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Abstract. Computer simulation results on diffusion in metal and
some nonmetal amorphous materials are summarized. Methods
for producing and analyzing disordered systems as well as for
modeling diffusion processes in such systems are considered.
Certain features of diffusion in disordered systems are demon-
strated. Possible mechanisms of diffusion in amorphous metals
are analyzed.

1. Introduction

Modern ideas about the mechanism of diffusion in simple
liquids were formulated in the 1960s basically by computer
simulation methods, the molecular dynamics method and the
Monte Carlo method. The situation with amorphous systems
proved to be more complicated. Not so long ago even the
possible mechanisms of diffusion processes in amorphous
systems were unclear. The very notion of a vacancy (or
quasivacancy) was debatable. Lately, however, the under-
standing of the nature and mechanisms of diffusion processes
in disordered systems has substantially improved because of
the wide use of computer simulation methods. Studying
atomic models, one can extract much more information
about the behavior at the atomic level than real experiments
can provide.
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Usually diffusion mobility in real amorphous media
(glasses) is very low, since such systems become unstable
and crystallize at moderate temperatures. By analogy with
diffusion in crystalline materials we can assume that there are
activation mechanisms of diffusion in glasses. For instance,
for hydrogen dissolved in an amorphous alloy, the activation
mechanism of diffusion along the interstices of the amor-
phous matrix may come into play. Such a mechanism is less
probable for bigger atoms, and other mechanisms for which
the hopping mode of particle transport is a characteristic
feature (this mode is related to surmounting the activation
barrier) should be considered.

On the other hand, since the amorphous phase can be
reached by cooling the liquid, it is natural to take into account
the diffusion mechanisms characteristic of liquids. The
diffusion mechanism in simple liquids is cooperative (‘drift’)
since it is realized through the simultaneous small displace-
ments of a large number of particles. We must establish
whether this mechanism provides a sizable contribution to
diffusion when the liquid is moderately or deeply super-
cooled, down to temperatures at which the liquid becomes
an amorphous substance, and in the amorphous phase
proper.

The experimental possibilities of analyzing the diffusion
mechanisms in supercooled liquids and amorphous systems
are limited. Under diffusion annealing, the particles of the
amorphous system usually travel over distances of several
atomic separations, a maximum several tens of separations
(with the exception of solutions of hydrogen in amorphous
alloys, where the impurity mobility is high). Hence much
attention is focused on the theoretical analysis of diffusion
processes by analytical methods or computer simulation.

Measurements of diffusion characteristics in amorphous
systems are hindered by the fact that in the process of
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diffusion annealing structure relaxation is always present to
a certain extent, which leads to ‘defect healing,” ‘free-
volume outflow,” etc. It was found, for instance, that
when hydrogen and deuterium diffuse in the amorphous
alloy Co76.7Fe2Nbi43B7, structure relaxation changes the
isotopic effect severalfold [1]. ‘Free-volume outflow’ is
always realized with direct participation of diffusion pro-
cesses. For instance, in amorphous alloys of cobalt, copper,
or nickel, the activation energies of diffusion and free-volume
outflow are extremely close [2].

Recently several reviews on diffusion in amorphous alloys
have been published (e.g., see Refs [3—7]). It has been found
that it is extremely difficult to draw any conclusions about the
diffusion mechanisms in amorphous systems because of the
diversity of objects and substantial discrepancies in the
experimental data. And yet, according to Larikov [6], several
experimental results can be considered as being established
with a greater or lesser certainty. The kinetics and mechan-
isms of diffusion in amorphous metal alloys (AMA) are closer
to imperfect crystals than to liquids. The rate of diffusion of
metal atoms in AMA is higher, and that of metalloid atoms is
lower, than in perfect crystals of the base metal (or solid
solution based on the metal), but it is lower for the metal
atoms in comparison to a crystallized alloy of the same
composition as the AMA. The reason is that in crystallized
alloys the structure is finely granular and diffusion primarily
proceeds along the interface, where the diffusion coefficients
are larger than in AMA. In different AMA of the metal -
metalloid type, the diffusion of the same elements proceeds at
close rates at equal relative temperatures 7/ Ty, where Ty is
the glass transition (vitrification) temperature.

It is assumed that small atoms (B, Si, and C) diffuse along
‘quasi-interstices’ and larger atoms, along ‘quasivacancies.’
The diffusion coefficients for small atoms are much larger
than for large atoms. No simple relationships that describe
the diffusion coefficients for the different components in
metal —metal AMA have been discovered.

A characteristic feature of solutions of hydrogen in AMA
is the presence of quasi-interstices with different energies of
bonding with hydrogen atoms. The first portions of hydrogen
are captured more strongly and diffuse more slowly. Hence
the diffusion coefficient is concentration-dependent and
obeys a temperature law of the Arrhenius type, and instead
of random-walk theory one is forced to use percolation
theory.

The computer simulation method is covered rather
scantily in the above-mentioned reviews on diffusion in
disordered systems. However, these methods make it possi-
ble to study in great detail and from a unified standpoint the
possible mechanisms of diffusion in disordered systems of
various types, e.g. in systems with different types of chemical
bond. The goal of the present review is the analysis and
systematization of the data on mechanisms of diffusion in
disordered systems obtained by computer simulation. We will
briefly discuss the methods of constructing models of liquid
and amorphous systems, the interparticle interaction poten-
tials used in these methods, and the various algorithms of
studying diffusion in the models. We will also analyze the
main mechanisms of diffusion in liquids and amorphous
phases, the cooperative (drift) and the activation. Using
examples of disordered lattices, we will expose the role of
the energy distributions of the stable and transition states in
the case of activated diffusion. The mechanism of diffusion
along interstices in the amorphous phases will be examined

(the diffusion of hydrogen and carbon, in particular). Finally,
we will present an overview of the problem of defects in
amorphous bodies, especially pores (quasivacancies) and will
discuss their role in diffusion processes.

Sections 2—6 deal primarily with dense disordered
systems, such as metal alloys and simple salt systems.
Systems with a loose structure, covalent (of the type of
amorphous silicon) and ionic-covalent (of the silica type),
differ from the above systems substantially. Computer data
on the mechanisms of diffusion in loose systems are discussed
in Section 7.

2. Methods of constructing computer models
of disordered systems

The methods most often used in constructing models are
those of static relaxation, molecular dynamics, and Monte
Carlo and a group of methods that use diffraction data on the
structure of the system. To construct models by the methods
of static relaxation (at absolute zero), molecular dynamics,
and Monte Carlo (at finite temperatures) one must initially
specify the potentials of interparticle interaction. The other
group of methods only uses data on the density of the system
and the pair correlation functions extracted from the data of
diffraction experiments.

In the classical (nonquantum) variant of the Monte Carlo
method, the particles of the model are successively shifted (in
a virtual manner) in a direction taken at random over a small
distance (step), the change AU in the potential energy of the
system is calculated, and event drawing is done by comparing
w = exp(—AU/kT)and arandom number 4:0 < 4 < 1[8,9].
If AU < 0 or A4 is smaller than w, the displacement is accepted,
otherwise it is rejected. Conducting a long sequence of particle
displacements, we obtain a large set (usually millions) of
realizations of the system that obey Gibbs statistics, and using
this set we can calculate the structural characteristics of the
system and any of the thermodynamic properties, such as
energy, pressure, and entropy. If the data gathered in this
manner agree with the experimental data, the interparticle
potentials have been chosen correctly. Time does not enter
into the method explicitly, so that it is impossible to directly
calculate the transport characteristics of the system, e.g.
diffusion coefficients.

For large systems, periodic boundary conditions are
usually introduced. The particles are placed inside the main
cube, which is translated along the three axes of coordinates
together with the particles inside it, which results in the
formation of a simple cubic superlattice. The particles can
interact with their neighbors in the main cube and in the
neighboring cubes.

The static relaxation and molecular dynamics methods
involve calculating the paths of the particles under forces. In
the static relaxation method the system is at absolute zero,
there is no kinetic energy, and the particles are displaced in the
direction in which the resultant force acts. The length of the
displacement (the step) can be controlled in different ways. In
the continuous static relaxation method [10], the step is the
same for all the particles, but in the process of relaxation it
gradually decreases to a value of the order of zero-point
vibrations. The displacement step in the Haimendal algo-
rithm is proportional to the resultant force. In the latter case
the probability of the system landing in a local energy
minimum is high, so that the system becomes ‘jammed.” The
algorithm of continuous static relaxation is to a great extent
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free from this drawback and is especially useful for construct-
ing models of amorphous systems. However, it has the same
drawback as the Monte Carlo method: the displacements of
particles do not take place on a real time scale.

The molecular dynamics method [11-14] makes it
possible to model particle paths in real time by using the
equations of classical dynamics. For instance, good results
are produced by applying the simple Verlet algorithm, in
which the coordinate of the ith particle in the next, (k + 1)st
step is calculated from the coordinates in the given kth step
and the previous (k — 1)st step:

LRy

ri(k + 1) = 2r,(k) — ri(k — 1) (1)

Here r; is the radius vector of the particle, m is the particle
mass, F; is the resultant force on the particle, and At is size of
the step on the time scale. The particle velocity is not present
in path calculations. The self-diffusion coefficient can be
calculated from the mean square of the displacement of the
model particles over a large number of steps. Other algo-
rithms of path calculations are discussed in the monograph of
Polukhin et al. [14].

The key issue in this method is the calculation of the
forces. The common potentials used in modeling simple
liquids (of the argon type) and metallic single- and multi-
component systems are short-range pair interparticle poten-
tials (e.g. Lennard-Jones and Morse potentials) containing
adjustable parameters. Here, to reduce the computer time, the
potential is cut off at a relatively small distance. For ionic
systems with a long-range Coulomb interaction the potential
cannot be cut off and in calculating the forces one must
employ the Ewald procedure, which allows for the interaction
between the particles in the main cube and the image cubes
[13]. Computer times increase substantially for such calcula-
tions.

When modeling systems with a covalent bond, one is
forced to introduce, in addition to the pair interaction, three-
body interaction potentials, which incorporate particle
separations and the values of the valence bands. In this case
the potential energy of the system can be written as

U(r) = uy(r) + Y @yelri,t,re) - (2)

i<j i),k

Here the functions u; represent the pair contributions to the
energy, which, in principle, resemble, e.g. the Lennard-Jones
potential (as in argon), and the second sum represents three-
body contributions. The angular dependence of the potential
can be described, say, by introducing (cos 6 — cos 60)2 type
factors, where 6 is the actual valence angle for a triplet of
atoms, and 0 is the equilibrium value of this angle (e.g. 109.5°
for a tetrahedral configuration).

The potentials most often used to describe three-body
interaction are the Axilrod —Teller, Keating, and Stillinger —
Weber potentials [13, 15]. The Stillinger — Weber potential,
first proposed for silicon, is written

, - . 1\
@ = Aexp[y(ri2 — a) "4 9(ri3 — a) 1}<0059+§) - (3)

Here rj5 and r;3 are the distances from the central atom (/) to
each of its neighbors (2 and 3) (these distances must be smaller
than a), 0 is the angle between the vectors ri; and rj3, and a, 4,

and y are adjustable parameters. The presence of an angular
factor leads to stabilization of the tetrahedral valence angle
109.5°, for which cos@ = —1/3. The Stillinger — Weber
potential was used to model tetrahedral semiconductors
(silicon and germanium) and liquid and amorphous carbon
and fullerene [16]. The computer time needed to calculate
covalent models is much longer than in the case with pair
interactions.

Nevertheless, modern computers make it possible to
construct fairly large models. For instance, Holender and
Morgan [17] used the method of combining small blocks to
construct a model of amorphous silicon consisting of 110592
particles, and Nakano et al. [18] constructed ionic models of
liquid and glassy silica (with allowance for three-body
contributions to the potential) consisting of 41472 particles.
The main cube in such a model has an edge 8.5-nm long. A
parallel computer with eight processors was used for the
calculations, and data was extracted not only about short-
range order but also about what is known as medium-range
order. The correct shape of the structure factor (the function
describing the intensity of scattering of X rays or neutrons in
the substance) was achieved for a number of particles no less
than several thousand.

Lately there has been an upsurge of interest in ‘first-
principles’ molecular dynamics modeling, in which the
Schrédinger equation is solved at each step for the current
arrangement of the particles. The calculated wave function
makes it possible to find the forces acting on the ions of the
metal. For simple metals this method was proposed by Car
and Parrinello [19]. It was also used for liquid Li, Na, K, and
Hg [20], cesium [21], Cu, Ge, V, and Te [22], antimony [23],
small clusters of cadmium [24], AuCs alloy [25], liquid NaCl
[26], and Ag—Se alloy [27]. These calculations require long
computer times even with the use of modern computers and
have been carried out only for small systems consisting of
several dozen atoms. Theoretical calculations produce results
that are in good agreement with the experimental data
concerning the shape of the correlation functions.

