the authors of
Refs [14, 79] use the probabilities W��S� that the number of
particles S increases by one and Wÿ�S� that this number
decreases by one:

W��S� � 1

1� exp�2� Scr ÿ S� ; �11�

Wÿ�S� � 1

1� exp
�
2� 2�Sÿ Scr�

� : �12�

At S < Scr the annihilation reaction (4) is dominant, i.e.
W��S� <Wÿ�S�, while at Scr < S the autocatalytic reaction
(3) is dominant, i.e. Wÿ�S� <W��S�. The state Scr corre-
sponds to the critical concentration of inhibitor �In�cr � g=k0
(7). When the state of i cell is equal to Smax, then the
probability W��S� is believed to be zero. The probabilities
of reactions (5) and (6) are given by constants W� and Wÿ

0 10 20 30 40 50 60

60

50

40

30

20

10

Figure 1.Lattice containing 64� 64 elementary cells. The large andmiddle
squares divided into four quadrants are examples of squares used tomodel
turbulent stirring, their quadrants are randomly rearranged. The rearran-
gements of large quadrants correspond to large-scale vortices, while those
of small quadrants represent small-scale vortices. The smallest quadrant of
size 3� 3 with the central dashed cell represents the vicinity of the cell,
used to treat the diffusion process.
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independent of the state of the cell S:

W� � N1

N0
< 1 ; Wÿ � N2

N0
< 1 : �13�

The number N1 �N2� stands for the number of randomly
chosen cells in which the state S increases (decreases) by one
due to the action of the activator (inhibitor) source,
N1=N2 � C1=C2.

All probabilistic processes were realised as follows. The
probabilities W were calculated by (9) ± (13) for each cell and
for each pair of neighbouring cells in the case of diffusion.
After that a randomiser generated a number y 2 �0; 1� for each
W and each cell. If the inequality y <W was satisfied, the
process corresponding to the probability W occurred,
otherwise it did not. Molecular diffusion, chemical reac-
tions, and turbulent stirring were modelled successively in a
unit time interval. In the course of computer simulation one
could follow, in particular, the function p�S� of the distribu-
tion of the cells over the states S, the mean state of the cells
hSi, and the dispersion s2:

p�S� � N�S�
N0

; �14�

hSi �
XSmax

S�Smin

S p�S� ; �15�

s2 �
XSmax

S�Smin

ÿ
Sÿ hSi�2p�S� ; �16�

where N�S� is the number of cells in the state S (the cell
histogram).

When the diffusion coefficients are not too high, the
simulation yields a typical time dependence hSi which is in
good agreement with actual kinetics of the BZ and BR
reactions [14]. After an induction period Tind, a rapid

exponential increase in hSi takes place, changing to linear
growth, then the system reaches the limiting value Smax. In
this case the dependence ofTind on the intensity of stirring has
an S-like shape. However for more intensive mass exchange
and stirring the autocatalysis may fail to occur which is
inconsistent with either model (3) ± (6) or experiment. This
suggests that the one-parametric model determined by (9) ±
(13) may be inadequate for the two-parametric model (3) ±
(6).

The advantages of simple PCA models are the quickness
of their calculations and sound qualitative results consistent
with the experiment. The above-discussed model has allowed
us to describe qualitatively some experimental facts such as
the S-like dependence of the induction period on the intensity
of stirring, and the dependence of the value of the stirring
effect on the rate at which the system approaches the critical
point determined by the difference W� ÿWÿ. However
neither this model, nor any other simple models of CA reveal
a direct relation between ND (or its analogue) and the actual
coefficient of molecular diffusion, and between the functions
of type (11) ± (13) and the probabilities of the occurrence of
actual chemical reactions. Time is a conventional quantity in
the model and cannot be related to the actual duration of the
process concerned. All these drawbacks do not enable one to
be sure that simple CA are adequate.

To conclude the section we will show how simple CA can
be used to model reactions on irregular lattices of fractal
dimension. As an example we consider the lattice depicted in
Fig. 3, referred to as the Sierpinski carpet, which is formed
from a basic matrix of size 3� 3, containing only 0 and 1. If
we choose the basic matrix in the form

1 1 1
1 0 1
1 1 1

; �17�

replace all the unity elements in it by the basic matrix, and all
the zero elements by the zero matrix of the same size 3� 3, we
get the Sierpinski carpet of size 9� 9 plotted in Fig. 3. This
expanding procedure can be repeated as many times as one
likes. Each unity element in the final matrix obtained in this
way means that the place is occupied by a particle, the zero
elements cannot be occupied by any particles. Occupied

Figure 3. Sierpinski carpet. Each point is occupied by a particle X or A.

t � 3 t � 4

t � 1 t � 2

Figure 2. Patterns arising on a lattice N�N � 28 � 28 at moments

t � 1; 2; 3; 4 when a black square including 80� 80 elementary cells is

mixed barring diffusion �ND � 0�. The intensity of stirring is charac-

terised by the size of the smallest randomly chosen square with the side

ln � 23 (Lev � 8ÿ 3 � 5).
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elements separated by a minimal distance are called neigh-
bours. For example, the nodes with coordinates �3; 3�, �3; 4�
and �3; 5� in Fig. 3 have 4, 3, and 2 neighbours respectively.
The basic matrix can be chosen to have a different number
and arrangement of zero and unity elements.

The Sierpinski carpet was used as a lattice to model
various chemical systems [83, 84]. An interesting result was
obtained in modelling the reaction

A� 2X$ 3X ;

with similar rate constants for the direct and inverse
reactions. Modelling on lattices of various configurations,
including the Sierpinski carpet, was performed as follows [30,
31, 48, 84]. A lattice node containing either A or X was
randomly chosen. If the node had two X neighbours, it
changed the state A into X or the state X into A depending
on what particle was in the node. It turned out that the
equilibrium ratio hAi=hXi � K was always equal to 1, when
the coordination number d (averaged number of neighbours)
exceeded 4. When d was less than 4, the equilibrium ratio K
also decreased, depending only on d and being almost
independent or depending only slightly on the fractal
dimension of the lattice. The fractal character of the lattice
seems to result only in decreased mobility of the particles and
has no other effect on the reaction.

3. CA-ODE (CM)

The main idea of all CA-ODE models is to break down the
reaction volume into equivalent cells, and then to solve a set
of ODE for each cell individually under various initial
conditions. That is why these CA are called `Cellular
models' [85, 86]. In some models the spatial distribution of
cells is not essential (the case of turbulent stirring), while in
others the number of neighbours and the space dimension-
ality play a key role (the cases of travellingwaves or formation
of steady spatial structures in an unmixed medium).

CA-ODE models deal with cells containing a large
number of particles so that ODE and continuous functions
can be used. This fact leaves only one way for modelling
diffusion, namely, a simple averaging of concentrations over
neighbouring cells [formulas of the type of Eqn (8)], or over all
the cells in the case of turbulent stirring. Strictly speaking, the
CA-ODE models are not related to the cell automata, since
the states of cells change continuously during the time interval
t (the time of integration of ODE). Therefore we only briefly
outline this way ofmodelling which is also used in coalescence
dispersion (CD)models [85 ± 88] and inmodels for interaction
by exchange with the mean (IEM) [89 ± 92].

Fluctuations are modelled by the replacement of a
random number of old cells by new ones with the same initial
concentrations (the model of a flow reactor) [93] or by using a
randomiser to set the initial concentrations before each step t
of integration (themodel of a batch reactor) [94], or by the use
of stochastic DE instead of ODE [88].

The CA-ODE models are intermediate between simple
CA and PCA as well as between simple CA and DE in partial
derivatives. These models allow one to consider external
noises and internal fluctuations in actual chemical systems,
although the latter is performed in rather an artificial way.
The models can be used to simulate reactions at turbulent
stirring [85, 86, 93 ± 95] and reaction-diffusion spatially
extended systems [27].

4. The method of lattice gas cellular automata
(LGCA)

The method of reactive lattice-gas cellular automata,
(LGCA) [22 ± 25, 35, 46, 96 ± 98] has been developed to
describe spatially extended dynamical systems at the meso-
scopic level. It is based on modelling microscopic collisions
between particles. Central to the LGCA approach is the
Lattice Gas Automaton (LGA) model developed to solve
hydrodynamic problems [17, 18, 99 ± 102]. The idea of the
models is to construct relatively simple dynamic rules which,
however, should represent the main essential features of
actual collisions between particles and make possible fast
simulations in modelling turbulence. Microscopic laws of
conservation for mass, momenta, and density of energy,
which are the basis of the LGA approach, correspond to the
relevant macrorelations involved in the Navier ± Stokes
equations.

In the LGCA method each node of the lattice with a
coordination number d (the number of nearest neighbouring
nodes) corresponds to a small region in the actual space and is
occupied by interacting particles. Each particle is assumed to
have a discrete velocity with unit magnitude and the direction
along one of the bonds between neighbours. The spatial
coordinates of nodes and time are also discrete quantities.
According to LGCA rules, the particles at a node cannot have
the same velocity (the analogue of the Pauli principle). This
limitation determines themaximumnumber of particles at the
node, which is equal to the coordination number d. The most
commonly used lattices have the coordination numbers 3, 4,
6, and 8.

