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Abstract. Of the two definitions of ‘information’ given by
Shannon and employed in the communication theory, one is
identical to that of Boltzmann’s entropy and gives in fact a
measure of statistical uncertainty. The other involves the dif-
ference of unconditional and conditional entropies and, if prop-
erly specified, allows the introduction of a measure of
information for an open system depending on the values of the
system’s control parameters. Two classes of systems are identi-
fied. For those in the first class, an equilibrium state is possible
and the law of conversation of information and entropy holds.
When at equilibrium, such systems have zero information and
maximum entropy. In self-organization processes, information
increases away from the equilibrium state. For the systems of
the other class, the equilibrium state is impossible. For these, the
so-called ‘chaoticity norm’ is introduced and also two kinds of
self-organization processes are considered and the concept of
information is appropriately defined. Common information
definitions are applied to classical and quantum physical sys-
tems as well as to medical and biological systems.

1. Introduction

In 1997, the publishers of ‘Physics—Uspekhi (Advances in
Physical Sciences)’ released the first edition of the book
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written by Boris Borisovich Kadomtsev and entitled
Dynamics and Information [1]. The value of this book consists
primarily in the insight it offers into a number of fundamental
concepts and issues of classical and quantum physics. The
fundamental conceptions include the notion of information
whose importance is emphasized by the title of the book
itself. The concepts of information, information coupling,
information-wise open systems, information exchange,
information content of the wave function are discussed
throughout the book. It is important that the book by B B
Kadomtsev stimulates the reader to look for alternative
solutions to the problems under study whenever the reader
to some extent or other disagrees with the author. Sadly, it
is no longer possible to discuss with B B Kadomtsev those
questions that arise after reading his book. Never again
shall we hear and appreciate the pertinence of his elegant
physical arguments in defence of his reasoning.

In this paper, for the first time, we summarize the
known results of information theory that comprises an
important chapter of the general theory of communication,
and give a review of the recent papers concerned with the
possibility of defining the information of both passive and
active open systems depending on the values of control
parameters.

The foundations of the modern theory of communication
were laid by the classical works of Claude Shannon [2, 3]. He
gives two definitions of information. The first actually
coincides with Boltzmann’s definition of entropy. This
information, like Boltzmann’s entropy, is the measure of
uncertainty at the selected level of statistical description of
the system. Because of this, we call it S-information.

Such a definition of information, being widely used in
literature, is nevertheless not sufficient for the purposes of
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description of open systems. More adequate in this case is
another definition of information, also suggested by C
Shannon and running essentially as follows.

Assume there is a distribution function f(X,Y) of the
duplex set of variables of the system in question. This permits
a definition of information about the object X with respect to
Y, and vice versa.

In both cases, the information is determined by the
difference between unconditional and conditional entropies,
and is thus associated with the corresponding change in the
uncertainty concerning the state of the selected system.

A N Kolmogorov gave full credit to the importance of
Shannon’s works for the development of the theory of
information in his preface to the Russian edition of collected
Papers on the Theory of Information and Cybernetics [3] . He
wrote:

“The importance of Shannon’s works for pure mathe-
matics was not fully appreciated from the outset. I recall that
at the international congress of mathematicians in Amster-
dam (in 1951) my American colleagues, specialists in the
theory of information, regarded my interest in Shannon’s
work as somewhat exaggerated, since this after all was more
engineering than mathematics. Today such opinions hardly
need to be refuted.

Admittedly, in all more or less complicated cases Shannon
left the rigorous mathematical ‘proof’ of his ideas to his
successors. His mathematical intuition, however, is remark-
ably precise.”

The works of C Shannon stimulated the appearance of
publications that laid a solid mathematical foundation of the
theory of information. We shall only refer to the first papers
of this kind published on the pages of ‘Soviet Mathematical
Surveys’ and ‘Doklady Akademii Nauk SSSR’ [4, 5]. The
former contains proofs of the main theorems of the theory of
information for the discrete case, and the latter gives a most
general definition of entropy and information for continuous
distributions.

In the stream of books on the theory of information that
followed, a special place belongs to the book by R L Stratono-
vich [6]. Along with the traditional presentation of the main
ideas of Shannon’s information theory, this book also
contains the theory of the value of information developed by
Stratonovich. One is also impressed by the deep analogy of
the mathematical methods of the theory of information and
statistical thermodynamics.

This paper is a review of works concerned with further
development of the theory of information, and in particular
its applications to the theory of open systems [7—9].

Open systems may exchange energy, matter, and, which is
also very important, information with their environment.
Here we shall only consider macroscopic open systems.
They may consist of many elements of diverse nature.

Various structures may arise spontaneously in open
systems. Dissipation plays a constructive role in their
formation. To emphasize this circumstance, I Prigogine has
coined a very apt and comprehensive term ‘dissipative
structures’ [10—12], which may be divided into three classes:
temporal, spatial, and space—time dissipative structures.
Autowaves are one example of the latter [13].

