
Abstract. The notion that electrons in high-Tc cuprates pair via
antiferromagnetic spin fluctuations is discussed and the symme-
try of the superconducting order parameter is analyzed. Three
approaches to the problem, one phenomenological (with an
experimental dynamic magnetic susceptibility) and two micro-
scopic (involving, respectively, the Hubbard model and the tJ-
model) are considered and it is shown that in each case strong-
coupling theory leads to a d-wave order parameter with zeros at
the Fermi surface. The review then proceeds to consider experi-
mental techniques in which the d-symmetry of the order para-
meter may manifest itself. These include low-temperature
thermodynamic measurements, measurements of the penetra-
tion depth and the upper critical field, Josephson junction
experiments to obtain the phase of the superconducting order
parameter, and various spectroscopic methods. The experimen-
tal data suggest that the order parameter in cuprates is dx2ÿy2 -
wave. Ginzburg ±Landau theory for a superconductor with a

d-wave order parameter is outlined and both an isolated vortex
and a vortex lattice are investigated. Finally, some theoretical
aspects of the effects of nonmagnetic impurities on a d-wave
superconductor are considered.

1. Introduction

Over the years a vast body of experimental data has been
collected that suggests that an anisotropic superconducting
order parameter is realized in high-Tc superconductors of the
metal-oxide group. Moreover, there are strong indications
(provided by experiments) that the order parameter is
d-symmetric. A natural explanation of this symmetry stems
from the concept of the spin-fluctuation mechanism of
electron pairing.1 Thus, both phenomena, electron pairing
due to exchange of spin excitations and the d-wave nature of a
Cooper pair, are closely related, and experimental verification
of one of these phenomena suggests, at least indirectly, that
the second also exists.

The hypothesis of the spin-fluctuation pairing mechanism
is corroborated by the fact that, being the parents of the
lanthanum [denoted (214)] and yttrium [denoted (123)]
systems, the stoichiometric compounds La2CuO4 and

Yu A Izyumov Institute of Metal Physics, Ural Division of the Russian

Academy of Sciences, ul. S Kovalevsko|̄ 18, 620219 Ekaterinburg, Russia

Tel. (7-3432) 74 41 93

Fax (7-3432) 74 52 44

E-mail: izyumov@ifm.e-burg.su

Received 13 March 1998, revised 10 September 1998

Uspekhi Fizicheskikh Nauk 169 (3) 225 ± 254 (1999)

Translated by E M Yankovsky; edited by A I Yaremchuk

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 71.27. + a, 74.90. + n, 74.25.Jb

Spin-fluctuation mechanism of high-Tc superconductivity and order-

parameter symmetry

Yu A Izyumov

Contents

1. Introduction 215
2. Superconductivity in a nearly antiferromagnetic Fermi liquid 217

2.1 The phenomenological approach in spin-fluctuation theory; 2.2 Superconductivity in the strong-coupling

approximation; 2.3 Quasiparticle spectrum and the physical properties of the normal phase

3. The spin-fluctuation mechanism in the Hubbard model 220
3.1 A self-consistent system of equations for electrons and the magnetic susceptibility; 3.2 Results of numerical calculations

4. The spin-fluctuation mechanism in the tJ-model 222
4.1 The concept of a spin polaron; 4.2 The self-consistent Born approximation for a superconductor

5. The Ginzburg ±Landau theory for a superconductor with a d-wave order parameter 225
5.1 Derivation of the Ginzburg ±Landau equations in the weak-coupling theory; 5.2 The phenomenological approach;

5.3 The structure of an isolated vortex; 5.4 A vortex lattice; 5.5 Further development of the theory

6. Experimental studies of the symmetry of the superconducting order parameter 230
6.1 Low-temperature studies of the superconducting phase; 6.2 Measurements of the Josephson tunnel current;

6.3 Measurements of flux quantization by tricrystal devices; 6.4 Angle-resolved spectroscopy;

6.5 Raman and neutron spectroscopy

7. The role of impurities 236
7.1 The gap, the superconducting transition temperature, and the density of states;

7.2 Thermodynamics and kinetics; 7.3 Localization

8. Summary 241
References 242

Physics ±Uspekhi 42 (3) 215 ± 243 (1999) #1999 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

1 Akhiezer and Pomeranchuk [78] were the first to put forward the idea of

electron pairing via spin fluctuations. They found that the indirect

interaction of electrons via spin waves in a ferromagnetic metal manifests

itself as an attraction to a triplet state and, hence, may lead to triplet

pairing.



YBa2Cu3O6 are antiferromagnetic insulators. Doping a (214)
compound with strontium or a (123) compound with oxygen
results in the emergence of a metallic state and super-
conductivity (e. g. see the latest reviews in Refs [1] and [2]).
The fact that theses doped systems are close to an antiferro-
magnetic transition with the wave vector Q � �p; p� explains
the importance of spin fluctuations in the interaction with
which the quasiparticle spectrum of electrons is formed, and
may simultaneously lead to Cooper pairing.

Many theoretical studies of high-Tc compounds that
belong to the class of strongly correlated systems are made
using the Hubbard model [3], which describes the hopping of
electrons from site to site with a matrix element t for nearest
neighbors and with Coulomb repulsion U when the electrons
are at the same site. The model starts with the Hamiltonian

H � ÿt
X
ijs

C
y
isCjs �U

X
i

ni"ni# ; �1:1�

whereCis�C yis� is the operator of annihilation (creation) of an
electron at site iwith spin s, and nis � C

y
isCis is the number of

electrons at the site. Magnetically ordered phases may form
when the values of the parameters t and U and the electron
concentration n lie within a certain range. Near the boundary
of such a phase on the paramagnetic side there are strong
fluctuations of the magnetic order parameter (or paramag-
nons). The nature of the indirect interaction of electrons via
paramagnons near the region of the ferromagnetic instability
region was studied many years ago by Berk and Schrieffer [4].
They found that the interaction is repulsive in the singlet
channel, with the result that it inhibits ordinary super-
conductivity.

Later it was discovered that the situation near an
antiferromagnetic instability is different. This becomes
especially evident if one studies the behavior of spin
susceptibility in the random-phase approximation (RPA).
The susceptibility is determined by the bare electron spec-
trum (in what follows only a two-dimensional system
corresponding to CuO planes in cuprates is examined)

e�k� � ÿ2t�cos kx � cos ky� �1:2�

and the chemical potential m corresponding to the given
electron concentration n. When the band is half-filled
(n � 1), the spectrum has a nesting at the wave vector
q � Q, which corresponds to a sharp peak in the spin
susceptibility near this point. This means that the system is
unstable with respect to the formation of an antiferromag-
netic (Neel) state with a wave vector Q and that spin
fluctuations are stronger near the point of magnetic phase
transition. The contribution of the interaction with the
fluctuations to the electron self-energy S is given by the
following diagram:

S�k� � ; �1:3�

where the solid line and the dashed curve correspond,
respectively, to the electron and spin-fluctuation (paramag-
non) Green's functions, and the bare vertex corresponds to
� U. Equation (1.3) for the superconducting phase is the
Eliashberg equation [5] for the case of spin-fluctuation
pairing. Scalapino et al. [6] and Bickers et al. [7] used this
equation for systems with antiferromagnetic instability. For a

half-filled band, when there is antiferromagnetic instability in
the system, a numerical solution of the Eliashberg equation
shows that the superconducting order parameter is
dx2ÿy2 -wave, i.e. the gap depends on the wave vector as
follows:

Dd�k� � D0�cos kx ÿ cos ky� : �1:4�

This was the first indication that in spin-fluctuation coupling
the order parameter is d-wave. However, the values obtained
for the superconducting transition temperature proved to be
low:Tc < 10ÿ3 t. Thus, although the theory of Scalapino et al.
[6] did not explain high-Tc superconductivity, it revealed the
connection between spin-fluctuation pairing and the d-wave
nature of the superconducting order parameter. The modern
bases of the spin-fluctuation mechanism of high-Tc super-
conductivity essentially stem from this approach (see also
Refs [8] and [9]).