In modelling the diffusion of particles with different
diffusion coefficients by the LGCA method use is made of
several �k� lattices. On each lattice particles of only one type
diffuse. We denote these lattices as Lj � j � 1; . . . ; k�, where k
is the number of various species of particles. The lattices have
the same spatial coordinates, i.e. they are superposed. In each
step of time the particles travel a lattice step in the direction
determined by their velocities. This propagation step is
denoted as operator P. Elastic and inelastic (reactive)
collisions are local events which occur only at lattice nodes.
Elastic collisions randomly change the direction of motion of
a particle. The operator of this event is denoted as R
(random). If the number of particles at a node is a, then the
number of possible configurations for the velocities of
particles is

C a
d �

d !

�dÿ a�! a!
: �18�

The probabilities of all the configurations are the same.
Hence, after a collision of particles in a node the probability
of an arbitrary configuration of the velocities will be 1=C a

d .
The operationR is carried out independently for each node of
all the k lattices.

In the absence of chemical reactions the operation Rj �Pj

determines the free wandering of particles throughout the
lattice Lj. In the long-range limit this operation determines
the coefficient Dj of molecular diffusion. Simple calculations
[24, 25] demonstrate that for the hexagonal lattice �d � 6�
Dj � D � 1=4 whereD is measured in the units (lattice step)2/
(time step). If the operation Rj �Pj is carried out several times
(mj times) during a time step, the diffusion coefficient may
increase mj times: Dj � mjD. It should be noted that the free
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wandering of particles throughout a lattice is not absolutely
independent of other particles, since two particles at a node
cannot have the same velocity. In view of reaction changes the
collisions between particles cannot be considered to be
independent either. Actually, as a new particle with a certain
velocity arises at a node other particles cannot have the same
velocity. However if inelastic collisions are rare, the effect can
be ignored.

Inelastic collisions which change the number of particles
and their velocities couple the diffusive dynamics on various
latticesLj. The operatorC of chemical changes determines the
probability of a reaction, i.e. the probability that the number
aj of particles of Xj species will change into the number bj of
particles of the same species. The operator C is completely
determined by the probability matrixP�ajb� for changes from
the configuration a of reacting particles to the configuration b
of products, where a � fa1; . . . ; akg, b � fb1; . . . ; bkg. The
matrix P�ajb� determines the probability for a local reaction
to occur

a1X1 � . . .� akXk ! b1X1 � . . .� bkXk : �19�
The LGCAmethod deals with the case when indices a change
by unity, or more exactly, by the difference of stoichiometric
coefficients, following the mechanism of chemical reactions.
Diagonal elements of the matrix P�ajb� are equal to the
probability for a reaction not to take place at a given node
and during a given time interval. In a more recent version of
the LGCA method [25] the limitation on the number of
particles at one node is removed. In this case for reaction
(19) or the reaction

n ir X() n ip X ; ki; kÿi ; �20�

where X � �X1;X2; . . . ;Xk� is the vector of k chemical
particles, n ir and n ip are the vectors of stoichiometric coeffi-
cients for reagents and products, while ki and kÿi are the rate
constants for direct and back reactions, and the symbol i
�i � 1; 2; . . . ; n� denotes the numbers of various elementary
reactions, the matrix P�ajb� is determined by birth-and-death
processes as

P�ajb� � t
Xn
i�1

(
ki
Yk
j�1

�
aj!

�aj ÿ n ir; j�!
d�bj; aj � n ip; j ÿ n ir; j�

�

� kÿi
Yk
j�1

�
aj!

�aj ÿ np; j�! d�bj; aj ÿ n ip; j � n ir; j�
�)

: �21�

The parameter t is chosen so that all the elements of the
matrix P�ajb� do not exceed 1. Formula (21) only represents
the fact that reactions occur following the reaction mechan-
isms and the probabilities of their occurrence are propor-
tional to the rate constants and the number of particles at the
node. The Kronecker symbol d�bj; aj � n ip; j ÿ n ir; j� indicates
that the final configuration of particles b has to correspond to
the stoichiometry of the reaction.

As was shown in Refs [103 ± 105], the LGCA methods
yield the correct spectrum of fluctuations in equilibrium
systems. The LGCA method was used to investigate the
influence of fluctuations on travelling chemical waves and
growth of nuclei in bistable chemical systems [22], on the
behaviour of excitable media and formation of Turing
structures [23, 46], on processes of heterogeneous catalysis,
and on oscillatory and chaotic behaviour of chemical systems
[24, 25, 35].

In conclusion we note that the LGCAmethod is based on
the calculation of the total probabilities for the number of
particles to change in all the reactions in which these particles
are involved. The approach gives rather cumbersome expres-
sions for the probability matrix P�ajb�, when the system
contains several reactions and when one and the same
particle is involved in more than one reaction. A different
approach is developed in DSMC and PCA methods which
deal with the probabilities for individual reactions to occur
instead of calculation of the total change in the number of
particles.

5. The method of direct simulation
by Monte Carlo (DSMC)

In the DSMCmethod [15, 43, 57, 106 ± 116] reacting particles
are considered as a rare gas consisting of hard spheres (a
Boltzmann gas). A computer algorithm for describing such a
system was proposed by Bird [109, 111]. It turned out that the
DSMC method enables one to model reaction ± diffusion
equations and agrees well with the experimental data [109,
110, 112, 116] and the data obtained by complete molecular
dynamics simulations.

The DSMCmethod is detailed in Refs [111, 113]. Here we
only briefly outline the main features of the method. Initially
all the particles considered as spheres are sorted over all the
spatial cells, whose linear size l is comparable with the mean
free path l. Time changes by a discrete step t comparable with
the mean time interval between collisions. The cells are
assumed to be homogeneous, which means that all the
particles inside a cell irrespective of their positions, have the
same probability of colliding. This key assumption allows one
to decrease the time of calculations by three orders of
magnitude with respect to that in molecular dynamics
simulations. Note that the cells are equivalent to the so-
called maximum volumes of complete mixing (MVCM)
introduced by Yu M Romanovski|̄ [117] and similar to the
indefinitely small volumes of the Boltzmann gas, considered
by Yu L Klimontovich [55, 118].

In practice researchers deal with a number of particles of
the order of 105, distributed over 102 cells [15, 43]. All the
particles are assumed to have the same mass m and diameter
d; m � d � 1. The velocities of particles and temperature are
also taken to be unity. The density of the particles (of the
order of 10ÿ2 per volume d 3) is specified, and the length l of
free flight motion is evaluated for elastic collisions (for
example, l � 100d). Then the diffusion coefficient D and the
frequency n of collisions (in dimensionless units) are calcu-
lated. The DSMC method only deals with bimolecular
reactions. For the reaction

X�Y! products ; k1 ; �22�

the rate is assumed to be proportional to the constant c1
determined as

c1 � nk1; r ; �23�
where n is the frequency of collisions, and k1; r is the fraction of
inelastic collisions. The constant c1 has the dimensionality sÿ1

and can be considered as the frequency of inelastic collisions.
The specified fraction of inelastic collisions for all the
reactions determines completely the whole system. It was
shown [43] that in order to receive correct data coinciding
with the solution to the master equation, the cell size l should
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be equal to the length l of free flight motion with regard to the
reactive collisions. For example, if in the case of a very fast
reaction the fraction of inelastic collisions is equal to 0.5 or
0.2, then l � 2l or l � 5l, respectively.

The constants c1 and bimolecular constants k1 usually
used in chemical kinetics relate [119 ± 121] as

c1 � k1
VNA

; �24�

where V is the homogeneous reaction volume with complete
mixing (cell volume), whileNA is theAvogadro number. For a
reaction of the type

X�X! products ; k2 ; �25�

the relation between k2 and c2 is given by

c2 � 2k2
VNA

: �26�

Nowwe only have to determine how the discrete time step
t should be specified and in what sequence the chemical
reactions should take place if there are several reactions. To
do this we should specify the function P�t; m� of the
probability density, determining the probability P�t; m� dt
for the mth reaction (where m � 1; 2; . . . ; n) to occur in the
volume V during indefinitely small period �t� t; t� t� dt�.
The probability density P�t; m� dt is given [120] by

P�t; m� � am exp�ÿa0t� ; �27�

where am � NXNYc1 if the mth reaction is of the type of (22)
and am � NX�NX ÿ 1�c2=2 if the mth reaction is of the type of
(25), NX and NY are the numbers of particles X and Y in the
volume V,

a0 �
Xn
i�1

ai : �28�

Note that P�t; m� depends on all the rate constants and the
numbers of reacting particles.