The complexity of macroscopic systems offers ample
opportunities for the manifestation of cooperative phenom-
ena. To emphasize the role of collective interactions in the
formation of dissipative structures, which result from non-
equilibrium phase transitions forming the self-organization

processes, H Haken introduced the term ‘synergetics’, which
translates as ‘joint, cooperative effort’ [14—17].

In many cases macroscopic systems may be regarded as
continuous media. The transition to a continuous medium
completely overturns the conception of the system as
consisting of separate, macroscopic or microscopic but
‘small’ elements. To avoid the associated fundamental
difficulties, it is necessary to define the physically infinitesi-
mal scales that determine, in particular, the size of a pointin a
‘continuous’ medium [7, 8].

For defining the information of open systems, the general
Shannon formula must be transformed so as to reveal the
dependence of information on the control parameters. To
ensure that information is always positive, one must intro-
duce the additional condition of constancy of the mean
energy (effective energy in the general case) when finding the
difference of entropies that defines information. We select a
class of systems for which the constancy of the mean energy in
the course of evolution is an intrinsic property (like in the case
of a Boltzmann gas). For such systems the expression for
information coincides with the Lyapunov functional, which is
also defined as the difference between unconditional entropy
(for example, the entropy of the equilibrium state) and
conditional entropy (for example, that for the non-equili-
brium states in the course of time evolution). Such systems
obey the law of conservation of information and entropy.

For systems of another class, the mean energy changes in
the processes of time evolution or in the course of evolution of
steady states in the space of control parameters. In such a case
there are two possibilities for defining the information. One
(which is currently used extensively for physical and biologi-
cal systems) is based on the criterion of the relative degree of
order (the S-theorem); the other is used for Brownian-type
systems, when the system under consideration occurs in a
fluctuating medium with a given noise intensity. Information
for Brownian systems can also be defined as a Lyapunov
functional, which is this time determined by the difference in
free energies rather than the difference in entropies [7—9].

General definitions of information of open systems are
accommodated for classical and quantum system, as well as
for medical and biological studies based on the statistical
analysis of cardiograms.

This paper is the first review of the results in the theory of
information of open systems. Some topical reviews that have
appeared so far (see, for example, Ref. [27]), fail to reflect the
specifics of the concept of information of open systems. The
present paper is intended to fill this gap.

2. Entropy and information

2.1 S-information

Once again, there are two statistical definitions of the concept
of ‘information’. One is an extension of Boltzmann’s
definition of entropy to the case of arbitrary systems, when
the model of mechanical motion of the components of an
open system cannot be used.

Let f(X) be a certain dimensionless distribution function
of values of a dimensionless random quantity X. The latter
may also be a set of variables comprising a vector. The
information and entropy are then given by

1X] = S[X] = — J A Inf(X) X, J AXdY=1. (2.1)
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The corresponding definition for the case of a discrete
variable then takes the form
][n]:S[n]:_anlnfnv anzl- (2.2)
n n
Some authors (see, for example, Refs [1, 18]) adduce
arguments in favor of existence of the law of conservation of

the sum of entropy and information. In our notation this law
is expressed as

I[X] + S[X] = const. (2.3)
Equation (2.3), however, does not follow from our definitions
of S-information. We shall see that under certain conditions
the sum of entropy and information is indeed conserved. This
equality, however, may be derived only for a more general
definition of Shannon’s entropy.

2.2 Shannon’s entropy

For the definition of information it is more natural to use a
differential characteristic — the difference between uncondi-
tional entropy (Boltzmann’s entropy) and conditional
entropy [2—-9]:

11X, Y] = S[X] - S[X|Y). (2.4)
Here S[X] is the conventional (unconditional) Boltzmann—
Shannon entropy

S[X] = — J fX) Inf(X) dX, (2.5)

and S[X] Y] is the conditional entropy. The latter is defined via
the relevant conditional distribution function f[X|Y]
(f(X,Y)=/[XY]f(Y)) in the following manner:

S[X|Y] = — J F(X, Y)Inf(X|Y)dXdY. (2.6)

Expression (2.4) may be rewritten in an explicitly symmetric
form
flX,Y)
11X, Y] = I[Y, X] :Jln‘ifX, Y)dXdY >0. (2.7
X, Y] = 1Y, X)= [ In 5 X ) 27)

The equality sign corresponds to the case when the quantities
X and Y are statistically independent. Because of this, the
function I[X, Y] may be referred to as ‘correlation informa-
tion’. This function characterizes the information about the
state with the duplex set of variables X, Y, as determined by
the statistical correlation of the latter.

2.3 Information of open systems

Now let us render concrete Shannon’s general expression for
the correlation information with a view to exposing the
dependence on the control parameters. The simplest
approach to this problem consists in the following [9].