The gap specified by Eqn (1.4) is an alternating-sign
function of the wave vector (Fig. 1); it vanishes on the
diagonals of a square lattice (the first Brillouin zone). These
`zero lines' in the k space make dx2ÿy2 -paring more energy-
suitable in the case of the spin-fluctuation mechanism.
Indeed, the effective electron interaction via fluctuations of
the antiferromagnetic order parameter is repulsive if the
interacting electrons are at a single site (the initial Hamilto-
nian (1.1) takes this fact into account) and attractive if the
interacting electrons are at different sites:

Veff�R� � V0d�R� ÿ V1

X
a

d�Rÿ a� ; �1:5�

where R is the radius vector for two electrons in the lattice,
and a is the nearest-neighbor radius vector. This fact is
discussed in Section 2, where we also see that the interaction
of an electron at the center of the square lattice and an
electron at any site on a diagonal of the square lattice is also
repulsive. Figure 1a shows that the wave function of a Cooper
pair vanishes precisely on the diagonals of the square, with the
result that the repulsive interaction on these diagonals has no
influence on the pair, and a dx2ÿy2 -wave Cooper pair survives
even if U is large.

A superconductor with d-pairing should have exotic
properties that could be detected in experiments. Many of
these features stem from the presence of zeros in the order
parameter. Long before the discovery of high-Tc super-
conductivity, Volovik andGor'kov [10] developed a phenom-
enological theory of superconductors with an anisotropic
order parameter. The development of this theory was
stimulated by the discovery of anomalies of superconductiv-
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Figure 1. Sign distributions of (a) the gap function within the first Brillouin
zone and (b) the effective electron±electron interactionwith a unit cell for a

square lattice in the case of the spin-fluctuation pairing mechanism.
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ity in heavy-fermion systems. A characteristic feature of such
systems is superconductivity with an anisotropic order
parameter, which vanishes at points on the Fermi surface.
At low temperatures, the quasiparticle spectrum near these
points must yield not an exponential contribution (as in
ordinary isotropic superconductors) but a power-law con-
tribution to thermodynamic properties: specific heat, NMR
characteristics, and depth of magnetic-field penetration. The
discovery of such power-law contributions would point to
nontrivial behavior of the order parameter with zeros at the
Fermi surface.

The arrangement of the order-parameter zeros is deter-
mined by the symmetry of the Cooper-pair wave function,
which in turn is determined by the symmetry of the crystal.
The realisable symmetries for a two-dimensional tetragonal
crystal (a square lattice) were studied by Sigrist and Rice [11],
who used group-representation theory. It is the basis
functions of the corresponding irreducible representations
that determine the possible dependence of the order para-
meter on the wave vector. For the dx2ÿy2 -wave case this
dependence is given by Eqn (1.4). Along with d-symmetry
wemust consider s-symmetry, for which we can select two sets
of basis functions,

Ds�k� � D0 ; Ds� �k� � D0�cos kx � cos ky� ; �1:6�
which describe isotropic and anisotropic pairing. The s�-wave
anisotropic order parameter also has zeros, which lie not on
the diagonals ky � �kx of the square but on the lines
ky � p� kx. This means that a power-law temperature
dependence observed in superconducting cuprates only
suggests that the superconducting order parameter has zeros
but does not make it possible to distinguish between dx2ÿy2 -
and s�-symmetries Ð measuring other properties of the
superconducting state could do this.

In recent years many experimental methods for determin-
ing the symmetry of the order parameter have been devel-
oped. Some of these methods (in which the Josephson current
ismeasured in oneway or another) deal withmeasurements of
complex order parameter, while in others the gap in the
quasiparticle spectrum is measured for different directions
of the wave vector. The latter group includes spectroscopic
experiments, which primarily use ARPES, infrared spectro-
scopy, and neutron spectroscopy. Experiments in which the
effect of nonmagnetic impurities on the superconducting
properties is studied form a special group. This effect
strongly depends on what symmetry, s or d, the super-
conducting order parameter has. The experimental data for
different high-Tc compounds irrevocably indicate that an
anisotropic order parameter is realized and that the prob-
ability that this will be a dx2ÿy2 -wave order parameter is very
high. The last argument is a serious argument in favor of the
spin-fluctuation mechanism of high-Tc superconductivity.

In this review we elaborate on the concept of super-
conducting pairing through exchange of dynamic spin
fluctuations and discuss all the results of studies dealing
with the symmetry of the superconducting order parameter
in high-Tc compounds of the copper-oxide group. In Sections
2 ± 4 we discuss the existing theoretical approaches to the
problem of spin-fluctuation interaction. One approach,
which is being actively developed by Pines and collaborators
[12], uses a phenomenological magnetic susceptibility with
parameters taken from experiments on cuprates. The other
two approaches are based on very simple models, which allow
for the Coulomb interaction of electrons in the weak- and

strong-coupling limits. The results of numerical calculations
in all three approaches indicate that the order parameter is
d-wave. In Sections 5 ± 7 we discuss the properties of super-
conductors with a d-wave order parameter.We begin by using
the Ginzburg ±Landau theory to study the behavior of an
isolated vortex in such superconductors and the properties of
the vortex lattice. We then turn to the various experiments in
which the symmetry of the order parameter manifests itself.
We also investigate the result of studies of high-Tc cuprates.
The review is concluded by a discussion of the role of
impurities in superconductors with an anisotropic order
parameter.

2. Superconductivity in a nearly
antiferromagnetic Fermi liquid

2.1 The phenomenological approach
in spin-fluctuation theory
The idea of a spin-fluctuation mechanism of high-Tc super-
conductivity that uses a phenomenological approach and the
experimental data was proposed [13 ± 17] long before the full
development of the microscopic description of high-Tc super-
conductivity, a description based on self-consistently solving
the equations of the electron self-energy and the magnetic
susceptibility in the Hubbard and tJmodel. The very fact that
the superconducting state emerges in high-Tc cuprates even if
the doping of the initial antiferromagnetic state is relatively
light probably points to the important role of fluctuations in
antiferromagnetic order. A detailed study of the temperature
behavior of NMR characteristics, such as the Knight shift
and the spin ± lattice relaxation time, in lanthanum and
barium systems has shown that the detected anomalies can
be explained by the presence of strong antiferromagnetic
fluctuations near the wave vector Q. Millis, Monien, and
Pines [18] proposed a simple phenomenological form for the
low-frequency magnetic susceptibility in YBa2Cu3O7 that
allows for a sharp enhancement of fluctuations near Q:

wMMP�q;o� �
wQ

1� x2�qÿQ�2 ÿ io=os

: �2:1�

Here wQ is the static spin susceptibility for a wave vectorQ, x
is the magnetic correlation length, and os is the characteristic
frequency of spin fluctuations. For YBa2Cu3O7 these para-
meters can be found, for instance, from NMR data on 63Cu,
17O, and 89Y nuclei, since the general theoretical relationships
relating the data to the dynamic susceptibility are well-
known.