Methods of constructing atomic models from known pair
correlation functions (PCF) form a separate group (a pair
correlation function is the probability of finding a pair at a
given distance). These are what is known as the inverse Monte
Carlo method (IMCM), the methods of Schommers and
Reatto, the force and ‘hybrid’ algorithms, and the method
of building a model for a liquid or amorphous alloy using the
Born—Green— Bogolyubov equation [28 —33]. The main idea
underlying all these methods is the construction of a model
whose pair correlation function (or partial PCF for alloys)
coincides with that obtained for the real object. In all cases the
quality of reconstruction of the model from the diffraction
data can be estimated by the standard deviation, or
discrepancy, between the ‘target’ and model pair correlation
functions and, in the case of two-component systems, from
the discrepancies between three partial pair correlation
functions (for the pairs 11, 12, and 22). The discrepancies
that have been achieved in the best cases are of order 0.005,
which means almost complete agreement, while in the worst
cases the discrepancy is 0.1 to 0.2 or the process diverges. Here
the Reatto and Born—Green—Bogolyubov methods when
applied to topologically dense systems of the type of liquid
and amorphous metals make it possible to approximately
reconstruct pair interparticle potentials, too. For loose
systems with small coordination numbers, the process of
construction of models of amorphous silica by IMCM is
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fraught with difficulties and is possible only for special
arrangements of the atoms in the model [34].

The models constructed by IMCM and equivalent
methods do not make it possible to study kinetic properties,
since the interparticle potentials are unknown. However, in
some cases the structural information about the model
provides a key for studying diffusion problems. Such, for
instance, is the analysis of pores in the structure of loose silica
type systems or amorphous semiconductors, which makes it
possible to draw conclusions about the presence of easy
diffusion paths for particles of moderate size.

3. The cooperative diffusion mechanism. Direct
simulation of diffusion in liquid and amorphous
phases by the molecular dynamics method

If the interparticle potential is known, calculating the self-
diffusion coefficient of a liquid by the molecular dynamics
method is fairly easy. In the process of the molecular
dynamics of relaxation of a liquid or amorphous phase, the
particles of the model at each temporal step (with a step length
of about 1 fs) perform small displacements correlated with the
displacement of the neighboring particles. Here the coopera-
tive diffusion mechanism is realized. The mean square particle
displacement (r?) is described by the expression

() = a(t) + 6Dt (4)

(¢t is the current time). Initially, the ordinary (Fickian)
dependence does not work because of the presence of the
contribution a(f) responsible for the vibrational component
of motion. However, at large run lengths the term a(r) ceases
to change and the time dependence of (r?) can reach an
asymptotic straight line whose slope makes it possible to
calculate the self-diffusion coefficient D.

For models of simple liquids, where the self-diffusion
coefficients are of order 107> cm? s~!, a run length of several
hundred steps is sufficient to obtain good results. For models
of viscous liquids (oxide type systems SiO,, B,Osz, CaO-
Si0,), where the self-diffusion coefficients near the melting
point (Ty,) are of order 107¢ cm? s~!, the run lengths must be
increased to several ten thousand steps, since for shorter run
lengths the time dependence of (r?) is unable to reach its
asymptote. But if the self-diffusion coefficient is of order 10~
cm? s~! or smaller, it is practically impossible to determine
this coefficient by the molecular dynamics (MD) method at
typical operating speeds of ordinary computers.

The MD method makes it possible to easily study the
effect of such factors as temperature, pressure, and particle
mass on the diffusion coefficients (the isotopic effect). In the
simplest case of a hard-spheres liquid, the particle mobility is
determined by the dimensionless parameter D(m/kT)l/ ?/a,
where m is the particle mass, ¢ is the particle diameter, 7'is the
temperature, and k is Boltzmann’s constant. At a constant
temperature, this parameter, calculated by the MD method,
linearly decreases with volume, so that the self-diffusion
coefficient already cannot be measured for V/V, < 1.45,
where ¥ is the volume of the corresponding closely packed
crystal at 7= 0 [35]. For the maximum packing factor in the
disordered  hard-spheres model, # =0.6366 (when
V/Vy = 1.162), the extrapolated mobility of the particles
(spheres) disappears completely. The diffusion mobility in a
liquid with a Lennard-Jones potential behaves in a similar
manner [36]. Here the self-diffusion coefficient decreases

almost to zero (i.e. becomes smaller than 107% cm? s~!) at
V/Vy = 1.03 in the case of isothermal compression and at
V/Vy =2 1.12 in the case of cooling under zero pressure.

When models of dense noncrystalline systems with short-
range pair potentials (argon and metals) are considered,
pressure enhancement usually results in a decrease of the
self-diffusion coefficient. Other situations may also emerge,
however. For the case of a pair Gauss potential
u(r) = ugexp(—br?), Stillinger and Weber discovered an
anomalous increase of the self-diffusion coefficient on
compression of the system. This effect emerges because as
the distance decreases, the force function —du(r)/dr passes
through a maximum and then decreases, too. Another
example of anomalous behavior is presented by loose
structures of the silica type, where the structure changes
under pressure, the coordination numbers grow, and three-
body contributions to the potential begin to play a smaller
role. For instance, in the MD modeling of silica in the ionic
variant at 1400 K, a rise in pressure up to 12 GPa was found to
lead to an increase of the ion self-diffusion coefficients
severalfold, and under a further increase of pressure up to
36 GPa these coefficients slowly decreased [37]. The enhance-
ment of the ionic mobility in MD models of liquid silica under
pressure was also studied by Tsuneyuki and Matsui [38].

If, to describe the temperature dependence of the diffusion
coefficient D of simple liquids, we use the Arrhenius equation
D = Dyexp(—E/kT), where E is the effective activation
energy, it occurs that £ exponentially grows as the tempera-
ture of the system is lowered [36]. Deviations become
especially evident in the region of small D’s. The reason is
that actually the diffusion mechanism in simple liquids is not
of an activation nature. An approximate theoretical estimate
of the temperature dependence for such a mechanism yields
the formula D = aT'? [39], which fairly well describes the data
obtained under microgravitation for indium, lead, and
antimony [40]. A  power-law dependence D =
4.2 x 10717239 cm2? 51 was obtained, in particular, by
the MD method for liquid cesium in the 323-1923 K range
[151].

However, such a dependence does not agree with the
experimental data for highly supercooled liquids and it
cannot be extrapolated to the low-temperature range. At the
glass transition temperature it yields excessively high values
for D, of order 10~8 cm?2 s~!, while the experimental data are
near 107! or even smaller. The cooperative diffusion
mechanism characteristic of liquids becomes ‘frozen’, and
the motion of the particles becomes oscillatory near an almost
immobile position of equilibrium determined by the arrange-
ment of the surrounding atoms [36, 41].

Unfortunately, this ‘frozen” mechanism has not yet been
observed by the MD method, since the method is unable to
study such slow diffusion processes by using the existing
algorithms. More than that, for a supercooled liquid the MD
method often overestimates the self-diffusion coefficients.
For instance, in models of systems with a Lennard-Jones
potential, an appreciable value of the self-diffusion coefficient
(larger than 10~7 cm? s7!) is obtained at temperature even
near 0.1T},, where Ty, is the melting point. For the ionic
models of KCI, Woodcock et al. [42] observed an appreciable
self-diffusion coefficient (D ~ 107° cm? s~!) at temperatures
of about 0.47},. Examples of the opposite are also known. In
the ionic models of SiO,, self-diffusion can be observed using
the MD method only near 2500 K [42], i.e. at much higher
temperature than the melting point.
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The fact that the molecular-dynamics self-diffusion
coefficients at reduced temperatures are overestimated in
comparison to the actual values may be due to the small size
of the models and their nonequilibrium nature, which is
caused by the high rates of computer cooling. Another
reason may be the effect of real weak long-range forces,
which is either ignored in calculations or cannot be properly
taken into account. Pavlov [43] even suggested incorporating
special forces stabilizing the crystalline structure in the MD
modeling of solidification processes. Possibly, this problem
will be solved in the near future within the scope of the
classical MD method by using new algorithms and powerful
computers, which will make it possible to study systems
consisting of at least several million particles.

Under conditions where the cooperative diffusion
mechanism is realized, the effects of structure relaxation,
which are related to a process in which a strongly none-
quilibrium system approaches a more equilibrium state, can
be observed in model experiments. If the initial state of the
amorphous model is obtained by rapidly cooling the liquid
model, then in the process of static relaxation or molecular
dynamics annealing one observes a gradual drop in pressure
at constant volume or a gradual decrease in volume at
constant pressure (depending on the simulation algorithm)
[10]. For metal alloys, the decrease in volume amounts to
0.5—1.0% and is close to the observed experimental values.
However, in one-component model systems the times of such
relaxation are too short (of the order of tens of picoseconds)
to correspond to processes in real alloys. In two-component
model amorphous systems the diffusion coefficients are much
smaller, but the time scale of ‘cooperative’ relaxation is still
too far from the real one.

Various physical models and analytical methods have
been suggested for a description of the cooperative diffusion
mechanism in supercooled liquids (e.g., see Refs [44, 45]). In
particular, it was suggested that atoms should be divided into
solid-like, which cannot move, and liquid-like, which partici-
pate in the diffusion motion [46]. The effective volume of the
cell in which a particle exists and the ratio of this volume to a
certain critical volume determine to which class the particle
belongs. For instance, in a system with a purely repulsive pair
potential of the type u(r) = &(ro/r)'?, where r is the atomic
separation and ¢ and ry are parameters, the decisive role is
played by the dimensionless parameter p* =
(Nr3/V) (¢/kT)"*, where N is the number of particles in a
volume V. When p* of a noncrystalline grows from 1.1 to 1.5
(via compression or cooling), the fraction of liquid-like
particles decreases from 1 to 0, which affects diffusion [46].
This criterion is not of a purely structural nature and reflects
the idea of a relation between particle mobility (and viscosity,
in the spirit of Bachinskii) and free volume. Using the
terminology of statistical mechanics, we can say that liquid-
like particles are excited. Akhiezer et al. [47] carried out
calculations of self-diffusion coefficients for amorphous
metal alloys under the assumption that diffusion takes place
when several excited atoms are close to each other. Here local
transformation of the structure, which is an elementary act of
diffusion, is possible. In the final analysis, such an approach
leads to a model in which as the temperature rises, the
diffusion coefficient for an amorphous alloy continuously
transforms into the diffusion coefficient for the liquid.

In noncrystalline systems, the cooperative mechanism
can, at least in principle, accompany by the hopping
mechanism. After an activated hop of one of the particles

has been completed, the other particles are displaced in the
process of relaxation over small distances, which also
contributes to the mean square particle displacement. Fam
Khak Huang et al. [48, 49] studied this possibility using
models of amorphous iron as examples. The sum of the
squares of the cooperative displacement of all the atoms in
the model under continuous static relaxation, which accom-
panies the hopping of an atom from a site to a neighboring
vacancy, was found to be slightly smaller than the square of
the particle hopping length. Thus, the cooperative ‘accom-
paniment’ of activated hops increases the contribution from
the pure hopping mechanism insignificantly (by a factor of
approximately two). For other amorphous systems, the ratio
of these contributions may be different, but it is unlikely that
the overall picture will be much different.

Thus, in the region of stability of the liquid state the MD
method makes it possible to calculate easily and reliably the
diffusion coefficients if the interparticle interaction potentials
are known. However, recent years have seen no real progress
in the analysis of the cooperative diffusion mechanism for the
deep supercooling region. It is quite possible that this problem
will be solved in the near future as a result of using powerful
computers to simulate diffusion in systems consisting of 10%—
106 particles with long diffusion times.

4. Activation mechanisms of diffusion

The diffusion ‘walk’ of a particle in a crystal occurs via
transitions of this particle, activated by thermal energy,
across potential barriers from one stable (saddle) state to a
neighboring stable state. This is known as the hopping
mechanism, and the barrier height E,. is called the activa-
tion energy. This energy usually amounts to tens of kilojoules
per mole. The hops take place in different directions. Hence it
occurs that the mean square of the particle displacement after
nhops, <(A5)2> (in units of length of a single hop) is  (here we
ignore correlation effects inherent in diffusion in crystals).
The temperature dependence of the diffusion coefficient has
the form D = Dgexp(—E,/kT), where k is Boltzmann’s
constant. Such temperature dependence as known as the
Arrhenius law.

Direct application of the MD method in studies of the
hopping mechanism is extremely complicated, not only for
the amorphous phase but also for the crystal phase. With a
small model we would have to wait a very long time before an
activated hop of a particle to a neighboring stable state (a
vacant site or an interstice) is realized because the hopping
probability exp(—E,c/kT) is usually much smaller than unity
and, more than that, thermal activation in a small model is
highly improbable. True, studying the liquid silica model,
Woodcock et al. [42] found that at 6000 K there are infrequent
spontaneous hops of oxygen ions between the coordination
spheres of two neighboring silicon ions. This was proof that
the hopping (activation) mechanism of self-diffusion in a
noncrystalline system is realizable.

And yet it is extremely difficult to observe the hopping
self-diffusion mechanism at the temperatures of amorphous
states using the MD method. Other methods are required.
The most suitable one was found to be the Monte Carlo
method. To establish the characteristic features of activation
diffusion in disordered systems, it is convenient to use what is
known as disordered lattices, in which the ordered arrange-
ment of the sites is retained but the properties of the particles
at different sites are different.
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4.1 Distributions of the energies of the stable

and transition states. The average time between hops

of a diffusing particle. The correlation factor.