We break the symmetry of Shannon’s formula by
assuming that the distribution function f(Y) of the set of
variables Y is completely characterized by the corresponding
set of the first moments:

fY)=8(Y—a), (¥)=a. (2.8)

We accept the set of parameters or at least one of them as the
control parameter(s). Substituting the last expression into
Shannon’s formula, we carry out integration with respect to
Y. As a result, we get the expression for information about the
set of variables X at a given value of the control parameter a:

Im4:ﬂm—ﬂMdzﬂm+ﬁuwmﬂnmwé
(2.9)

Observe that this definition of information cannot be used
in all cases. Indeed, information by definition is a positive
quantity. Our last expression, however, may generally assume
negative values. To make it always positive — that is, to
ensure that /[X|a] > 0 — we must introduce an additional
condition. The essence of this additional condition is best
explained with the aid of a concrete example of an open
system. For such example we shall use a rarefied gas of
structureless particles — a Boltzmann gas.

3. Boltzmann’s H-theorem

3.1 Lyapunov functional Ag

The term ‘H-theorem’ (where H stands for ‘heat’) was first
proposed by the British physicist Barberry in 1894, and later
approved by Boltzmann.

Many textbooks on statistical physics assert that Boltz-
mann’s H-theorem only holds for closed systems. This
statement, however, needs a certain correction which is
important for the formulation of the criterion of self-
organization — the S-theorem.

Boltzmann’s H-theorem holds that the entropy of a closed
system increases in the course of time evolution towards
equilibrium, and remains constant in the state of equilibrium:

dS>0

FT (3.1)

It is important that it is not the energy of the system that
remains constant in the course of evolution towards the state
of equilibrium, as would be the case in mechanics, but only its
mean value

(3.2)

Under this condition, fluctuations are possible. Therefore, the
description of evolution of the system according to the
Boltzmann equation (given that the system is externally
closed) is not complete. This is natural, since Boltzmann’s
equation is based on the model of a continuous medium and is
therefore approximate in the sense that information about the
motion of particles within the points of the continuous
medium is lost.

Let us estimate the number of degrees of freedom that are
employed and disregarded upon transition from the system of
particles to the approximation of a continuous medium. For
Boltzmann’s gas of N structureless atoms, the total number of
degrees of freedom is 6/N. Let Ny, be the average number of
particles within a physically infinitesimal volume — the
‘point’ of the continuous medium. The number of degrees of
freedom used in the description according to the Boltzmann
equation can be estimated as N/Nph. Then the number of
‘unclaimed’ degrees of freedom (the number of degrees of
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freedom of the ‘thermostat’ or buffer) is 6N(Npn — 1)/ Nph,
and obviously constitutes the lion’s share of the total number
of degrees of freedom of a Boltzmann gas. This fact
characterizes the internal nonclosure associated with the use
of the Boltzmann equation.

Given the condition (E) = const, Boltzmann’s H-theorem
may be reformulated in terms of the Lyapunov functional
which is defined by the difference in the entropies of the
equilibrium and nonequilibrium states of the gas [7—9]:

e e LS o drdp
As = 5 =500 =k | (1 Jorsp) >f( PO Gy 2%
(3.3)
%:%(so —5() <0. (3.4)

Inequality (3.3) was derived using the condition (E) = const,
and (3.4) using the H-theorem in the form of Eqn (3.1).

3.2 Information and the Lyapunov functional 4. Law of
conservation of the sum of information and entropy

Now we return to expression (2.9). Let the control parameter
a assume only positive values, and the unconditional entropy
S[X] correspond to its zero value:

a=20, SX =SXa=0]. (3.5)
Under these conditions, the information of the equilibrium

state is

I[X|la=0]=0 (3.6)
and the unconditional entropy S[X] coincides with the
entropy of the equilibrium state.

We shall use the general definition (2.9) for the informa-
tion of the Boltzmann gas. Then we may use the current time ¢
for the control parameter. The values of the control
parameter then belong to the interval 0 < 7 < oo, the value
of t = oo corresponding to the state of equilibrium. The
information of the Boltzmann gas is then expressed as

I[V7]), l] = AS = SO - S(Z) =

_ GRS drdp
_kBJ (1 So(r,p) )f( P01) (2nh)? >0

According to arguments developed above, the positivity of
information is ensured by the condition of constant mean
energy (E) = const. It is a consequence of the structure of the
Boltzmann collision integral, and is therefore a natural (not
an additional) condition.

We see that the sum of information and entropy of a
Boltzmann gas in the course of time evolution to the state of
equilibrium remains constant:

(3.7)

I[r, plt] + S(t) = Sp = const. (3.8)

The constant here is determined by the entropy of the
equilibrium state. The information of the equilibrium state is

I[r, plt = o] = As(t = 0) = 0. (3.9)

So, for a Boltzmann gas the positivity of information is a
natural property of the system. The fulfillment of the inequal-

ity I[X]a] =0 depends, as we shall see, on a particular
additional condition.