The susceptibility w�q;o� found in this manner can be
used to calculate various quantities in the superconducting
and normal phases of this compound, and the results of such
calculations can be compared with the experimental data. In
this way one can verify the main idea that the antiferromag-
netic spin fluctuations are predominant.

The next step that must be taken in the phenomenological
approach amounts to setting up an effective Hamiltonian.
The Hamiltonian must consist of two parts: H � H0 �Hint ,
where H0 �

P
ks e�k�CyksCks is the bare electron spectrum in

the Cu ±O plane, and Hint represents the interaction of
electrons and spin fluctuations:

Hint �
X
q

g�q�s�q�S�ÿq� : �2:2�
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Here s�q� is the electron spin operator,

s�q� � 1

2

X
k

X
ss 0

C
y
k�qssss 0Cks 0 ; �2:3�

s represents the Pauli matrices, and S�q� is the spin
fluctuation operator, whose properties are determined by
the spin ± spin correlation function [the dynamic susceptibil-
ity tensor wab�q;o�]. For the paramagnetic phase wab � dabw.
This interaction is assumed to be short-range, with the result
that g�q� in Eqn (2.2) is weakly momentum-dependent and
may be set constant. We assume that w�q;o� is given by the
phenomenological expression (2.1), where the parameters are
found from the NMR experimental data on the substance in
question. The coupling constant remains a free parameter of
the theory and can be found by calculating a quantity via the
effective Hamiltonian and comparing the result with the
experimental data.

Let us now examine the quantities wQ and os in Eqn (2.1).
In the normal phase these quantities are given by the
following expressions:

wQ � w0

�
x
a

�2

b 1=2 ; os � G

b 1=2p�x=a�2 ; �2:4�

where w0 is the long-wavelength limit of the spin susceptibility
(measured in experiments), b � p2, and G is an energy
constant. The NMR data on YBa2Cu3O7 imply that

x�Tc� � 2:3a ; os�Tc� � 8 meV ; G � 0:4 eV: �2:5�

Here it is assumed that the phenomenological Hamiltonian
leads to a self-consistent description of the spin behavior of
the system in the sense that the spin susceptibility calculated
via the effective Hamiltonian (in terms of the characteristics
of the quasiclassical spectrum that, which in turn depend on
the susceptibility) agrees with the values given by Eqn (2.1).

2.2 Superconductivity in the strong-coupling
approximation
In the second order in the coupling constants, the interaction
(2.2) of the electrons and spin fluctuations leads to the
following effective electron ± electron interaction:

Veff � g2w�q;o�r1r2 : �2:6�

In the static limit this leads (in the coordinate representation)
to the following result:

Veff � expfiQRg � �ÿ1�Rx�Ry ; �2:7�

where R � �Rx;Ry� is the radius vector connecting two
electrons in the two-dimensional lattice. Thus, the effective
interaction oscillates: at one site it is repulsive while on the
adjacent sites �0;�a� and ��a; 0� it is attractive. On the
diagonals of the square lattice �Rx � �Ry� it is repulsive.
This fact determines the symmetry of the superconducting
order parameter. Obviously, the dx2ÿy2 -wave order parameter

D�k� � D0�cos kx ÿ cos ky� �2:8�

ensures zero values of the order parameters on the diagonals
�kx � �ky� of the square representing the Brillouin zone.
Monthoux and Balatsky [14] set up the necessary equations

for the superconductor in the weak-coupling approximation,
solved these equations numerically, and found that the order
parameter for model (2.2) is d-wave. To calculate the super-
conducting transition temperature, which for the yttrium ±
beryllium system amounts to 90 K, one must use the strong-
coupling theory.

Let us write the Eliashberg linearized system of equations
for a superconductor with the interaction of electrons and
spin fluctuations given by the following expressions [16]:

S�k; ion� � g2T
X
m

X
k 0

w�kÿ k0; ion ÿ iom�G�k0; iom� ; �2:9�

F�k; ion� � ÿg2T
X
m

X
k 0

w�kÿ k0; ion ÿ iom�G�k0; iom�

� G�ÿk0;ÿiom�F�k0; iom� : �2:10�

Here S�k; ion� is the self-energy of the one-particle Green's
function G�k; ion� in the normal phase, and F�k; ion� is the
anomalous part, proportional to the superconducting order
parameter. These equations combined with the Dyson
equation

G�k; ion� � 1

ion ÿ e�k� � mÿ S�k; ion� �2:11�

produce a closed system of equations for finding the super-
conducting transition temperature. Here w�q; io`� is the
Matsubara Green's function of spin fluctuations, which is
related to the dynamic magnetic susceptibility as follows:

w�q; io`� � ÿ
�1
ÿ1

do
p

Im w�q;o�
io` ÿ o

: �2:12�

In Eqs (2.9) ± (2.11), on � �2n� 1�pT is the odd Matsubara
frequency, and o` � 2`pT is the even Matsubara frequency.

Monthoux and Pines [16] used the phenomenological
expression (2.1) for w�q;o� with parameters (2.5) for
YBa2Cu3O7 and obtained the numerical solution of Eqns
(2.9) ± (2.11) for a single value of hole concentration,
d � 0:25, and the value t � 0:25 for the hopping parameter,
which is common for this system. They assumed that the
values of the magnetic-susceptibility parameters in the
yttrium ±beryllium system do not change significantly under
doping.

The integral equations were solved numerically on a
64� 64 lattice for the wave vector and for Matsubara
frequencies up to 6 eV. The transition temperature was
found by solving Eqn (2.6), which is an equation for the
eigenvector F�k; ion�. A finite solution for the superconduct-
ing order parameter emerges when the greatest eigenvalue of
the matrix

A�p; ion; q; iom� � ÿg2Tw�pÿ q; ion ÿ iom�
� G�q; iom�G�ÿq;ÿiom� �2:13�

is unity. The only free parameter in Eqns (2.9) ± (2.11) is still
the coupling constant g, with the result that Tc is calculated as
a function of g. To obtain Tc � 90 K, one must put g � 1:53.

The numerical values of Tc for different values of g are
well approximated by the formula

Tc � 0:636
G
p2

exp

�
ÿ 1

0:402N�0�g
�
; �2:14�
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where

N�0� � ÿ 2

p

X
k

ImGR�k; 0� �2:15�

is the density of the quasiparticle states for two orientations of
the spin. The retarded Green's function GR�k;o� is obtained
by analytic continuation of the Matsubara Green's function
via Pade approximants [19]. We see that the expression for Tc

in strong-coupling theory has the same form as the expression
for the transition temperature of a superconductor with weak
coupling with an effective coupling parameter
ls � 0;402N�0�g, which for YBa2Cu3O7ÿd with Tc � 90 K is
only ls � 0:83. The large value of the transition temperature
emerges because of the large pre-exponential factor propor-
tional to the electron parameter G. What is important in
obtaining high values of Tc is the solution of Eqns (2.9) ±
(2.11) with allowance for the spin Green's function over the
entire Brillouin zone (i.e. not only near the Fermi surface,
which is the case in the electron ± phonon model of a
superconductor). We also note that the numerical solution
of the linearized equation (2.10) for the anomalous self-
energy part leads to a gap function D�k� � F�k; 0�=Z�k; 0�
that is dx2ÿy2 -wave.