The procedure of searching for the interval t after which
the mth reaction occurs is based on the transformation

P�t; m� � am exp�ÿa0t� � P1�t�P2�m� ;

where

P1�t� � a0 exp�ÿa0t� ; �29�

P2�m� � am
a0
: �30�

The sum of all the probabilitiesP2�m� over all values of m from
1 to n is equal to unity. Therefore, it is sufficient to obtain only
one random number y1 for which 0 < y1 < 1 and find the
range of P2�m� in the interval �0; 1� where this number falls.
The operation for finding m is expressed as

Xmÿ1
i�1

ai < y1a0 <
Xm
i�1

ai ; �31�

i.e. we search for the value of m satisfying inequalities (31).
The time step t is also specified by a single random number y2

as

t � 1

a0
ln

1

y2
�32�

in accordance with expression (29) for P1�t�. When the time
step t and the mth reaction have been found, the current time t
increases up to t� t and the mth reaction is performed
following stoichiometric relations. For one program cycle,
only one of n reactions is conducted, which makes the
calculation procedure time consuming. Nevertheless, the
simulation method described above is correct and ade-
quately represents the solution of the master equation [59]
for one cell of volume V with good stirring.

The diffusion (or jump) of a particle from a cell into a
neighbouring cell can also be responsible for a change in the
number of particles in a cell, which can also occur with a
certain probability [121]. The DSMC method, as described
above, can hardly be used to treat numerous cells of CA, since
the time step t varies for each cell, and mass exchange cannot
be performed simultaneously for two neighbouring cells at a
moment t. When the value t is equal for all the cells, the
problem disappears. The authors of Ref. [122] proposed to
determine t as

t � 1

a0
: �33�

This relation is believed to be a good approximation for t,
since 1=a0 is the mean for random value (32). Note that only
one reaction determined by Eqn (31) is performed during a
cycle.

Another way to circumvent the above difficulties is to
choose a small constant time interval Dt and to compare the
probabilities of all the n reactions with n random numbers
[123, 124]. In this case either all the n reactions or no reactions
may take place during the interval Dt (depending on the
random numbers sampled). On account of the difficulties in
the choice of t (or Dt) and the much time required for
numerical calculations the DSMC method is not widely used
to investigate spatially extended systems [43].

Since the DSMC method only deals with bimolecular
reactions, the monomolecular and trimolecular ones cannot
be modelled without any additional contrivances. For
example, the monomolecular reactions of disappearance and
appearance (feed rate) of molecules X, which are usually
written as

X! 0 ; ! X ; �34�

in the case of the DSMC method take on the form

S�X! S� S ; S� S! X� S ; �35�

where S are the `solvent' particles, whose concentration is
constant. This constancy is attained by introducing some
additional particles of species Awhich are not involved in any
reactions but can change into the particles S and conversely so
that the number of particles S in each cell does not change in
the course of reaction (35).

The DSMC method is best suited for processes including
only bimolecular reactions, where the typical time of all
elementary reactions is the same, while the number of
reactions is small. The DSMC method was successfully
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applied to analyse thermal instabilities [107] and chemical
oscillations [106, 114, 115].

6. The method of the probabilistic cellular
automaton (PCA)

To solve the most complicated problems including the
combined effects of reactions, diffusion, convection, and
fluctuations, the method of the probabilistic cellular auto-
maton with the use of the Monte Carlo procedure (PCA-MC
or simply PCA) has been developed [33, 34]. The cellular
automaton is a regular lattice consisting of N 2 � N0

elementary cells (see Fig. 1). The lattice can be square as well
as rectangular with a pronounced difference in side lengths.
Each cell is characterised by a set of numbers such as the
number of molecules of a relevant species in the cell (for
example, nX, nY, and nZ when there are three sorts of
molecules X,Y, andZ) and the coordinates (i and j) of the cell.

The cell has a volume Vm corresponding to the linear
length l � �Vm�1=3. The volume Vm is used to determine the
probabilities of chemical reactions in cells. All the cells are
assumed to be homogeneous, which imposes a limitation on
the typical size and typical time:

l < lcorr � �D0tchem�1=2 ; tdiff � l 2

D0
< tchem ; �36�

where tchem is the time typical for a chemical reaction, while
D0 is the coefficient of molecular diffusion [125]. The cell size
does not exceed the size of the smallest turbulent vortices.
Hence, it should be less than the Kolmogorov size LK defined
as an inherent turbulent scale at which viscous forces play a
great role [82]. Estimates show the cell size l to be less than 1 ±
10 mm.

The PCA method is used to treat independently three
processes such as molecular diffusion (the `diffusion' proce-
dure), chemical reactions (the `chemistry' procedure), and
turbulent stirring (the `stirring' procedure). As a rule, periodic
boundary conditions are used in these procedures, i.e., the
cells of a lattice edge are proposed to be in contact with the
cells of another edge.

6.1 The `diffusion' procedure
The process of modelling diffusion by the PCA method is
greatly sped up due to the abandonment of the one-step
algorithm [81]. It is assumed in this paper that the mass
exchange between neighbouring cells occurs as follows: the
cells merge together for a short period when their contents
mix totally, and then they decouple into two identical cells of
the initial size. Such a dispersion-coalescence process takes
place, for example, between water nanodroplets of reversed
microemulsions [126, 127]. In this mechanism the probability
W�m; kjr; s� that two arbitrary neighbouring cells havem and
kmolecules of the same species at the moment t� StepDif, if
they have r and s �r� s � m� k� molecules, respectively, at
the moment t, is given by the binomial distribution

W�m; kjr; s� � �r� s�!
k!m!

qk�1ÿ q�m ; �37�

where q is the ratio of the cell volume to the total volume of
coalesced cells (in our case q � 1=2), and StepDif is a constant
corresponding to a time step used to treat the diffusion
process. Note that the constant is an actual time measured

in seconds. In themodel the cell under consideration has eight
neighbouring cells (see Fig. 1).

The numbersm and k are calculated as follows. Initially a
pair of neighbouring cells is randomly chosen and the sum
r� s is calculated for it. Then a random value y 2 �0; 1� is
generated and the number k satisfying the inequalities

Xk
h�0

W�r� sÿ h; hjr; s� < y4
Xk�1
h�0

W�r� sÿ h; hjr; s� �38�

is found under the condition m � r� sÿ k. A similar
procedure is given by formula (31) in Section 5.

The intensity of mass exchange is controlled by the value
of StepDif and the parameter ND determining the number
ND�N0 of randomly chosen pairs of neighbouring cells
during a time step StepDif. Mass exchange is performed
independently for each species of molecules, corresponding
to various numbers ND, for example, NDX, NDY, and NDZ

for three species of molecules. As a rule, ND does not exceed
0.5. The ratio ND=StepDif determines the frequency kex at
which a particle jumps into an adjacent cell [33]:

kex � ND

StepDif
: �39�

For a homogeneous water solution the quantities kex and Vm

(or l) are related by the diffusion coefficient D0:

D0 � kexl
2 : �40�

When there is not a direct relation between D0, Vm and kex
(for example, in the case of water droplets of the reverse
microemulsion), the values Vm and kex are independent
variables.

The validity of the consideredmass exchange law has been
tested in various problems of mathematical physics. For
instance it is well known that in the one-dimensional case
the dynamics of smoothing of a sharp interface between two
initially uniform regions with different concentrations of a
substance follows the law [128]:

qc
qx
� c0

2�pD0t�1=2
exp

�
ÿ x2

4D0t

�
: �41�

Assuming for the two-dimensional case that c�x� � hnZ; ii,
where hnZ; ii is the number of particles Z averaged over the
cells of the ith column, the column number i corresponds to
the coordinate x, and believing the initial numbers of particles
nZ; i in the left and right parts of the lattice to be equal to n1
and n2 respectively (for instance, n1 � 100 and n2 � 0), the
author found by the PCAmethod [33] that the change in hnZ; ii
is exactly the same with the law (41). The mean square
displacement hr2i of particles was shown to be proportional
to the coefficient D0 of molecular diffusion and time t, i.e.,
hr2i / D0t. The evidence for the applicability of the diffusion
law used [formulas (37) and (39)] is the fact that any initial
distribution of particles over cells tends in the limit t!1 to
the Poissonian one (in the absence of chemical reactions).

6.2 The `stirring' procedure
The main concepts used to model turbulence by the PCA
method are based on the idea described in Section 2, i.e. a
hierarchy of scales for turbulent motion, however with
modified frequency of running the procedure and sizes of
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chosen squares. The procedure is carried out in constant time
intervals StepMix, the time interval StepMix as well as
StepDif being measured in seconds. The size L �L < N� of a
square chosen in an arbitrary place on the lattice is a random
value available for the procedure. The intensity of stirring is
controlled by the time interval StepMix and the smallest size
of the chosen squares.