4. S-theorem and the law of conservation
of the sum of information and entropy

We know that, among all thermodynamic functions, it is only
the entropy S that features the combination of properties
which permit using it as the measure of uncertainty
(chaoticity) in the statistical description of processes in
macroscopic systems [7, 8, 19]. To formulate the criterion
known as the ‘S-theorem’, the entropy of the more chaotic
state must be renormalized in such a way as to make sure that
the comparison of states of the open system in the course of
evolution is carried out at the same values of the mean
effective energy.

As a relatively simple example, let us consider the process
of evolution of the steady states of a van der Pol oscillator as
the feedback parameter a is varied. We shall compare the
relative degrees of order using the criterion of the ‘S-theorem’,
which was first formulated for concrete examples in Refs
[20, 21].

We select two states corresponding to the following values
of the feedback parameter: @ = 0 (equilibrium state of the
oscillatory circuit), and ¢ = a; (a steady but nonequilibrium
state of generation).

By X we denote the selected characteristic of the
stationary state. In the case of an oscillator, the energy of
oscillations E plays the role of the quantity X. We also use
the appropriate notation for the distribution functions fj,
fi1, and the corresponding entropies Sy, S;. Renormaliza-
tion to the selected value of the mean energy for this system
reduces to replacing the temperature of the equilibrium
state T by its effective value T, found by solving the
equation

kgT = JEfO(E,a =0)dE = JEfl(E,a =a))dE, (4.1)

which serves as an additional condition ensuring the
positivity of information. The solution of this equation
satisfies the inequality

T(a)>T, (4.2)
where the equality sign corresponds to the case a = ay = 0.

Hence it follows that for equalizing the values of the mean
energy the state with @ = 0 must be ‘heated’.

By Sy we denote the corresponding renormalized value of
entropy. Since the two states under consideration now have
the same mean energy, the difference of entropies Sy, S| can
serve as a measure of the relative degree of order of the
selected states. Using the condition

(E) = const, (4.3)
the difference of entropies may be expressed as
~ E
Jo(E)

So, the calculation of the relative degree of order of the
two selected states is based on two formulae. Formula (4.2)
justifies the selection of the equilibrium state « = 0 as the
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more chaotic state, whereas Eqn (4.4) gives a quantitative
measure of their relative order.
Using the general expression (2.9), we can define the

information I(E) of the steady states of the oscillator for all
values of the parameter of order as

IE)=S,— 8 = J <1n L) >,f1(E) dE>0. (4.5)

fo(E)

Hence it follows that when the feedback parameter is zero, the
state of the system coincides with the equilibrium state, and
the information is equal to zero.

In the same way, the S-theorem may be used for finding
the information for a sequence of steady states in transition
from the laminar to turbulent flow regime. The control
parameter is the Reynolds number. Computation reveals
that information grows with increasing Reynolds number.
This is another proof that the steady turbulent flow is more
ordered compared with the corresponding laminar flow
[8, 21].

5. Van der Pol oscillator.
S-information and Shannon information

We have used the example of a van der Pol oscillator to
demonstrate how Shannon’s information varies in the course
of evolution of stationary states as the feedback parameter a,
is varied slowly enough. The relative degree of order of these
states was evaluated on the basis of the S-theorem criterion
[7, 8].

Let us now use the example of the van der Pol oscillator
for showing the fundamental difference between the two
definitions of information given at the beginning of this
paper: S-information and Shannon’s information.

Running ahead, we turn to the Fokker —Planck equation
(see below Section 11) for the distribution function of the
values of the energy of oscillations. Its stationary solution
holds for all values of the feedback parameter. We once again
select two characteristic steady states:

(1) ar = 0. In this case, the distribution coincides with the
equilibrium Boltzmann distribution.

(2) ar > y. In this case we have the Gaussian distribution

1 (E—a/b)’ 2D
275(5E>2exp{ 2OE)? } OE) =7

fi= (5.1)

For these selected states we can get the expressions for the
values of S-information — the entropy. We see that both
entropy and S-information increase as we pass from the
equilibrium state to the regime of well-developed generation:

So< S, <. (5.2)

The first inequality may be interpreted as the decrease of the
degree of order as the generation develops. Intuitively,
however, it is clear that the degree of order must increase
upon transition to the regime of generation.

At the same time, the second inequality indicates that
upon transition to the regime of generation the S-information
increases. These results violate the law of conservation of
entropy and information. This means that the calculations of
entropy and S-information cannot be used for finding the
relative degree of order and information content of the
selected states. What is cause of such a contradiction?

The reason is that the mean energy of oscillations
increases as generation sets in:

(E)o < (E), - (53)
At the same time, the S-theorem criterion stipulates that the
entropies should be compared at the same values of the mean
energy. As we know, this requires carrying out an appropriate
renormalization.

The arguments developed above lead to the conclusion
that the physically more meaningful results concerning the
change of information of open systems as the control
parameters are varied can only be obtained using Shannon’s
definition of information. This is natural, since it is only then
that the information is represented as a difference character-
istic. Calculations based on S-information, as we have seen
for a concrete example, do not lead to physically sensible
results in the analysis of the relative degree of order of the
open system states.