Calculations of the self-diffusion coefficient

Consider a regular system of sites along which a particle can
diffuse. In simple crystalline structures, all stable states of
atoms and all transition states may be equivalent energywise.
The presence of distributions of the energies of stable and
transition states in a disordered system even when there is a
regular lattice of sites leads to two specific effects [50, 51]. The
first consists in the fact that particle prefers to leave a site
across lower barriers. Hence the real path of a diffusing
particle is enriched with lower barriers compared to the
general set of barriers in the entire system. This effect reduces
the average time of site occupation by a particle and enhances
the diffusion coefficient. However, this also increases the
number of return hops of the particle from the new site to
the initial site, since the transition state between these sites has
a reduced energy (in model calculations this effect was
probably observed in 1980 by Kijek et al. [52]). This
‘correlation’ effect lowers the diffusion coefficient. In this
case, instead of the ordinary expression for the mean square
of particle displacement after n hops, <(A5)2> = n, we should
write [53]

((80)*) = Fun, (5)

where F is the correlation factor. The presence of these two
effects, specific to diffusion in a disordered system, was also
noted by Limoge and Bocquet [54]. Allowing for these ideas,
we can write the expression for the self-diffusion coefficient as

2
Iy (6)
T

where y is the ordinary geometrical factor, d is the mean hop
length, and 7 is the average time between hops. In the case of a
crystal, F = 1 and t = 1 exp(Eqaet/kT), where 1 is the period
of atomic vibrations at a lattice site. The situation with
disordered systems is considered below.

Note that the term ‘correlation factor’ carries different
meanings in the literature in relation to different physical
phenomena [55, 56].

Akhiezer and Davydov [57] discussed the analytic limit of
very low temperatures and broad distributions of the
activation-barrier heights. In this limit the time of motion of
a particle along its path is equal to the time necessary to
surmount the highest barrier in its path. The researchers
reduced the diffusion problem to a percolation problem and
found that the pre-exponential factor Dy is much smaller than
in a crystal. More than that, according to Akhiezer and
Davydov [57], over small times, where the diffusion path is
small (several atomic separations), the ordinary Fick diffu-
sion law (4) breaks down. As we will see, there is no way in
which such a diffusion mode can be realized in numerical
experiments.

Suppose that in a disordered system the energies of the
stable states, ¢;, and of the transition states, &;, i.e. between
sites i and j, are not fixed and are described by the
respective distributions. A particle at a given site has the
possibility of hopping through any neighboring transition
state.

Let us find the average time that the particle stays at a
given site. For a hop over the sth barrier this time is, on the

average,

E,
Ts = To €Xp (k_T) ) (7)

where Ej is the height of the sth barrier, and 7y is the period of
vibrations of the atom at the site. Since the atom can choose
between z directions of the hop, the conditional probability f,,
of surmounting precisely the nth barrier is

exp(—E,,/kT)

I =S exp(EJKT)

(8)
Whence the average time that the particle stays at the given
site is

AN

Tav = ;‘W}% = Zizl exp(—Es/kT) . (9)

Since the height of the barrier is E; = ¢; —¢; (i is the
number of the site, and ij represents the transition state
between the neighboring ith and jth sites), formula (9) can
be written as [50]

zTo exp(—&;)
Tavi = z . (10)
> -1 exp(—&;/kT)

This time is different for each site. The importance of the
spectrum of lifetimes of particles at sites has been repeatedly
stressed by researchers. To calculate the diffusion coefficient
one must know the average lifetime 7, for the entire system of
sites. However, simply averaging over the sites will not do
since the attendance differs from site to site. Actually, this
time depends on the size of the region visited by the particle in
the course of diffusion. In Ref. [51], the calculation of t,, is
done under the assumption that a particle wanders from site
to site for a long time and visits each site many times. Then the
time that it stays at the ith site is proportional to the
Boltzmann factor exp(—e¢;/kT). The ‘equilibrium’ average
time between hops calculated by this method is

o Siep(-ulkD)
Zl}il Zle exp(—¢;/kT)

Here each transition state is included twice in the sum. The
larger the volume through which a particle passes in the
course of diffusion, the more precise formula (11) is, since
over short diffusion paths the specific distribution of the
energies of the stable and transition states may differ from the
average distribution.

Formula (11) can be used for specific distributions of the
energies of the stable and transition states. For instance, for
normal distributions cut off at the deviations £20, Ref. [51]
yields

(11)

Teq =

(12)

Here o and oy, are the standard deviations of the energies of
the stable and transition states, and t* is the lifetime of a
particle at a site in the case of an ordered system, where the
energies of the stable and transition states are equal to the
corresponding average values for a disordered system. We
shall call such a system dual in relation to our disordered
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system. The quantities & are given by the formula

g s

& erf(ﬁkTJr \/E) erf(\/EkT ﬁ) .
Here the subscript ‘s’ stands for the stable state (s) or for the
barrier (transition) state (b). Similar expressions for & have
also been obtained for cut-off uniform and rectangular
distributions [51]. From Eqn (13) we see that an increase in
the width of the distributions of the stable states increases the
average time between hops, while an increase in the width of
the distributions of the transition states reduces the average
time between hops. A similar formula for the average time
was obtained by Gorbunov and Klinger [58]. For close values
of the variances of these two distributions, the average time
may prove to be equal to the average time in a dual ordered
system [51, 54].

We will now discuss the correlation factor. An estimate of
this factor can be found in Ref. [50]. A diffusing particle
prefers the lowest barrier when it leaves its site. At low
temperatures this happens practically always. In Ref. [50],
the concept of a 1 N-dead end was introduced as a site that a
particle (or vacancy) leaves after N repeated hops across the
same barrier. The probability that a given ith site is a 1 N-dead
end is

(13)

Z§:1 exp(—NE;/kT) .
[Zf:l exp(—ES/kT)]N

Two adjacent dead ends are called a trap if a particle
performs recurring hops from one dead end to the other and
back. The correlation factor determines the intensity of
trapping a diffusing particle by traps and is related directly
to the probability fy from Eqn (14). If we take E, = ¢; — ¢;,
Eqn (14) immediately shows that fy and hence the correlation
factor F are entirely independent of the distribution of the
stable states ¢;. The results for F were obtained in Ref. [50] by
various approximation schemes. More precise values of the
correlation factor can be found by direct computer simulation
of self-diffusion in disordered systems.

According to Ref. [50], activated diffusion in a disordered
system proceeds as follows. An atom performs random walks
and surmounts activation barriers of various heights in the
process. Sometimes it meets a trap and performs a certain
number of hops within it, after which it leaves the trap and
migrates to the next trap. To find the self-diffusion coefficient
we must determine the average number of hops that an atom
does as it travels from one trap to another and the average
number of hops inside a trap. The average number of hops
that a particle performs in its travel from one trap to another
depends on f>. In Ref. [50], an analytic expression was derived
for the average number of hops of a particle traveling from
one trap to another:

v = [1 —(1 —fzz)l_l/z}_l )

In=

(14)

where z is the coordination number. For z = 10 we have the
values of the number of hops:

f 0.1 03 05 07 08 09 1
v 111 123 44 22 1.7 1.3 1

At high temperatures (kT > Ej), all the barriers are of
equal height, and f, =1/z=0.1 and v=111. At low

temperatures the probabilities f> are close to unity and
v — 1. This means that a particle meets a trap immediately
after it leaves the previous trap.

The average number of hops that a particle does inside a
trap was also calculated in Ref. [50]. As a result, the
correlation factor is given by the formula

1 oo./iQ -1
F= {1 +;<2.5+2Z,—N2>] ,

N=2/2

(15)

where v is the average number of particle hops between two
traps. Approximate analytic calculations of the correlation
factor for the case of a triangular distribution of barrier
heights were also done in Ref. [50]. It was found that

f2220.10 4 0.90 exp(—6.02k T/ A¢), where Ag is the halfwidth

of the barrier-height distribution. At low temperatures a
particle is so firmly trapped that the correlation factor is
practically nil [50]. More precise values of the correlation
factor can be found by direct computer simulation of self-
diffusion in disordered systems.

In Ref. [59], analytic calculations were done for different
barrier-height distributions: a normal distribution, a triangu-
lar distribution, etc. If the set of barriers at a given site is
chosen at random, the effective self-diffusion activation
energy usually increases with decreasing temperature. For
sets of barriers at a given site that are chosen not at random,
the effective activation energy may decrease with tempera-
ture. The wider the barrier-height distribution, the smaller the
correlation factor. It was found that the pre-exponential
factor Dy may be either larger or smaller than the ordinary
value.

Limoge and Bocquet [54] found, by analytic means, an
approximate expression for self-diffusion in a disordered
system:

ot — a3
5= ey |

2(kT)* (16)
Here D* is the coefficient of self-diffusion in a dual ordered
system. The correlation factor is present in Eqn (16) implicitly
in the form of the coefficient f < 1, thus reducing the diffusion
mobility. In our notation, the factor F and the coefficient fare
connected by the relation F = exp[(f— 1)o}/2(kT)’]. The
values of f'were calculated by Limoge and Bocquet [54] by the
Monte Carlo method, and at gy, /kT = 3.6 amount to 0.15 to
0.64 for different lattices. This leads to values of F ranging
from 0.004 to 0.1, and they decrease as the coordination
number decreases from 12 to 4. As a result, the researchers
found that temperature dependence of the self-diffusion
coefficient is of Arrhenius type even as D changes over eight
orders of magnitude. However, in the general case, tempera-
ture dependence is clearly non-Arrhenius.

4.2 Computer simulation of activated self-diffusion

In this section we will discuss the diffusion processes in what is
known as disordered lattices, i.e. systems that possess long-
range order in the arrangement of sites but are disordered in
relation to the energies of the stable and transition states.

4.2.1 Computer simulation of diffusion in a one-dimensional
disordered system. Linear models are widely used in solid-
state physics to study the mechanisms of various processes
and calculate the characteristics of the processes. The
diffusion process can be examined using the example of an
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ordered linear chain of sites (Albert Einstein). One example of
a real object described by such a model is a dislocation tube,
where the periodic field is perturbed by various atoms
adsorbed on a dislocation at random.

The mathematical aspects of the problem of random
walks of a particle along an infinite linear chain of sites with
a given distribution of the probability of transition to right
and left have been considered by many researchers (see the
review of Haus and Kehr [56]). In view of the fact that for an
infinitely long chain of sites there is a finite probability of a
particle meeting any number of successive potential barriers,
the ordinary diffusion law (5) may break down. Sinai [60]
arrived at an asymptotic result for the mean particle
displacement: |Ar| ~ In? n. The same result for some types of
distributions of the probability of a particle leaving a site was
obtained by Obukhov [61] for a planar system. However, an
exact analytic solution for a regular system of sites with the
same stable states [56, 62] but different transition states lead
to the ordinary diffusion law (5) in the limit of long diffusion
times. When there is a distribution of energies of the stable
states with equal transition states, the diffusion law works for
all times [56, 63]. The analysis of two- and three-dimensional
disordered systems also leads to the ordinary diffusion law (5)
[56].

Sinai [60] specified the probabilities of a particle moving
to the left and right of a given site in the form of random
quantities and excluded all correlations between these
probabilities at different sites. However, in real thermally
activated diffusion, there must be a slight correlation between
these probabilities, since for each pair of neighboring states
there is a unique transition state. Note that the transition
probability is determined by Boltzmann statistics. More than
that, real objects cannot be infinitely long, and the diffusion
time is finite.

Generally speaking, in a disordered system there may be a
difference between the diffusion coefficients measured in
stationary and nonstationary experiments. In the first case
the average occupancy of the sites is time-independent, while
in the second it varies with time. In other words, in the
stationary case all deep energy states are already occupied,
while in the nonstationary case they gradually become
saturated by the diffusing particles. The results of computer
calculations of steady-state diffusion of an impurity along a
linear chain of sites can be found in Ref. [64]. If the
concentrations C; and Cy at the ends of the chain are fixed,
after sufficient time has passed the system will find itself in a
steady state with a constant flux of particles along the entire
chain. The condition for constancy of flux makes it possible to
calculate the concentration at all sites and find the coefficient
D of steady-state diffusion along the chain. Analysis shows
that the ratio D/D*, where D* is the diffusion coefficient in
the dual system, is independent of the energies of the stable
states:

Dy N-1
D+ SV exp(Aey/kT)

(17)

with Ae; = &; — (g;). For the average time between particle
hops we have the expression (t* is the value of this time for the
dual system, in which all Ag; ;1 = 0)

Tst Z(N — 1)

P N—-1 z . (] 8)

T 0N Y exp(—Ae;/kT)

The sum with respect to j in the denominator is over all
transition states (the coordination number z =2). The
correlation factor is described by the equation

(N=1)°
- N-1

F= T .
L exp(—Ae;/kT) > | exp(Ag;/kT)

The sums in the denominators are also over all transition
states. As expected, the factor F is independent of the
distribution of the energies of the stable states.

In the case of non-steady-state diffusion along the chain,
the average time 7y must be replaced by the ‘equilibrium’ time
Teq, Which is given by Eqn (11) or the equivalent expression
[51]

N-1 _
tif _ . _11 Zexp(—Ae,/kT) . (20)
T 20 21:1 exp(—Ae;/kT)

Allowing for the fact that Dy/D* = Ft* /1y, we arrive at a
formula for non-steady-state diffusion along the chain:

D (N—1)?
D+ N1 - N-1 : (21)
L exp(—Aeg;/kT) Y| exp(Ae;/kT)

Expressions similar to Eqns (20) and (21) were also found
by Gorbunov and Klinger [58], who used a different method.
By comparing Eqns (17) and (21) we see that the non-steady
and steady-state diffusion coefficients coincide only if the
energies of all stable states are the same. The same is true of
the ratio t/7*.