2.3 Quasiparticle spectrum and the physical properties of
the normal phase
We can find S�k; ion� as a self-consistently solution of Eqns
(2.9) and (2.11) for the normal phase. Using Pade approx-
imants to analytically continue this solution, we can find the
hole quasiparticle spectrum. Figure 2 depicts the imaginary
and real parts of S�k;o� for a particular value of the
quasimomentum on the Fermi surface. The solid curves
represent the results of self-consistent calculations, while the
dotted curves represent the results of calculations that allow
only for first-order corrections in the coupling constant. The
latter agree with the results of Kampf and Schrieffer [20]. The
function ReS�k;o� determines the renormalization Zk of the
quasiparticle spectrum, whereZk varies from 0.4 to 0.6 on the
Fermi surface. An analysis of the results of numerical
calculations [16] shows that on the Fermi surface the
function ImS�k;o� varies according to the law aT� go2

within a range of frequencies not exceeding the characteristic
spin-fluctuation frequency os. At the same time, at high
frequency there is crossover to a linear dependence on o, a
fact that is clearly visible in Fig. 2a. Thus, the system in
question is a Fermi liquid, since there is a discontinuity in the
particle momentum distribution and Luttinger's theorem,
which states that the volume confined by the Fermi surface
remains constant, holds. Here we are dealing with an
antiferromagnetic Fermi liquid with remarkable properties,
which manifest themselves, in particular, in the temperature
dependence of the electrical conductivity and the frequency
dependence of the light-induced conductivity. The latter can
be calculated by the formulas

s�o� � 2e2

�hc
�s�o� ; �s�o� � 1

i�ho

�
R�o� ÿ R�0�� ; �2:16�

where the current correlation function in the approximation
of loop diagrams with bare vertex parts can be expressed in
terms of the electron Green's functions as follows:

R�ion�� ÿ2T
X
kom

�
qe�k�
qkx

�2

G�k; iom�G�k; iom� ion� :�2:17�

Numerical calculations of the electrical conductivity
r � 1=Re s�0� at low temperatures and the parameter values
adopted here lead to a linear temperature dependence
r � A� BT, where A � ÿ28:09 mOm cm, and B � 1:25
mOm cm Kÿ1. The linear temperature dependence manifests
itself up to about 200 K (there are no NMR data at higher
temperatures, with the result that there are no spin-suscept-
ibility parameters).

Thus, the phenomenologically introduced spin suscept-
ibility with parameters found from NMR in YBa2Cu3O7

explains the existence of high-Tc superconductivity with a d-
wave order parameter. At the particular value of the coupling
constant g � 1:53 eV we have Tc � 90 K. The same values of
the parameters ensure a quantitative description of the
normal phase of this compound, e.g. the temperature
dependence of the electrical conductivity and the frequency
dependence of the light-induced conductivity. It was also
found that the calculated value of the magnetic susceptibility
is in good agreement with the value that was initially included
in the calculation. Indeed, we can write the irreducible part of
the susceptibility (the electron ± hole loop) as

~w�q; ion� � ÿ2T
X
kom

G�k; iom�G�k� q; iom � ion� : �2:18�

The results of calculations of this expression in the static case
are depicted in Fig. 3. Near the point q � �p; p� the quantity
w�q; 0� has a peak, which can lead to antiferromagnetic
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Figure 2. Imaginary and real parts of the electron self-energy for a given

value of quasimomentum on the Fermi surface, kF � �0:37; 0:37�. Calcu-
lations were for the same values of the parameters of YBa2Cu3O7ÿd that
were used in calculating Tc � 90K [16].
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instability. Verifying this requires calculating the suscept-
ibility. We seek it in the form used in RPA:

w�q;o� � ~w�q;o�
1ÿ J�q�~w�q;o� ; �2:19�

where J�q� is the effective coupling parameter. This para-
meter can also be found by comparing the susceptibility
calculated by Eqn (2.19) with Eqn (2.1). The results of such
a comparison are depicted in Fig. 4.

The phenomenologicalmagnetic susceptibility introduced
in Ref. [18] was used by other researchers to study the
different properties of superconductors with the spin-fluctua-
tion pairing mechanism. For instance, Lenck and Carbotte
[21] studied the equations of the BCS theory for a super-
conductor numerically and used Eqn (2.6) as a model of the
pairing interaction. They found that the gap function D�k�
has zeros, which indicated that the order parameter is d-wave,
but that it differs considerably from the simple form D�k�.

They also calculated the penetration depth D�k� �
� �cos kx ÿ cos ky� as a function of temperature and found
that the calculated values of l depend on the parameters of the
theory, but on average exhibit a linear temperature depen-
dence characteristic of superconductors with a d-wave order
parameter (see Section 6).

Thus, the proposed phenomenological approach has
made it possible to connect the properties of the normal and
superconducting phases of a high-Tc compound on the basis
of the dynamic susceptibility function in the form (2.1). The
parameters of this function, which are determined from the
NMR data of the normal phase, make it possible to obtain a
correct temperature dependence of the electrical conductivity
and other transport properties and to explain the large values
of Tc and the nontrivial symmetry of the superconducting
order parameter. The phenomenological approach reduces
the problem of high-Tc compounds to the problem of
microscopic calculation of the dynamic magnetic suscept-
ibility [22]. In Sections 3 and 4 we will use the microscopic
approach for the two main models of the theory of strongly
correlated systems, the Hubbard model and the tJ-model.

3. The spin-fluctuation mechanism in the
Hubbard model

3.1 A self-consistent system of equations for electrons and
magnetic susceptibility
In the one-band models, the same electrons participate in the
formation of antiferromagnetic fluctuations and in electron
pairing due to the exchange of such fluctuations. This means
that both the magnetic susceptibility and the electron self-
energy must be calculated self-consistently. Recently, three
independent groups of researchers, Lenck et al. [23], Month-
oux and Scalapino [24], and Pao and Bickers [25], derived
such self-consistent equations for the superconducting state
and solved the equations numerically. The computational
methods used by these groups differ, but the physical results
are the same. In all three cases integration was over the entire
�k;o�-space rather than only over the region near the Fermi
surface (the latter approach is common for the theory of
superconductors with strong coupling [5]). All three groups
found that the superconducting gap function D�k;o�, if
considered a function of the quasimomentum, is dx2ÿy2 -wave
and that the superconducting transition temperature
Tc � 0:02t, which at parameter values characteristic of high-
Tc compounds amounts to about 60 K. Below we discuss the
version of Lenck et al. [23]. We begin by writing the electron
energy S�k� in the superconducting phase.

