
Abstract. Nonlinear, collective, soliton type excitations in zig-
zag molecular chains are analyzed. It is shown that the non-
linear dynamics of a chain dramatically changes in passing from
the one-dimensional linear chain to the more realistic planar
zigzag model Ð due, in particular, to the geometry-dependent
anharmonism that comes into the picture. The existence or
otherwise of solitons is determined in this case by the interplay
between the geometrical anharmonism and the physical anhar-
monism of the interstitial interaction, of opposite signs. The

nonlinear dynamic analysis of the three most typical zigzag
models (two-dimensional alpha-spiral, polyethylene transzig-
zag backbone, and the zigzag chain of hydrogen bonds) shows
that the zigzag structure essentially limits the soliton dynamics
to finite, relatively narrow, supersonic soliton velocity intervals
and may also result in that several acoustic soliton types (such
as extension and compression varieties) develop simultaneously
in the chain. Accordingly, the inclusion of chain geometry is
necessary if physical phenomena are to be described in terms of
solitary waves.

1. Introduction

Advances in contemporary nonlinear physics have led to the
discovery of new elementary mechanisms that determine on
the molecular level the progression of many physical
processes in crystals and other ordered molecular structures.
Today the role of acoustic solitons is quite clear to ensure the
most efficient mechanism of energy transfer in such processes,
for example, as heat conduction and breakdown of solids [1 ±
4], or propagation of signals in biological macromolecules [5].
Topological solitons serve as models of structural defects in
polymer crystals, and their mobility ensures the possibility of
such processes as plastic deformation [6 ± 8], relaxation [9],
premelting [10]. The role of topological solitons in the
description of structural transitions and chemical reactions
was discussed in Refs [11 ± 14].

Early theoretical investigations of the nonlinear dynamics
of macromolecular chains [15 ± 18] considered one-dimen-
sional (spatially linear) models with the positive-sign anhar-
monism, which only took into account the longitudinal
displacements of atoms (molecules) in the chain. In this case,
the repulsion between the approaching adjacent sites in the
chain grows faster than in the harmonic approximation. One
of the consequences of this fact is the existence of dynamically
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stable solitary compression waves, which are supersonic
acoustic solitons.

For the first time the effects of transverse vibrations of
molecules in the chain on the dynamics of solitons were
analyzed in Ref. [19]. The solitons were found to be highly
sensitive to transverse perturbations. This issue is studied in
greater detail in Refs [20 ± 24].

Without taking the transverse movement of units of the
chain into account it would be impossible to understand the
mechanism of functioning of certain biomolecular chains. In
aDNAmolecule, for example, the opening of pairs of bases in
the transverse direction ensures the possibility of denatura-
tion. The Peyrard ±Bishopmodel of melting ofDNA [25 ± 27]
only takes into account the transverse motion of conjugate
pairs of bases. Even though an isolated DNA molecule is
considered (which has both longitudinal and transverse
degrees of freedom), this model in fact describes the one-
dimensional dynamics of a molecular chain on an effective
substrate. A comprehensive review of themodels of nonlinear
DNA dynamics can be found in the monograph [28].

The real geometry of biomolecular systems calls for the
development of two- and three-dimensional models. This is
the only way of taking into consideration the anharmonism of
the system vibrations caused by its geometry. For example,
for the simplest cluster model of enzyme protein a-chymo-
trypsin it was shown that geometrical anharmonism in a two-
dimensional system ensures transfer of energy between the
degrees of freedom even in the case of small amplitudes [29,
30].

Application of the latter-day computational capabilities
to the analysis of nonlinear dynamics of molecular systems
permits going over from simple one-dimensional models to
the more sophisticated two- and three-dimensional models
that better represent the actual geometric structure of the
system. The most coherent and convenient objects in this
respect are zigzag molecular chains.

In this paper we consider the planar (two-dimensional)
dynamics of a free molecular chain. Obviously, the chain in
the absence of a substrate will only have a ground state with a
regular stable structure provided that the interaction between
remote neighbours is taken into account in addition to the
short-range interaction. The inclusion of long-range interac-
tion results in that the chain displays a secondary structure,
such as is often encountered in many macromolecules (DNA,
proteins, and the like). Geometrically, the secondary struc-
ture takes on the shape of a spiral, the flat zigzag being a
particular such case.

If we only consider the longitudinal and transverse
displacements, the model of the spiral will become much
simpler and will reduce essentially to a two-dimensional spiral
(flat zigzag chain). Here, the primary structure results from
the interaction between first neighbours, and the secondary
from that between second neighbours. Such a system [31] may
be regarded as the simplest theoretical model of an isolated
biomolecular chain. For the alpha-spiral of protein, for
example, the interaction between the closest neighbours
involves deformations of the relatively rigid valence bonds,
and interaction with second neighbours involves deforma-
tions of the soft hydrogen bonds.

The flat zigzag structure is much closer to reality than the
one-dimensional anharmonic lattice. Observe that the pas-
sage from two- to three-dimensional models in the description
of certain important types of dynamic behaviour does not
bring about any significant modifications [31, 32]. At the

same time, as pointed out in Refs [19 ± 22], the distinction
between one- and two-dimensional models is fundamental.

Even in a one-dimensional model the inclusion of the
interaction with second neighbours [33, 34] dramatically
changes the dynamics of the system. In a two dimensional
model this gives rise to a secondary structure, which brings a
new factor into the dynamics of the system: geometrical
anharmonism. Even if all the molecules are bound with
harmonic forces, the geometry of the system gives rise to an
effective negative anharmonism. This effect was first studied
in Ref. [35] in connection with the breather-like solutions of
the dynamic equations of one-dimensional chain in three-
dimensional space.

Many polymer macromolecules have a flat zigzag shape.
For example, the polyethylene (PE) macromolecule in three
dimensions has a stable two-dimensional transzigzag con-
formation. Here, the interaction with the first neighbours
takes place through deformation of valence bonds, and that
with the second and third neighbours occurs through the
deformation of valence and torsion angles. As shown in Refs
[36, 37], in the approximation of infinitely rigid valence bonds
the transition from the rectilinear chain to the transzigzag
conformation leads to a dramatic change in the type of soliton
solutions. Instead of compression solitons, the nonlinear
elementary excitations come to be represented by extension
solitons that owe their existence to the geometric anharmon-
ism.

The flat zigzag shape is also featured by chains of
hydrogen bonds � � �H±X� � �H±X� � �H±X� � � in hydrogen
halides [38 ± 40], where X are fluorine, chlorine, bromine,
and iodine, respectively. Here, the zigzag structure of the
chain is due to the orientation interaction between adjacent
molecules.

The purpose of this paper is to give a classification of
soliton excitations in zigzag molecular chains, and to analyze
the conditions of their existence and stability.

Section 2 deals with the study of nonlinear dynamics
based on the model of a two-dimensional spiral Ð a flat
zigzag with the interaction of the first and second neighbours.
The dynamic properties of compression solitons are studied.

In Section 3 we present the results of the study of
dynamics of extension solitons in the PE molecule in the
context of a realistic model that takes into account deforma-
tion of both the valence angles and valent bonds.

In Section 4we discuss the results of the study of nonlinear
dynamics of flat zigzag chains of hydrogen bonds.

The main results of this paper are summarized in the
Conclusions. The Appendices give a brief description of
numerical techniques used for finding the soliton solutions.