In Ref. [64], a chain of sites was examined in which all the
energies ¢ are the same and the energies of the transition
states take only two values &, and &y, (a dichotomous
system). The concentration of the low transition states (with
energy é&p1) is o) and that of the other transition states,
o, = 1 — o;. We introduce the notation Ag = &y, — &p1. Then

1

F= 22
1+ 200 [cosh(Ae/kT) — 1] (22)

o 1 SN

oy exp(opAe/kT) + ogexp(—oyAe/kT)

Dy _ exp(onAe/kT) (24)

D* oy +opexp(Ae/kT)

Direct computer simulation of diffusion along a chain of
sites has shown that Eqns (23) and (24) are true to within an
error of 3—6%. Good agreement has been achieved for the
correlation factor. This agreement worsens somewhat as the
temperature is lowered because the particle does many
recurring hops and does not travel far from its initial
position. Here the specific set of heights of the barriers being
surmounted does not represent the entire distribution.

In Ref. [64] it was found that at o5/kT = 1.58 (for stable
states) the steady-state diffusion coefficient exceeds the non-
steady-state coefficient by a factor of four. The discrepancy
between these two quantities must grow as the temperature is
lowered. There is no such discrepancy in systems with g5 = 0.

This effect should be observed in real three-dimensional
systems. The reason for the effect lies in the process of buildup
of the diffusing component in non-steady-state diffusion at
sites with a reduced energy ¢;, a process resembling the case of
diffusion with internal adsorption. On the other hand, in a
steady state the concentrations are time-independent and the
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spread of the energies ¢ does not manifest itself. By
comparing the diffusion coefficients in the nonstationary
and stationary process we would be able, at least in
principle, to determine the width of the saddle-state energy
distribution for the particle belonging to the diffusing
component.

When examining impurity diffusion in an amorphous
metal, one should allow for the relaxation of the solvent
atoms surrounding an impurity, since as a result of such
relaxation the energies of the stable and transition states after
the atom has hopped may differ from the energies of these
states before the hop. In this case the initial values of the
energies become forgotten partially or completely. Fam Khak
Huang et al. [65] studied the role of this effect in diffusion
using a linear system as an example. The length of the linear
segment under investigation amounted to one thousand sites.
Initially the particle was placed at the 500th site. Diffusion
was calculated by the probability-field method (by solving
what is known as the master equation) [51]. The probability
field has the form

Pi(n+1) = Piy(n)qi—1.i + Piys(n)qivs,i - (25)
Here n is the number of the step, and 7 is the number of the site,
P;(n) is the probability of finding the diffusing particle at the
ith site after the nth step has been completed, and ¢; ; is the
relative probability of the particle hopping from the ith level
to the neighboring /th level. If the initial probability
distribution P;(0) is known, we can use Eqn (25) to calculate
P;(n) at each step and thus study the diffusion process. This
equation can be used in systems with any number of
dimensions.

The initial sets of energies of the stable and transition
states for each atom can change with the passage of time. It
was found that as the degree of ‘forgetfulness’ of the initial
energy values &y increases, the correlation factor tends to
unity and the average time between particle hops, to the
‘equilibrium’ time calculated using Eqn (11).

As is known, the velocity W of the drift initiated by an
external field g is determined by the Einstein equation

Dg

W=—2

=. (26)

Fam Khak Huang et al. [66, 67] checked the validity of
this equation for disordered systems. To this end the
researchers studied diffusion in a linear and a three-dimen-
sional disordered lattices by the probability-field method [51]
and by measuring the variation in the drift velocity in the
presence of a constant external force. The energy distribu-

Table 1. Diffusion in a two-dimensional disordered system.

tions for the stable and transition states had the shape of
normal distributions cut off at 2¢. Einstein’s equation was
found to be valid within 5—-10% for all cases that were
investigated.

4.2.2 Computer simulation of diffusion in a two-dimensional
disordered system. A description of the mathematical meth-
ods used in solving the diffusion problem for two-dimen-
sional disordered lattices can be found in the review by Haus
and Kehr [56]. For long times we have the diffusion law (5). In
Ref. [68], the relationship that exists between the coefficients
of self-diffusion of vacancies (Dy) and of atoms (D,) in a
disordered square lattice was examined. A square grid with
100 x 100 sites and with periodic boundary conditions was
taken. The energies of the stable states at each site were set
equal. The distribution of the transition states was assumed to
be either uniform over a segment or normal. One of the atoms
was removed from the grid, which resulted in the formation of
a vacancy occupying the previous position of the atom. Then
the vacancy was interchanged many times with the neighbor-
ing atoms. The coefficients D, and D, were found by
calculating the mean squares of the displacements of the
atoms or the vacancy. The results of these calculations are
listed in Table 1, where F, and F, stand for the correlation
factors for atoms and vacancies, 7.y is the real average time
between two hops, af, the real variance of the distribution of
the energies of the transition (barrier) states, and t* and D*
are the parameters of the dual ordered system.

The data listed in Table 1 show that the vacancy
correlation factor F, and the coefficient D, are always larger
than F, and D,, respectively. In disordered systems, the ratio /'
of the self-diffusion coefficients for the vacancy and the atoms
are weakly temperature-dependent and are close to the value
of f'for an ordered system (where o, = 0).

4.2.3 Computer simulation of diffusion in a three-dimensional
disordered system. A description of the mathematical meth-
ods used in solving the diffusion problem for three-dimen-
sional disordered lattices can be found in the review by Haus
and Kehr [56]. Here the diffusion law (5) is also asymptoti-
cally valid, and this is corroborated by simulations that use
the Monte Carlo method. The results of computer simula-
tions of self-diffusion in a double-barrier (dichotomous)
system can be found in Ref. [53]. The system consisted of a
simple cubic lattice containing 11 x 11 x 21 sites, and the
particles were forbidden to reach the lateral faces of the cube.
The energies of the stable states were the same, and the
energies of the transition states took only two values, ¢ and
& (the fraction of the first type of states was o;). The

Type ap/kT Treal/T" For vacancies For atoms f=D./X\Dy
of distribution
F, D,/D; F, D,/D;

Normal 0 1 1 1 0.469 1 0.469
0.880 0.684 0.693 1.013 0.316 0.981 0.455
1.759 0.255 0.258 1.014 0.120 1.004 0.465
2.640 0.065 0.078 1.213 0.038 1.268 0.490
3.518 0.013 0.024 1.785 0.012 2.002 0.527

Uniform 0 1 1 1 0.469 1 0.469
1.443 0.500 0.558 1.110 0.263 1.121 0.471
2.309 0.147 0.167 1.130 0.079 1.138 0.471
3.464 0.029 0.051 1.750 0.027 1.993 0.534
4.330 0.008 0.024 3.037 0.014 3.833 0.592
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Table 2. Diffusion in a three-dimensional double-barrier disordered system.

Ae/kT o F Fby (15) Treal /T1 Teq/T1 D/D, D/D*
3 0 1 1 20.1 20.1 0.05 1
0.10 0.444 0.596 7.50 6.91 0.059 0.88
0.40 0.545 0.601 2.54 2.33 0.214 1.29
0.80 0.910 0.853 1.36 1.23 0.668 1.22
5 0.05 0.139 0.377 21.4 17.7 0.0065 0.75
0.10 0.079 0.216 10.0 9.43 0.0079 0.71
0.2 0.079 0.173 4.94 4.87 0.016 0.87
0.40 0.259 0.366 2.83 2.47 0.092 1.85
0.8 0.873 0.873 1.37 1.25 0.0638 1.73
7 0.05 0.022 0.088 20.0 19.7 0.0011 0.85
0.10 0.013 0.040 11.7 9.92 0.0011 0.60
0.20 0.012 0.032 5.00 4.98 0.0024 0.65
0.40 0.178 0.119 2.96 2.50 0.060 4.00
0.80 0.867 0.842 1.37 1.25 0.633 2.57

calculations were done by the probability-field method, and a
run consisted of 2000 to 4000 hops of a particle.

The calculated quantity was the total probability w(n) of a
particle occupying the half of the parallelepiped farthest from
the face where the particle had been initially (i.e. the last ten
layers). Then the same calculation was done for the dual
system, in which all the energies of the transition states are
equal to the average energy for the disordered system. If for
the same probability w(n) the number of hops in the ordered
and disordered systems is ny and n;, respectively, the
correlation factor is ng/n;. The average time between hops
was found from Eqns (11) or (20) and by computer
simulations, provided that the number of visits by a particle
to each site and the average time the particle spends at a given
site are known [Eqn (9)].

Table 2 lists the results of calculations for three values of
Ae/kT = (&5 — &1)/kT and different concentrations o). We
denote the quantities for the ordered system by 7, and D, in
which all energies of the transition states are ¢;.

Table 2 shows that the average time that a particle stays at
a site, the real value and the equilibrium value, are very close.
More than that, as the temperature becomes lower, the effect
of particle trapping becomes stronger. The correlation factor
passes through its minimum at o; = 0.2, where it is much
smaller than unity (Fig. 1). The results produced by formula

0 0.1 02 03 04 05 06 07 08 09 o

Figure 1. Correlation factor F of a three-dimensional disordered system
with a dichotomous distribution of energies of the transition states. All
energies of the stable states are the same. The lattice contains 11 x 11 x 21
sites, and diffusion is along the longer edge. The particles are forbidden to
reach the lateral faces of the cube. Curve I corresponds to Ag/kT = 3,
curve 2to Ae/kT =7, and curve 3 to Ag/kT — oo; oy is the fraction of the

low transition states [53].

(15) agree satisfactorily with the experimental data, with the
formula underestimating them no more than by 10%. The
reason for this discrepancy is that the theoretical estimates
made in Ref. [50] are based only on the allowance for two-site
traps. The fact the multisite traps are ignored leads to
overestimation of the factor F near its minimum (in o) by
approximately 30%, and at Ae/kT = 7 the overestimation is
roughly by a factor of 2.5. Thus, even when there are only two
different barriers heights, the diffusing particles are effectively
trapped.

Figure 2 depicts the dependence of the ratio D/D; on the
fraction of the lower transition states, o;, at different
temperatures. We see that D/D; monotonically decreases as
the low-barrier fraction gets smaller.

2.2

D/Dy, D/D*

1 1 1 1
04 05 06 07 08 09 o

0 0.1 02 03

Figure 2. Dependence of the ratios D/D; (curves /-3)and D/D* (curve 4)
on the fraction of the low transition states, o;: D; is the diffusion
coefficient for the case where all transition states have the energy ¢, and
D* is the diffusion coefficient for a dual ordered system. The four curves
correspond to the following values of Ae/kT: curve 1, Ae/kT = 3; curve 2,
Ae/kT = 5; curve 3, A¢/kT — oo; and curve 4, Ae/kT = 5[53].
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Interesting behavior is exhibited by the ratio D/D*, where
D* is the diffusion coefficient for a dual system (see Table 2
and Fig. 2): it may differ substantially from unity. This means
that the effects of reduction of the average lifetime of a
particle at a site, and of reduction of the correlation factor
as an ordered system is replaced by a disordered one, balance
each other only partially, and their ‘decompensation’
increases as the temperature gets lower.

Introduction of correlations into the arrangement of the
low and high transition states has shown that correlations
have practically no effect on the average time between the
hops of a particle but enhance the correlation factor
substantially, especially near the minimum F at a given
temperature. This effect is explained by the fact that the
buildup of low barriers at certain sites reduces the number of
dead ends and, correspondingly, of two-site traps. As a result,
the factor F may increase by 15—-30%.

In Ref. [S1], direct simulation of diffusion was done
using models of a simple cubic lattice (11 x 11 x 20 sites)
for three types of distributions of ¢; and ¢;: (A) a normal
distribution cut off at |A¢| = 20, (B) a triangular distribu-
tion cut off at t¢;, and (C) a uniform distribution cut off at
+¢;. All particles that reached the lateral faces were reflected
back into the crystal. The initial distribution of the particles
was assumed to be triangular at the left end face of the
parallelepiped. What was calculated in the simulation
process was the probability P;(n) of finding the diffusing
particle after n steps at the ith site. In the process of
diffusion the probability field of finding the particle moved
inside the parallelepiped along its long axis. Summing the
probabilities P;(n) over n makes it possible to find the
number of hops that the particle has done into the ith site
in the diffusion time. Knowing this sum, we can calculate
the average real time 7., that the particle stayed at a site
and the correlation factor.

The results of these calculations show that the average
time between hops indeed depends on the number of hops, i.e.
on the diffusion time. For instance, for the distribution A with
os/kT=0 and o,/kT =3.518 the following data were
obtained:

Number of hops 100 1000 2000 4000 6000
T/t 0.034 0.020 0.018 0.017 0.017

The quantity with an asterisk refers to the dual crystal.
The obtained dependence is due to the nonequilibrium

Table 3. Diffusion in a three-dimensional disordered system.

