
Abstract. Departures from Coulomb's law displayed by two
electrostatically interacting conducting balls are examined in
detail. By computing forces on the balls as a function of the ball
separation, it is found that at short separations a switch from
repulsion to attraction occurs in the general case of arbitrary,
likely charged balls. The only exception is the case in which the
charges of the balls are related as the squares of their radii: such
balls always repel each other. For identical balls of equal
charges in magnitude, asymptotic short-separation relations
for energies and forces are found. For most of the results
obtained the self-similarity property is shown to apply.

1. Introduction

The problem of the interaction between two conducting
charged balls is classical and has been considered in a
number of monographs and manuals [1 ± 6]. However, the
data there are presented rather formally (for example, as
infinite series), which does not enable one to get answers to
simple but scientifically and methodically important ques-
tions. Thus it is known that at small distances between the
balls this interaction cannot be described by Coulomb's law.
This may bring up the questions of what is the character of
deviations from Coulomb's law, or what error the Coulomb
approximation yields (i.e. replacement of the balls by
equivalent point charges located at their centers) in calcula-
tions of the force and the energy of the interaction? These
questions are not discussed in the scientific and methodical
literature, though the problem of the interaction between two
charged balls can be found in virtually every school or
student's problem book on physics. The reason is probably

that the cumbersome final expressions for the energy and the
force of interaction do not enable one to investigate the
problem analytically in a simple manner. However, some
special methods and the use of computers make such an
investigation possible.

In this paper prominence is given to the derivation and
discussion of final results, detailed calculations can be found,
for example, in Ref. [1].

2. Statement of the problem
and the method of electrical images

Let us consider two conducting balls of radii R1 and R2 with
charges q1 and q2, whose centers are separated by a distance
l5R1 � R2 (Fig. 1) The sought-for potential energy of the
interaction between the balls and the force acting on each ball
can be presented as

W � 1

2
�q21s11 � 2s12q1q2 � q22s22� ;

Fl � ÿ qW
ql

:
�1�

Here s11, s12, s22 are the potential coefficients. It is simpler to
find capacitive coefficients instead of the potential ones.
Therefore, we turn to the capacitive coefficients in Eqn (1)
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Figure 1.Defining capacitive coefficients of two conducting balls.



by the relationships

s11 � c22

c11c22 ÿ c212
;

s22 � s11
c11
c22

;

s12 � ÿ c12

c11c22 ÿ c212
: �2�

Using the method of electrical images, we briefly outline
the procedure of deriving expressions for the capacitive
coefficients. By the definition of the coefficients the charges
of the balls can be written as

q1 � c11j1 � c21j2 ;

q2 � c12j1 � c22j2 :

Here c11 stands for the charge of the first ball, while c12 is the
same of the second ball, providing that the potential of the
first ball is equal to unity and the potential of the second ball is
sustained at a zero value. Mentally excluding for the time
being the charge q1 from the consideration, we place a charge
q � 4pe0R1 at the center of the first ball. Then the potential of
the first ball is equal to unity, but an image arises at the second
ball, i.e. the charge q 0. It can be shown that the image is
located at the distance R2

2=l from the center of the second ball
and if its value is equal to q 0 � ÿ4pe0R1R2=l, the potential of
the second ball remains zero. However, the image q 0 is an
origin for an image q 00 at the first ball. Fitting the value of q 00,
we canmake the potential of the first ball to be equal to unity.
Thus, it is seen that there arises an infinite series of image
charges at each ball. Fitting their values we can make the
potentials of the first and second balls equal to unity and zero,
respectively. The total charges of each ball will be calculated
as

c11 � 4pe0R1 �
X1
n�1

q�2n� ;

c12 �
X1
n�1

q�2nÿ1� : �3�

The coefficient c22 can easily be obtained from the expression
for c11 due to the symmetry of the problem.

3. Interaction of a point charge
and charged conducting ball

The simplest limiting case is the interaction between a charged
conducting ball of radius R and a point charge q2. In this case
only a single image charge arises at the ball, therefore the
solution to the problem can be found analytically in the
explicit form [3, 7]:

W � kq1q2
l
ÿ kq22R

3

2l2�l2 ÿ R2� ;

Fl � kq1q2
l2
ÿ kq22R

3�2l2 ÿ R2�
l3�l2 ÿ R2�2 ; �4�

where k � 1=�4pe0�. We may write these expressions in a
dimensionless form, choosing R as the unit of length,
kq21=�2R� as the energy unit, and kq21=�2R2� as the force unit.