2. Solitons in the molecular chain
with secondary structure

Here we are going to consider the simplest two-dimensional
model of an alpha-spiral protein macromolecule [31].
Deformations of valence bonds in this model are taken
into account via the interactions between first neighbours,
and deformations of hydrogen bonds linking the peptide
groups are taken into account via the interactions between
second neighbours. These interactions are assumed to
exhibit central symmetry. We shall perform a detailed
`soliton' analysis of the model, outline the classification of
soliton solutions, and check their stability by numerical
simulation of dynamic behaviour.
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2.1 Generalized model of a zigzag chain
Consider a planar zigzag chain represented schematically in
Fig. 1a. Let the zigzag of the chain be directed along the x axis,
and lie in the xy plane; then at equilibrium the nth chain
molecule has the coordinates

x0n � nlx ; y0n �
�ÿ1�nly

2
;

where lx and ly are the longitudinal and the transverse steps of
the zigzag, respectively. Our chain is a two-dimensional
spiral. It may be regarded as two parallel linear chains with
a period l � 2lx, linked together by a zigzag chain of rigid
(valent) bonds. The geometry of the chain is completely
determined by the step l and the angle of the zigzag
a � 2 arctan�lx=ly�.

Now it is convenient to go over from the absolute
coordinates of the nth molecule xn, yn to the dimensionless
relative variables

un � xn ÿ x0n
l

; vn � �ÿ1�
n�1�yn ÿ y0n�

l
:

Here un and vn define, respectively, the dimensionless long-
itudinal and transverse displacements of the nth molecule
from its equilibrium position, the positive direction of the
transverse displacement being towards the centre of the
zigzag of the chain (Fig. 1b). Then the dimensionless
equilibrium length of the rigid bond is b � �h2 � 1=4�1=2,
where h � ly=2lx � �1=2� cot�a=2� is the dimensionless para-
meter of the zigzag width.

The Hamiltonian of the chain may be expressed as

H �
X
n

�
1

2
Ml 2� _u2n � _v2n� � Kl 2

�
U�rn� � V�qn�

��
; �1�

where M is the mass of each molecule of the chain, K is the
characteristic rigidity coefficient, and a dot above the symbol
denotes differentiation with respect to time t. The dimension-
less potentials of intermolecular interaction U�r� and V�q�
describe interaction between first and second neighbours
(Fig. 1a). For a two-dimensional model of the alpha-spiral,
M corresponds to the mass of the peptide group, U�r� to the
potential of a valent bond, and V�q� to the potential of the
hydrogen bond. The dimensionless deformations of the

bonds are given by

rn �
����������������������������������������������������������������������������
un�1 ÿ un � 1

2

�2

� �hÿ vn ÿ vn�1�2
s

ÿ b ;

qn �
������������������������������������������������������������������������
�1� un�1 ÿ unÿ1�2 � �vn�1 ÿ vnÿ1�2

q
ÿ 1 :

The Hamiltonian (1) corresponds to the set of equations
of motion

M�un � ÿKl 2 q
qun

Wn ; M�vn � ÿKl 2 q
qvn

Wn ; �2�

where

Wn � U�rnÿ1� �U�rn� � V�qnÿ1� � V�qn�1� :

To facilitate subsequent manipulations, we introduce the
dimensionless time

t � o0t ; o0 �
�����
K

M

r
;

and go over from the relative displacements un, vn to the new
variables

rn � un�1 ÿ un ; Zn � vn � vn�1 :

We also introduce new notation

Pn � q
qrn

U�rn� ; Qn � q
qrn

V�qn� ;

Sn � q
qZn

U�rn� ; Tn � q
qZn

V�qn� ;

so that in the new variables we have

rn �
�����������������������������������������������
rn �

1

2

�2

� �hÿ Zn�2
s

ÿ b ;

qn �
����������������������������������������������������������������
�1� rnÿ1 � rn�2 � �Zn ÿ Znÿ1�2

q
ÿ 1 :

Then the set of equations of motion (2) assumes a more
convenient dimensionless form

d2rn
dt2
� Pn�1 ÿ 2Pn � Pnÿ1 �Qn�2 ÿQn�1 ÿQn �Qnÿ1 ;

�3�
d2Zn
dt2
� ÿ�Snÿ1 � 2Sn � Sn�1� � Tn�1 ÿ Tnÿ1 � Tn�2 ÿ Tn ;

�4�

which was studied in the continuous approximation in
Ref. [31].

2.2 Low-amplitude vibrations of the chain
Let us consider the dynamics of low-amplitude waves along
the zigzag chain. We use the linear approximation

Pn � k1
4b2
�rn ÿ 2hZn� ; Qn � k2�rnÿ1 � rn� ;

Sn � hk1
2b2
�rn ÿ 2hZn� ; Tn � 0 ;

M V�q�

aU�r�

l y

a

l

lx

nÿ 2 nÿ 1 n n� 1 n� 2 n� 3

b

un

v n

b

h

1

Figure 1. (a) Model of a zigzag-shaped molecular chain, and (b) the local

coordinate systems un, vn. Zigzag angle a � 2p=3.
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where

k1 � dU

dr

����
r�0

; k2 � dV

dq

����
q�0

are the dimensionless rigidities of the interaction potentials.
The set of equations of motion (3), (4) is then linearized:

d2rn
dt2
� k1

4b2
�rn�1 ÿ 2rn � rn�1� � k2�rn�2 ÿ 2rn � rnÿ2�

ÿ hk1
2b2
�Zn�1 ÿ 2Zn � Znÿ1� ; �5�

d2Zn
dt2
� hk1

2b2
�rn�1 � 2rn � rn�1� ÿ

h2k1
b2
�Zn�1 � 2Zn � Znÿ1� :

�6�
We seek solution of the linear set of equations (5), (6) in

the form of a harmonic wave

rn � A1 exp

�
kn

2
ÿ Ot

�
; Zn � A2 exp

�
kn

2
ÿ Ot

�
; �7�

where O is the circular frequency, and ÿ2p4 k4 2p is the
dimensionless wave number.

After substitution of expression (7) into the linear set of
equations (5), (6) and some straightforward algebrawe get the
linear dispersion equation�

O2 ÿ k1
b2

sin2
k

4
ÿ 4k2 sin

2 k

2

��
O2 ÿ 4h2k1

b2
cos2

k

4

�
ÿ
�
hk1
b2

sin
k

2

�2

� 0 : �8�

In the limit of k1 ! 0, when the zigzag splits into two
independent linear chains, the dispersion equation (8)
reduces to the well-known linear dispersion law for an
isolated linear chain:

O � 2
�����
k2
p ���� sin k

2

���� :
The solution of dispersion equation (8) has two branches:

O2
� � k1

�
1�

�
1ÿ 1

2b2

�
cos

k

2

�
� 2k2 sin

2 k

2

�
�����������������������������������������������������������������������������������������������������������������
k1

�
1ÿ 1

2b2
� cos

k

2

�
ÿ 2k2 sin

2 k

2

�2
�
�
k1

h

b2
sin

k

2

�2
s

:

The upper branch O��k� corresponds to high-frequency
optical phonons, and the lower branch Oÿ�k� corresponds
to low-frequency acoustic phonons. In the long-wave limit
�k! 0� the frequency of acoustic phonons is O2

ÿ ! k2k2,
therefore the dimensionless speed of sound in the chain is
v0 � �����

k2
p

.
The rigidity of the hydrogen bond is approximately one

order of magnitude less than that of the valent bond, so for
the sake of definiteness we set k1 � 1, k2 � 0:1. We also use
the most typical zigzag angle a � 2p=3. Then the dimension-
less width of the zigzag is h � 1=

���
3
p � 0:289, and the

dimensionless length of the valent bond b � ����������
7=12

p � 0:577.
The shape of the dispersion curve is shown in Fig. 2. The
upper (optical) branch of the curve rises steadily from the

minimum value of O��0� � 1 to the maximum value of
O��2p� � 1:732. The lower (acoustic) branch Oÿ�k� reaches
a maximum value of 0.368 at k � 0:645p. The frequency of
acoustic phonons tends to zero at k! 0 and k! 2p. These
extreme values of the wave number correspond to the long-
wave longitudinal and bending waves of the zigzag.