—InF

T ! 1 1 1 1
6 a/kT

Figure 3. Temperature dependence of the correlation factor: ¢ is the
standard deviation of the energies of the transition states, curve /
corresponds to the normal and triangular distributions (A and B in
Table 3), and curve 2 corresponds to the uniform distribution (C in
Table 3) [51].

nature of the initial distribution of the concentration in the
sample and the fact that the real distribution of the
energies of the transition states approaches the given
distribution over the entire volume of the lattice (because
of expansion of this region). This effect may be the reason
why in real systems the diffusion coefficient is time-
dependent. However, no significant discrepancies between
diffusion over short and long times, which were detected
by Akhiezer and Davydov [57], were discovered in this
simulation.

Several results obtained for the case where z = 6 are listed
in Table 3. As expected, the average real time 7., that a
particle stays at a site is shorter than the average over the sites
(the diffusion path follows the lower barriers), with the
difference increasing as the temperature is lowered. How-
ever, the times Ty and 7.4 are close even at the lowest
temperatures studied. In accordance with Eqn (11),
Treal /T° < 1 at as/kT = 0 and 1,y /7" > 1 at 0, /kT = 0.

Table 3 shows that the correlation factor strongly depends
on the shape of the distribution of &,. Figure 3 depicts the
dependence of —In F on o, /kT. In all cases the curves are
linear at low temperatures. The following interpolation
formulas were proposed in Ref. [51]:

a2 p
—lanakT [1 exp( kaﬂ, (27)

Type oy /kT os/kT F T/t D/D*
of distribution — -
Real Equilibrium by (11)  Averaged over sites

A 0 0.88 1 1.54 1.37 1.37 0.65
0.528 0 0.92 0.97 0.88 0.90 0.96
3.518 0 0.048 0.017 0.014 0.317 2.84
6.157 0 0.0020 3.0 x1074 6.7 x1073 0.87 6.82

B 1.225 0 0.59 0.54 0.48 0.66 1.10
4.082 0 0.020 58x1073 4.6 x1073 0.317 3.46

C 1.155 0 0.70 0.60 0.55 0.69 1.16
2.309 0 0.32 0.16 0.15 0.39 2.16
4.619 0 0.048 6.7 x1073 54x1073 0.45 7.25
5.774 0 0.019 1.2x1073 9.2 x107* 0.45 15.4
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where the parameters a and b take the values

Model A B C
a 1.08 1.08  0.79
b 0.44 044 046

As a result, self-diffusion in a disordered system at
0s/kT = 0 proceeds faster than in a dual ordered system.
The excess of the coefficient D above D* was also observed
for a double-barrier system (see Fig. 2). This is due to the
possibility of the particle choosing the lower barriers in the
course of diffusion. But if o,/kT=0 and o/kT #0,
diffusion proceeds slower than in the respective crystal
because of the capture of the diffusing particles by deep
stable states. An increase in the width of the distribution of
the energies of the transition states lowers the effective
activation energy needed for a particle to migrate, and for
almost all distributions reduces the pre-exponential factor Dy.
An increase in the width of the distribution of the energies of
the stable states has the opposite effect.

Thus, the data show that a decrease in the correlation
factor and the average time between hops as a result of a
crossover from a crystal to a disordered system do not balance
each other perfectly, so that the value of the diffusion
coefficient for a disordered system may exceed that for a
dual system many times over. Hence in theoretical estimates
of the diffusion coefficient it is advisable to study the average
lifetime and the correlation factor separately.

Diffusion in a three-dimensional system of sites can also
be studied by the stationary method. This problem is
equivalent to the problem of the conductance of a random
grid of resistors connecting neighboring sites. Here the
quantity Ae/kT corresponds to the ratio of resistances of the
poor and good conductor, R,/R;. Figure 4 depicts the data
gathered by calculating the conductance of a grid of resistors
on a simple cubic lattice containing 24 x 24 x 24 sites [69] for
the cases where R,/ Ry = 10 and oco. In the diffusion problem
these two values correspond to Ag/kT = 2.3026 and oo. As
Ae/kT — oo in the region where o) < 0.25 (i.e. below the
percolation threshold), the diffusion coefficient vanishes
because of loss of connectedness in the system of sites, which
are connected by low transition states.
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Figure 4. Dependence of the relative conductance G of a grid of resistors on
the fraction (p) of randomly positioned resistors with lower resistance for
the ratios R,/R; = 10 (curve /) and oo (curve 2). The lattice is a simple
cubic lattice consisting of 24 x 24 x 24 sites with periodic boundary
conditions at the lateral faces [69].

The difference between the diffusion coefficients for
steady-state and non-steady-state diffusion in a three-
dimensional system was studied in Ref. [70] on models of a
simple cubic lattice consisting of 11 x 11 x 20 or 9 x 9 x 18
sites (in the latter case, with periodic boundary conditions).
In the course of several thousand steps, the mean square of
the displacement of a particle is proportional to the number
of hops, so that the ordinary diffusion law (4) holds. For
steady-state diffusion, the concentrations at the lateral faces
of the parallelepiped were fixed. It was found that at o3 = 0
the steady-state and non-steady-state diffusion coefficient
coincide within experimental error. But if o, =0 and
gs # 0, only the non-steady-state diffusion coefficient D
changed in relation to D*; the steady-state diffusion
coefficient was found to be insensitive to the distribution
of the stable states, as it is in the case of a linear system (see
above). Variations in the specific site distribution of the
energies have an effect on D that amounts to several percent
(for ob/kT < 1.76). The reasons why the steady-state
diffusion coefficient differs from the non-steady-state are
the same as in the case of a linear system: the initial
nonequilibrium of the state and the trapping of the
diffusing particle by deeper stable states in non-steady-
state diffusion.

Limoge and Bocquet [54] used the Monte Carlo method to
simulate the self-diffusion of impurity (tracer) particles in
random materials, e.g. amorphous solids. Their data show
that for equal energies of transition states the correlation
factor is indeed equal to unity and that the distribution of the
energies of the transitions states reduces the correlation
factor. The resulting activation energy of self diffusion is
somewhat lower than the initial activation energy for the
ordered crystal.

The same researchers [71] studied random walks along the
sites of a three-dimensional disordered system using a Monte
Carlo simulation. Here they also found that the effect of
disorder in sites and transition states is not additive.

Interesting objects in which the hopping mechanism of
self-diffusion can be observed by the MD method are what is
known as superionic conductors, such as Agl, Ag,S, Ag,Se,
Ag,Te, CaF,, and SrCl,, in which a transition into the
quasiliquid state of one of the ionic sublattices can be
observed (the cation sublattice in the case of silver salts and
the anion sublattice in CaF; and SrCl,) at temperatures below
the melting point of the compound [72-75]. Gillan and
Dixon [74] constructed MD models of SrCl, consisting of
324 ions by employing the Born—Mayer— Huggins inter-
particle potentials [13]. The time dependence of the mean
square displacement of anions had the shape characteristic of
liquids (a section of initial rise that transforms into an
approximately linear dependence). The anion self-diffusion
coefficient in the model increased rapidly in the interval
between 1200 and 1300 K to values of order 10~3 cm? s~!
characteristic of liquids, although the cation sublattice
remained rigid. However, here the diffusion mechanism
proved to be of the hopping type, and in the diffusion events
the anions used the octahedral pores of the fluorite lattice.
The time between anion hops is approximately one-tenth of
the time that an anion stays at a site. It was also found
possible to identify the diffusion events along vacancies and
interstices, and the concentration of vacancies near the
melting point was estimated at 0.032 per anion. A rise in
pressure leads to a decrease in the diffusion coefficient and,
respectively, a decrease in the conductance of the salt as a



April, 1999

Diffusion mechanisms in disordered systems: computer simulation 309

result of the rise in the temperature of the transition to the
superionic state [74, 75].

The special features of the diffusion processes discussed
above, related to the presence of distributions of energies of
stable and transition states, i.e. of an activation energy
distribution, play an important role in the behavior of
amorphous systems, since they determine the way in which
irreversible and/or reversible structure relaxation proceeds.
When relaxation is irreversible, partial annihilation of defects
of different signs occurs and the free volume decreases slightly
(free-volume outflow). The annihilation mechanism is con-
nected with diffusion that proceeds according to the activa-
tion mechanism discussed above. On the other hand,
reversible relaxation occurs because of the temperature
dependence (or pressure dependence, and the like) of the
short-range order, in particular, ‘chemical short-range order,’
which is defined in the simplest way as the ratio of the number
of A—B pairs of nearest neighbors to this number in the
disordered solid solution. One way to analyze the structure
relaxation kinetics is to follow the temporal variations of
physical properties, such as electrical resistance, thermal
resistance, magnetic properties, enthalpy, rates of deforma-
tion under stress, and positron annihilation. This approach
has been used to discover the wide activation energy spectra in
amorphous alloys [76]. In the case of Zr—Ni—Cu alloys, the
kinetics of reversible structure relaxation points to a narrow
activation energy distribution near 1.1 eV and to a contribu-
tion of the cooperative mechanism at temperatures above 500
K [77]. Here relaxation is due to the regrouping of nickel and
copper atoms. Since the characteristic structure relaxation
times are long (e.g. ranging from 75 to 7000 s for the
amorphous alloy FesoNigBoo [78]), direct simulation if such
processes by the MD method is impossible.

4.2.4 Other variants of activated self-diffusion. The exchange
mechanism of diffusion amounts to a direct exchange of the
positions of two neighboring atoms in a single elementary
event and is assumed to be highly improbable in the closely
packed structure of metal alloys. The ring mechanism
amounts to a simultaneous movement of a group of atoms
in the form of a rotation of a triplet, quadruplet, etc. of
nearest neighbors, in which movement each particle takes up
the site occupied previously by another participant of the
rotation. For instance, Divinski and Larikov [79] proposed
that in the quasicrystalline intermetallic compounds AIMnSi
and AlZnMg, six to ten atoms participate in the rotation of
rings. Fam Khak Huang [80] simulated diffusion in a two-
dimensional disordered lattice by the ring and exchange
mechanisms. The lattice had 40 x 40 sites with a periodic
boundary condition and a uniform (on a segment) distribu-
tion of energies ¢, of transition states with a standard
deviation oy. The energies of the stable states were assumed
constant. Three types of experiments were conducted in
which the atoms move (1) only by the ring (A) mechanism,
(2) only by the exchange mechanism (B), and (3) by both
mechanisms A and B simultaneously. In A-calculations
attempts were made to rotate a square with four atoms at
the vertices. It was assumed that the squares of the grid rotate
independently and that clockwise and counterclockwise
rotations are equiprobable. After a certain number of steps
the mean square displacement of the atoms was calculated.
The mean equilibrium average time between two successive
rotations was calculated by the method proposed in Ref. [51].
It was found that the correlation factors for both mechanisms

monotonically decrease with temperature and that for equal
values of oy, /kT the factor Fp is smaller than Fs. Hence the
correlation factor was dependent not only on temperature but
also on the diffusion mechanism. This can be explained by the
fact that at low temperatures two-site (mechanism B) and
four-site (mechanism A) traps form in the system. The
In(D/D*) vs. o, /kT curves are not linear and the slope of
the curves increases with decreasing temperature. This leads
to a temperature dependence of the activation energy. As in
Ref. [51], the ratio D/D* is greater than unity and increases
with decreasing temperature.

When both mechanisms are activated, the reciprocal time
between two diffusion events is almost equal to the sum of the
reciprocal times for each mechanism. However, the diffusion
coefficient in this case is larger than the sum of the coefficients
for each mechanism. For instance, at opa /kT = opp /kT = 5.2
the ratio s = Dag/(Da + Dp) = 5.45. The reason is that the
possibility of the atoms moving by two mechanisms reduces
the concentration of traps and hence leads to an enhancement
of the correlation factor, which now depends not only on
temperature but also on the Da-to-Dy ratio.

Fam Khak Huang et al. [81] simulated diffusion by the
ring mechanism in a lattice with 10 x 10 x 10 sites with
periodic boundary conditions. They considered independent
rotations of two types of ring: squares and rectangles. In all
cases the mean square displacement of an atom was found to
be proportional to the number of rotations, and the average
real time between two rotations was found to be equal to the
equilibrium value.

Thus, in diffusion by several possible mechanisms, the
mechanisms interact, which increases the diffusion coeffi-
cient.

5. Diffusion along interstices
of an amorphous system

5.1 One-component model systems

Fam Khak Huang and the present author [67, 82, 83] studied
self-diffusion in models of amorphous one-component
systems constructed at 7=0 by the continuous static
relaxation (CSR) method with pair potentials of the type

oo o)

(i.e. in ‘canonical structures’ [84]) with m = 6, 18, 30 (686
particle in the main cube, and ry = 0.1 nm), in models of
amorphous iron with the Pak— Doyama potential [85], and
in several crystalline structures. In all cases periodic
boundary conditions were employed. The diffusion of
atoms of the system along interstices was investigated, so
that the interaction potential between an interstitial atom
and the other atoms was the same as between the atoms of
the amorphous solid. At first the distributions of the
energies of the stable and transition states were found. To
this end the positions of the potential minima (interstices)
and the routes from one interstice to the neighboring
interstice were calculated. Finally, the diffusion coefficient
for the interstitial atoms was calculated by the method of
determining the velocity of drift initiated by an external
field by Eqn (26). The calculations were done by the
probability-field method with an external force incorpo-
rated in it.