6. Evaluation of the information and relative
degree of order from experimental data

Practical applications of the S-theorem require knowing the
effective Hamilton function. It is not a major problem to find
it as long as we have a mathematical model of the process. In
many cases, however, an adequate mathematical model of an
open system cannot be constructed even for physical systems.
This task is even more complicated when dealing with
biological, sociological or economical objects. Because of
this, it would be good to be able to express the relative degree
of order of the states of open systems directly from
experimental data. The appropriate procedure is as follows.
(1) Select the control parameters for the system under
consideration. Select two states of the system corresponding
to different values of the control parameter: ay and ay + Aa.
(2) For the selected parameters of the system, obtain
sufficiently long experimental time-domain realizations

)(()(l‘,a())7 X(l,ao—l—Aa). (61)

Enter these data into a computer and construct the relevant
distribution functions

fo(X,a), f(X,a0+ Aa). (6.2)

Both distributions are normalized to unity.
(3) Take one of the states (for example, a) for the state of
physical chaos, and find the effective Hamilton function

Heff = — 1Ilf0(X7 ao) . (6.3)

In this way, the effective Hamilton function is found directly
from the experimental data. The name of ‘the effective
Hamilton function’ is justified by the fact that the distribu-
tion function renormalized to the given mean value (Hyg) has
the form of the canonical Gibbs distribution

Ferr(T) — Hegr(X) } .

JolX) = exp { (6.4)

kT

Here T'is the effective temperature. For the state of physical
chaos, T =1.



380 Yu L Klimontovich

Physics— Uspekhi 42 (4)

The effective free energy as a function of 7 is found from
the condition of normalization of the function fy. The
effective temperature as a function of the control parameter
Aa is determined, as before, from the condition of constancy
of the mean effective energy

JHeff To(X, ap) dXY = JHefff(X, a0 + Aa) dX . (6.5)

If the solution of this equation has the form of Eqn (4.2) (here
T > 1), then the selection of the state of physical chaos is
correct. Calculation of the relative degree of order is again
based on Eqn (4.4).

For the zero level of information we take the state of
physical chaos — the state a = ay. Then the ‘redundant
information’ gained upon transition to the more ordered
state a = ap + Aa (at the same value of the mean effective
energy) is given by

1(x) :§0*S:J<lnw

«/ZO(X: ap) )f(X’ ap+Aa)dX >0.

(6.6)
The equality sign corresponds to Aa = 0.

7. Information of medico-biological
and complex physical objects

From the above discussion we may conclude that two classes
of phenomena in open systems may be distinguished in the
calculations of both entropy and information. The first
includes such systems and processes that admit the state of
thermal equilibrium. In such cases, as we have seen, the
information may be measured with respect to the most
chaotic (equilibrium) state. In the van der Pol oscillator, for
example, an increase of the feedback parameter leads to
the transition from thermal oscillations in electrical circuit
to the regime of developed generation. If the states are
compared at the same value of the mean energy of
oscillations, then, as the generation develops (the system
recedes from the state of equilibrium), the entropy
decreases, and the information increases. This allows the
development of generation to be regarded as a process of
self-organization. Accordingly, we may define the process
of self-organization in such systems as a transition from a
more chaotic to a less chaotic state, or as a transition from
a state with zero information (equilibrium state) to a state
with nonzero information (nonequilibrium state). In the
terminology of I Prigogine, we may say that the process of
generation gives rise to a time-domain dissipative struc-
ture.

A similar increase of information accompanies the
transition from a laminar flow in a pipe to turbulent flow,
as the pressure differential (the Reynolds number)
increases. For the origin of an equilibrium state here we
can also take the equilibrium state of the liquid when the
pressure drop is zero (the zero value of the control
parameter). In such a case hydrodynamic motion is
absent, and there only is the chaotic motion of molecules
of the liquid. This motion is the most chaotic, and hence
the least informative.

The concept of ‘self-organization’ as the transition from
chaotic to a more ordered state is the cornerstone of the
theory of dissipative structures. The first systematic presenta-

tion of the theory of self-organization was given in the well-
known works of I Prigogine and G Nicolis [10—12]. This
theory is based on the ideas and results of I Prigogine
concerned with the thermodynamics of irreversible non-
equilibrium processes.

This traditional definition of self-organization, however,
is not general. As a matter of fact, there is a broad class of
systems (for the most part biological) that do not admit of
states of either total chaos (thermal equilibrium) or complete
order. In the state of total chaos such systems simply will not
function.

More appropriate for such systems is the concept of the
‘norm of chaoticity’, which may be likened to the concept of
‘health’. Then the process of self-organization may be
regarded as the process of self-recuperation.