In the Nambu representation, the 2� 2 matrix S�k� is
given by the following expression:

S�k� �
X
k 0

Vs�kÿ k 0�t0G�k 0�t0 �
X
k 0

Vc�kÿ k 0�t3G�k 0�t3 :

�3:1�
Here the ta �a � 0; 1; 2; 3� are the Pauli matrices, G�k� is the
electron Green's function, and Vs and Vc are the matrix
elements of the electron ± electron interaction due to spin and
charge fluctuations:

Vs�q� � 3

2
U 2ws�q� ; Vc�q� � 1

2
U 2wc�q� ; �3:2�

where ws�q� and wc�q� are the dynamic magnetic and dielectric
susceptibilities.
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In RPA, the two susceptibilities are given by well-known
diagrams corresponding to summation of loop diagrams:

ws�q� �
ws0�q�

1ÿUws0�q�
; �3:3�

wc�q� �
wc0�q�

1ÿUwc0�q�
: �3:4�

Here ws0�q� and wc0�q� are the irreducible parts, which in the
single-loop approximation are given by the following for-
mulas:

ws0�q� � ÿ
1

2
T
X
k

tr
�
G�k�t0G�k� q�t0

	
; �3:5�

wc0�q� � ÿ
1

2
T
X
k

tr
�
G�k�t3G�k� q�t3

	
; �3:6�

where tr stands for the trace of a two-rowmatrix. TheGreen's
function G�k� and the self-energy part S�k� are related by the
Dyson equation

G�k� � �Gÿ10 �k� ÿ S�k��ÿ1 ; �3:7�

where in the case of singlet pairing the zeroth-order Green's
function is

Gÿ10 �k; ion� � iont0 ÿ e�k�t3 : �3:8�

Here e�k� is the dispersion law for free electrons, which in the
nearest-neighbor strong-coupling model can be written as

e�k� � ÿ2t�cos kx � cos ky� :

We write the matrix S�k� in standard form:

S�k; ion� � ion

�
1ÿ Z�k; ion�

�
t0 � x�k; ion�t3 � F�k; ion�t1 :

�3:9�

Here Z is the renormalization factor, which determines the
renormalized frequency,

~o�k; ion� � onZ�k; ion� ; �3:10�
x�k; ion� specifies the energy shift, and the function F�k; ion�
determines the superconducting gap:

D�k; ion� � F�k; ion�
Z�k; ion� : �3:11�

The summation in Eqn (3.1) and subsequent equations is
done over 4-momenta. The effective interaction potentials
Vs�q� and Vc�q� depend on the difference of 4-momenta,
q � kÿ k 0, and are therefore defined for even frequencies.

Equations (3.1) and (3.9) simultaneously determine three
coupled nonlinear equations for three quantities:

~o�k; ion� � on �
X
k 0m

�
Vs�kÿ k0; ion ÿ iom�

� Vc�kÿ k0; ion ÿ iom�
� ~o�k0; iom�
D�k0; iom� ; �3:12�

x�k; ion� � ÿT
X
k 0m

�
Vs�kÿ k0; ion ÿ iom�

� Vc�kÿ k0; ion ÿ iom�
� e�k0� � x�k0; iom�

D�k0; iom� ;
�3:13�

F�k; ion� � ÿT
X
k 0m

�
Vs�kÿ k0; ion ÿ iom�

� Vc�kÿ k0; ion ÿ iom�
�F�k0; iom�
D�k0; iom� ; �3:14�

whereD�k� is the denominator of the matrix electron Green's
function:

D�k; ion� �
�eo�k; ion�

�2 � �x�k; ion�
�2 � �F�k; ion�

�2
:

These three equations must be augmented by an equation for
the chemical potential,

n � 1

2
� 2T

X
n>0

X
k

ReG11�k; ion� ;

where G11 is a component of the matrix Green's function G.
This equation can be written in terms of the same variables as
in Eqns (3.12) ± (3.14):

n � 1

2
� 2T

X
n>0

X
k

e�k� � x�k; ion�
D�k; ion� : �3:15�

Equations (3.12) ± (3.15) and (3.3) ± (3.6) constitute a
system of self-consistent coupled equations for the electron
Green's function and the dynamic susceptibilities of the
superconductor and must be solved numerically for given
values of the parameters t,U and n by iterations. For instance,
we can plug the approximate values of the magnetic and
dielectric susceptibilities into Eqns (3.12) ± (3.14) and calcu-
late the values of ~o, x, and F, which are functions that
characterize the electron self-energy. Then, plugging these
values into Eqns (3.3) ± (3.6), we calculate new values of the
susceptibilities and plug them into Eqns (3.12) ± (3.14) as
kernels of integral equations, which are then used to
calculate new values of ~o, x, and F. This procedure is
repeated many times, as long as is necessary to obtain a
stable result.

3.2 Results of numerical calculations
The above procedure was carried out for a cluster of a square
lattice containing 48� 48 sites, which specify a discrete lattice
in k-space. Also, a finite numberM ofMatsubara frequencies
was chosen in such a way that pTM be of the order of
characteristic electron energies. Thus, the problem of solving
integral (in momentum and frequency) equations was
reduced to the problem of solving a large number of
algebraic equations, which could be solved iteratively by
what is known as fast Fourier transform. The numerical
solution was obtained for the following values of the external
parameters:

t � 100 meV; U � 4:28t; n � 0:84 : �3:16�

Analysis has shown that a superconducting state emerges (i. e.
a finite D emerges) at Tc � 0:016t. A complete calculation has
been carried out for the temperature T � 0:6Tc inside the
superconducting phase.

It was found that when the parameters (3.16) are
maintained, the spectrum undergoes a strong renormaliza-
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tion due to the interaction of electrons and fluctuations of
spin and charge. This renormalization is characterized by the
parameter Zÿ 1, which acts as the well-known factor l of
mass renormalization in standard superconductivity theory
in the electron ± phonon model, with typical values ranging
from 1.5 to 2.0. AtT � 0:6Tc the ratio of themaximum gap to
Tc is large:

2Dmax

Tc
� 7:7 :

A remarkable result of the numerical calculations is the
strong anisotropy of the gap function (Fig. 5).Within the first
Brillouin zone, the positions of the negative and positive
values of this functions correspond to the simple distribution
provided by the function cos kx ÿ cos ky.

The calculation of the Matsubara magnetic susceptibility
w�q; iom� makes it possible to find, via an analytic continua-
tion onto the real axis by employing the Pade approximant
technique, the following quantity:

lim
o!0

w�q; iom � o� id�
o

; �3:17�

which determines the response of the system. If we consider
this quantity a function of the two-dimensional wave vector,
it has four sharp peaks near the point �p; p� for parameter
values specified by Eqn (3.16) and T � 0:91Tc . This suggests
that there is a sharp enhancement of the magnetic suscept-
ibility, i.e. the system is unstable with respect to formation of
incommensurate phases, which implies that the chosen value
U � 4:28t is close to the critical valueU � 4:30t at which they
begin to exhibit antiferromagnetic properties.

Thus, the numerical solution of the self-consistent equa-
tions has shown that with Eqn (3.16) for the parameter values,
the Hubbard model produces a superconducting state with a
d-wave order parameter and a transition temperature Tc of
the order of several tens of Kelvins. Electron pairing emerges
due to the interaction of electrons and spin and change
fluctuations. A slight increase in U leads to antiferromag-
netic ordering with a wave vector near the point �p; p�. These
results are in satisfactory agreement with the solution of the
self-consistent equations obtained by Pao and Bickers [25],
who used another method, which is conceptually close to the

renormalization-group method. Compared to the method
used by Lenck et al. [23], where the transition to lower
temperatures is related to a large increase in the number of
discrete Matsubara frequencies and hence to an increase in
the number of unknowns in the algebraic system of equations,
their approach made it possible to consider lower tempera-
tures. We note, in passing, that the physical results achieved
by Monthoux and Scalapino [24] (whose method is similar to
that used by Lenck et al. [23]) also prove to be close. The
general conclusion that can be drawn from all these studies is
that the approaches used in the Hubbard model with a weak
Coulomb interaction and self-consistent equations for the
electron self-energy and the dynamic susceptibility in the
superconductor make it possible to obtain, for a half-filled
band, a solution with a d-wave order parameter and a
transition temperature Tc of about 60 K for values U � zt,
i.e., generally speaking, at the very limits of applicability of
the method.