(28)
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Figure 5. Distribution energies of the stable (curves /) and transition
(curves 2) states for diffusion in canonical structures with m = 6 (a), 18 (b),
and 30 (c) [83].

Figure 5 depicts the distributions of the energies of stable
and transition states in amorphous canonical structures with
m =6, 18, and 30. At m = 18 and 30, splitting of the first
peaks for the stable states was detected. In all cases the
dependence of the self-diffusion coefficients was found to be
of Arrhenius type:

&
InD=—A—B--.
n kT

(29)

When the impurity—solvent potential is taken in the
Pak—Doyama form, the pre-exponential factors
Dy = exp(—A) for BCC and FCC lattices, the amorphous
iron model, and canonical structures prove to be very close, in
the 0.015 to 0.029 cm? s~! range, and the factor B takes the
following values:

System  BCC m=6 m=18 m =30 FCC
B 0.0602 0.0602 0.0628 0.0692 0.0693 0.0863

a-Fe

The values of the factor B for amorphous structures are
between the values for BCC and FCC structures. This
corresponds to a situation in which the average coordination
numbers for the amorphous phase are between the coordina-
tion numbers for the BCC and FCC structures. Thus, the self-
diffusion coefficient proves to be a monotonic function of the
average coordination number.

5.2 Diffusion of hydrogen in amorphous alloys

The solubility of hydrogen in amorphous alloys based on
hydride-forming metals (e.g. Pd, Zr, and Nb) amounts to
several tens of percent and the enthalpy of solution of
hydrogen in such alloys is negative (heat is released) [86].
These systems exhibit a strong dependence of some of the
properties of the dissolved hydrogen (partial volume, dissolu-
tion heat, diffusion activation energy, and the pre-exponen-
tial factor) on hydrogen concentration. Deviations from the
Sieverts law (when the solubility is proportional to the square
root of the hydrogen pressure) have been recorded even at
relatively low concentrations (0.2—0.4 at. %) [87]. In amor-
phous alloys of 3d-metal (Fe, Co Ni)—metalloid (B, P, Si)
type the solubility of hydrogen, Cy, is much lower (of order
10~* at. H/at.Fe at normal pressure [88]). For instance,
Gritsenko et al. [88] found that in the amorphous metal
alloy Feg3Bi7 the dependence of Cy on 1/7 is nonlinear,
which suggests that there is a strong temperature dependence
of the entropy and dissolution heat of hydrogen in the
amorphous alloy (the dissolution heat increases from
—5.66 kJ (g-at.)~! at 393 K to —0.55 at 573 K). The Sieverts
law breaks down in this case. Gritsenko et al. [88] measured
the diffusion coefficient for hydrogen in Feg3B;7. The
dependence of In D on 1/T was also found to be nonlinear,
with the diffusion activation energy decreasing with increas-
ing temperature. The average value of this activation energy
in the 430-580 K interval is 29 kJ (g-at.)~!, which places it
between the activation energies in the BCC and FCC
structures of iron (10 and 45 kJ (g-at.)~!, respectively).
However, the diffusion coefficient in the amorphous alloy
Feg3B7 is several orders of magnitude smaller than in iron.
Contrary to such behavior, in the amorphous alloy Fe;3B9Si3
a reduction in diffusion coefficient for hydrogen under
crystallization has been discovered [89].

Toth et al. [90] studied the diffusion of hydrogen in the
event of hydrogen desorption from the amorphous alloys
Zr—Ni—H,. The desorption proceeds in two stages. The first
one is very fast, and its mechanism has yet to be explained.
The second one is of an activation nature with an activation
energy E = 0.32 4+ 0.04 eV (the electrical resistance method)
and 0.34 £ 0.02 ¢V (the spin-echo method).

These effects are caused by the presence in the alloy
structure of positions for the hydrogen impurity with
different stable-state energies. A large fraction of the
hydrogen atoms is trapped by low-energy absorption centers
and on heating to 523 K in vacuum remain in the ‘bound’
state. The trapping centers may be large pores, cavities and
microcracks in which molecular hydrogen accumulates.

Lately the diffusion of hydrogen in amorphous silicon has
attracted a lot of attention [91-98]. There are many
indications of the presence of inhomogeneities in the
structure of various types, which affect the nature of
hydrogen diffusion. The activation energies found by the
method of measuring the spin-lattice relaxation times
(milliseconds are the characteristic values), are less by one
order than those measured by the slower secondary-ion mass
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spectroscopy method (times of the order of hours and days)
[91]. Gaseous hydrogen trapped by micropores plays an
important role here. Dozier et al. [92] found that, in diffusion
in a-Si:H/a-Si:D bilayers, the hydrogen and deuterium
atoms can move over distances not exceeding 100 A before
they meet micropores and are trapped by them. Branz et al.
[98] treated the problem of hydrogen diffusion in a system
with single traps analytically. The results of their calculations
are expressed in terms of the average time an impurity stays in
a trap, 1. For short times (¢ < 1), trapping effects manifest
themselves in the concentration profile. For long times
(t > 1), the diffusion profile is ordinary but with an effective
diffusion coefficient. The average path of a hydrogen atom
before it is trapped decreases on an increase in illumination
intensity and an increase in the annealing temperature [98].

However, Greim et al. [95] noted an increase in the rate of
hydrogen diffusion in amorphous silicon films illuminated by
intense light in the visible spectrum; probably, hydrogen
atoms free themselves from the traps. Possibly, the problem
of the effect of light is not so simple and several different
processes participate in the given phenomenon.

The concentration of hydrogen is also important. As it
increases from 1 to 19 at. %, the diffusion coefficient Dy
increases by four orders of magnitude [92]. This agrees with
the idea that the first impurities are trapped by the deepest
traps (in our case, the unsaturated silicon bonds) and are the
slowest to diffuse, while the impurities that follow are trapped
by shallower traps, which have a weaker ‘grip’ on the impurity
particles [94]. The limiting role of traps was noted by Beyer
and Zastrow [96], who believe that hydrogen diffuses in an
uncharged state and is trapped by intrinsic defects (free silicon
bonds). Another small-sized impurity, lithium, diffuses in the
form of Li" ions and is trapped primarily by negatively
charged impurity ions or soluble hydrogen. At very low
hydrogen concentrations (lower than 2 x 10'° at.cm™3) the
results differ strongly from those observed at ordinary
concentrations above 102° at. cm—3. For instance, Roth et
al. [97] found, for low concentrations, that £ = 2.70 eV and
that the pre-exponential factor Dy = 2.2 x 10*cm?2s~!. The
high value of Dy does not agree with the simple trap model.
The situation becomes even more complicated if in the
process of diffusion annealing there is structure relaxation.
In this case Dy may be explicitly time-dependent (say,
increase with the passage of time [93]).

A distribution of the energies of the stable states is
accompanied by a distribution of the energies of the
transition states. This may explain the deviations from the
temperature dependence of the diffusion coefficient from the
Arrhenius law [88, 99, 100].

Kirchheim [101] studied the diffusion of hydrogen in
amorphous metal alloys analytically. The very fact that a
trap for hydrogen can accommodate only one atom can be
taken into account by using Fermi— Dirac statistics for the
impurity atoms. The researcher derived an expression for
the hydrogen diffusion coefficient that incorporated the
width of the energy distribution for the impurity atoms at
sites. It was found that at high hydrogen concentration the
diffusion activation energy is lower than at low concentra-
tions.

The distributions of the energies of the stable and
transition states for hydrogen solutions in amorphous iron
in comparison to hydrogen solutions in crystalline iron were
analyzed in Refs [82, 83]. There the impurity—solvent
interaction potential was chosen in the form of the Morse

potential:

u(r) = efexp[—2a(r —ro)| — 2exp[—a(r—ro)|}, r<r,
()_{0, ! ' r>r*,
(30)

where rg=0.173 nm, r* =0.5 nm, ¢=0.22 eV, and
o = 13.4 nm~'. Good agreement with the experimental data
was achieved for the activation energies of hydrogen diffusion
in the BCC and FCC structures of iron. At 700 K the diffusion
coefficients were found to be equal to 6.1 x 1074, 1.0 x 1077,
and 1.6 x 1073 cm? s~! for BCC, FCC, and amorphous iron,
respectively.

A statistical calculation of the properties of diluted
solutions of hydrogen in amorphous iron was carried out
in Ref. [102]. The H—Fe interaction potential was chosen in
the form (30). The activation energy of hydrogen diffusion
in BCC and FCC iron and the entropy of hydrogen
dissolved in the crystalline and liquid phases of iron were
taken as the adjustable properties. The entropy of the
dissolved hydrogen was established by calculating the
frequencies of vibrations of the hydrogen atoms at sites by
the formulas for a three-dimensional oscillator. The diffu-
sion activation energy was found from the profile of the
potential energy of a hydrogen atom along straight paths
connecting two neighboring equilibrium positions in the
computer model of amorphous iron or in an iron crystal.
Wide distributions of the energies and vibration frequencies
of hydrogen atoms in the stable states were found. In the
crossover from the liquid phase to the amorphous, the
distributions get narrower and are shifted to somewhat
lower energies and higher frequencies.

At low temperatures the hydrogen atoms occupy the
lowest energy positions possible, i.e. positions close in
coordination to the O-positions in FCC iron (at the center
of the elementary cell). In these positions the vibration
frequencies of the hydrogen atoms are also the lowest. The
presence of energy and vibration-frequency spectra leads to a
strong temperature dependence of the entropy and the heat of
dissolution of hydrogen in amorphous iron. At ~ 500 K the
sign of the dissolution heat changes. The calculated values of
the dissolution of hydrogen in amorphous iron are higher
than in BCC iron over the entire region where the BCC phase
exists [102].

The behavior of hydrogen in amorphous iron was also
studied by Gritsenko et al. [103] by the Monte Carlo method.
Earlier Yamamoto [104] constructed models of liquid and
amorphous iron by using the MD and CSR methods and the
Pak—Doyama pair potential. For the H-Fe pair the
potential was chosen in the form of a fourth-degree poly-
nomial, and the coefficients of the polynomial and the cutoff
radius of the potential were selected according to the entropy,
the dissolution heat, and the diffusion activation energy of
hydrogen in crystalline BCC and FCC iron, and also
according to the entropy, the dissolution heat, and the
absolute value of the dissolution of hydrogen in liquid iron.

The H - Fe potential was then used to calculate the energy
spectrum of the hydrogen atoms dissolved in amorphous
iron. The spectrum turned out to be close to that found in Ref.
[102]. The concentration of the equilibrium positions of
interstitial hydrogen (~ 4.3 per iron atom) lies between the
values for BCC and FCC iron. In the FCC crystal model, one
equilibrium octahedral position per iron atom was found
(with an energy of —2.17 eV). The energy of the lowest
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hydrogen state in amorphous iron (—2.55 eV) is lower than
that in the crystal iron lattice.

Gritsenko et al. [103] analyzed the geometry of the
arrangement of atoms of amorphous iron surrounding
hydrogen atoms for low-energy (L) and high-energy (H)
equilibrium positions of the impurity particles.

For the L-positions, the packing of the iron atoms
surrounding the hydrogen atoms is octahedral and smeared,
which agrees with the fact that the coordination number is six.
For H-positions, the peak in the angular distribution is close
to 109°, which correlates with low coordination number. The
Voronoi polyhedra built for the hydrogen atoms have a larger
volume for L-positions (0.706 A®) than for H-positions
(0.448 A’) and a much larger sphericity (0.446 against
0.204). However, one can encounter H-positions with very
large Voronoi-polyhedron volumes. A similar picture is
observed for FCC iron, where the volume of the low-energy
octapores is much larger than that of tetrapores, which have
a higher energy. Interestingly, the biggest pores in an
amorphous matrix are not the most favorable from the
standpoint of energy for the introduction of hydrogen. For
L-positions, a relationship exists between the energy of the
interstitial hydrogen atom and the volume of the corre-
sponding Voronoi polyhedron. Such a relationship is absent
for most H-positions. Large vacancy-like pores are not
energetically advantageous for the introduction of atomic
hydrogen [103].

The hydrogen diffusion coefficients for models of amor-
phous, BCC, and FCC iron were calculated in Ref. [83] by the
probability-field method with an external force incorporated
in the method (see above). The impurity —solvent interaction
potential was chosen in the form (30) with ¢ =0.22 eV,
=134 nm~!, and r*=0.173. It was found that the
distributions of energies of the stable and transition states
are almost independent of the model density. These distribu-
tions are depicted in Fig. 6. The calculated parameters of the
hydrogen diffusion in the different models are listed in
Table 4.

Table 4. Parameters of hydrogen diffusion in amorphous iron.