Then we arrive at

W � a
�
2

x
ÿ a
x2�x2 ÿ 1�

�
;

Fx � 2a
�
1

x2
ÿ a�2x2 ÿ 1�
x3�x2 ÿ 1�2

�
; �5�

where x � l=R, and a � q2=q1. The most interesting effect of
this interaction is that the sign of the force changes at a > 0,
i.e. when the charges are like: the repulsion between them can
change to attraction. This occurs at a distance x0 satisfying
the equation

a � x0�x20 ÿ 1�2
2x20 ÿ 1

: �6�

Figure 2 plots the line x0�a� at which the force is zero. The
region below the line corresponds to attraction of the ball and
the point charge, while the region above the line corresponds
to repulsion. The attraction is seen to take place when the
point charge is rather large or when the distances between the
charge and the ball are relatively small. It is easily verified that
the potential energy peaks on the equilibrium line so that,
according to the Earnshaw theorem, the equilibrium is not
stable.

4. Interaction of conducting balls
with arbitrary charges

The calculations of capacitive coefficients using (3), which
can be found, for example, in Ref. [1], yield the following
expressions:

c11� 4pe0R1g sinhb
X1
n�1

n
g sinh�nb� � sinh

��nÿ 1�b�oÿ1;
c12 � ÿ4pe0R1g

sinh b
�1� g�x

X1
n�1

�
sinh �nb��ÿ1 ;

c22 � 4pe0R1g sinh b
X1
n�1

n
sinh �nb� � g sinh

��nÿ 1�b�oÿ1 :
�7�

Here g � R2=R1, the unit length is chosen to be R1 � R2 so
that the dimensionless distance x between the centers is equal
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Figure 2. Line of zero force for the interaction between a point charge and

likely charged ball. The region below the line corresponds to attraction,

while the region above the line corresponds to repulsion.
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to x � l=�R1 � R2�. The parameter b is related to this distance
by the expression

cosh b � x2�1� g�2 ÿ �1� g2�
2g

� y : �8�

We use kjq1q2j=�R1 � R2� as a measurement unit of energy.
Then, the dimensionless energy of the interaction between the
balls is

W � 1� g
2a

a2c11 ÿ 2ac12 � c22

c11c22 ÿ c212
: �9�

Here, the dimensionless coefficients c11, c12, and c22 are
expressed using (7) without the multiplier 4pe0R1.

The expression for the force is obtained by differentiation
of (9) with respect to the distance x between the centers of the
balls. In units of kjq1q2j=�R1 � R2�2 it is written as

Fx � ÿ qW
qx
� ÿ x�1� g�3

2ag sinhb
f�cik; c0ik� ; i; k � 1; 2 : �10�

Here f denotes the derivative of the second fraction in (9) with
respect to b. The derivatives c0ik of capacitive coefficients
involved in f with respect to b can easily be found; we present
neither these nor f because of their cumbersome form.

As mentioned above, an analytical solution to the
problem of the interaction between two balls can hardly be
obtained in the general case, hence we should use numerical
calculations. For this purpose we express all the terms of all
series via the variable z � exp�ÿb�. Then, to program and
compute the coefficient c11, we can conveniently write it in the
form

c11 � 2g
�������������
y2 ÿ 1

p
�
X1
n�1

zn

�1ÿ z2n���1� gy� ÿ g
�������������
y2 ÿ 1

p
�1� z2n�=�1ÿ z2n�� :

Other coefficients are written similarly. The definition of y is
given by (8). As n increases, z n and z 2n decrease, when the
value of z n becomes zero to the accuracy of computations, the
calculation of the sum is complete.

Let us consider more carefully two cases of the interaction
between charged conducting balls of different sizes, which are
widely met in practice and theory: (a) the potentials of the
balls are equal with respect to infinity, and (b) the charges of
the balls are related as the squares of their radii.