2.3 Acoustic compression solitons
Now for the description of rigid valent bonds we use the
harmonic potential

U�r� � 1

2
k1r2 ;

and the Morse potential for the relatively soft hydrogen
bonds:

V�q� � e
�
exp�ÿbq� ÿ 1

�2 � k2

�
1

2
q2 ÿ 1

3
gq3 � . . .

�
;

where e � k2=2b
2 is the bond energy, g � 3b=2 the anharmo-

nic constant, and b > 0 the parameter of theMorse potential.
For the sake of definiteness, in future we are going to use fixed
values of rigidities k1 � 1, k2 � 0:1, and three characteristic
values of the anharmonic constant g � 1 �b � 2=3�, g � 0:1
�b � 2=30�, and g � 0:01 �b � 2=300� (strong, medium and
weak anharmonism).

The acoustic soliton in the zigzag corresponds to the
solution of the set of discrete equations (3), (4) in the form
of a constant-profile solitary wave

rn�t� � r
�
n

2
ÿ vt

�
; Zn�t� � Z

�
n

2
ÿ vt

�
; �9�

where n � 0;�1;�2; . . . ; r�z�; Z�z� ! 0 at z! �1, and v is
the velocity of the soliton. It is convenient to go over from the
absolute velocity v to the relative velocity s � v=v0.

The complexity of the model under consideration and the
necessity of taking into account the discrete character of the
chain do not allow the shape of the soliton r�z�, Z�z� to be
found with analytical methods. A high precision calculation
of the soliton shape is based on the pseudospectral Eilbeck ±
Flesch method [41, 42]. Application of this method to the
model in question is described in Appendix 6.1. This method
allows not only the shape of the soliton solution to be found,

0 p 2p

0

0.5

1.0

1.5

k

O

1

2

Figure 2.Optical (1) and acoustic (2) branches of the dispersion curve of a

two-dimensional zigzag chain at k1 � 1, k2 � 0:1, and a � 2p=3.
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but also its range of existence. Knowing the form of the two-
component soliton (9), it is easy to find its dimensionless
energy

E �
X
n

�
1

2

�
dun
dt

�2

� 1

2

�
dvn
dt

�2

�U�rn� � V�qn�
�
;

the two components of its amplitude AZ � ÿZ�0�,
Ar � ÿr�0�, and the root-mean-square width

D � 1

C

�1
ÿ1
�zÿm�2r�z� dz ; �10�

where

C �
�1
ÿ1

r�z� dz ; m � 1

C

�1
ÿ1

zr�z� dz :

Numerical analysis indicated that soliton solutions only
exist in a finite supersonic interval of velocities 1 < s < s1,
where s1 is a certain limiting value of the soliton velocity
above which there are no soliton solutions. The width of this
interval increases monotonically with the anharmonic con-
stant g. For example, for the values g � 0:01, 0.1, 1 the
velocity s1 is, respectively, 1.03, 1.30, 2.84. The characteristic
form of the soliton solution is shown in Fig. 3: the soliton is
bell-shaped with respect to both components. In the region of
localization of the soliton we observe longitudinal compres-
sion and transverse extension of the zigzag of the chain. As the
velocity s increases, the energy of the solitonE, the amplitudes
of compression Ar and extension AZ increase monotonically,
and the width of the soliton D monotonically decreases. The
particular values of these quantities are given in Table 1. Near
the maximum value of the velocity s1, however, the solution
has the form of a soliton against the background of a low-
amplitude optical phonon (Fig. 4). The existence of compres-
sion solitons is due to the `physical' anharmonism in the
interactions of second neighbours. In addition, the chain

features `geometrical' anharmonism of the opposite sign. As
the velocity increases, the amplitude of compression
increases, and thus the relative importance of geometrical
anharmonism. At s � s1, the physical anharmonism is
completely cancelled out by geometrical anharmonism, and
the compression solitons no longer exist.

Numerical simulation of the time evolution of compres-
sion solitons proves their dynamic stability. Solitons travel
along the chain at a constant speedwithout emitting phonons.
Upon collision, solitons interact like elastic particles: they
bounce without emission of phonons or change of shape
(Fig. 5). The interaction of solitons becomes inelastic only
near the right-hand bound on a soliton velocity.

2.4 Supersonic extension solitons
As indicated above, geometrical anharmonism at velocities
s > s1 precludes the existence of acoustic compression
solitons, but may promote the existence of extension
solitons. Numerical analysis of the discrete set of equations
of motion (3), (4) reveals that there are no stable solutions
corresponding to extension solitons. There are, however,
certain supersonic values of velocity at which one could
anticipate soliton-like extension waves of the zigzag chain.
As will be demonstrated, the lifetime of such solitary waves is
finite.

ÿ0.075

ÿ0.050

ÿ0.025

0
Z a

ÿ1
ÿ2

0

�10ÿ5

ÿ25 ÿ20 ÿ15

r

ÿ10 0 10

ÿ0.10

ÿ0.05

0

zÿ20

b

0

ÿ4
ÿ2

�10ÿ5

ÿ25 ÿ20 ÿ15

Figure 3. Acoustic compression soliton (g � 0:1, s � 1:05): (a) soliton

profile for transverse displacements; (b) the same for longitudinal

displacements.

Table 1. Soliton energy E, amplitudes of longitudinal compression Ar and
transverse extension AZ, and width D for different values of velocity s
�g � 0:1�.
s E Ar AZ D

1.01
1.02
1.03
1.04
1.05
1.06
1.07

0.00170
0.00478
0.00843
0.01277
0.01763
0.02297
0.02876

0.01487
0.02979
0.04389
0.05807
0.07203
0.08582
0.09941

0.02443
0.04663
0.06595
0.08392
0.10044
0.11571
0.12991

13.06
9.071
7.329
6.284
5.587
5.007
4.457

a

ÿ0.15

ÿ0.10

0

ÿ0.05

Z

ÿ10
ÿ5
0

5
�10ÿ4

ÿ20 ÿ15 ÿ10

r

ÿ10 0 10

ÿ0.15

ÿ0.10

0

ÿ0.05

ÿ20 z

b

5

4,5

4

�10ÿ4

ÿ20 ÿ15 ÿ10

Figure 4. Acoustic compression soliton against the background of a low-

amplitude optical phonon (g � 0:1, s � 1:1): (a) soliton profile for

transverse displacements; (b) the same for longitudinal displacements.
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Indeed, the topology of a zigzag chain admits the existence
of solitary extension waves with the asymptotic behaviour

vn ! 0; n! ÿ1 ; vn ! h ; n! �1 ;

rn ! 0 ; n! �1 : �11�

Application of the pseudospectral method to the discrete set
of equations ofmotion (3), (4) in the class of smooth functions
with asymptotics (11) for arbitrary velocity s > 1 gives only
an approximate solution. Let us consider a particular value of
the velocity and do a numerical simulation of the dynamics of
approximate solution in the infinite chain. For this purpose
we integrate the set of equations of motion in a finite chain

d2rn
dt2
� Pn�1 ÿ 2Pn � Pnÿ1 �Qn�2 ÿQn�1 ÿQn �Qnÿ1 ;

�12�

d2vn
dt2
� ÿSnÿ1 ÿ Sn � Tn�1 ÿ Tnÿ1 ; �13�

where n � 1; 2; . . . ;N. We set N � 300 and introduce viscous
friction at the ends of the chain to ensure absorption of
phonons emitted by the nonlinear wave (the condition of
absorbing ends). Now we consider initial conditions corre-
sponding to a nonlinear solitary wave centred around the
point n � 100. Each time the wave has passed 100 points, we
shift it back so as to simulate motion along an infinite chain.
The wave velocity s as a function of time t is shown in Fig. 6.
The motion of the wave is accompanied by emission of
phonons that gradually slows the wave down.