Combined operation of the `stirring' and `diffusion'
procedures allows one to find the rate constant kmix for
stirring. It can be obtained numerically in measurements of
stirring of two equal parts of a lattice, whose cell states are
initially different (as in the numerical experiments on testing
the `diffusion'procedure).Thecoefficientkmix canbe found by
calculations of the time dependence of s2 ÿ s2eq and with the
use of the approximation for the difference s2 ÿ s2eq

�s20 ÿ s2eq� exp�ÿkmixt� ; �42�

where s2 is the dispersion determined by Eqns (15) and (16),
s20 is the dispersion at the moment t � 0, and s2eq is the
equilibrium dispersion in the limit t!1, s2eq � hni. In the
semilogarithmic coordinates t, ln�s2 ÿ s2eq� the dependence of
s2 ÿ s2eq on time t is virtually a straight line.

The rate constant kmix depends on the micromixing
determined by the constant kex of microstirring as well as on
the rate of macrostirring. When the rate of turbulent stirring
is rather high (the time interval StepMix is short) the rate
constant kmix is controlled by diffusion so that kmix � kex. As
StepMix and the spatial scale of turbulence rise, macrostirring
determined by the `stirring' procedure may become the
limiting stage of the process of stirring.

6.3 The `chemistry' procedure
For any chemical reaction there is a probability that the
number of particles involved in it may change during the
interval t in the volumeVm. For a monomolecular reaction of
disappearance of particles X, occurring in the volume Vm

containing n � nX � �X�VmNA particles X and having the
rate constant g, the probability p�kjn� for k particles of species
X to disappear during the interval t is given by the binomial
distribution

p�k; n� � Ck
n w

k�1ÿ w�nÿk ; �43�

where Ck
n � n!=�k!�nÿ k�!�, k � 0; 1; . . . ; n; w � gt,

0 < w < 1. To simplify calculations, the PCA method only
deals with one-step processes, for which k � 1 and the time
interval t is calculated so that the following inequality is
fulfilled for all g and n �n 6� 0�:

ngt < 0:1 : �44�
In this case, distribution (43) yields p�1jn� � ngt.

Reasoning in a similar way, we can find the probabilities
for reactions of any type. Table 1 lists the probabilitiesWi for
various reactions to occur in the volumeVm during the period
t. In computer simulations of the ith chemical reaction a
random number y �y 2 �0; 1�� is generated at each time step t
for each cell. If the inequality y <Wi is fulfilled for a cell, the
ith reaction is realised in the cell. The time step t is calculated
for each discrete moment so that the relation

maxfWig � 0:1 �45�
takes place on condition that the maximum maxf g is
calculated for all cells at each time step t, while the values of

variables nX, nY, and others, if any, are taken from the
previous moment tÿ t. With this definition of t inequality
(44) is fulfilled. The interval t depends on the stage of the
reaction and can vary over several orders of magnitude. As
the number of particles in a cell increases in the course of the
reaction, the interval t increases and vice versa.

Let us consider more fully the case when the number of
particles in a cell is small (does not exceed the sum of
stoichiometric coefficients for reactions involving the parti-
cle under study). Let us assume that there are two reactions
resulting in a decrease in the number nX of particles in a cell,
for instance, (22) and (25), and that at amoment t for a certain
particle nX � 2 and nY 5 1. If at moment t� t two random
numbers are generated, which are respectively less than W22

and W25, both the reactions have to take place. However, if
reaction (22) [or (25)] is the first to occur, the number nX is
equal to unity (zero) and the other reaction cannot proceed. If
the sequence of reaction occurrence is determined by the
program, for example, reaction (22) proceeds before reaction
(25), then the actual probability for reaction (25) to occur is
less thanW25 � nX�nX ÿ 1�k2t=2. To minimise this error, we
used the following expedient. The reactions which resulted in
the increase in the number of particles (if any) were assumed
to proceed first. Two versions of the order of proceeding
reactions (22) and (25) were randomly altered. If the versions
were more they randomly altered with equal probability of
occurrence. As a result, under the conditions nX � 2, nY 5 1
the actual probabilities w22 and w25 of reactions (22) and (25)
to take place are given by

w22 �W22

�
1ÿW25�1ÿW1�

2

�
;

w25 �W25

�
1ÿW22�1ÿW1�

2

�
; �46�

where W1 is the probability of occurrence of a reaction (or a
sum of reactions) increasing the number of particles X. Since
Wi < 0:1, the probabilities w22 and w25 differ from W22 and
W25 respectively by no more than 5%. In view of the fact that
the conditions nX � 2 and nY 5 1 are not fulfilled for many
cells, this difference is still less. In the case of a Poissonian

Table 1. ProbabilitiesWi of various reactions, found by the PCA method.

Reaction Simulation gi, s
ÿ1 1 Wi

! X

X! 0

A�X! 2X

X�Y! Z

X�X! 0

3X! 2X�Y

nX ! nX � 1

nX ! nX ÿ 1

nX ! nX � 1

nX ! nX ÿ 1

nY ! nY ÿ 1

nZ ! nZ � 1

nX ! nX ÿ 2

nX ! nX ÿ 1

nY ! nY � 1

C0VmNA
2

k

k [A] 3

k

VmNA

k

VmNA

k

�VmNA�2

C0VmNAt

knXt

k�A�nXt
k

VmNA
nXnYt

k

VmNA
nX�nX ÿ 1�t

k

�VmNA�2
nX�nXÿ1��nXÿ2�t

1 The constants gi of the quasi-érst order determine the rates
of the corresponding reactions.

2 The rate of increase C0 in the number of particles X is measured
in M sÿ1.

3 The number of particles A is assumed to be huge and does not change
during the reaction.
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distribution of particles X and Y, the differences of w22 and
w25 fromW22 andW25 do not exceed 1%, and are usually less
than 0.1%. The difference is immaterial for a system which
does not have any critical points or is shifted by 1% from a
critical point.

Table 2 presents the main parameters and rate constants
for all the three processes modelled by the PCA method. The
validity of the method was checked by comparing the
numerical results with the exact analytical solutions to the
simplest equations as well as with the numerical solution to a
complicated set of ODE. The difference is negligible except
for small fluctuations at small numbers nX and nY.

7. Potential of LGCA, DSMC,
and PCA methods in examining
the Willamowski ±RoÈ ssler model

7.1 Advantages and limitations of the LGCA, DSMC,
and PCA methods
To start with we outline the main advantages, peculiarities,
and limitations of the LGCA, DSMC, and PCA methods
described in Sections 4 ± 6. All the methods treat chemical
reactions at a mesoscopic level which deals with scales larger
than the scales used in molecular dynamics and smaller than
those used in the CA-ODE and other related models. The
variables of all the methods are discrete numbers equal to the
number of particles of a certain species in small spatial regions
(cells). The LGCA, DSMC, and PCA methods take into
account in a natural way the influence of internal fluctuations
on the macroscopic behaviour of the system. In all the
methods the cells are considered to be homogeneous, i.e. the
probability for two particles residing in a cell to collide is the
same for all the particles, in other words, all the particles in
the cell have the same spatial coordinates. The DSMC
method yields results similar to the solution of the master
equation, and, in a sense, is a unique test to check this
equation [43]. The same is probably true for the LGCA and
PCA methods, however a direct comparison with the master
equation has not been performed for these methods.

The DSMC and PCAmethods preset the probabilities for
elementary chemical reactions to occur, while the LGCA
method specifies the probabilities for the number of particles
in a cell to change, the latter being a sumof the probabilities of
the occurrence of all chemical reactions involving these
particles. Therefore it is not necessary to determine a
sequence of reactions for the method.

The DSMC and LGCA methods, in a sense, trace their
origin to gas-dynamics ideas, such as a Boltzmann gas

(particles treated as hard spheres), for which the notions of
the length of free flight motion and velocity of a particle are
applicable. In DSMC and LGCA methods these notions are
extended to diffusion in liquids, where, however, they have no
physical meaning. The PCA method does without these
notions, but uses the idea of fusion ± fission of liquid droplets
or neighbouring cells (nanovolumes).

The DSMC method only applies for bimolecular reac-
tions. To treat monomolecular and trimolecular reactions
some artificial expedients are required. The LGCA and PCA
methods do not have this disadvantage. The DSMC method
yields correct results when typical times of elementary
reactions are rather close and the number of species of
particles is small. As for LGCA and PCA methods, a
pronounced difference in the typical times of reactions and a
large number of species increase the time of calculations but
do not impair the results.

The DSMC method is mainly used to investigate the
influence of fluctuations on homogeneous dynamical sys-
tems and in a fewworksÐ to consider the reaction ± diffusion
equations, however, only in the one-dimensional case. The
LGCA method is chiefly applied to spatially extended
systems, i.e. reaction ± diffusion equations. The PCA method
is used both to describe point systems with regard to
fluctuations as is the DSMC method, and to treat spatially
extended systems as is the LGCA method. There are not any
restrictions on the use of the methods in the three-dimen-
sional case. But only the PCA method can treat reaction ±
diffusion ± convection problems at present. The DSMC and
LGCA methods are only applied to reaction ± diffusion
equations.