Iron Source Diffusion parameters
Dy, 1074 cm?s™! E, eV at.™!
BCC-Fe Model [83] 1.4 0.126
Experiment [100] 22 0.0611-0.142
FCC-Fe Model [83] 7.3 0.398
Experiment [100] 100 0.334-0.521
Amorphous Model [83]
85.59 at. nm 3 3.8 0.246
81.47 at. nm~3 15 0.292
77.78 at. nm 3 22 0.297

For BCC and FCC iron the calculated value of the
activation energy E was found to be in good agreement with
the experimental data. This suggests that the iron —hydrogen
potential was chosen correctly. For amorphous-iron models,
the value of E increases slightly as the model density
decreases. For the pre-exponential factor, the discrepancy
with the experimental data for crystals reaches a factor of ten,
which is due to the difficulty of calculating the period of
vibrations of a hydrogen atom near a stable state [83]. The
calculated diffusion coefficient for hydrogen in amorphous
iron is between the values for BCC and FCC iron. This is
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Figure 6. Distributions of energies of the stable (curve /) and transition
(curve 2) states for diffusion of hydrogen in the model of amorphous iron.
The iron density is 85.6 at. nm ™~ [83].

similar to the result obtained in Section 5.1 for self-diffusion
in one-component systems.

5.3 Diffusion of carbon along interstices

of amorphous iron

Lancon et al. [106] calculated the coefficient of the diffusion
of carbon along the interstices of an amorphous-iron model in
which the diffusing impurity atoms were assumed to travel
along tunnels between triples of neighboring solvent atoms.
Knowing the impurity —solvent potential, one can calculate
the activation-barrier heights and then find the diffusion
mobility by the Monte Carlo method. It was found that in
this approximation the Arrhenius law holds, and the
calculated carbon diffusion coefficients were found to be
larger than for FCC iron (by a factor of approximately 60 at
500 K).

6. Local inhomogeneities of an amorphous
structure and the problem of ‘defects.” Vacancies
(‘pores’) in amorphous systems. The vacancy
diffusion mechanism in amorphous metals

Initially researchers assumed that the existence of fairly stable
large pores in amorphous solids (and in models of amorphous
solids) was highly improbable. For instance, Bennett et al.
[107] and Finney and Wallace [108] found that after one or
several atoms are removed from the model of an amorphous
solid with a Lennard—Jones potential and subsequent
molecular-dynamics or static relaxation, the cavities almost
disappear. However, in modeling a system of a covalent
nature (with a three-body Keating potential, which was
proposed for amorphous silicon type tetrahedral semicon-
ductors), it was found that the pores are fairly stable. Later it
was shown that the size and stability of pores depend on the
interparticle interaction potential and the local surroundings
of a pore. True, already in the illustrations in Ref. [109], after
static relaxation of the amorphous iron model with a Johnson
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potential one can clearly distinguish a well-defined large pore.
Still later, the method of positron annihilation and later the
method of small-angle x-ray scattering and electron micro-
scopy made it possible to detect micropores, similar to
vacancies in crystals, in real amorphous metal alloys (e.g.,
see Refs [110—113]). Kristiak [114] found that these
‘quasivacancies’ can combine into clusters. Limoge [115]
analyzed the dependence of the diffusion coefficients on the
hydrostatic pressure and found that the activation volume is
approximately equal to the atomic volume. There are
indications that on deformation the number of micropores
(‘quasivacancies’) inside an amorphous metal alloy increases
(this was established for NigyNbao [116] and Pd4oNisoP20
[117]), while on heating the number of such micropores
decreases because of defect healing [118]. Micropores may
generate microcracks in the amorphous alloy, which strongly
affect the properties of the alloy [119]. The healing of
micropores in the process of structure relaxation usually
results in a slight compression of the solid, known as ‘free-
volume outflow.” As for the data on the effect of structure
relaxation on micropores, they are quite contradictory, since
this relaxation affects both the topological order and the
chemical short-range order.

Usually, the analysis of pores in an amorphous structure is
done on atomic models by calculating the radii of the hard
spheres that can be embedded in the model without intersect-
ing the atomic spheres [120, 121]. This yields a distribution of
pores by their radii. Ahmadzadeh and Cantor [120] and
Finney [121] investigated models of close packing of hard
spheres and the system after its relaxation with Lennard-
Jones or Morse type pair potentials. The behavior of pore
type inhomogeneities in an amorphous structure was studied
in Ref. [122] on ‘canonical structure’ models constructed with
pair potential of the type (28). There the maximum value of
the distance from a point inside the model to the nearest atom
was determined. This distance (in units of d = (V/N)1/3,
where N is the number of particles in volume V) increases
somewhat as the rigidity of the potential grows, from 0.827 at
m =4 to 0.886 at m = 16. For the hard-spheres model this
distance is 0.884. This means that biggest pore has a diameter
of about 0.66 of the radius of the sphere.

In models of amorphous iron with a Pak—Doyama
potential, the maximum radii of the pores were 65—70 pm
[10]. Under structural relaxation of the model these pores
become somewhat smaller. Pores with a radius larger than
80 pm disappear in the CSR process and can be thought of as
being removable structural defects of amorphous iron. The
decrease in the maximum radii of the pores under structural
relaxation has also been detected in the model of the
amorphous alloy Fe;7oB3o [10].

Fam Khak Huang et al. [48, 123] studied pores in models
of amorphous iron with the Pak— Doyama potential [there
were 686 particles in the main cube, the density was
85.49 at.nm~>, and the energy of the system varied from
—1.371 (model A) to —1.385¢eV at.”! (model B)]. The models
were constructed by the CSR method and then some were
annealed at 300 and 500 K by the Monte Carlo method. The
pore size was determined by the method described above, and
the radius of the atom was set at 131 pm. In model A,
146 pores with radii larger than 40 pm were discovered. Of
these, 14 pores had radii larger than 60 pm and the largest
pore had a radius of 82 pm. In the most stable model there
were only 4 pores whose radii were larger than 60 pm. Large
pores prove to be the unstable elements in the structure, and

their removal under structural relaxation (as result of
annealing by the Monte Carlo method at 300 and 400 K)
reduces the energy of the system. In the process of relaxation,
the sizes of individual pores may increase or decrease, and an
initial shrinkage may be replaced by dilation (and vice versa),
which is the consequence of collective atomic movements.
Theoretically there can also be thermally activated formation
of large pores with radii exceeding 80 pm, but due to its low
probability this phenomenon was not observed in the
computer experiment. The pore-size distributions obtained
in Ref. [123] are depicted in Fig. 7.

40 50 60 70 80 90 r,pm

Figure 7. Pore size distributions for the model of liquid iron at 1900 K
(curve 7) and the models of amorphous iron with energies —1.371 (curve 2)
and —1.393 eV per atom (curve 3) [122].

Pore type defects may also be encountered in models of
amorphous alloys, especially those where the sizes of the
component atoms differ substantially. For instance, in
models of amorphous Fe>Tb constructed at 7= 0 by the
CSR method, the Voronoi-polyhedra volume for the iron
atoms amounted to 0.0152 £ 0.0034 nm? and that for the
terbium atoms, to 0.0243 4= 0.0011 nm? [124]. A comparison
with one-component amorphous systems shows that the
spread in the Voronoi-polyhedra volumes and their spheri-
city are much larger in the case of the amorphous alloy Fe>Tb.
If we assume the radii of the iron and terbium atoms to be 124
and 178 pm, respectively, then at absolute zero the maximum
radius of a pore in this model will be 134 pm. Twenty four
pores with radii larger than 134 pm were found in the model.
The largest pore could hold not only such impurity atoms as
H, C, O, N, B, P, and Si but also the atoms Fe, Co, and Ni.
Actually, such a pore is a vacancy for iron atoms. The
emergence of such large vacancy type pores in models of
amorphous alloys was observed earlier in the Fe—B system
[125].

Fam Khak Huang et al. [126] did similar calculations of
the distributions of pores for models of amorphous Co—P
alloys. The researchers built distributions of the number of
pores surrounding a phosphorus atom and the total volume
of these pores. It was found that the number of large pores
surrounding a phosphorus atom is much larger than the
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number of large pores surrounding a boron atom (which is
smaller than a phosphorus atom). More than that, the
number of large pores surrounding a cobalt atom in Co—P
alloys is larger than the corresponding number in Co—B
alloys. The number of large pores increases with phosphorus
concentration.

Van Ee et al. [127] used the MD method to study the
dynamics of the size distribution of pores in models of
amorphous Nig; B9 at temperatures above and below the
glass transition (vitrification) temperature. As the tempera-
ture increases, the concentration of large pores (having seven
or more neighbors) increases and the number of small pores
(having six or fewer neighbors) decreases, and the pore size
distribution broadens. Large pores may form in the process of
merging of small pores and are a catalyst of diffusion by the
cooperative mechanism.

Fam Khak Huang and the present author [123] defined a
vacancy in an amorphous phase as a pore that is capable of
repeatedly changing places with its neighboring atoms. The
potential profile for the transition of an atom to the
neighboring pore in the amorphous iron model has the form
of an activation barrier only for pores whose radii exceed 80
pm. In model A (see above), only one such pore was detected.
If static relaxation is carried out after the atom and the pore
have changed places, the two remain in their new positions. In
all other cases (for R < 80 pm) the displaced atom returns,
under static relaxation to its initial position. Hence, in
amorphous iron, pores with R < 80 pm play no important
role.

For further studies of vacancies in amorphous iron
models, several pores were created simultaneously by remov-
ing certain atoms whose separation was not smaller than
0.5 nm. Then static relaxation was carried out. This resulted
in the formation of pores with radii from 60 to 110 pm. An
analysis of the potential energy profiles showed that only
pores with radii greater than 80 pm had normal activation
barriers. Thus, the critical radius of 80 pm is the same for
natural and artificial pores. The heights of the potential
barriers for the atoms surrounding large pores vary between
0.4 and 2.7 eV. The height of the lowest barrier for each pore
does not exceed 1.4 eV [123].

After a pore with a radius greater than 80 pm exchanges
places with a neighboring atom, it will again have a radius
greater than 80 pm, and so it is capable of changing places
again, i.e. is a vacancy and does not disappear in the process
of moving from place to place. However, the simulation
described in Ref. [123] has shown that often the vacancy
disappears after changing place (i.e. the vacancy dissipates)
and lands in a ‘sink.” The concentration of such sinks
determines the average number of hops that a vacancy
makes before it disappears, i.e. before it becomes an ordinary
small pore.

The concentration of sinks was found in Ref. [123] by
directly counting the number of sites at which artificially
generated vacancies disappeared after changing places with
an atom. For the models that were studied the atomic fraction
of sinks decreases with the model energy (i.e. with the growth
of model stability) from 0.53 to 0.125. It was found that a
vacancy often disappears near the places where there is an
atom with an (algebraically) enhanced energy of interaction
with the neighbors.

If the sink concentration is o, the probability of a vacancy
making exactly n hops and disappearing is w, = (1 — a)"a.
The average number of hops that a vacancy makes before it

disappears is

oy = ST 1 o

> wy o

Hence in the most stable B model a vacancy can make on
average eight hops before it disappears.

Fam Khak Huang et al. [128] studied the self-diffusion
of iron in an amorphous model containing 686 particles.
Atoms were alternatively removed (one at a time) from the
model, static relaxation was performed, and the energy of
the system was calculated. The heights of the activation
barriers in the transition of the neighboring atom to a pore
were calculated. The result was an expression for the
vacancy self-diffusion coefficient in amorphous iron in the
form D = 5.8 x 103 exp(—177.4 kJ/RT) cm2s~!. At 500 K,
Dre = 8.1 x 1072 ¢cm? s~!' (a computer calculation). The
experimental data for the alloy Fe4oNigP14B¢ have a large
spread. At 500 K, Dg. = 9.5 x 107! cm? s~! (the data of
Shuehmacher and Guiraldenq [129]) and 4.5 x 10~'8 cm?2s~!
(data of Valenta et al. [130]). The fact that the experimental
data exceed the calculated results is probably due to the
presence in the initial amorphous alloy of nonequilibrium
vacancies or to other diffusion mechanisms.

Ultimately, Fam Khak Huang et al. [48, 123] proposed the
following scheme for diffusion in an amorphous solid by the
vacancy mechanism. First, as a result of a thermal fluctua-
tion, a large pore appears. Then the pore diffuses, changing
places with neighboring atoms and making on average 1/a
hops. After that the vacancy lands in a sink and becomes a
relatively small pore, which does not participate in the process
of changing places.

In the case of crystalline solids rapidly hardened at high
temperatures, the real vacancy concentration may be much
higher than the equilibrium concentration. On the other
hand, in amorphous metals the nonequilibrium vacancies
(large pores) perish in the sinks after a few hops. Hence there
is a high probability that these vacancies will manifest
themselves only in the initial stages of diffusion, precisely, in
the structure relaxation process. Subsequently, largely equili-
brium vacancies remain, and these are formed in the process
of thermal activation. Sinks may also be generated by
fluctuations.

What is important is that in models of amorphous
structures single pairs aggregate into larger formations
consisting of ten or more spheres [131—134]. Medvedev
[134] built Voronoi polyhedra and did an analysis in which
the difference in the sizes of the component atoms, geome-
trical balls, was taken into account explicitly. A computer
hard-spheres model was used to calculate the distribution of
the ‘passage radius’ Ry, i.e. the radius of a ball that can pass
without clearance between a neighboring triplet of balls of the
model. The presence of large Ry is an indication that there are
large pores in the system. By ‘coloring’ the bonds in the
Voronoi grid starting from those that have the smallest values
of the passage radius one can finally obtain a percolation
cluster. All colored bonds will have passage radii that are no
smaller than a certain value R., which is reached at the
moment that percolation emerges. A test sphere of radius
< R, can be guided along all these bonds of the grid,
including the path through the same along the percolation
cluster. Medvedev [134] found that the penetrability of the
system increases with the difference in the radii of the atoms,
although the packing factor remains approximately the same.
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The reason is that the presence of larger atoms (balls) leads to
the formation of still larger pores.