At g � 1 (Fig. 6a), the least emission corresponds to
s � 1:2568, when the energy of the wave is E � 0:06912. At

this velocity, the passage of 100 steps of the chain reduces the
velocity of the solitary wave by as little as 8� 10ÿ5%, and the
energy by 1� 10ÿ3%. Further decrease of velocity leads to
increased emission of phonons, and thus to amore substantial
deceleration of the wave. The emission of phonons increases
dramatically at s < 1:24 and leads to the decay of the solitary
extension wave. In this way, at the initial velocity of s � 1:3,
the finite lifetime of the solitary wave is t � 183638, and the
wave covers 143,200 steps of the chain.

As the parameter of anharmonism g decreases, the lifetime
of the solitary extension wave becomes greater. At g � 0:1
(Fig. 6b), over the entire time of numerical integration
t � 2 824 436:3, the wave has covered 2,000,000 steps of the
chain, and its velocity s has fallen from 1.25 to 1.09865. The
shape of the wave at the end of this period is shown in Fig. 7.
In fact, the wave displays the dynamics of a soliton. The
amplitude of emitted phononswith respect to the longitudinal
component r is 0.04% of the amplitude of the wave, whereas
the same with respect to the transverse component v is as
small as 0.001%. The energy of the wave is E � 0:0194894,
and the velocity s � 1:098632. The passage of 100 steps of the
chain reduces the energy of a solitary wave by 7:7� 10ÿ5%,
and the velocity by as little as 7:3� 10ÿ5%. Similar dynamic
behaviour is shown by a solitary extension wave in the case of
small anharmonism �g � 0:01�, and in the absence of
anharmonism �g � 0�.

Let us consider the interaction of solitary extension waves
and compression solitons. For this purpose we do a numerical
simulation of their collision in a finite chain ofN � 400 steps.
Numerical integration of the set of equations of motion (12)
reveals that the collision is inelastic. The collision between
solitary extension waves results in the emission of phonons
(Fig. 8), and the collision of a solitary extension wave with
compression soliton leads to the decay of the wave.
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The analysis of the simplest two-dimensional model of an
alpha-spiral protein molecule indicated that geometrical
anharmonism in the zigzag molecular chain delimits the

spectrum of velocities of solitons of longitudinal compres-
sion of the chain from above. The range of velocities contracts
monotonically with the decreasing anharmonism of the
interstitial interaction (physical anharmonism). At the same
time, geometrical anharmonism gives rise to a new type of
nonlinear waves Ð solitary waves of extension of the zigzag
of the chain, which display practically soliton dynamics near a
certain selected supersonic velocity value.

3. Extension solitons in a polyethylene molecule

Although the problem of the linear dynamics of the poly-
ethylene molecule was studied by Kirkwood [43] over half a
century ago, its nonlinear extension has only recently become
the subject of theoretical analysis [36, 37]. The interest was
evoked by the recognition of the importance of localized
soliton-type nonlinear excitations for the process of mechan-
ical destruction of one-dimensional crystals [44, 45]. It turned
out that the transition from the rectilinear chain to the
transzigzag conformation leads to a qualitative change in
the type of the soliton solutions: instead of compression
solitons, the role of nonlinear elementary excitations is now
played by extension solitons [36, 37]. The latter owe their
existence not to the physical but to the geometrical non-
linearity of the transzigzag, which is not present in the
longitudinal dynamics of the rectilinear chain.

This conclusion is reached in the approximation of
infinitely rigid valent bonds Ð that is, only considering the
deformation of valence angles. A more advanced study of
nonlinear dynamics of the transzigzag conformation was
performed in Refs [46, 47], where a model involving
deformations of valent bonds and valence angles was used
for finding the soliton solutions describing themotion of local
extension regions along the transzigzag. These solitons were
shown to exhibit a relatively narrow spectrum of supersonic
velocities.

3.1 Flat model of a polyethylene macromolecule
In the study of low-energy dynamic processes in the
polyethylene molecule, the motion of hydrogen atoms with
respect to the backbone is not important, and the approxima-
tion of united atoms may be used. Consider a molecule of
polyethylene (CH2±)x in the transzigzag conformation. At
equilibrium, the backbone of the molecule has a flat zigzag
structure characterized by a step r0 � 1:53 A (the equilibrium
length of the valent bond CH2ÿCH2), and a zigzag angle
y0 � 113� (the equilibrium valence angle CH2 ±CH2 ±CH2).
The transzigzag structure is shown schematically in Fig. 9a.

Let the transzigzag be directed along the x axis, and lie in
the xy plane; then the nth site of the chain at equilibrium will
have the coordinates

x0n � nlx ; y0n � �ÿ1�n
ly

2
;

where lx � r0 sin�y0=2� and ly � r0 cos�y0=2� are the long-
itudinal and the transverse steps of the zigzag of the chain. It is
convenient to go over from the absolute coordinates of the nth
point xn, yn to the relative coordinates

un � xn ÿ x0n ; vn � �ÿ1�n�1�yn ÿ y0n� :

Here un, vn define, respectively, the longitudinal and the
transverse displacements of the nth point from its equili-

400
400300

n

300 t

200

200

100

100

0

0

0.3

vn

0.2
0.1
0

a

400
400300

n

300 t

200

200

100

100

0

0

0.10

rn

0.05

0

b

Figure 8. Inelastic collision of solitary extension waves (g � 0:1,
s � 1:098632) in a cyclic chain of N � 400 steps: (a) transverse displace-

ments of steps of the chain versus time t; (b) the same for longitudinal

displacements.

0

0.1

0.2

0.3

vn

a

60 70 80 90
ÿ5
0

5

10
�10ÿ6

60 80
n

100 120 140

0.05

0

0.10

rn

b

60 70 80 90
ÿ5
0

5

10
�10ÿ5

Figure 7. Profile of solitary extension wave with respect to the transverse

component vn (a) and longitudinal component rn (b) in a zigzag chain (n is

the site number) with anharmonic constant g � 0:1. Wave velocity

s � 1:098632, energy E � 0:0194894.

March, 1999 Nonlinear dynamics of zigzag molecular chains 251



brium position, the positive direction of the transverse
displacement being towards the centre of the zigzag (Fig.
9b). The length of the nth valent bond and the cosine of the
nth valence angle are, respectively:

rn �
���������������������������������������������
�lx ÿ wn�2 � �ly ÿ zn�2

q
;

cos�yn� � ÿ anÿ1an ÿ bnÿ1bn
rnÿ1rn

;

where wn � un ÿ un�1 and zn � vn � vn�1 are the longitudinal
and the transverse contractions of the nth unit of the chain;
an � lx ÿ wn, bn � ly ÿ zn.

The Hamiltonian of the chain may be written as

H �
X
n

�
1

2
M� _u2n � _v2n� � V�rn� �U�yn�

�
: �14�

Here the mass of the unit of the chain isM � 14mp (mp is the
proton mass),

V�rn� � D0

�
1ÿ exp

�ÿb�rn ÿ r0�
�	2

is the potential of the nth valent bond, and

U�yn� � 1

2
e�cos yn ÿ cos y0�2

is the potential of the nth valence angle. According to Ref.
[48], the energy of the valent bond is D0 � 334:72 kJ molÿ1,
the parameter b � 19:1 nmÿ1, and e � 130:122 kJ molÿ1. In
Ref. [49], a higher energy value was used, e � 529 kJ molÿ1.

The flat mechanical model of the transzigzag under
consideration is shown in Fig. 9c.

3.2 Low-amplitude transzigzag vibrations
The dispersion equation for low-amplitude transzigzag
vibrations was first developed by Kirkwood [43]. A detailed
proof can be found in Ref. [46], so here we shall skip most of
the intermediate calculations.