7.2 The Willamowski ±RoÈ ssler model
Unfortunately the LGCA, DSMC and PCA methods have
not been used to investigate the same problem under identical
conditions, therefore, a direct comparison is rather difficult.
The most suitable model to demonstrate the potential and
validity of all the methods is theWillamowski ±RoÈ ssler (WR)
model presented by the following set of reactions [129, 130]

X$ 2X ; k1; kÿ1 ; �47�

X�Y$ 2Y ; k2; kÿ2 ; �48�

Y$ A ; k3; kÿ3 ; �49�

X� Z$ A ; k4; kÿ4 ; �50�

Z$ 2Z ; k5; kÿ5 ; �51�

Table 2.Main parameters and characteristics of the `diffusion', `stirring', and `chemistry' processes modelled by the PCA method1.

Parameters Molecular diffusion Turbulent stirring Chemical reactions

Time step between running the procedure

The number of operations in the procedure

Probability of execution of single operations

The pseudo-érst order constants characterising the rate
of the process

StepDif

ND�N0

W�m; kjr; s�

kex

StepMixXLev
L�1

NL

Ws

kmix

t

nN0

Wi

gi

1 The probabilities Wi and constants gi are given in Table 1. N0 is the number of elementary cells in the square lattice of the CA; n is the number of
considered chemical reactions, i is the index of the chemical reaction;Ws is the probability that at least two out of four quadrants of a randomly chosen
square L� L will be interchanged during an operation; Ws � 3=4; NL is the number of samples of a square of size L; the variable Lev determines the
smallest size of considered squares (turbulent scale).
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where the subscripts � and ÿ of the rate constants k denote
direct and inverse reactions respectively.

TheWRmodel was studied by the LGCA [24, 35], DSMC
[114], and PCA methods. Structurally, the WR model is a
combination of two models: (1) the well-known Lotki ±
Volterra model [reactions (47) ± (49)], where the particles X
and Y related by reaction (48) increase in number autocata-
lytically and (2) the `switch' model [reactions (47), (50), and
(51)] where the particles of Z species can also multiply. The
Lotki ±Volterra model yields structurally unstable oscilla-
tions, while the `switch' model has two stable states [the
concentration of Z is high, while the concentration of X is
small (about zero), and vice versa]. The combination of these
two models gives rise to a multiplicity of dynamic regimes
including direct and inverse cascades of period doubling
bifurcations routing to chaotic oscillations in a homoge-
neous well stirred system, autowave phenomena and Turing
structures in a spatially extended system without stirring.
Figure 4 plots the phase diagrams of various dynamic regimes
of a point (0D) WR model for varied constant kÿ1 (the
constant kÿ1 has the dimension Mÿ1 sÿ1 which will be
omitted in what follows). Fig. 5 depicts the bifurcation
diagram for the WR model. As is seen from the figure, in the
range of constant kÿ1 values from 0.41 to 0.6 the model
exhibits chaotic oscillations.

The influence of fluctuations as the WR system transits
through bifurcation points and occurs nearby or inside the
region of chaotic oscillations was investigated by the LGCA

[24, 35] and the PCA methods. The study by the LGCA
method was carried out for two limiting cases, i.e. for a
spatially distributed system without stirring and for a point
system with strong stirring. The PCA method was used to
investigate intermediate cases as well. It is obvious that the
influence of fluctuations on the system must increase as the
controlling parameter (for example, constants kÿ1 or k2)
tends to the region corresponding to chaotic oscillations. In
the deterministic system without fluctuations the values of
bifurcation points are determined exactly and show well on
the bifurcation diagram (Fig. 5), while with the availability of
fluctuations the bifurcation transitions become rather dif-
fused. This results from the diffusive spreading of the orbits of
periodical motion, and spreading andmerging of the bands of
the chaotic attractor. The fluctuactive limiting cycle and the
chaotic attractor become hardly distinguishable (see, for
example, Fig. 6 showing the limiting cycle and chaotic
attractor found by the PCA method at kÿ1 � 0:34 and
kÿ1 � 0:415 respectively).

However, in the case of the limiting cycle �kÿ1 � 0:34� the
attractor with large fluctuations can be transformed into one
relatively close to awell-determined periodical orbit. One way
to do this is to increase the cell volume Vm, and hence, the
number of particles in the cell. Alternatively, one canmagnify
the diffusion coefficient and enhance the intensity of stirring.
These procedures do not change noticeably the shape of the
strange attractor, as is seen from Fig. 7 which shows the same
attractors as in Fig. 6 but at large value kex and small value
StepMix.

The influence of internal fluctuations on deterministic
chaos is also clearly seen from the comparison of Poincare
cross-sections found by numerical solution of the relevant
ODE and those obtained by the PCAmethod, as well as from
comparison of corresponding next amplitude maps con-
structed from the Poincare cross-sections. Figure 8 plots
sections of the strange attractor (obtained by numerical
integration of ODE) intersected by the plane �X� � �Y� (a)
and its next amplitude map �Z�n�1 � f

ÿ�Z�n� (b), where �Z�n is
the Z-coordinate of the Poincare cross-section at the moment
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Figure 4. Projections of three-dimensional attractors of the point Will-

amowski ±RoÈ ssler model (47) ± (51) on the plane X±Y (X, Y, and Z are

expressed in mole/litre) for various constants kÿ1. k1 � 30 sÿ1;
k2 � k4 � 1 Mÿ1 sÿ1; k3 � 10 sÿ1; kÿ2 � kÿ3 � kÿ4 � 0; k5 � 16:5 sÿ1;
kÿ5 � 0:5 Mÿ1 sÿ1.
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Figure 5. Bifurcation diagram of the point Willamowski ±RoÈ ssler model

(47) ± (51) obtained by integration of a set of ODE. Plotted on the vertical

axis are the X values of intersections of the attractor by the plane

�X� � �Y�. The values of the other constants are the same as in Fig. 4.
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tn, while �Z�n�1 is the Z-coordinate at the next moment tn�1.
Figure 8c, d depict similar dependencies for the same attractor
at kÿ1 � 0:415, found by the PCA method. As is seen, the
shape of curve Zn�1 � f �Zn� typical for chaotic oscillations is
not affected by internal fluctuations in the WR model.
However the scatter becomes larger in the fluctuactive system.

The WR system in an oscillatory or chaotic state may
generate time-dependent unstable spatial structures when
stirring is lacking and the diffusion is not strong enough to
homogenise the whole system. This phenomenon is referred
to as spatio-temporal turbulence. The attractor of the system
decreases in the phase space, while the dispersion greatly
exceeds the equilibrium Poisson value. Figure 9 plots the
images (maps) for Z particles found by the PCA method in
simulating theWRmodel in the regime of chaotic oscillations
at the moments t1 and t2. Black, grey, and white regions are
discernible in the figure corresponding to different densities of
Z particles. These regions evolve in time. Spatial structures
arise [35] when the inequality lcorr < lN is fulfilled, where lcorr
is determined by (36), l is the cell size, while lN is the lattice

size. The occurrence of spatial structures similar to nuclei
makes one to calculate the effect of fluctuations not for the
whole system, but for a small region of correlated size lcorr. In
such regions fluctuations are great and can change the
behaviour of the system.

When the system is intensively stirred the amplitude of
fluctuations can depend on the size of the whole system. The
larger the value N�N, the smaller the fluctuation effect, all
the other factors being equal. It was shown [35] that there
exists a critical size of the system above which the difference
between fluctuactive and deterministic attractors is small (see,
for example, Fig. 7a and 4a). As the size of the system
decreases fluctuations can change the limiting cycle to a
state differing only slightly from the strange attractor (see
Fig. 6a, 4a, and 4c). The effect is similar to transitions induced
by external noise [131].

All the foregoing fluctuation effects were obtained by the
LGCA and PCA methods. The WR model was studied at
various diffusion coefficients only by the PCA method.
Varying the ratio between the diffusion coefficients DX, DY,
andDZ (or jump constants kX, kY, and kZ) it was revealed that
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Figure 6.Limiting cycle and strange attractor found by the PCAmethod in

the WR model at kÿ1 � 0:34 (a) and kÿ1 � 0:415 (b), the other constants

are the same as in Fig. 4. The CA parameters are N�N � 48� 48,

VmNA � 3 Mÿ1, kex � 500 sÿ1, Lev � 4, StepMix � 0:1 c in case (a) and

N�N � 16� 16, VmNA � 4 Mÿ1, kex � 1000 sÿ1, Lev � 3,

StepMix � 0:01 s in case (b).
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Figure 7.Limiting cycle and strange attractor found by the PCAmethod in

the WR model at kÿ1 � 0:34 (a) and kÿ1 � 0:415 (b). All the CA

parameters are the same as in Fig. 6, except for kex � 1000 sÿ1,
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stationary structures (Turing structures) may arise in an
initially homogeneous system without stirring on the condi-
tion

kX 5 kY ; kZ 5 kY : �52�
We emphasise that the term `Turing structures' refers to the
structures arising in the system, whose point (0D) equations
have a stationary state. The above example is probably the
first case when the formation of stationary structures does not
depend on the state of the dynamical system, which can be in
the oscillating, chaotic, or stationary states. Figure 10 plots
changes in the Turing structures as the constant kÿ1 varies
over the range corresponding to different dynamic regimes of
the point WR model. It is seen that, as kÿ1 rises, the typical
size of the structures increases. The structures are rather
stable with respect to fluctuations whose amplitude is
changed by varying the cell volume Vm.