(a) In this case q2=q1 � R2=R1, i.e. a � g. Such situation
arises when before approaching each other the balls were
charged by the same voltage source or when their potentials
became equal due to the corona current. At a � g 6� 1, the
force at small distances between the balls is attractive, and
grows indefinitely as the balls approach each other. When
the distance between the balls rises the force changes sign,
becomes repulsive, reaches a maximum, and then decreases
tending asymptotically to Coulomb's law as the balls
become farther apart. The typical dependence of the force
on the dimensionless distance between the centers of the
balls [in the units �R1 � R2�] is depicted in Fig. 3 (curve 3)
for the case a � g � 4; 3. Curve 4 corresponds to the
interaction between a point charge and the ball at a � 1,
and curve 1 to Coulomb's law. The coordinates of zero
force and the maximum of force depend on the value of a

(or g) and vary over the ranges 14 x0 4 1:08 and
x0 < xm 4 1:27, respectively.

From the physical standpoint this result can be explained
as follows. The point charge is attracted to the uncharged
conducting ball due to the fact that the induced charges of the
same sign as the point one are located at the ball farther from
the point charge, while unlike charges reside closer to it. If we
place a small charge of the same sign as the point one on the
ball, the attraction effect can remain, otherwise we can bring
the point charge closer to the ball. The situation for two
conducting balls of different radii is similar.

(b) Let the charges of the balls be related as the squares of
their radii, i.e. a � g2. This can occur in practice, when the
balls are charged inductively in an external electric field. In
this case the maximal charge at the ball of radius R is known
to be equal to

q � caE0R
2 ;

where ca is a constant depending on the particular mechanism
of charging, and E0 is the strength of the external field. It
surprisingly turns out that the force behaves invariantly,
being repulsive for all distances between the balls. At any
ratio g, the curve of the distance dependence of the force lies in
the region between the curve 1 and the curve 2 corresponding
to the identical balls with g � a � 1 (see Fig. 3).

5. Interaction between charged conducting balls
of the same size

It is just this interaction which is most often dealt with in
applied and training problems, therefore we shall consider it
in greater detail.

Let there be two identical conducting balls of radius R,
with charge q, the distance between their centers being l. Then
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Figure 3. Typical dependences of the force of interaction between two

likely charged balls on the distance between the balls at various ratios of

their radii and charges: 1 Ð Coulomb approximation; 2 Ð force of

interaction between two identical balls; 3 Ð that for two balls with equal

potentials; 4Ð force of interaction between a point charge and a ball with

the same charge. The force is normalized with respect to themaximumFKm

calculated in the Coulomb approximation.
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according to Ref. [1] we have

c11 � c22 � 4pe0R sinhb
X1
n�1

n
sinh

��2nÿ 1�b�oÿ1 ;
c12 � ÿ4pe0R sinhb

X1
n�1

�
sinh�2nb��ÿ1 ;

where the parameter b is determined by the relation
coshb � l=�2R� � x. Let us choose the ball diameter 2R as a
unit of length, and Wmax � kq2=�2R� as a unit of energy.
Then, the expression for the dimensionless energy is written as

W � 2

sinhb
P1

n�1�ÿ1�Kn=sinh�nb�
; Kn � n� 1 : �11�

As one would expect in the case of identical balls with charges
equal in magnitude, the interaction problem is self-similar.

The potential energy is found within an additional
constant, hence we may scale the obtained expression so
that the energy of interaction between the balls will tend to
zero as x!1. We obtain sinhb � exp b at b4 1 and the
denominator of expression (11) can be written as

z1 � 1� exp�ÿb� :
Thus, at b4 1 we have z1 � 1, hence the energy of the
interaction between the balls, scaled in the indicated way, is
equal to

W � 2

�
1

sinhb
P1

n�1�ÿ1�Kn=sinh�nb�
ÿ 1

�
: �12�

Of special interest is obviously the limiting value of the
energy at x! 1 �b! 0�, i.e. when the balls are in contact,
since the approximation of ball charges by point ones located
at the centers of the balls gives rise to most dramatic changes
of the results in this case. Expanding the denominator by its
Taylor series expansion with respect to b, we obtain an
alternating harmonic series, whose sum is known be equal to
ln 2. Therefore, the maximum of the energy of interaction
between the balls is

W � 2

�
1

ln 2
ÿ 1

�
� 0:885 :

Due to the self-similar properties of the problem, the result
obtained is universal and means that the approximation of
identical ball charges by point charges located at the centers
of the balls yields a correction for the interaction energy less
than � 12%. Figure 4 plots the dependence of the actual
interaction energy rationalized with respect to the Coulomb
energy on the dimensionless distance between the centers of
the balls (curve 1), calculated numerically from expression
(12) multiplied by x.