The set of equations of motion

M�un � ÿ qH
qun

; M�vn � ÿ qH
qvn

; n � 0;�1;�2; . . . �15�

corresponds to Hamiltonian (14). We linearize this system
and seek its solution in the form of a harmonic wave

un�t� � A exp i�Ot� kn� ;

vn�t� � B exp i

�
Ot� k

�
n� 1

2

��
;

where o is the circular frequency, and ÿp4 k4 p is the
dimensionless wave vector. Then the dispersion equation has
the form

O2
��k� � o2

0�k� �
������������������������������
o4

0�k� ÿ o4
1�k�

q
; �16�

where

o2
0�k� � C1�1� cos y0 cos k�

� 2C2�1� cos k��1ÿ cos y0 cos k� ;
o4

1�k� � 8C1C2�1� cos k� sin2 k :

Here the rigidity parameters are C1 � K1=M, C2 � K2=Mr20,
where the rigidity of the valent bond is

K1 � d2

dr2
V�r�

����
r�r0
� 2D0b

2 � 405:53 Nmÿ1 ;

and that of the valence angle

K2 � d2

dy2
U�y�

����
y�y0
� e sin2 y0 � 18:308� 10ÿ20 J :

The shape of the dispersion curve (16) is illustrated in
Fig. 10. The upper branch O � O��k� corresponds to the
high-frequency optical phonons of the transzigzag, and the
lower branch O � Oÿ�k� to the low-frequency optical
phonons. The frequency of acoustic phonons tends to zero
as k! 0 and k! p. These extreme values of the wave
number correspond to the long-wave (smooth) longitudinal
and bending waves of the zigzag.
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Figure 10. (a) Optical, and (b) acoustic branches of dispersion curve of the
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The velocity of the long-wave longitudinal acoustic
phonons (the speed of sound) is given by

c0 � lx lim
k!0

Oÿ�k�
k
� 2

�������������
K2=M

p
tan�y0=2�����������������������������������

1� 4d tan�y0=2�
p ;

where the dimensionless parameter

d � C2

C1
� K2

K1r20

defines the ratio of the rigidity of the valence angle to that of
the valent bond (at e � 130:122 kJ molÿ1 we have
d � 0:01929; at e � 529 kJ molÿ1 this parameter is
d � 0:07841). As it turns out, the rigidity of the valent bond
is two orders of magnitude greater than that of the valence
angle. One could well have put up with the approximation of
an infinitely rigid valent bond d � 0 �K1 � 1�, but in this
approximation even at d � 0:01929 the speed of sound

�c0 � 2

������
K2

M

r
tan

y0
2
� 8449 m sÿ1

differs considerably from the exact value of
c0 � 7790 m sÿ1 � 0:92210�c0. Such a substantial deviation
of the speed of sound makes it necessary to take the
deformation of valent bonds into account.

3.3 Solitons of longitudinal transzigzag extension
The set of equations of motion (15) is so complicated as to
defy analytical treatment (unlike the case of infinitely rigid
valent bonds). The use of a pseudospectral method for finding
the shape of the soliton is not justified owing to the complex-
ity of the system of equations (15). We shall use a simpler
numerical technique of soliton analysis [50], according to
which, for every value of the velocity c, the soliton solution
un�t� � u�nlx ÿ ct�, vn�t� � v�nlx ÿ ct�, n � 0;�1;�2; . . . is
sought as an extreme point of a certain functional that
corresponds in the continuous approximation to the equa-
tions of motion of the system. The scheme of application of
this technique to the model under consideration is described
in Appendix 6.2.

Assume that fw0
n; v

0
ngNn�1 is our soliton solution with the

centre of symmetry at the site n � N=2. Then the relevant
soliton will be characterized by the energy

E �
XNÿ1
n�2

�
c2M

24l 2x

�
16w2

n ÿ �wn � wn�1�2 � 16�vn�1 ÿ vn�2

ÿ �vn�2 ÿ vn�2
�� V�rn� �U�yn�

�
;

the total contraction of the chain

R �
XN
n�1

wn ;

the root-mean-square width measured in periods of the
chain

D � 2

�������������������������������XN
n�1

�nÿm�2wn

R

vuut ;

where the point

m � 1

2
�
XN
n�1

nwn

R

defines the location of the centre of the soliton, as well as the
maximum value of the valence angle Ay � maxn yn, and the
maximum length of the valent bond Ar � maxn rn.

Numerical analysis indicated that the form of the soliton
solution depends on the value of the dimensionless parameter
d that characterizes the ratio between the physical and
geometrical anharmonism. The physical anharmonism is
due to the potential of the valent bond, whereas the
geometrical anharmonism is due to the potential of the
valence angle. Geometrical anharmonism prevails at
d < 0:0356, and physical prevails at d > 0:0356.

With d � 0:01929, the set of equations of motion (15)
admits three types of soliton solutions. The first type
corresponds to a solitary wave of longitudinal transzigzag
extension (Fig. 11a) with the amplitude Av � maxn vn < ly=2
(the maximum value of the valence angle in the neighbour-
hood of localization of the soliton is Ay < p) and asymptotic
behaviour wn; vn ! 0 at n!1. The second type is a solitary
wave of large-amplitude longitudinal transzigzag extension
(Fig. 11b) with asymptotic behaviour wn; vn ! 0 at n! ÿ1,
andwn ! 0, vn ! ly at n! �1. This solitary wave describes
the sequential unfolding of valence angles from one equili-
brium value yn � y0 to the other yn � 2pÿ y0. As a result, the
chain passes from one ground state fwn � 0; vn � 0g to
another fwn � 0; vn � lyg. We have already discussed such
a soliton in the flat model of an alpha-spiral. The third type
corresponds to a transzigzag solitary extension wave
(Fig. 11c) with amplitude ly=2 < Av < ly (p < Ay < 2pÿ y0)
and asymptotic behaviour wn; vn ! 0 at n!1. This soliton
is essentially a bound state of two opposite-sign solitons of the
second type.

The energy E, the root-mean-square width D, and the
overall longitudinal compression of the chain R as functions
of the dimensionless soliton velocity s � c=c0 are plotted in
Fig. 12. Solitons of the first type display a supersonic
spectrum of velocities 1 < s < s1 � 1:020. As the velocity of
the soliton increases, the energy E and the overall compres-
sion of the chain R increase monotonically, and the root-
mean-square width D decreases. Solitons of the second type
have a supersonic interval of admissible velocities
s2 � 1:023 < s < s3 � 1:062. In this case, E, D, and R all
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d

Figure 11. Deformation of the transzigzag corresponding to an extension

soliton of the first type, s � 1:02 (a), soliton of the second type, s � 1:05
(b), soliton of the third type, s � 1:0738, d � 0:01929 (c), and to a

compression soliton, s � 1:035, d � 0:07841 (d).
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decrease monotonically. Solitons of the third type only exist
at one velocity value s � s4 � 1:074.

The characteristic shape of a soliton of the first type is
shown in Fig. 13. With respect to its components wn, vn, yn,
the soliton has a characteristic bell-shaped profile of a solitary
wave. In the region of localization of a soliton, the molecular

chain exhibits longitudinal extension �wn > 0� and transverse
compression �vn > 0�. The valence angles increase, and the
valent bonds stretch out. The existence of such solitons in the
zigzag chain is due to the geometrical nonlinearity of the
chain rather than to the proper (physical) anharmonismof the
intermolecular potentials. This is the fundamental distinction
between the transzigzag model and the model of a two-
dimensional alpha-spiral.