The effect of fluctuations on the propagation of auto-
waves in oscillating and chaotic media was studied by the
LGCA method [24]. It was shown that fluctuations may give
rise to additional waves, whose existence does not follow from
the solution to the corresponding deterministic reaction ±
diffusion equations.

To conclude the sectionwe outline briefly the results of the
analysis [114] of a homogeneous WR model by the DSMC
method. Paper [114] compares the probability density
functions and power spectrum of the strange attractor found
by the DSMC method with those obtained by numerical
solution of the master equation. The data obtained by both
the methods were shown to be in good agreement. This
conclusion was confirmed in studies of a simpler system [15,
43, 108] which testifies to the reliability of the results obtained
by the solution of the master equation. Note also that in these
works an important theoretical result was obtained by the
DSMCmethod. Namely, it was found that the Langevin and
master equations yield the same results only for systems with
one stable state. In bistable systems the bimodal functions of
probability density, derived from the solution of these
equations, are different. The DSMC method yields the
function of the probability density, coinciding with that
found from the master equation. This suggests that the
Langevin equation cannot be used to study multistable
systems. Note that the PCA method yields the same data as
the DSMC method (unpublished data).

8. Examples of some problems solved
by the PCA method

In the previous section we dealt with various effects of
fluctuations on a hypothetical WR model. Here we will
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Figure 8. Poincare cross-sections (a, d) for a strange three-dimensional

attractor in the WR model and their one-dimensional next amplitude

maps found by numerical calculation of ODE (a, b) and by the PCA

method (c, d) at kÿ1 � 0:415. The other constants are the same as in Fig. 4.

The parameters of the PCA model are the following N�N � 16� 16,

VmNA � 4 Mÿ1, kex � 1000 sÿ1, Lev � 3, StepMix � 0:01 s (as in

Fig. 6b).

a b

Figure 9. Images of the Z map at moments t1 � 1:2458 s (a) and

t2 � 1:7152 s (b) found in the WR model by the PCA method at

kÿ1 � 0:415. The other constants are the same as in Fig. 4. The lattice

parameters are the following N�N � 48� 48, VmNA � 4 Mÿ1, and

kex � 10 sÿ1.

kÿ1 � 0:2 kÿ1 � 0:415

kÿ1 � 0:8 kÿ1 � 1:4

Figure 10. Stationary (Turing) structures consisting of Z particles obtained

by the PCAmethod for theWRmodel. Increased darkness corresponds to

an increased concentration of particles. The lattice parameters are:

N�N � 64� 64; VmNA � 1 Mÿ1; kX � kZ � 5 sÿ1; kY � 500 sÿ1. The
constants are the same as in Fig. 4.
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consider actual chemical systems and the ways to treat them
by the PCA method.

8.1 Reactions of X+Y! 0 and X+X! 0 types
The influence of diffusion, fluctuations, and dimensionality
of space on reactions of the type of (22) and (25) has been
considered in many papers [83, 95, 132 ± 142], and now the
dynamics of these reactions is thoroughly studied. It is well
known [133] that the reaction X�Y! 0, whose rate
constant kdiff is controlled by diffusion demonstrates a
clustering effect which is as follows. The particles of species
X and Y initially randomly distributed in space with the same
averaged concentrations rearrange with time so that clusters
of particles arise, where particles of one species are present,
while particles of the other one are lacking. The reaction takes
place at the cluster boundary. As a result, the observed rate
constant decreases, and the reaction deviates from the
classical law

�X�ÿ1 ÿ �X�ÿ10 � kdifft ; �53�

in particular, the asymptotic time-dependence of �X� changes.
These results were obtained both analytically and with the

help of lattice models used in the Monte Carlo method. In
most lattice models the rate constant of the chemical reaction
is assumed to be equal to infinity. This means that if there are
two particles X andY in a cell, they annihilate in amoment. In
this case the reaction rate is completely determined by the rate
of random wandering over the lattice, i.e. diffusion. In the
PCA method the rate kchem of a chemical reaction is assumed
to be finite. But if the rate kchem exceeds greatly the rate kex of
jumps, the reaction is controlled by diffusion. Figure 11 plots
the lattice maps for particles X and Y obtained by the PCA
method after a great lapse of time from the onset of the
reaction (22). We can see clusters occupied by particles of
species X (particles in the left side of the lattice) and Y
(particles in the right side of the lattice). In the reaction
X�X! 0 controlled by diffusion the fluctuations also
decrease the rate constant of a reaction occurring in a space,
whose dimensionality d is less than the critical one dc [137,
143, 144].

The PCA method allows one to represent adequately the
transition from the regime controlled by chemical reactions to
that controlled by diffusion. As an example we consider the
reaction [50]

X�X! X�A ; k2ÿ1 ; �54�

whose rate is written as

dnX
dt
� ÿk 02ÿ1n2X : �55�

It follows that

1

nX
ÿ 1

n0
� k 02ÿ1t ;

where k 02ÿ1 � k2ÿ1=�VmNA�. The kinetic curves hnXi � f �t�
for reaction (54) were obtained on a lattice of size 128� 128 at
various diffusion constants kex for the initial Poissonian
distribution of particles with the mean value n0 � 0:25 on
condition of strong stirring. For all the studied cases the
kinetic curves appear as straight lines in the coordinates

�1=hnXi ÿ 1=n0; t�. The effective constant �k 02ÿ1�eff was deter-
mined as the slope of the lines. Note that the effective constant
�k 02ÿ1�eff is independent of the shape of the initial distribution
and the value hnXi0 when this value is less than unity. Figure
12 plots the dependence of �k 02ÿ1�eff on kex, which is described
by the equation

�k 02ÿ1�eff �
gkexk 02ÿ1

gkex � k 02ÿ1
; �56�

where g � 0:463. As follows from (56) if gkex 5 k 02ÿ1 then
�k 02ÿ1�eff � gkex, i.e. the effective rate constant is completely
determined by the diffusion coefficient.

8.2 Luminescence quenching in micelles (X � Y! Y)
A particular and important case of reactive interaction
between two particles is the reaction

X�Y! Y�A ; k3 ; �57�

Y

X

Figure 11. X and Y lattice maps obtained by the PCA method for the

reaction X�Y! 0. The initial distribution of particles over cells is

binomial, the initial averaged number of particles in the cells is

hnXi0 � hnYi0 � 1. The maps correspond to a density of particles equal

to hnXi � hnYi � 0:01 and constants k1 � 109 Mÿ1 sÿ1; k1=�VmNA� �
� 103 sÿ1; kex � 50 sÿ1; N�N � 256� 256. Each pixel on the map

represents a cell with a single particle of X or Y species.
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which describes luminescence quenching in solution and
micelles, X is a luminescent particle in a photoexcited state
(probe), Y is the quenching molecule or ion (quencher), while
A is the luminescent particle in the ground state. The exact
time-dependence of hnXi is determined by the well known
Infelta ±Tachiya equation [145, 146]


nX�t�
� � hnXi0 exp�ÿhnYikexkrkex � kr

t

ÿ hnYik2r
�kex � kr�2

h
1ÿ exp

ÿÿ�kex � kr�t
�i�

; �58�

where hnXi is the number of X particles, averaged over the
microvolume Vm, which will be taken to mean the water core
of nanodroplets of reverse microemulsion, kr�k3=�VmNA�;
kex is the quasi-first order rate constant of mass exchange
betweenmicrovolumes, kex � keCm; ke is the bimolecular rate
constant of mass exchange, Cm is the concentration of
microvolumes (nanodroplets) in the whole system [in the
PCA method it is given by Eqn (39)]. This complicated form
of Eqn (58) results from the Poissonian distribution of
quencher particles over nanodroplets.

Figure 13 plots the kinetic curves obtained by the PCA
method and by analytical solution of Eqn (58). It is seen that
the curves obtained by the two methods are in agreement, the
slight difference in the results has a statistical character and
varies from experiment to experiment. When kex 4 kr, Eqn
(58) takes the conventional form


nX�t�
� � hnXi0 expÿÿhnYikrt� : �59�

In this case the time dependence of hnXi is a straight line in the
semilogarithmic scale

ÿ
lnhnXi; t

�
(see, curve 5 in Fig. 13).

When kex 5 kr, i.e. reaction (57) is limited by diffusion, the
fluctuation effect becomes noticeable and the kinetic curves
(curves 1 and 2) differ significantly from curve 5. Reaction
(57) was studied in Ref. [147] on one-, two-, and three-
dimensional lattices.