Let uslook at some studies of response of men and women
to stress [22—24]. The state after stress we agree to call
sickness. For women, the transition to the ‘norm of chaoti-
city’ (self-recuperation), which we agreed to call self-organiza-
tion, is the transition from the more chaotic to the less chaotic
state. By contrast, for men the state after stress (sickness)
corresponds to the more ordered state.

The process of self-organization may be defined as self-
recuperation. For women, the process of self-organization
correlates with the transition from the more chaotic to the
more ordered state, which corresponds to the increase of
information. For men, however, the process of recuperation
(and thus self-organization) develops with the increase of
chaoticity, or decrease of information.

By Iy and I, we denote the amounts of information
normalized to a certain value of the mean effective energy and
obtained, respectively, for women and men from their
electrocardiograms. From experiments described above it
follows that the more chaotic states are the states after the
stress for women, and before the stress for men. Accordingly,
S;ﬂl?r is the renormalized entropy for women after the stress,
and Sy .. is the renormalized entropy for men before the
stress (in the state corresponding to the norm of chaoticity).
In this notation, we have the following definitions of
information:

IW:§(VV) _Stsel/l‘”/gre>07 TM:SV(M)

after before

_sM 5.

after = (71)
These formulae allow using the cardiograms for evaluating
the information increase for women after the stress and the
information decrease for men in the process of recupera-
tion.

Let us summarize the results. In complicated situations
(such as the transition from one turbulent regime to another,
or when dealing with biological systems), it is only possible to
distinguish the processes of degradation or self-organization
using a criterion of the relative degree of order in the states of
open systems. The concept of self-organization as the
formation of structures or as the transition from a less
ordered to a more ordered state is no longer sufficient. More
adequate is the concept of the ‘norm of chaoticity’ that may be
established for biological systems from experimental data
with the aid of the S-theorem criterion. Changed accordingly
is the concept of information, which is defined as the
difference of unconditional and conditional entropies used
for defining the relative degree of order in the states of open
systems.

Let us now turn our attention to some examples of finding
the information of quantum systems.
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8. Information of quantum systems

8.1 Oscillatory form of Heisenberg’s uncertainty principle
It is known that Heisenberg’s principle of uncertainty can
be established from the following obvious inequality [25,

26]:
[[2v+ra
L

2
X dx dx
y+Lg | T =0, J\W (8.1)

where L is a certain length parameter.

Let f(x,p,t) be a quantum distribution function — the
Wigner function. Then the above inequality can be rewritten
in the equivalent form

x> L} dxdp
i >
J <L2 + hz )f(-x,lﬁ t) 2nli = 1

(8.2)

The left-hand side of this inequality may be interpreted as
the mean energy of the harmonic oscillator with eigenfre-
quency

h /N
=— /] .
0= 2 ampz 2" (8:3)
Given this, we come to the inequality
2.2 2
mwyx-  p dxdp _ 1
— flx > = . 4
(" £ Vo) Sogl > 5o (8.4

This implies that the mean energy of a harmonic oscillator in
any nonequilibrium state cannot be less than the correspond-
ing zero energy:

(8.5)

Finally, the above inequalities can be rewritten using the
expressions for the variance of coordinate and momentum as

e (x?)
LY —L+r=L >0, (8.6)
(r?) (r?)
h )
— >0. 8.7
Wy m(x2)w0+m2<x2> (8.7)
Hence follows Heisenberg’s uncertainty relation
2
) ) = 7 (8.8)

In the general case, the parameters L and wy may take on
arbitrary values. It is only for the equality sign that they are
linked with the variances of coordinate and momentum:

- _ 2(x?) = 7 (8.9)
T may 2(p?) ’
or, in an alternative form, one obtains
() 2.2 Pl
= mwy(x~) = L2 2hwo (8.10)

8.2 Distribution function f{x, p) with the sign =
With the equality sign, equation (8.1) has the following
solution

SN SR SR
WP = 2n<x2>ep(2<xz>).

For equation (8.2), the corresponding solution has the form
of Wigner distribution for a harmonic oscillator with the
eigenfrequency wy:

7# . B x2 B [72
fxp) = (xz)(p2>ep< 2(x7) 2<p2>>'

The variances {x?), (p?) are then given by Eqn (8.10).

(8.11)

(8.12)

9. Relative degree of order of the states
with the signs =, >

Let us consider the problem of the relative degree of order of
the states corresponding to the signs =, > in Heisenberg’s
uncertainty relation. By assumption, let the quantum state
corresponding to the sign = be the most chaotic. This
assumption will be justified later. For the states with sign =,
the quantum distribution function fy = (x, p) is given by Eqn
(8.12). The corresponding expression for the entropy is

So[x,p] = — Jﬁ)(x,p)(lnfo(v P)) d;dp
= —Jfo(x)(lnfo J )(Info(p —d;;
= So[x] + Solp]. ©.1)

Under this condition, the mean energy coincides with the zero
energy

mod(e) 0 1, -

(E) = 5 =3 (9.2)

In the case of inequality (8.5), however, the value of the mean
energy is larger.