As the velocity increases, the energy and the amplitude of
the soliton increase monotonically, and at s � s1 attain their
maximum values of Em � 4:6 eV, Rm � 5:3 A. The width of
the soliton decreases, but always remains greater than 18 steps
of the chain Ð in other words, the extension soliton always
complies with our a priori assumption that the profile exhibits
a smooth dependence on the number of the step. The
particular values of energy E, width D, amplitude R,
increments of valence angle Dy � Ay ÿ y0 and valent bond
Dr � Ar ÿ r0 are presented in Table 2. We see that, as the
velocity s increases, in the region of localization of the soliton
the deformations of angles and bonds increase monotonically
but always remain Dy < 27� for the valence angle, and
Dr < 0:05 A for the valent bond.

With the second value of the parameter d � 0:078419, the
set of equations of motion (15) has a soliton solution
corresponding to a solitary wave of longitudinal transzigzag
compression (see Fig. 11d). In the region of localization of the
soliton there occurs contraction of the valence angles and
bonds. The soliton has a finite velocity range 1 < s4 1:035.

The velocity range of an acoustic soliton versus the
dimensionless parameter d is shown in Fig. 14. At
d < d0 � 0:0356, the soliton is a solitary extension wave, and
at d > d0 a solitary transzigzag compression wave. In a chain
with d � 0 (approximation of infinitely rigid valent bond), the
velocity range of the soliton is 1 < s < s1 � 1:095. As d
increases, the upper limit of the velocities s1 decreases
steadily. At the threshold value d � d0, the geometrical and
physical anharmonisms cancel out, and the velocity range
vanishes �s1 � 1�. A further increase of d leads to monotone
growth of the velocity range.

Numerical simulation of the dynamics indicated that the
soliton of the first type is dynamically stable at all values of
the velocity 1 < s < s1. It moves at a constant speed, and
completely retains its original shape. For example, with the
initial dimensionless velocity s � 1:015 �c � 7906:85 m sÿ1,
d � 0:01929�, the soliton passed 99999.694 steps of the chain
for 1613.8 ps, and had a final velocity of s � 1:014995
�c � 7906:81 m sÿ1�. As shown in Fig. 13, the final shape of
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Table 2.EnergyE, widthD, overall compression of the chainR, amplitude
of extension of valence angleDy and amplitude of extension of valent bond
Dr for different values of the velocity s of the soliton of transzigzag
extension of the first type.

s E, eV D R; A Dy, deg. Dr; A

1.000
1.002
1.004
1.006
1.009
1.011
1.013
1.015
1.017
1.019
1.020

0
0.03
0.10
0.21
0.38
0.58
0.87
1.30
1.99
3.39
4.60

1
41.9
31.2
26.7
23.4
21.3
19.9
18.9
18.4
18.8
19.6

0
0.6
1.0
1.3
1.6
1.9
2.3
2.7
3.3
4.4
5.3

0
1.5
3.3
5.2
7.2
9.4

12.0
15.0
18.6
24.8
26.9

0
0.002
0.005
0.008
0.012
0.016
0.021
0.026
0.034
0.044
0.051
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the soliton is exactly the same as in the beginning. Solitons
interact as elastic particles. Their collisions result in elastic
reflection without emission of phonons or change of shape
(Fig. 15). It is only near the limiting velocity s1 that the
interaction of solitons becomes inelastic: collision is accom-
panied with emission of phonons. Thus, near the speed of
sound the extension solitons of the first type display definite
particle-like properties. Solitons of the second type are
unstable. When moving they emit phonons and soon perish.
Solitons of the third type are stable at the velocity s � s4. They
move along the chain at a constant speed and retain their
shape. Interaction between solitons of the third type is not
elastic; collisions between solitons lead to their destruction.

The above analysis of the transzigzag model indicated
that an isolated flat macromolecule of polyethylene may host
dynamically stable extension solitons that display a relatively
narrow spectrum of supersonic velocities. The existence of
solitons is due to the geometrical anharmonism of the zigzag
chain rather than to the physical anharmonism of potentials
of interstitial interaction.

4. Nonlinear dynamics of a flat zigzag chain
of hydrogen bonds

The shape of a flat zigzag is displayed by the chains of
hydrogen bonds . . .H±X . . .H±X . . .H±X . . . in molecules
of hydrogen halides HX (X=F, Cl, Br, I) [38 ± 40]. The zigzag
shape of the chain is due to the orientational interaction
between adjacent molecules. A similar shape is also displayed
by the chains of hydrogen bonds . . .O ±H. . .O ±H. . .
OÿH . . . ; formed in the protein macromolecules by the
amino acid groups ROH containing the hydroxyl OHÿ

radical (serine, threonine, tyrosine). Such chains convey
protons in the protein proton channels [51 ± 53], which
makes the study of their nonlinear dynamics especially
interesting.

The particular values of the parameters of chains of
hydrogen bonds (HX. . .�x (X=O, F, Cl, Br, I) are given in
Table 3.Here, r0 is the length of the valent bondH±X, a and a
are the step and angle of the zigzag of the chain [40], m and Q
are the dipole and the quadrupole moments of isolated HX
molecule [54], and I � mpr

2
0 is the moment of inertia of the

molecule (mp is the proton mass). As follows from the table,
the chain of hydrogen-bonded hydrogen fluoride molecules is
closest in parameters to the chain of hydrogen-bonded
hydroxyl groups. For this reason we shall consider this
chain as the model system for the zigzag chain of hydrogen
bonds.

4.1 Model potential of a hydrogen bond
The interaction between diatomic polar HF molecules is
usually described by the 12 ± 6 ± 1 potential [55]

U �
X3
i1�1

X3
i2�1

qi1qi2
ri1i2
� 4E

��
s
r

�12

ÿ
�
s
r

�6 �
�17�

with seven adjusting parameters: two Lennard ± Jones para-
meters E and s; three charges q1, q2, and q3 �q1 � q2 � q3 � 0�
in line with the valent bond, and three distances r1, r2, and r3
from each charge to the centre of fluorine atom. In Eqn (17),
ri1i2 is the distance between the charge qi1 of the first HF
molecule and the charge qi2 of the second molecule.

The values of parameters in the interaction potential (17)
can be chosen using the results of quantum mechanical
calculation of the potential energy surface of the dimer
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Figure 15. Elastic collision of extension solitons of the first type in a cyclic
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Table 3. Values of parameters of zigzag chains of hydrogen bonds
HX. . .HX. . .HX.

HX r0,
A

a,
A

a,
deg.

m,
10ÿ18 CGS cm

Q,
10ÿ26 CGS cm2

I,
10ÿ40 g cm2

HO
HF
HCl
HBr
HI

1.01
0.97
1.275
1.414
1.604

2.76
2.50
3.688
3.927
4.23

120
117
93.5
91.8
90

1.58
1.736
1.07
0.783
0.382

ì
2.6
3.8
4.0
6.0

1.706
1.574
2.719
3.344
4.303
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Figure 14. (a) Region of existence of an acoustic soliton of extension, and

(b) the region of existence of a soliton of transzigzag compression in the

space of dimensionless parameters d and s.
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HF. . .HF [56]. Figure 16 shows the most energy-advanta-
geous dimer configuration determined by two angles
f1 � ÿ6:5�, f2 � 67:7�, and one length a � 2:76 A. The
bond energy is E1 � 0:191 eV. The dimer may occur in either
of two equivalent ground states ff1;f2; ag and
fpÿ f2; pÿ f1; ag. In addition, there is an intermediate
symmetric metastable state fÿf3; pÿ f3; bg with the energy
E2 � E1 � E0, whereE0 � 0:068 eV is the height of the energy
barrier of dimer interconversion.

The exact values of the dipole m and quadrupole Q
moments of the HF molecule, and the dimer parameters f1,
f2, a, E1, and E0 define unambiguously all seven parameters
of the potential of intermolecular interaction (17):

q1 � ÿ1:252 e; q2 � 0:485 e; q3 � 0:767 e;

r1 � ÿ0:35A; r2 � 0:861A; r3 � ÿ0:644A;
E � 0:0192 eV; s � 2:855A;

where e is the electron charge.