In conclusion of this section we would like to mention the
works of Bickers et al. [26, 27], Tewordt [28], Wermbter and
Tewordt [29], and Lenck et al. [30] that preceded [23 ± 25].

4. The spin-fluctuation mechanism
n the tJ-model

4.1 The concept of a spin polaron
The theory based on the Hubbard model proves to be
insufficient for describing the superconductivity of high-Tc

compounds, since its assumption is that the Coulomb
interaction is weak (U5W). It is usually believed that the
opposite limit (U4W) is applicable to high-Tc compounds of
the metal-oxide group [31]. In this case the Hubbard model
can be replaced by what is known as the tJ-model with the
Hamiltonian

H � ÿt
X
ijs

eCyis eCjs � J
X
ij

�
SiSj ÿ 1

4
ninj

�
; �4:1�

where the first term on the right-hand side describes electron
hops along the nearest sites of the lattice under the condition
that there cannot be more than one electron at each site, and
the second term describes the exchange interaction of
electrons at neighboring sites with an exchange integral
J� 2t 2=U. Here eC yis� C

y
is�1ÿ ni�s� is the operator of electron

creation under the condition that the site does not carry
another electron, Si is the electron spin operator,

Si � 1

2

X
ss0

eCyissss 0 eCis 0 ; �4:2�

and ni is the operator of the number of electrons at a single
site.

The model (4.1) has been thoroughly studied for a half-
filled band (n � 1), i. e. at low hole concentrations d (e.g. see
the review article [1]). For d < dc, where dc is the critical hole
concentration, antiferromagnetic order with a wave vector
Q � �p; p� sets in. An individual hole moves in an antiferro-
magnetic matrix, thus destroying the long-range order in a
local region that travels together with the charge, which leads
to the formation of a compound quasiparticle (the hole plus a
cloud of local spin deviations). Such a quasiparticle has
become known as a magnetic (or spin) polaron. Magnetic
polarons form a quasiparticle band whose width is of order J.
A magnetic polaron is a coherent one-particle state of the
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Figure 5. Gap function F�k; ion� for on � 0 at T � 0:6Tc and parameter

values (3.16) [23].
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system, and its intensity is given by the parameter Z � J=t
(the remaining intensity goes to the spectrum of incoherent
states).

A magnetic polaron is formed due to the interaction of
charge and spin degrees of freedom. The same interaction
may lead to a superconducting pairing of quasiparticles.
When the ground state is antiferromagnetic, the general
model Hamiltonian (4.1) can be replaced by an effective
Hamiltonian, which allows for the interaction of holes and
spin waves. This is achieved by passing from the electron
operators eCis and eC yis to the product of Fermi and spin
operators (the spin ± fermion representation [1]).

For two spin sublattices (denoted by " and #) this
representation has the form

eCi" � h
y
i ;

eCi# � h
y
i s
�
i �i 2"� ;eCi# � f

y
i ;

eCi" � f
y
i s
ÿ
i �i 2#� : �4:3�

Here h
y
i and f

y
i are spinless Fermi operators producing holes

at the sites of the sublattices " and #, respectively, and s�i and
sÿi are spin operators. In an approximation linear in the spin
waves we obtain [32]

H � H0 �Hint �
X
q

o�q�ÿayqaq � byqbq
�

�
X
kq

h
y
k fkÿq

�
g�k; q�aq � g�qÿ k; q�byÿq

�� c:c: �4:4�

here ayq and byq are Bose operators of creation of spin waves
with an energy oq, and g�k; q� is the hole ± spin-wave
interaction amplitude,

o�k� � zJs�1ÿ d�2n�k� ; �4:5�

g�k; q� � zt���������
N=2

p �uqgkÿq � vqgk� ; �4:6�

n�k� �
�������������������
1ÿ g�k�2

q
; g�k� � 1

2
�cos kx � cos ky� ;

uk �
�
1� n�k�
2n�k�

�1=2

; vk � ÿsign g�k�
�
1ÿ n�k�
2n�k�

�1=2

:

In contrast to ordinary polaron theory, Hamiltonian (4.4) in
spin polaron theory does not contain a bare term for the
holes. The quasiparticle spectrum is formed exclusively by the
interaction of holes and magnetic-order fluctuations (spin
waves).

Usually, when dealing with the Hamiltonian (4.4), it is
common to employ the self-consistent Born approximation
(SCBA). In this approximation, the quasiparticle spectrum is
shown to form a narrow band whose width depends on the
hole concentration, while the Fermi surface forms four
pockets centered at the points ��p=2;�p=2� of the Brillouin
zone. The chemical potential m depends on d andT and can be
found by solving the equation

d � 
hyi hi�� 
 f yi fi� : �4:7�

4.2 The self-consistent Born approximation for a
superconductor
To employ the possibility of singlet magnetic-polaron
pairing, we express (following Plakida et al. [33]) the electron

Green's function in terms of the two-component operators

ck �
eCk"eCyÿk#

 !
� h

y
k

fÿk

 !
;

cyk �
ÿ eCyk"; eCÿk#� � ÿhk; f yÿk� ; �4:8�

so that the Green's functionG�k� and its self-energy partS�k�
can be represented by 2� 2 matrices:

G�k� � Ghh Ghf

Gfh Gff

� �
� ÿ
Tckc

y
k

�
; �4:9�

S�k� � Shh Shf

Sfh Sff

� �
: �4:10�

In SCBA, the equations for the normal (Shh) and
anomalous (Shf) parts of S assume the form of the Eliashberg
equations:

Shh�k; ion� � ÿT
X
qm

Ghh�q; iom�l11k; kÿq�ion ÿ iom� ; �4:11�

Shf�k; ion� � ÿT
X
qm

Ghf�q; iom�l12k;kÿq�ion ÿ iom� ; �4:12�

where we have introduced the notation

l11k; q�ion� � g�k; q�2D�q;ÿion� � g�qÿ k; q�2D�ÿq; ion� ;

l12k; q�ion� � g�k; q�g�qÿ k; q��D�q;ÿion� �D�ÿq; ion�
�

for the linear combinations of the magnon Green's function
D�q;ÿion�. In a fully self-consistent theory there should be an
equation expressing the magnon Green's function in terms of
the electron Green's functions, as is done in the Hubbard
model. However, in what follows we use the bare magnon
Green's function with the frequency spectrum (4.5). To study
Tc, we need only a system of equations linearized in the
anomalous part:

Ghh�k; ion� � 1

ion � e�k� ÿ mÿ Shh�k; ion� ; �4:13�

F�k; ion� � T
X
qm

l12k; kÿq�ion ÿ iom�Ghh�q; iom�

� Ghh�ÿq;ÿiom�F�q; iom� : �4:14�

The first stage of calculating Tc consists in self-consis-
tently calculating the normal Green's function Ghh�k; ion�
using Eqns (4.11) and (4.13). Here the chemical potential is
found from Eqn (4.7), which assumes the form

d � 1

2
� 2T

X
kn

Ghh�k; ion� : �4:15�

The numerical calculations were made on a lattice consisting
of 64� 64 points k in the entire Brillouin zone, and the
summation over Matsubara frequencies incorporated 200 to
700 points with a cutoff at omax � 10t. Usually it was enough
to do 10 to 30 iterations to obtain a solution for the self-
energy with an accuracy of one part in a thousand.
Calculations of the spectral density

A�k;o� � ÿ 1

p
ImGhh�k;o�
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of one-particle states were made by using the Pade approx-
imant technique. The calculated quasiparticle spectrum and
the Fermi surface are depicted in Fig. 6. We see that the
dispersion curves have the same structure within a broad
range of hole concentrations, with the energy minimum being
at point S, so that the Fermi surface has four pockets centered
at the points ��p=2;�p=2�, as shown by many researchers
(see the review article [1]). Figure 6b shows that at d � 0:25
the topology of the Fermi surface may change if we include
the parameter t 0 of next-nearest-neighbor hopping.