Now let us find the force acting on each ball.
We have

Fx � ÿ qW
qx
� qb

qx
qc11=qb� qc12=qb

�c11 � c12�2
:

Omitting all derivations, we present here only the final
expression written in the force units Fm � kq2=�4R2�:

Fx � 2

P1
n�1�ÿ1�Kn

�
cothbÿ n coth�nb��=sinh�nb��

sinhb
P1

n�1�ÿ1�Kn=sinh�nb�
�2 : �13�

To find the ratio between the actual force and the Coulomb
one acting between the point charges located at the centers of
the balls, we multiply expression (13) by x2. The result was
computed and is depicted in Fig. 5 (curve 1). As the distance
between the balls decreases to x � 1:001, themagnitude of the
actual force acting on each ball tends to � 0:6157 of the
Coulomb force. The first three significant digits are retained
when the distance decreases to x � 1:00001, but to calculate
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Figure 4. Ratio of the actual energy of interaction between identically

charged balls to that calculated in the Coulomb approximation versus the

distance between the centers of the balls: 1 Ð like charges; 2 Ð opposite

charges.

1.4 1.8 2.6 3.0

2

0.6

0.8

1.0

1.2

1.4

1.6

1.8

x

1

jFj=F¬

2.2

Figure 5. Ratio of the actual force of interaction between identically
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the sum accurately, we should take into account terms up to
10ÿ60. The accuracy of the calculations is also confirmed by
the fact that the combined numerical calculations of the force
and energy yield a ratio for energies equal to � 0:8857,
coinciding up to the first three significant digits with the
analytical estimate.

Thus, the approximation of contacted charged balls by
point charges located at their centers results in a nearly 39%
error for the calculated force acting on each ball whatever
their radii and the magnitude of their charges may be. But the
error of the Coulomb approximation decreases rapidly as the
distance between the balls rises and becomes less than 10% at
a distance of double the ball diameter.

Let us consider the interaction of two unlikely charged
identical conducting balls. In this case the dimensionless
energy of the interaction between the balls is given by
Eqn (11), where Kn � 0, so that all the terms of the series
have the same sign. At large values of b, the denominator of
expression for W anew tends to unity, hence the dimension-
less potential energy takes on the form (12), where Kn � 0.
Since at small b the denominator constitutes the sum of the
harmonic series, which is divergent, then at b5 1 �x! 1� we
have W � ÿ2, i.e. the energy of the short-range interaction
between two unlikely charged balls is twice that of two
equivalent point charges located at the centers of the balls.

Differentiating expression (12) with respect to distance x,
we obtain an expression for the force acting on each ball from
the side of the other in the form (13), where Kn � 0. Figures 4
and 5 plot the data of numerical calculations of the energy and
force of interaction between the balls, curves 2 corresponding
to the ratios of actual forces and energies to that resulted from
the Coulomb approximation. It is seen that as the distance
between the balls decreases, the attractive force acting on each
ball tends to infinity.

6. Interaction between a ball
and a conducting plane

In this case we have for the capacitive coefficients [1]:

c11 � ÿc12 � 4pe0R sinhb
X1
n�1

1

sinh�nb� ; c22 !1 :

Here the parameter b is related to the distance d between the
center of the ball and the plane by the expression
coshb � d=R � x. Then, we find from (1) the relationship
for the interaction energy W � q2=�2c11�, where q is the
charge of the ball. The interaction force is given by

Fx � ÿ qW
qd
� q2

2Rc211 sinhb
qc11
qb

:

Differentiating this expression, one can find that the resulting
expression for the force coincides with that for two unlikely
charged identical balls [formula (13) at Kn � 0].

Thus, the conducting plane induces an electrical image of
the charged ball so that the interaction force between the
plane and the ball is equal to that between two unlikely
charged identical balls, whose centers are separated by a
distance 2d.