4.2 Low-amplitude vibrations of the chain of hydrogen bonds
Consider an isolated chain of hydrogen bonds . . .H±F. . .
HÿF . . .H ±F. . . with step a � 2:76 A and zigzag angle
a � pÿ f2 ÿ f1 � 118:8� (Fig. 17). At equilibrium, all the
HF molecules deviate from the direction of the zigzag by the
angle ÿf1.

Assume that the zigzag of the chain is directed along the x
axis and lies in the xy plane; then the location of the nth
molecule of the chain at equilibrium position is fixed by the
coordinates of the fluorine atom x�n � nlx, y

�
n � �ÿ1�nly=2,

where lx � a sin�a=2� and ly � a cos�a=2� are the longitudinal
and the transverse steps of the zigzag of the chain, and the
angle c�n � �ÿ1�n�1c0, c0 � �pÿ a�=2ÿ f1 defines the
orientation of the molecule. As before, it will be convenient
to go over from absolute coordinates xn, yn, cn to the relative
coordinates

un � xn ÿ x�n ; vn � �ÿ1�n�1�yn ÿ y�n� ;
jn � �ÿ1�n�1�cn ÿ c�n� :

Here un, vn, jn define, respectively, the longitudinal and
transverse displacements and the rotation of the nth mole-

cule from its equilibrium position (the positive direction for
transverse displacement and rotation is the direction towards
the centre of the zigzag, see Fig. 17).

The Hamiltonian of the chain may be expressed as

H �
X
n

�
1

2
M� _u2n � _v2n� �

1

2
I _j2

n

� V�un�1 ÿ un; vn � vn�1;jn;jn�1�
�
; �18�

whereM � 19mp is the mass of the molecule, and I � 1:706�
10ÿ14 g cm2 is the moment of inertia. The potential of the
intermolecular interaction is

V�u; v;j;c� � U�0; 0;c0 � j; lx � u; ly ÿ v;ÿc0 ÿ c� :

The Hamiltonian of the chain (18) enters the set of equations
of motion

M�un � Vu�un�1 ÿ un; vn�1 � vn;jn;jn�1�
ÿ Vu�un ÿ unÿ1; vn � vnÿ1;jnÿ1;jn� ;

ÿM�vn � Vv�un�1 ÿ un; vn�1 � vn;jn;jn�1�
� Vv�un ÿ unÿ1; vn � vnÿ1;jnÿ1;jn� ;

ÿ I�jn � Vj�un�1 ÿ un; vn�1 � vn;jn;jn�1�
� Vc�un ÿ unÿ1; vn � vnÿ1;jnÿ1;jn�; �19�

where n � 0;�1;�2; . . .
For small-amplitude displacements, the set of equations

(19) in the linear approximation takes the form

M�un � Vuu�un�1 ÿ 2un � unÿ1� � Vuv�vn�1 ÿ vnÿ1�
� Vuj�jn ÿ jnÿ1� � Vuc�jn�1 ÿ jn� ;

ÿM�vn � Vuv�un�1 ÿ unÿ1� � Vvv�vnÿ1 � 2vn � vn�1�
� Vvj�jn � jnÿ1� � Vvc�jn�1 � jn� ;

ÿ I�jn � Vuj�un�1 ÿ un� � Vuc�un ÿ unÿ1�
� Vvj�vn � vn�1� � Vvc�vn � vnÿ1�
� �Vjj � Vcc�jn � Vjc�jn�1 � jnÿ1� ; �20�

where all the second partial derivatives Vuu;Vuv; . . . ;Vcc are
taken at the point u � 0, v � 0, j � 0, c � 0. We seek a
solution of the linear set of equations (20) in the form of a
harmonic wave

un�t� � A1 exp
�
i�Ot� kn�� ;

vn�t� � A2 exp
�
i�Ot� kn�� ;

jn�t� � A3 exp
�
i�Ot� kn�� ; �21�

where O is the circular frequency, ÿp4 k4 p is the
dimensionless wave vector. After substitution of expressions
(21) into the set of linear equations (20) and some straightfor-
ward algebra we get the dispersion equation of sixth power in
O. Skipping the intermediate calculations, we shall go straight
to the shape of the dispersion curve.

The dispersion curve for low-amplitude oscillations
consists of three branches as shown in Fig. 18. The upper
branch 263 cmÿ1 4Oor�k�4 487 cmÿ1 corresponds to high-

F f1

f2

r0

r0

a

F
H

H

Figure 16. Equilibrium configuration of an HF. . .HF dimer.
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Figure 17. Selection of the system of local coordinates for the chain of

hydrogen bonds HF. . .HF. . .HF.
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frequency orientation oscillations of the molecules, the
middle branch 149 cmÿ1 4Oop�k�4 219 cmÿ1 corresponds
to optical phonons of the zigzag, and the lower branch
04Oac�k�4 38 cmÿ1 to low-frequency acoustic phonons.
The two lower branches behave in the same way as the
acoustic and optical branches of the two models of zigzag
chains discussed above. The speed of the long-wave long-
itudinal acoustic phonons is

c0 � lx lim
k!0

Oac�k�
k
� 3046:2822 m sÿ1:

4.3 Nonlinear dynamics of the chain of hydrogen bonds
Numerical analysis of the nonlinear system of dynamic
equations (19) revealed that, in spite of the pronounced
anharmonism of the potential of interstitial interaction, the
system under consideration does not host any solitons of
compression or extension. Soliton-like dynamics is only
featured by the positive orientation defect corresponding to
the consecutive transition of the chain from one ground state
fun � 0; vn � 0;jn � 0g to another equivalent state
fun � 0; vn � 0;jn � a� 2f1g. The passage of the defect is
accompanied by the emission of optical phonons (Fig. 19)
that leads to its deceleration and eventual destruction. The
dimensionless velocity of the defect s � c=c0 versus time is
plotted in Fig. 20. The defect travels at supersonic speed.
Emission of phonons is minimal at s � 2:4, and increases
abruptly at s � 2:3. Over its lifetime of t � 18:4 ps, the defect
covered 560 steps of the chain.

The absence of solitons of compression and extension is
due to the fact that the physical anharmonism in the case of
soft hydrogen bonds is balanced out by the geometrical
anharmonism of the chain. If the chain had been linear, the
anharmonism of the hydrogen bond would have given rise to
supersonic compression solitons: the chain would have

featured stable solitary compression waves. However, in a
zigzag chain with zigzag angle a4 120� there are no stable
solitary waves of longitudinal compression or extension. Any
initial localized excitationwill soon smear out. In this way, the
geometry of the chain is of fundamental importance for the
nonlinear dynamic behaviour of the chain.

5. Conclusions

In this paper we have analyzed the nonlinear dynamics of
zigzag molecular chains. The transition from a one-dimen-
sional model of a rectilinear chain to a more realistic flat
model of the zigzag chain is found to bring about a
fundamental change in the nonlinear dynamics of the chain.
The nonlinear effects are no longer due only to the
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anharmonism of the interstitial interaction (physical anhar-
monism). A new important factor comes into play: geome-
trical anharmonism of opposite sign caused by the zigzag
geometry of the chain. Now the possible existence of solitons
(solitary longitudinal waves of compression or extension of
the chain) depends on the balance between physical and
geometrical anharmonisms. We have considered three char-
acteristic types of the zigzag chains:

1. A two-dimensional model of an alpha-spiral protein
molecule. The major contribution to nonlinear dynamics here
comes from the anharmonism of the hydrogen bonds
(physical anharmonism). As a result, compression solitons
with a narrow spectrum of supersonic velocities are feasible.

2. A model of a flat polyethylene transzigzag dominated
by geometrical anharmonism due to the zigzag-shaped
conformation. This model only admits extension solitons,
also with a narrow spectrum of supersonic velocities.