According to the S-theorem, to assess the relative degrees
of order we have to compare the entropies at the same value of
mean energy. To satisfy this requirement, we must, like in the
classical case, renormalize the distribution function:

Jo(x,p) = fol(x,p). (9.3)
Function fy(x,p) is also the Gibbs distribution with the
renormalized values of the variances (¥?), (p*):

2 2

~ h X P
Jo(x,p) = —F———==¢x (——~——~> =>0. (94
0( p) <)~62><ﬁ2> p 2<X2> 2<p2> ( )
To equalize the mean energy values, we shall ‘warm up’
the initial state — consider the case of nonzero temperature 7*
=2
P — i)

= kBTwo = Flwo coth—— h(uo

2kBT
(9.5)

Let us now consider the quantum distribution function —
the Wigner function f(x, p,t). It may characterize the non-
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equilibrium steady and unsteady states. They correspond to
the greater sign > in Heisenberg’s relation.

Quantum distribution functions f(x,p,?) may take on
negative values, but the corresponding distributions sepa-
rately for coordinate and momentum are always positive:

[0 50 =002 0. [fxp) T = Al > 0.

9.6)

At equilibrium, fy(x,p) = fo(x)fo(p). The corresponding
expression for the entropy has the form of Eqn (9.1).

For the stationary distributions f(x, p), the value of the
temperature to be used for renormalizing the distribution
function is found by solving the equation

22 2
magx”  p o\ dxdp
J( 2 +2m)f°(x’p) 2mh

2.2 2
_ [ meopx” | p° dxdp
"J( 2 +2m>ﬂxw)2nh

modx*  dx p* . Ldp
J 2 f(ﬂf*‘Jﬁ.f(P)ﬂ-

(9.7)

The solution of this equation is such that the following
inequality holds:

T>0. (9.8)

This result justifies the selection of the state with the equality
sign = in Heisenberg’s uncertainty relation for the most
chaotic state.

_ Using expression (9.4) for the renormalized distribution
fo(x,p), and condition (9.7) for the mean energy, the
expressions for the difference in entropies with respect to x
and p, corresponding to the signs = and >, respectively, may
be represented as inequalities

AR I e flx, 1) dx
Sof - 519 = [ (i ) 5.
S _ S, 1)\ Ldp
Sl =)= [ (WD) S5 0. )

Thus, the S-theorem criterion tells us that the state with
the sign = in Heisenberg’s uncertainty relation is the most
chaotic state. The last expressions give a quantitative measure
for the relative degree of order of the most chaotic (equality
sign =) and arbitrary (greater sign >) quantum states with
regard to x and p variables, respectively.

Recall that the oscillatory model used above generally
bears no relation to real oscillators. The parameter L, for
instance, is some generalized length parameter. If L is the size
of the system, then, given the linkage between L and wy, the
oscillatory model can be used for the description of free
motion. A comment to this effect can be found in the book
by B B Kadomtsev [1].

10. Entropy and information
of open quantum systems

Let us return to the definition of information (2.9), and
consider its counterpart for a quantum system. Let

S[X] — So[x, p| = So[x] + So[p]

be the unconditional entropy for the state corresponding to
the sign = in Heisenberg’s uncertainty relation. It is the
ground state at the temperature 7' = 0. Assume also that

So[x, p] = So[x] + So[p]

is the renormalized entropy for the state corresponding to the
sign = in Heisenberg’s uncertainty relation but at a tempera-
ture 7> 0. Finally, let

S[x, 1, S[p, 1]

be the entropies (with regard to x and p, respectively) for
selected steady or nonequilibrium states. Then the amounts of
the information (with regard to x and p, respectively) are
given by

Iix, 1] = So[x] — S[x, 1] > 0,

1lp. 1] = Solp] — S[p. 1] = 0.

We see that, according to the S-theorem criterion, any excited
(steady or nonequilibrium) state is more informative than the
renormalized ground state — the state with the sign = in
Heisenberg’s uncertainty relation. Shannon information for
the ground state of a quantum system is zero.

Observe in this connection that Boltzmann information
(S-information) is nonzero for the ground state of a quantum
system as well. The value of S, determines the relevant
constant in the Nernst law — the entropy of the system at
zero temperature.

So far the information was defined in terms of the
difference between unconditional and conditional entropies.
This is possible as long as the mean energy of the selected
states has one and the same value. For a Boltzmann gas this
does not constitute an additional condition, since the mean
energy remains constant in the course of time evolution of a
closed system. We saw, however, that in most cases the
appropriate renormalization is necessary to ensure that the
mean energy of open systems under study remains the same.
In such a case, the unconditional entropy is also renorma-
lized.

It is possible to do without the renormalization procedure
if we change the definition of information itself. Namely, we
may define information as the difference of free energies
rather than the difference of unconditional and conditional
entropies. The feasibility of such a definition is discussed in
the next section.