The behavior of vacancies in amorphous globules consist-
ing of 1600 atoms with a Lennard-Jones pair potential was
studied in Refs [68, 135], where the migration of vacancies was
also investigated by the Monte Carlo method. A large spread
in the heights of the activation barriers for the transition of an
atom to a neighboring vacancy was discovered. In the process
of self-diffusion, a vacancy prefers to move along paths with
barriers of minimum height.

Delaye and Limoge [136] also analyzed the behavior of
vacancies in the amorphous phase with the Lennard—Jones
pair potential. They found that the formation energies and the
heights of the activation barriers have wide distributions.
Their calculations showed that the vacancy self-diffusion
coefficient in the amorphous phase can be larger than in a
crystal with the same pair potential by a factor of approxi-
mately 10°.

The same researchers [137, 138] used the MD method (864
and 10976 atoms in the main cube, the temperature was varied
between absolute zero and 10 K) to study vacancy-like defects
in glasses with the Lennard—Jones potential. Atoms were
removed (one at a time) from the system and relaxation was
carried out. Here, too, as in Refs [48, 123], three possible
modes of behavior were discovered: (1) relaxation of the
surrounding region with the vacancy being conserved; (2) one
of the neighboring atoms hops into the vacancy, and this is
accompanied by the transition of the first coordination sphere
surrounding the former vacancy; and (3) the vacancy
collapses and its free volume outflows to the surface of the
glass. The outcome of the event was not related in any definite
manner to the level of local shear stresses or to the extent to
which the nearest surroundings resemble an icosahedron,
although a low level of local pressure or a high sphericity of
the surroundings probably stabilizes the vacancy. Vacancy
collapse is facilitated by high local pressure and low
sphericity. Irrespective of the size of the system, vacancy
collapse is observed, on the whole, in 25% of the chosen sites
(these were the sinks for the vacancy), in 10 to 30% of the
cases the vacancy remained stable, and in the remaining cases
one of the neighboring atoms hopped into the vacancy.
Sometimes, however, an intermediate case, which does not
fit this classification, was observed.

According to Delaye and Limoge [138], vacancies may
appear at the sites of the amorphous phase that are sinks, may
migrate to other sinks and disappear there, and the like. To
make these processes more graphic, the researchers simulated
the processes by reversing the time in the MD experiment
after the vacancy had collapsed (before the collapse the
vacancy did several hops from its initial position). They
were able to restore the order of the migration process from
the initial site to the sink. Delaye and Limoge [138] also
calculated the distributions of the energies of formation of
vacancies and the heights of the activation barriers for various
models. For instance, at an average energy of vacancy
formation of 0.062 eV, the observed distribution extended
from 0.034 t0 0.08 eV. The lower the local pressure, the higher
the formation energy. The volume of stable vacancies
amounts to 35 to 80% of the volume per atom. The heights
of the activation barriers extended from 0.0055 to 0.118 eV
(0.067 eV in FCC argon at absolute zero), i.e. the barriers can
be much higher or much lower than those in the crystal. The
vacancy formation entropy was calculated by the frequency
spectra; it varies for different sites from 2.1k to 8.0k, where k

is Boltzmann’s constant and is smaller, the larger the change
in volume in vacancy formation. The vacancy formation heat
is proportional to the change in the volume in the process of
vacancy formation, with the proportionality factor coincid-
ing with the value for FCC argon.

Delaye and Limoge [138] estimated the self-diffusion
coefficient in amorphous argon assuming that the effects of
the distribution of the energies of the stable and transition
states balance each other. In this case the ratio of the self-
diffusion coefficients in the amorphous and crystalline states
is given by the formula

Dym AS
— = ¢eXp (Tf> eXp [—(AHF + AHacl)} ) (32)

D cryst

where ASy, AH;, and AH, are the differences between the
formation entropies, formation heats, and vacancy activation
energies in the amorphous phase and the crystal. Such a
simplified approach yields the value Dym/Deryst = 108 for
argon at 25 K, which corresponds to the observed values for
metallic glasses at 7= T, /3.

Thus, the above research shows that in disordered systems
of the type of an amorphous metal alloy there can be a
quasivacancy mechanism of diffusion that operates via
activated formation of pores (quasivacancies) and a further
change of places between the pores and the neighboring
atoms. What makes this mechanism different from the
vacancy mechanism in crystals is that (a) large pores are
generated in special positions (sources), which are defective
from the standpoint of structure, via thermal or another type
of activation; (b) the quasivacancies are of different sizes; (c)
pores whose sizes are smaller than a certain critical value lose
their ability to migrate; (d) the collapse of a quasivacancy
occurs not on macroscopic defects, as it does in a crystal, but
in the defective sections of the amorphous structure, or
vacancy sinks; and (e) there is a ‘mean free path’ of a vacancy
before collapse, and the length of this path is determined by
the sink concentration. As a result of thermal fluctuations,
sources and sinks may appear in different parts of the system.

7. Modeling diffusion in loose systems

As noted earlier, three-body potentials, which incorporate
not only the distances between the particles but also the
valence (azimuthal) angles in the triangles formed by the
triplets of nearest neighbors, are used in the construction of
models of amorphous or liquid matter with covalent bonds
(e.g. Si, Ge, and CdTe).

One must bear in mind that the inclusion of the
Stillinger — Weber potential does not automatically lead to
the construction of a covalent amorphous model. For
instance, it is practically impossible to construct such a
model on the basis of a random initial arrangement of atoms
in the main cube. The reason is that in the final state the
coordination number for almost all particles must be equal to
four. Hence, in constructing covalent models a key issue is the
initial arrangement of the atoms, which is usually chosen to be
ordered and is then relaxed in one manner or another. In
modeling the liquid phase, three-body corrections play an
insignificant role, since the coordination numbers in the
liquid state of silicon type substances are substantially larger
than four and the structure of the three-body correction to the
potential does not correspond to the topology of the real
system.
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A characteristic feature of real loose structures is the
presence of a large number of inner cavities (pores) con-
nected by channels, which may serve as rapid diffusion paths.
For instance, experiments have shown that an Au impurity in
amorphous Ge and Pt in a-Si diffuse at 673—-923 K along
interstices. Here they can be trapped by traps of various
depths [139], similar to the case of hydrogen diffusion (see
Section 5.2). The presence of large pores is also a character-
istic feature of models of ionic and covalent noncrystalline
systems.

The pore size distribution in models of amorphous silica
constructed by the Monte Carlo method has been calculated,
for example, by Chan and Elliott [140]. In ionic MD models of
SiO; glasses containing 3000 atoms in the main cube, there
were 3.1 x 10! pores cm ™3 sufficient to contain an He atom
of radius 1.28 A, and 1.8 x 10%' pores cm 3 that were capable
of incorporating a neon atom of radius 1.38 A [141] (a f3-
crystobalite crystal contains 2.18 x 10?> pores per cubic
centimeter with a radius of 1.62 A per atom). Taraskin et al.
[142] made a thorough study of the shape of the pores in SiO,
models (648 particles) constructed with allowance for the
three-body interaction. The researchers discovered the effect
of pore grouping into more complicated, irregularly shaped
‘branches’ consisting of 10 to 20 pores, although most pores
are single entities. Crossing each other, the ‘branches’ form
‘trees.” The distance between the ends of long branches
(containing more than three pores) increases as a power-law
function of the number of pores with an exponent close to
0.82. The shape of the longest pores is close to linear.
Obviously, the arrangement of the pores is important from
the viewpoint of the diffusion mechanism (the presence of
easy diffusion paths, the percolation aspect, and the like). The
filling of these cavities by atoms of He, Li, or Na may
dramatically change the shape of the first sharp peak (the
precursor peak) in the structure factor of silica [143].

Computer data on the mechanisms of diffusion in models
of loose noncrystalline systems are scant. Molecular
dynamics calculations show that in the equilibrium-liquid
region the self-diffusion coefficients for particles in ionic
models and in models of liquid silicon and germanium are
(in order of magnitude) 10~> cm? s~! and higher, but rapidly
decrease on cooling to minimum values that can still be
measured (of order 107 cm? s !), and then practically
vanish. For instance, such was the result for KCI and ZnCl,
[42]. Small ions (Lit) diffuse faster than large ions [144].
Despite the cooperative diffusion mechanism in liquid-oxide
models, Soules [145] described the temperature dependence of
the self-diffusion coefficients for ions in SiOz, ByOs,
Na,O - SiO, and BeF, by the Arrhenius formula with
activation energies close to the experimental values.

Balasubramanian and Rao [146] and Huang Chengde
and Cormack [147] detected the preferable paths of
migration of the fairly mobile ions Nat, KT, etc. through
tunnels formed by overlapping pores between tetrahedral
SiO4 groups in models of alkali silicate glasses constructed
by the MD method. In real complex silicate glasses, the
competition between ions of different alkali metals leads to
the appearance of anomalies in the diffusion mobility and
the related electrical conductance of the glasses; these
anomalies are represented by minima in the concentration
dependence (the polyalkaline effect). For instance, in
xLixO - (1 — x)NaO - 2Si0; glasses, the conductance passes
through a minimum at x = 0.5 [148]. At high temperatures,
the polyalkaline effect is suppressed, probably, in connection

with the easier relaxation of the anions. The MD method
makes it possible to reproduce the polyalkaline effect on
models by using specific interionic interaction potentials
[146, 147].

A characteristic feature of ionic and ionic-covalent
systems is the formation of large complex ions (of the SiO}~
type in silicates), which in view of their high stability may
diffuse in the melt as an integral whole. For instance, in
modeling ion transport in the melts of cryolite — Al,O3 [149]
and CaF,—Al,03 [150] systems in an external electric field,
the researchers found that aluminum ions are dragged by the
surrounding oxygen ions to the anode in the first case; the
effect was just the opposite in the second case. The direction
of migration in the field is determined by the structure and
degree of stability of the first coordination spheres surround-
ing the ions. The Al-O pairs proved to have the longest
lifetime, while in the absence of oxygen the Al-F pairs
proved to have the longest lifetime. When aluminum oxide is
added to fluoride, the oxygen ions replace fluorine in the first
coordination sphere of the aluminium ion, and the fluorine
ions lose their ability to drag the aluminum particles in the
transport process.

8. Conclusion

We have discussed the results of computer simulation of
diffusion processes in disordered systems for the two main
diffusion mechanisms: cooperative (drift) and activation. For
the first mechanism we can calculate with good accuracy
(with an error of several percent) the self-diffusion coeffi-
cients for the particles of the system, provided that the
interparticle interaction potentials are known. Calculating
the potentials proper proves to be the most difficult problem.
We also found that a detailed analysis of the cooperative
mechanism is possible if the diffusion coefficients are larger
than 107¢ cm? s~! and that for smaller values of D the MD
method proves to be of little use. Possibly, the study of large
models incorporating 10%— 109 particles will make it possible
to move into the D ~ 1078 —1072 cm2 s~! range. The study of
this mechanism for even stronger supercooling will require
new theoretical approaches and calculation algorithms.

The main problems related to the activation mechanism of
diffusion along interstices and the vacancy (or quasivacancy)
mechanism in dense disordered systems appear to have been
developed fairly thoroughly. The key factor is the presence of
distributions of the energies of the stable and transition states.
The distributions can be calculated, at least in principle, if we
know the interparticle interaction potentials. Knowing these
distributions, we can calculate the average time that a particle
stays at a site and the correlation factor, which can then be
used to calculate the self-diffusion coefficient for a compo-
nent. We can also find the activation energy spectrum, which
plays a central role in structure relaxation processes. The
number of such calculations performed so far is clearly
insufficient.

One must bear in mind that atomic models of amorphous
metals that contain only thousands of particles can produce
incorrect results when used to described what is known as
medium-range order (on the scale of several nanometers or
several tens of nanometers). This type of order is often
observed in amorphous alloys, manifesting itself in the form
of singularities in the small-angle region of the structure
factor. Studying diffusion on such scales requires models of
amorphous metal alloys that contain tens of thousands of
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atoms (incidentally, modern medium-power computers can
already handle such models).

The structure of loose disordered systems, such as
covalent, ionic, and with an intermediate type of bonding,
and the diffusion mechanisms for such systems appear to be
more diverse than in the case of metal alloys. The research
done so far in this field suggests that the presence of inner
cavities (pores), the size distribution of the pores, the nature
of pore overlap, the formation of easy paths for diffusion, and
the mutual effect of rapidly diffusing ions play an important
role. Far less studied is the behavior of the particles that form
the fixed (more precisely, almost immobile) frame and are
coupled by strong covalent bonds (as in amorphous silicon)
or the strong Coulomb interaction (as in silica). The methods
of theoretical analysis of diffusion processes in such systems
have to be developed more thoroughly. However, in this case,
too, the main diffusion mechanisms are the cooperative (for
the liquid state) and the activation (in the glassy state). As in
the case of dense systems, the transition from one mechanism
to the other takes place in a region of diffusion coefficients
(temperatures) that cannot be studied directly by the MD
method.
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