Equation (58) is widely used to find the rate constant kex
of mass exchange between nanodroplets in interpreting

kinetic curves obtained in experiments on dynamic (or time-
resolved) quenching of luminescence where a luminescent
particle A is photoexcited by a pulse [148 ± 150]. The PCA
method allows one to derive a simple expression for kex in
experiments on static quenching of luminescence described by
three elementary reactions

A! X ; k1 ; �60�
X! A ; k2 ; �61�

and reaction (57)

X�Y! A�Y ; k3 ;

which proceed only in water nanodroplets of a microemul-
sion. The rate constant corresponding to reaction (60) is
proportional to the intensity of illumination, while reaction
(61) represents all monomolecular processes quenching the
excited state. The intensity I of luminescence is proportional
to the steady-state concentration [X]SS of particles X, so that

I

IB
� �X�SS�X�B

;

where IB is the intensity of luminescence in the absence of
quencher, and �X�B � k1�A�=k2.

Figure 14 shows the dependencies of hnXiSS on kex=k2
obtained by the PCA method at various parameters of the
model (57), (60), (61), where hnXiSS is the averaged number of
particles in a cell determined by (15) such that
hnXiSS=�VmNA� � �X�SS. Mathematical treatment of these
data reveals that the dependencies obtained are ideally
described by a simple expression which, being solved with
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respect to kex, has the form

kex � f �n0�k2 Imax=IB ÿ I=IB
I=IB ÿ Imin=IB

; �62�

where

Imax

IB
� exp�ÿn0� � S1�n0�

a
;

Imin

IB
� 1

1� an0
; �63�

a � k 03
k2
; S1�n0� �

X1
n�1

P�n; n0�
n

; k 03 � kr � k3
VmNA

;

f �n0� � 5 for n0 � 0:1, f �n0� � 1:35 for n0 � 0:5, and
f �n0� � 0:62 for n0 � 2, where n0 � hnYi is the averaged
number of quencher particles in a nanodroplet. Formula
(62) complements the Infelta ± Tachiya equation for deter-
mining kex. The derivation of Eqn (62) testifies that the PCA
method is promising for the study of chemical and photo-
chemical reactions in organised molecular ensembles gener-
ally and in microemulsions in particular.

To sum up, the PCA method can describe all the specific
features of the three types of elementary nonlinear reactions
(22), (54), (25), and (57) such as fluctuation effects and

restricted mobility of particles. Below we will apply the PCA
method to describe complicated spatially extended systems
consisting of two or more elementary stages and having
critical and bifurcation points.

8.3 Stirring effects in the activator ± inhibitor system.
Let us consider the so-called stirring effects (SE) caused by
nucleation in a homogeneous stirring solution [33, 151 ± 153].
In Section 2 we considered these effects with the use of a
simple CAwhich allowed us to describe qualitatively themain
properties of SE. But using a simple CA, we got some rather
exotic dependencies which are never observed in experiments.
As for PCA, their application enables adequate description of
SE. Phenomenologically, SE show up as an increase in the
period and amplitude of concentration oscillations or as an
increase in the inductive period Tind of an autocatalytic
reaction which takes place as the intensity of turbulent
stirring enhances. Such effects were observed in the BZ
[153], BR [152] reactions and in a chlorite-iodide system
[151]. The simplest model to illustrate the stirring effects is
the uncompleted Oregonator model [154]

Y�A! X ; k1�A� ; �64�
X�Y! 0 ; k2 ; �65�
X�A! 2X ; k3�A� ; �66�
X�X! 0 ; k4 ; �67�

where X � HBrO2, Y � Brÿ, A � BrOÿ3 . The set (64) ± (67) is
similar to the set (3) ± (6) and describes autocatalytical growth
of the concentration of activatorX in the presence of inhibitor
Y.Reaction (67) terminating the growth of �X� does not play a
significant role at the initial stage of autocatalysis, when the
concentration of �X� is small. If the concentration of �Y� is less
than the critical one

�Y�crit �
k3�A�
k2

�68�

the autocatalysis starts and the concentration of �Y� decreases
to zero, since reaction (65) is assumed to be fast. Reaction (64)
is slow and restricts the rate at which �Y� approaches �Y�crit
when �Y� > �Y�crit. This reaction is equivalent to the combina-
tion of reactions (5) and (6) in the model (3) ± (6). The basic
parameters of the model (64) ± (67) are

�A� � 0:1 M ; k1 � 0:1 Mÿ1 sÿ1 ; k2 � 106 Mÿ1 sÿ1 ;

k3 � 100 Mÿ1 sÿ1 ; k4 � 103 Mÿ1 sÿ1 ;

which are rather close to actual parameters of the elementary
stages of the BZ reaction.

Figure 15 shows typical kinetic curves obtained by the
PCA method for averaged hnXi at various intensities of
stirring (Reynolds numbers) given by the relation [33]

Re � ck
1=2
mix ; �69�

where c is a constant measured in s1=2, and constant kmix is
determined by Eqn (42). For all the curves the initial
concentrations were

�Y�0 � 2� 10ÿ5 M ; �X�0 � 0 ;

and the initial distribution of molecules Y over the cells was
the Poissonian one. Figure 15 shows also the time dependence
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Figure 14.Dependencies of hnXiSS on kex=k2 obtained by the PCAmethod
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of �X� (as a product �X�VmNA, where VmNA � 5� 104 Mÿ1),
obtainedby solvingODEfor the set (64) ± (67) (curve6).Curve
6 can be compared with data found by the PCA method. As
follows from Fig. 15 the induction period derived from these
data is about Tind � 17 s. As distinct from the one-parametric
model considered in Section 2 with the use of a simple CA, the
improved model can adequately represent the kinetics of
decrease in the concentration of inhibitor Y in both an
individual cell and the whole CA. Figure 16 presents some
examples of these curves, which were used to determineTind.

Figure 17 plots the dependencies of Tind on Re at various
VmNA and kex, which have an S-like shape (curves 2, 4 ± 6)
similar to the experimental dependence [152]. For the values
VmNA and kex at which a pronounced stirring effect
determined as the ratio T max

in =T min
ind takes place (curves 2, 4,

5) the product kex�Vm�2=3 is constant kex�Vm�2=3�
const � D0. This means that the SE is determined by the
molecular diffusion coefficient D0, and, hence, depends on
viscosity.

The PCA method allows us to reveal the correlation
between the SE and the total number of cells N0 in the
lattice. Let us compare the curves 4 �N0 � 642� and 5
�N0 � 1282� in Fig. 17. The maximum of Tind hardly changes
�Re � 4ÿ5�, while the minimum of Tind decreases by the
factor 1.4 (at Re � 1) as the number N0 of cells grows. This
result is very interesting. It is known that fluctuations or noise
caused by discrete interactions self-average and tend to zero
as the number of cells grows. In our case we are dealing with
quite the opposite effect. As N0 increases, the probability of
the appearance of large-scale fluctuations rises too. These
fluctuations are localised in clusters consisting of neighbour-
ing cells which can be called nuclei. According to computer
simulations, the consequences of the appearance of large-
scale critical fluctuations override the smoothing effect of the
increase in the number of cells. The reason is that the number
of molecules X in nuclei grows autocatalytically. Figure 18
shows the influence of the stirring effect on nuclei: the greater
the intensity of stirring, the smaller the nuclei. At Re � 4:34
nuclei are not revealed (Fig. 18d).

The data obtained by the PCA method confirm the
experimental evidence that the SE in the BZ reaction
becomes more pronounced as the rate nY at which �Y�
approaches the critical value �Y�cr decreases [153]. The rate
nY was calculated from the slope of the initial linear portion of
the time dependence of �Y� (see, for example curve hnYi in
Fig. 16) andwas controlled by the constant k1. As is seen from
Table 3, the slower the rate nY, the more pronounced the
stirring effect. This is in agreement with the experimental data
[153] and confirms the ability of the PCA method to explain
stirring effects, i.e. its suitability for reaction ± diffusion ±
convection problems with regard to fluctuations.
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8.4 Coupled stochastic chemical oscillators
Let us consider the complete Oregonator model [154], which
is the mathematical model of the oscillating BZ reaction.
Modifying reaction (66) as

A�X! 2X� 2Z �70�

and adding the reaction

Z� B! gY ; k5 �71�

to the modified set (64) ± (67), where B is malonic acid, whose
concentration is rather high and constant, and g is the
stoichiometric coefficient �0 < g < 1�, we get the Oregona-
tor model. Relaxation oscillations described by the model can
be treated as a fast autocatalytic increase in the activator
concentration X [reaction (70)] followed, after a delay, by a
fast increase in the inhibitor concentration Y [reaction (71)]
and a slow decrease in the inhibitor concentration to the
critical value �Y�cr [reaction (64)].