3. Finally, we have considered a zigzag chain of hydrogen
bonds . . .HF. . .HF. . .HF. . . , in which geometrical anhar-
monism is balanced out by physical anharmonism. As a
result, the chain with pronounced anharmonism of inter-
stitial interaction does not admit acoustic solitons, and any
initially localized deformation of the chain will smear out.

On the one hand, the two-dimensional nature of mole-
cular chain imposes considerable limitations on the dynamics
of solitons (they may only have finite and relatively narrow
ranges of admissible velocities). On the other hand, it opens
the possibility of simultaneous existence of several types of
acoustic solitons. For example, solitons of extension and
compression may coexist in the chain.

Our study indicates that one-dimensional models of
molecular chains that are still used extensively may lead to
wrong conclusions. The geometry of the chain must be taken
into account to pursue the possibility of describing physical
phenomena in terms of solitary waves.

Two of the authors (A V Savin and L I Manevich) thank
the Russian Foundation for Basic Research for financial
support (Grants RFBR-97-02-17825, RFBR-98-03-333-66a).

6. Appendices

6.1 Pseudospectral method for finding the shape
of a soliton
The pseudospectral method for numerical calculation of the
form of a soliton solution was first proposed by Eilbeck and
Flesch [41] for the one-dimensional model of an anharmonic
chain. Application of this technique to the two-dimensional
model of the zigzag chain requires only someminor modifica-
tions.

Consider the solution of the discrete system (3), (4) in the
form of a solitary wave (9). Then from the system of equations
of motion (3), (4) follows the set of equations

v2rzz � P

�
r
�
z� 1

2

�
; Z
�
z� 1

2

��
ÿ 2P

ÿ
r�z�; Z�z��

�P
�
r
�
zÿ 1

2

�
; Z
�
zÿ 1

2

��
�Q

ÿ
r�z� 1�; Z�z� 1��

ÿQ

�
r
�
z� 1

2

�
; Z
�
z� 1

2

��
ÿQ

ÿ
r�z�; Z�z��

�Q

�
r
�
zÿ 1

2

�
; Z
�
zÿ 1

2

��
; �A:1�

v2Zzz � ÿS
�
r
�
z� 1

2

�
; Z
�
z� 1

2

��
ÿ 2S

ÿ
r�z�; Z�z��

ÿS
�
r
�
zÿ 1

2

�
; Z
�
zÿ 1

2

��
� T

�
r
�
z� 1

2

�
; Z
�
z� 1

2

��
ÿ T

�
r
�
zÿ 1

2

�
; Z
�
zÿ 1

2

��
� T

ÿ
r�z� 1�; Z�z� 1��

ÿ T
ÿ
r�z�; Z�z�� ; �A:2�

where z � n=2ÿ vt is the wave variable. The main idea of the
method consists in approximating the exact soliton solution
r�z�, Z�z� with finite Fourier expansions over the interval
ÿL=24 z4L=2:

r�z� ' ~r�z� �
XK
k�0

akek�z� ; �A:3�

Z�z� ' ~Z�z� �
XK
k�0

bkek�z� ; �A:4�

where ek�z� � cos�2pk=L�, k � 0; 1; 2; . . . ;K. Substitution of
expressions (A.3), (A.4) into Eqns (A.1), (A.2) yields the
system of two continual equations

F1�z� � v2
XK
k�0

ak

�
2pk
L

�2

ek�z� � ~P

�
z� 1

2

�
ÿ 2 ~P�z� � ~P

�
zÿ 1

2

�
� ~Q�z� 1�

ÿ ~Q

�
z� 1

2

�
ÿ ~Q�z� � ~Q

�
zÿ 1

2

�
; �A:5�

F2�z� � v2
XK
k�0

bk

�
2pk
L

�2

ek�z� ÿ ~S

�
z� 1

2

�
ÿ 2 ~S�z� ÿ ~S

�
zÿ 1

2

�
� ~T

�
z� 1

2

�
ÿ ~T

�
zÿ 1

2

�
� ~T�z� 1� ÿ ~T�z� ; �A:6�

where

~P�z� � P

�XK
k�0

akek�z�;
XK
k�0

bkek�z�
�
;

~Q�z� � Q

�XK
k�0

akek�z�;
XK
k�0

bkek�z�
�
;

~S�z� � S

�XK
k�0

akek�z�;
XK
k�0

bkek�z�
�
;

~T�z� � T

�XK
k�0

akek�z�;
XK
k�0

bkek�z�
�
:

The Fourier coefficients fak; bkgKk�0 can be found numerically
as the roots of the system of 2K nonlinear equations

F1�zi� � 0 ;

F2�zi� � 0 ; i � 0; 1; . . . ;Kÿ 1 ;

~r
�
L

2

�
�
XK
k�0

akek

�
L

2

�
� 0 ;

~Z
�
L

2

�
�
XK
k�0

bkek

�
L

2

�
� 0 ; �A:7�
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where zi � iL=�2K�, and the functions F1�z�, F2�z� are given
by Eqns (A.5), (A.6).

This method is capable of giving an unambiguous answer
concerning the existence of a soliton at each value of the
velocity v. If the system (A.7) admits no soliton solution, this
means that there is no soliton motion at this value of the
velocity. For numerical solution of the system (A.7) it is
sufficient to set K � 100, and L � 10D, where D is the root-
mean-square width of the soliton (11).

6.2 Method of minimization for finding the soliton
solution
We seek a solution of the system of equations of motion (15)
in the form of a travelling smooth wave of constant profile.
For this purpose we set un�t� � u�x�, vn�t� � v�x�, where
x � nlx ÿ ct is the wave variable, c is the velocity of the
wave, and u and v are smooth functions of x. Then the
Lagrangian corresponding to the system of equations of
motion (15)

L �
X
n

�
1

2
M� _u2n � _v2n� ÿ V�rn� ÿU�yn�

�
�A:8�

may be written in the form

�L �
X
n

�
c2M

24l 2x

�
16w2

n ÿ �wn � wn�1�2 � 16�vn�1 ÿ vn�2

ÿ �vn�2 ÿ vn�2
�ÿ V�rn� ÿU�yn�

�
: �A:9�

The supersonic soliton state of the chain always corresponds
to the saddle point of the Lagrangian, and it can therefore be
sought as the minimum point of the functional

F � 1

2

X
n

� �L2
wn
� �L2

vn
� :

Thus, for finding the soliton solution (solitary wave)
fwn; vngNn�1, one must find the conditional minimum

F � 1

2

XNÿ1
n�2
� �L2

wn
� �L2

vn
� ! min : w1 � wN � v1 � 0 ;

vN � 0�h� : �A:10�
The solution of this problem allows all soliton solutions of the
nonlinear system (15) to be found numerically Ð that is,
smooth solitary waves of constant profile. The absence of
such solutions at some value of the velocity cmeans that there
is no soliton motion at this velocity.

Problem (A.10) was solved numerically by the method of
conjugate gradients. The solution was sought on a chain of
N � 400 steps. The initial point of descent was taken in the
form of two symmetrical bell-shaped (or kink) profiles w�n�,
v�n�, centred at the middle of the chain.

The key idea of the method consists in replacing the
continuous time derivatives in the Lagrangian (A.8) with
their discrete approximations [the transition from the
Lagrangian (A.8) to the discrete functional (A.9)]. There-
fore, this method is only good for finding `broad' soliton
solutions, whose shape exhibits a smooth dependence on the
number n of the site of the chain (the length of chainNmust be
ten times the width of the soliton solution). Practically, this
method ismuch simpler than themore general pseudospectral
method. Because of this, this technique is preferably used for

soliton analysis of molecular systems of complex structure,
even though it is not capable of finding `narrow' soliton
solutions.
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