7. Asymptotic relations for forces

In order to arrive at asymptotic expressions for forces at small
distances between the balls, we make use of the Euler ±

Maclaurin formula [8]. There we consider only the first three
terms giving the main contribution. We haveXm

k�0
f�k� �

�m
0

f�t� dt� 1

2

�
f�0� � f�m�� : �14�

Here f�t� is the same function for the series and the integral.
Calculating the numerator in (13) at Kn � 0, k � nÿ 1,
m � 1 by (14), we express it as I1:

I1 � ÿ 1

b2

�
�b cothbÿ 1� ln

�
tanh

b
2

�
� b
sinhb

�
:

At b5 1 �x � coshb� we get

I1 � ÿ 1

2�xÿ 1� :

Similar calculations of the denominator in (13) at Kn � 0 yield

I2 � ln
2

b
� 1

2
� 1

2

�
ln

2

xÿ 1
� 1

�
:

The final asymptotic expression for the force acting on closely
spaced unlikely charged balls takes on the form

Fx � ÿ 4

�xÿ 1�� ln�2=�xÿ 1�� � 1
	2 : �15�

Numerical calculations using this formula demonstrate that
the interaction force tends to infinity as x! 1. At x � 1:001,
we have Fx � ÿ54:1 in the units of force calculated in the
Coulomb approximation. Numerical calculation of the force
ratio, taking into account 1985 terms in the series, yields
Fx � ÿ52:0. The difference between the data is close to 4%; as
x tends to unity this difference still further decreases.

In a similar manner we find the asymptote of the force
acting on closely spaced, likely charged identical balls. To do
it, we put Kn � n� 1 in (13) and apply the Euler ±Maclaurin
formula (14) to the numerator in (13) twice: for odd and even
series. Omitting derivations, we present the final expression
for the numerator in (13):

I3 � 1

2b2

�
�b cothbÿ 1� ln

�
tanhb

tanh�b=2�
�

ÿ
�

b
sinhb

ÿ 2b
sinh 2b

��
ÿ 1

2

cothbÿ 2 coth 2b
sinh 2b

:

At b5 1 we have

I3 � ln 2

6
� 0:116

to the accuracy of terms quadratic in b. Numerical calcula-
tions taking into account 1985 terms of the corresponding
series at x � 1:001 yield I3 � 0:148.

Since at Kn � n� 1 and b5 1 the series entering the
denominator of expression (13) for force is again alternating
and harmonic, the denominator tends asymptotically to ln2 2,
while the ratio between the actual and Coulomb forces tends
to

Fx � 1

3 ln 2
� 0:481 :
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As noted above, the numerical calculation yields � 0:615 for
the corresponding asymptotic value. Hence, the difference is,
in this instance, about 20%.

8. Conclusions

Our study suggests that though the attraction between likely
charged conducting bodies is virtually not discussed in
scientific and methodical literature, probably believed to be
rather exotic, this effect is as common as repulsion. In other
words, we can always indicate scenarios at which two
arbitrary likely charged balls attract. The discussed effect
has a deep analogy in microphysics, namely, the van der
Waals attraction of neutral spherically symmetric particles
[10].

Within the framework of the considered electrostatic
interaction between macroscopic balls the only exception is
the case when the charges of the balls are related as the
squares of their radii: such balls always repel each other. But
the repulsion may switch to attraction in this case too if the
van der Waals attraction appears to be competitive with the
Coulomb repulsion.

Of special interest is the interaction of likely charged
identical balls which also always repel. At small distances
between the balls the Coulomb approximation, which is often
used to calculate the force acting on the balls, yields a 39%
error, whatever the sizes of the balls and magnitude of their
charges may be. The Coulomb approximation employed to
calculate the interaction energy between the balls yields an
error of up to 12%.

In the case of unlikely charged conducting balls the
interaction force rises to infinity as the distance between the
balls decreases, while the interaction energy remains finite.
For contacting balls the force is twice that calculated by the
Coulomb approximation. The result obtained is also inde-
pendent of the sizes of the balls and their charges, i.e. it is self-
similar.

A conducting plane induces an electrical mirror image of
the charged ball, resulting in an interaction between the image
and the actual ball.

Using the Euler ±Maclaurin formula for sums, we have
found analytically the asymptotic relationships for the force
acting between the identical balls at small distances, which are
in good agreement with precise numerical computations.
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