Figure 7 depicts the superconducting transition tempera-
ture calculated using the linearized equation (4.14) as a
function of the hole concentration d for several values of the
parameter t 0=t. What is remarkable is that all the curves have
a peak whose position depends on t 0=t. Such behavior differs
significantly from other cases, where, for example, Tc

monotonically increases with d (in the weak-coupling
approximation [34]) or a peak exists near concentrations for
a half-filled band [35].

The solutions of Eqn (4.14) are d-waves. This also follows
from the nonlinear equation (4.12), from which the super-

conducting order parameter D�k� � F�k; 0�=Z�k; 0� can be
obtained as a function of the wave vector k � �kx; ky� (Fig. 8).

Several remarks concerning the above results are in order.
The large values of Tc in the spin polaron model are due to a
sharp peak in the density of states near the Fermi surface. In
contrast to the scenario that uses a Van Hove singularity, this
peak is of a multielectron nature. Here it occurs that the
peak's width (the width of the polaron band) and the width of
the spin-wave spectrum are of the same order J. In this
situation the integration in the Eliashberg equations must be
done over the entire Brillouin zone, a process that was
implemented numerically.

Note, however, that attempts at comparing the results of
the spin polaron theory and the properties of high-Tc systems
have met with difficulties. The point is that the model
Hamiltonian (4.4) was derived under the assumption that
there is long-range antiferromagnetic order in the system,
while superconductivity in high-Tc compounds emerges when
d > dc, i.e. outside amagnetically ordered state. Of course, for
a large enough magnetic correlation length, the spin-fluctua-
tion spectrum will reflect the features of the spin-wave
spectrum, but without a thorough investigation it is difficult
to predict the behavior of a system in which three parameters
of dimension of length must be compared (i.e. the magnetic
correlation length, the radius of the magnetic polaron, and
the size of the Cooper pair). The cornerstone of this
complicated problem is the self-consistent calculation of the
spin Green's function in the absence of long-range magnetic
order. The study of superconductivity within the framework
of the polaron model made by Plakida et al. [33] may only be
considered an attempt in building a spin-fluctuation mechan-
ism of pairing in the tJ-model.

Let us summarize the ideas concerned in the spin-
fluctuation mechanism of superconductivity discussed in
Sections 2 ± 4. We have studied three approaches to the
problem, one based on the concept of phenomenological
dynamic susceptibility, and two model approaches, corre-
sponding to the limits of weak (U5 zt) and strong (U4 zt)
Coulomb repulsion. In all three cases, large values of Tc are
obtained only if we allow for integration in Eliashberg-type
equations over the entire k-space rather than only near the

G GX M S

ÿ0.4

E�k�

ÿ0.8

ÿ1.2

ÿ1.6

ÿ2.0

ÿ2.4

d= 0.02

0.04

0.06

0.08

a

X

Y M

G

b

Figure 6. (a) Quasiparticle spectrum E�k� for different hole concentra-

tions; (b) the Fermi surface E�kF� � 0 for a hole concentration d � 0:25 at
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Fermi surface. The symmetry of the order parameter in these
cases automatically proves to be of dx2ÿy2 -wave type. One
should not, however, overestimate this achievement of the
theory, since the Eliashberg equations did not allow for the
renormalization of the vertices of electron ±magnon interac-
tion, which has no such obvious smallness parameter as the
adiabaticity parameter in the electron ± phonon model.
Another weak point of the two microscopic approaches
based on the Hubbard model and the tJ-model is the limiting
nature of the weak and strong Coulomb interaction, respec-
tively, while it is more probable that in cuprates the
intermediate case U � zt is realized. We see, therefore, that
notwithstanding the fact that some predictions of the theory
of the spin-fluctuation mechanism coincide with phenomena
observed in cuprates, the question of the nature of pairing in
cuprates cannot be considered entirely resolved.What is most
difficult in these theories is to explain the fact that many
cuprates do not exhibit spin fluctuations at low energies (this
follows from the experimental data on inelastic neutron
scattering; e.g. see Plakida's monograph [36]), fluctuations
needed for the spin-fluctuation mechanism of superconduc-
tivity to operate.

5. The Ginzburg ±Landau theory for a
superconductor with a d-wave order parameter

5.1 Derivation of the Ginzburg ±Landau equations in the
weak-coupling theory
The anisotropic spatial distribution of the superconducting
order parameter in d-wave superconductors leads to a
number of special features of the superconducting state in
comparison to ordinary s-wave superconductors. Among
these is the appearance of order-parameter zeros at the
Fermi surface and the anisotropy of vortices and the
structure of the vortex lattice in fields Hc1 < H < Hc2. As is

known, the behavior of type II superconductors in a magnetic
field is controlled by theGinzburg ±Landau equations, which
means that one must first generalize these equations for
superconductors with a d-wave order parameter.

We begin with the microscopic derivation of these
equations in the weak-coupling approximation [37]. The
starting point is the Gor'kov equation for an inhomogeneous
order parameter,

D��r; r 0� � V�rÿ r 0�T
X
n

F ��r; r 0; ion� ; �5:1�

where V�rÿ r 0� is the effective two-particle interaction of
electrons, and F � is the anomalous Green's function. We
denote the normal Green's function in a magnetic field by eG.
The Gor'kov equations can then be written as�

ion ÿ 1

2m
�ÿiH� eA�2 � m

� eG�rr 0;on�

�
�
dr 00 D�rr 00�F ��r 00r 0;on� � d�rÿ r 0� ; �5:2��

ÿion ÿ 1

2m
�iH� eA�2 � m

�
F ��rr 0;on�

�
�
dr 00 D��rr 00� eG�r 00r 0;on� � 0 ; �5:3�

where A is the vector potential of the fields. The equations
have been written for the case of a continuous medium (i.e.
the discreteness of the lattice has been ignored), with result
that we have a quadratic dispersion law for the electrons with
an effective mass m.

Near the transition to the normal state, Eqns (5.2) and
(5.3) can be solved by iterations. This leads to the appearance
on the right-hand side of Eqn (5.1) of a linear term and a cubic
term in D. The coefficients in these equations depend on the
electronGreen's function eG0 in the normal phase, in which we
can specify the dependence on the external field explicitly:

eG0�rr 0;on� �
�
ion ÿ 1

2m
�ÿiH� eA�2 � m

�ÿ1
d�rÿ r 0�

� G0�rr 0;on� exp
�ÿieA�r��rÿ r 0�	 : �5:4�

This approximation holds for relatively slow variations of the
magnetic field in space, when 1=kF 5 l, with l the London
penetration depth. In Eqn (5.4), G0 is the Green's function of
free electrons in a zero field:

G0�r;on� � 1

�2p�2
�
dk exp�ikr� 1

ion ÿ xk
; �5:5�

where xk � k2=�2m� ÿ m.
Instead of using the variables r and r 0, it is convenient to

introduce the center-of-mass radius vector R � �r� r 0�=2
and the radius vector of relative motion, r� rÿ r 0. After
performing a Fourier transformation with respect to the
variable q and using Eqn (5.5), we arrive at an equation for
the superconducting order parameter D��R; k� in the form

D��R; k� � ÿ
�

dk 0

�2p�2 V�kÿ k 0�T
X
n

1

o2
n � x2k 0

D��R; k 0�

ÿ
�

dk 0

2�2p�2 V�kÿ k 0�T
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Figure 8. Superconducting order parameter D�k� at d � 0:25 and

T=Tc � 0:8 [33].