In the previous section we showed that fluctuations
(nuclei) decrease the induction period of autocatalysis

described by the set (64) ± (67). In terms of the Oregonator
model this means that fluctuations should decrease the
oscillation period which is mainly determined by the induc-
tion interval. The fluctuations, in turn, can be controlled by
mass-exchange rate constants kX, kY, and kZ. As the
constants kX, kY, or kZ decrease the coupling strength
between cells becomes weaker which enables us to consider
each cell as a stochastic oscillator weakly coupled with
neighbouring oscillators. The value Vm can be used to
control the number of particles in an individual cell and,
accordingly, the extent of the stochastic effect: the smaller the
value Vm, the larger the amplitude of fluctuations. Thus,
studying a spatially extended oscillating system, we naturally
come to the problem of interacting stochastic oscillators. This
point may be all the more evident if a cell of a CA is taken to
mean inverted micelles or vesicles which are closed micro- or
nanovolumes with semi-permeable membranes. The problem
of interacting oscillators came under the scrutiny of science
long ago and still attracts the attention of researchers [155 ±
159]. In this section we consider the dependence of the
oscillation period of the set of interacting stochastic oscilla-
tors described by the Oregonator model on the mass-
exchange constants kX, kY, kZ.

The set of stochastic oscillators described by the Orego-
nator model [34] was mainly studied for a lattice of size
32� 32 containing 1024 coupled stochastic elementary
oscillators. There the following values for the rate constants
of reactions (64), (65), (67), (70), and (71) were used:

k1 � 0:2 Mÿ1 sÿ1 ; k2 � 2� 105 Mÿ1 sÿ1 ;

k3 � 20 Mÿ1 sÿ1 ; k4 � 2� 103 Mÿ1 sÿ1 ;

k5 � 1 Mÿ1 sÿ1 ; �B� � 1 M :

The activator concentration varied in the range from
�A� � 0:01 M, up to �A� � 1 M. To describe reaction (71) by
the PCAmethod we put g � 0:5 and treat reaction (71) as the
process

nZ ! nZ ÿ 2 ;

nY ! nY � 1 ; �72�

which occurs with the probabilityW5 � k5�B�hnZit=2 instead
of the probabilityW5 � k5�B�hnZit. It turned out to be a good
approximation, since at strong coupling between the cells the
kinetic curves obtained by the PCAmethod coincide virtually
with those found by numerical integration of the correspond-
ing set of ODE of the model (64), (65), (67), (70), (71).

Characteristic kinetic curves for various kX under condi-
tion of intensive stirring are shown in Fig. 19. At kX, kY, and
kZ exceeding 30 sÿ1 the oscillating kinetic curves completely
coincide with the curves obtained from the solution of the
relevant ODE. As the rate constants kX and kY �kX � kY�
decrease and at kZ � const � 32 sÿ1, the oscillation period
and the amplitude also decrease, and the relaxation oscilla-
tions become sinusoidal.

Figure 20 plots the dependence of the oscillation period on
the constant kX � kY at various VmNA. It is evident that as
the constant kX decreases and becomes less than the critical
value kcr, the period T flattens out and tends to the limiting
value Tm. It is also seen that the smaller is VmNA, the shorter
the limiting value Tm and the greater the ratio T0=Tm, where
T0 is the limit at kX !1. In the vicinity of the critical
constant kcr the difference Tÿ Tm depends on the difference

a b

c d

Figure 18.X-patterns for hnXi � 3 at various Reynolds numbers, obtained

by the PCA method in simulating the set (64) ± (67). The gray and black

cells correspond to the states with nX 5 2. The model parameters are

N�N � 128� 128, kex � 50 sÿ1, VmNA � 5� 104 Mÿ1, StepDif �
10ÿ3 s, Re � 1:08 (a), Re � 1:57 (b), Re � 2:02 (c), Re � 4:34 (d) [33].

Table 3.Dependence of ratioT max
ind =T min

ind (stirring effect) on the rate nY 1 at
which the BZ system approaches the critical concentration
�Ycr� � �A�k3=k2 2.

�A�k1, sÿ1 100nY=�Y�0, sÿ1 T min
ind , s 3 T max

ind , s T max
ind =T min

ind

0.01
0.02
0.03
0.04

2.94
5.98
8.69

11.36

2.87
2.55
2.18
1.82

8.2
5.45
4.15
3.2

2.85
2.13
1.9
1.75

1 The rates nY are obtained by numerical solution of the ODE for the set
(64) ë (67).

2 �Y�0 � 2� 10ÿ5 M, �X�0 � 0, �A� � 0:1M, k2 � 106 Mÿ1 sÿ1,
k3 � 100Mÿ1 sÿ1, k4 � 103 Mÿ1 sÿ1.

3 The values of maximum T max
ind and minimum T min

ind of the induction
period are found by the PCAmethod atRe � 4 andRe � 1 respectively.
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kX ÿ kcr as

Tÿ Tm / �kX ÿ kcr�1=2 :
Such a dependence of the order parameter on the controlling
parameter is typical for second-order phase transitions.

A frequency multiplying bifurcation (not to be confused
with the bifurcation of period doubling) was shown in Ref.
[34] to take place as the strength of coupling between
stochastic oscillator changes (mainly due to the change in
the constant kX). A specific feature of the bifurcation is that it
depends on the microvolume size. The smaller the size, the
greater the multiplier for the frequency of oscillations when
the constant kX decreases below the critical value kcr. It was
concluded that the effect results from the stochastic beha-
viour of elementary oscillators. If the concentration of
particles X and, hence, particles Z begins to increase
autocatalytically in an elementary oscillator (one of a huge
number N�N), then the oscillator, so to say, initiates a
multiplication of particles in all the other elementary

oscillators, although the values nY have not decreased there
to the critical one.

This multiplication of the frequency of oscillations can
occur when the strength of coupling between elementary
oscillators is neither too large nor too small. When the mass-
exchange rate constant is high kex 4 gi, where gi is the quasi-
first order rate constants for reactions (64), (65), (67), (70),
(71), the stochastic behaviour of elementary oscillators is
suppressed, they oscillate in phase. At low mass-exchange
constant kex 5 gi, any coupling between elementary oscilla-
tors is lost, resulting in absolute chaos and the system as a
single whole does not oscillate. The system is most sensitive to
the strength of coupling at the critical value kcr, where the
mass-exchange constant kX is of the order of the constant g3
for the exponential growth of the activator concentration,
g3 � k3�A�.

8.5 Other problems
In this review we have not considered the use of CA methods
in many other problems, for example, in the study of
fluctuation effects on positions of bifurcation points in a
bistable system. The analysis of Turing structures and
autowave phenomena in excitable media [160] also deserves
special consideration. Extensive studies of heterogeneous
catalysis and oscillatory and chaotic reactions on a catalyzer
surface [161] have been left beyond the scope of the review. An
interesting effect of synchronisation of the activity of enzymes
in microvolumes was revealed by the CA method in the
papers by B Hess and A Mikha|̄lov [162, 163]. A wide field
of use of CA is self-organised criticality (see, for example,
Refs [164, 165], as well as numerous papers inPhysical Review
E). In other words, the CA method has a wide area of
application.

9. Conclusions

There are a lot of modifications to the CA method.
Mathematicians deal mainly with simple CA, since the
studies by these methods may involve interesting purely
mathematical problems. Physicists and those specialised in
chemical physics often use the LGCA, DSMC and PCA
methods, since these methods enable them to describe fine
details of the behaviour of actual systems at micro- and
mesolevel, in particular, the influence of internal fluctuations
on the behaviour of dynamical systems. Chemists prefer the
CA-ODE (or CM) methods which rely on their habitual
concept of concentration. Common to all the methods is the
idea of local description of a spatially extended system. What
is more, the methods coincide in the limiting cases. Table 4
lists the CA methods and their fields of application. It can
serve as an illustration of the development of the methods.
Table 4 does not pretend to be complete for simple or classical
CA.

Advances in computer techniques stimulate the develop-
ment of the CA methods. With a Pentium 200 type PC, one
can calculate any of the above-discussed problems in aminute
or a day, and it will take one a day or a week to obtain the
dependencies revealing the nature of one or other effect.
However, it is not only the speed of getting results which
matters. Baras and Malek Mansur [15, 143, 108] believe the
DSMCmethod and, hence, the LGCA and PCAmethods are
a unique tool to test the correctness of results found by the
solution of the master equation, since they are based on the
main principles of statistical physics.
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Nonlinear reactions in three-dimensional space including
heterogeneous spatial systems of fractal dimensionality call
for further investigation. We might expect the appearance of
works where the CA would have the configuration of the
studied object or a reactor and take account of incoming and
outgoing fluxes, while the cells of CA would change during a
reaction depending on the reagents, and the varied size of cells
could, in turn, affect the probabilities of the processes
occurring there.

The work was partly supported by the Russian Founda-
tion for Basic Research (Grant 97-03-32436a).
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automaton using the Monte Carlo procedure.
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