(10.1)

11. Information, free energy and the Lyapunov
functional A for Brownian motion

Now for the Boltzmann gas it is possible to define informa-
tion by formulae (3.7). This reveals the linkage between
information and the Lyapunov functional Ag which is
defined by the difference of entropies of equilibrium and
nonequilibrium states. In those cases when the mean energy is
not conserved in the course of evolution, it is necessary to
renormalize the distribution functions and the entropy for the
state of physical chaos to the selected value of mean energy.

Let us consider another possible definition of information
for systems that do not conserve the mean energy in the course
of evolution. We shall use the example of a van der Pol
oscillator, when the energy of oscillations plays the role of a
Brownian particle.
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The Fokker—Planck equation for the energy distribution
function f(E, t) is [7, 8]

S_pl (Eg) +i[(—a+bE)Ef]. (11.1)

ot TOE\ OE) 'OE

Here D is the intensity of noise; a = ar — 7, ayis the feedback
parameter; y and b are the coefficients of linear and nonlinear
friction, respectively.

We may write the stationary solution of this equation
Jfo(E) by analogy with the canonical distribution in the form

Fy — H(E)

fb(E):eXp< ) ) H(E):—aE—I—%E2. (11.2)

Here we have used the notation for the effective Hamilton
function H(E); Fy and Sy are the free energy and the entropy:

Fy = (H(E)), — DSo. (11.3)
The quantity D plays the role of the effective temperature.
Let us define the nonequilibrium free energy and entropy
in terms of the distribution function at the current time /' (E, ¢)
([fdE= [fodE =1). Then
F(t) = (H(E)), — DS(1) . (11.4)
Now we can define the Lyapunov functional for Brow-

nian motion as the difference of free energies F(¢), Fy. It
satisfies the following inequalities [7, 8]:

Ap=F(i) —FO:DEQ <ln‘f(;’)t))f(E, NdE=0, (11.5)
dAp  d(F(1) — Fo)
Le——— <0 (11.6)

This result is similar to Boltzmann’s H-theorem in the form of
Eqns (3.3), (3.4), expressed in terms of the Lyapunov
functional A5 = Sy — S(1).

In the case of time evolution according to the Fokker—
Planck equation (with the given noise intensity or the effective
temperature), the mean energy is not conserved. Because of
this, the part of Ag is now played by the Lyapunov functional
A defined by the difference of free energies.

Boltzmann’s result is more valuable for characterizing the
relative degree of order, since out of all thermodynamic
potentials it is only the entropy that features all the proper-
ties necessary for the measure of uncertainty in the statistical
description. This is the reason why the definition of informa-
tion as the difference of unconditional and conditional
entropies (with constant mean energy) is the most natural
choice in the physics of open systems.

By analogy with Shannon information, we may introduce
the measure of information in terms of the Lyapunov
functional Af:

IF[E|I‘] =Ap= F[EM — Fo[E]

_ Df (lnf(%(’)l))f(E,z)dE> 0. (11.7)

The quantity /7[E|{] is the measure of information regarding
the departure of the nonequilibrium state at the current time
from the stationary state at a given value of the feedback
parameter. The information defined in such way decreases on

approaching the stationary state, and remains constant when
the stationary state is attained.

The last expression implies a kind of conservation law: the
difference of the free energy of nonequilibrium state F[E|{]
and information I¢[E|7] in the course of time evolution at a
fixed value of the feedback parameter remains constant,
namely

FE|f] — IF[Ell) = FylE]. (11.8)
The constant at any fixed value of the feedback parameter is
determined by the magnitude of the free energy. It is lowest
when the feedback parameter is zero — that is, in the state of
equilibrium. This result is similar to the conservation law (3.8)
derived earlier.

12. Conclusions

Of the problems of the theory of information, treated in the
book by B B Kadomtsev [1] and enumerated in the
Introduction, we have only touched upon those that involve
transformations of Shannon’s formula with the purpose of
defining the information of classical and quantum open
systems, depending on the values of control parameters.
Other fundamental problems and concepts (information
coupling, information-wise open systems, information
exchange, information content of the wave function) dis-
cussed in the book call for special treatment and analysis.

One of the main tasks of this review consists in exposing
the difference between S-information (which in fact only
serves as the measure of uncertainty in a statistical descrip-
tion) and Shannon information (which with appropriate
concretization may serve as the measure of information of
open systems in the processes of time evolution and evolution
of steady states in the space of control parameters). The
efficiency of concretization of Shannon’s formula has been
proved here for a number of classical and quantum systems,
and for a medico-biological system analyzed on the basis of
special statistical processing of cardiograms using the S-
theorem criterion [22 —24].

Observe finally that the monograph by B B Kadomtsev [1]
was sold out quite quickly, and the publishers of ‘Physics—
Uspekhi (Advances in Physical Sciences)’ released the second
edition of this remarkable book (see subsection ‘New books’
at www.ufn.ru) in March 1999.
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