March, 1999 Spin-êuctuation mechanism of high-Tc superconductivity and order-parameter symmetry 225



�
X
n

�
1

�2m�2
2x2k 0 ÿ 6o2

n

�o2
n � x2k 0 �3

ÿ
k 02xP

2
x � k 02yP

2
y

�
ÿ 1

2m

xk 0

�o2
n � x2k 0 �2

P2

�
D��R; k 0�

�
�

dk 0

�2p2� V�kÿ k 0�T
X
n

1

�o2
n � x2k 0 �2

��D��R; k 0���2D��R; k 0� :
�5:6�

Here PR � ÿiHR ÿ 2eAR is the generalized momentum.
Equation (5.6) is the Ginzburg ±Landau equation for the
superconducting order parameter.

Now we take the effective interaction in the special form

V�kÿ k 0� � V0 ÿ V1

�
cos�kx ÿ k 0x� � cos�ky ÿ k 0y�

�
; �5:7�

which in the lattice model corresponds to repulsion at one site
and attraction at the neighboring sites (the two constants V0

andV1 are positive).Wewrite Eqn (5.7) as an expansion in the
basis functions that transform according to the representa-
tions of the s-, d-, and p-symmetries:

V�kÿ k 0� � V0 ÿ V1

2

�
cs�k�cs�k 0� � cd�k�cd�k 0�

� cp�kx�cp�k 0x� � cp�ky�cp�k 0y�
�
; �5:8�

where

cs�k� � cos kx � cos ky ; cd�k� � cos kx ÿ cos ky ;

cp�ka� � sin ka �a � x; y� :

Here we consider only singlet pairing, so that the contribution
of p-symmetry to Eqn (5.8) can be ignored. What remains of
the interaction,

V�kÿ k 0� � Vs ÿ Vdcd�k�cd�k 0� �5:9�

(Vs � V0 ÿ 2V1 and Vd � V1=8), can lead to pairing of only
the s- or d-type, so that we look for the superconducting order
parameter in the form

D��R; k� � D�s �R� � D�d�R�cd�k� : �5:10�

Plugging this into Eqn (5.6), we arrive at a system of two
coupled equations for D�s �R� and D�d�R�:

2

�
1� 2

Vs

Vd

�
D�s � ald

�
1

2
v2FP

2D�s �
1

4
v2F�P2

x ÿP2
y�D�d

� 2jDsj2D�s � 2jDdj2D�s � D�d
2Ds

�
� 0 ; �5:11�

ÿ ldD
�
d ln

Tc

T
� ald

�
1

4
v2FP

2D�d �
1

4
v2F�P2

x ÿP2
y�D�s

� 2jDsj2D�d � D�s
2Dd � 3

4
jDdj2D�d

�
� 0 : �5:12�

Here a � 7z�3�=8�pTc�2, ld � N�0�Vd, and N�0� is the
density of states at the Fermi surface. The transition
temperature can be found from the condition that

ld ln
2egoD

pTc
� 1 ;

where oD is the width of a layer near the Fermi surface where
there is attraction between electrons.

The s- and d-wave order parameters are coupled not only
due to mixed cubic terms but also due to gradient d-wave
terms. These equation must be augmented by an equation for
currents obtained in the standard manner. As in ordinary
superconductors, the equation for currents has the form

j�R� � ÿ eN�0�ma
2m

�
DsPD�s �

1

2
DdPD�d

� 1

2
�DsPxD

�
d � DdPxD

�
s �x

ÿ 1

2
�DsPyD

�
d � DdPyD

�
s �y
�
� c:c: �5:13�

(x and y are basis vectors). These equations determine the
vortex structure, in which the most remarkable feature is that
the spatial distributions of the d- and s-components of the
order parameter are different.

Note that parallel to the microscopic approach discussed
here, a phenomenological approach based on an expression
for the free energy written in the spirit of the original
Ginzburg ±Landau theory was used. Below we discuss the
basics of this approach and present the results of the analysis
of the Ginzburg ±Landau equations in their phenomenologi-
cal form [38 ± 40].

5.2 The phenomenological approach
As for ordinary s-wave superconductors, we write the free
energy for a superconductor with two order-parameter
components as an expansion in powers of these components.
Following the works of Berlinsky et al. [39] and Franz et al.
[40], we denote these order parameters by s and d, respec-
tively. The two order parameters are functions of coordinates
and are transformed via the symmetry elements of the square
lattice according to representations which in an isotropic
medium correspond to orbital angular momenta l � 0 and
l � 2. The expansion for the free-energy density has the form

f � asjsj2 � adjdj2 � b1jsj4 � b2jdj4 � b3jsj2jdj2

� b4�s�2d 2 � d �2s2� � gs�Ps�2 � gd�Pd�2

� gv��Pys���Pyd� ÿ �Pxs���Pxd� � c:c:
�� h2

8p
: �5:14�

It is assumed that d is the critical order parameter, i.e.
ad � a 0�Tÿ Td� and as � a 0�Tÿ Ts�, with Ts < Td. It is
also assumed that the constants b1 , b2 , b3 , b4 , gs and gd are
positive, as in the ordinary theory, as is gv. This agrees with
the results of the microscopic approach of Xu et al. [37], who
also obtained an expansion for the free energy of type (5.14)
with a positive coefficient of the mixed gradient term. All the
parameters gi are related to the effective masses in the
ordinary way: gi � �h2=2mi �i � s; d; v�.

We are interested in the case where the pure d-state is
stable in a massive sample in absence of inhomogeneities, i. e.
in the situation where jdj > 0 and s � 0. By varying the free
energy in d � and s� we arrive at a pair of coupled equations for
the superconducting order parameter:

�gdP2 � ad�d� gv�P2
y ÿP2

x�s� 2b2jdj2d
� b3jsj2d� 2b4s

2d � � 0 ; �5:15�
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�gsP2 � as�s� gv�P2
y ÿP2

x�d� 2b1jsj2s
� b3jdj2s� 2b4d

2s� � 0 : �5:16�

The equation for the current can be obtained in the
ordinary way, with the result that

j � e�h

2md

�
d ��Pd� � �Pd��d �� e�h

2ms

�
s��Ps� � �Ps��s�

ÿ e�h

2mv

�
s��Pxd� � �Pxs��d� c:c:

�
x

� e�h

2mv

�
s��Pyd� � �Pys��d� c:c:

�
y : �5:17�

Clearly, Eqns (5.15) ± (5.17) of the phenomenological theory
are almost equivalent to Eqns (5.11) ± (5.13) of the micro-
scopic theory. By comparing the two sets of equations we can
establish the physical meaning of the phenomenological
coefficients.

Equations (5.15) ± (5.17) constitute the complete set of
Ginzburg ±Landau equations for superconductors with
dx2ÿy2 -pairing. This set of equations is too complicated to
analyze, so that below we consider only the most interesting
particular cases Ð the solutions of these equations near the
lower (Hc1) and upper (Hc2) critical field. In the first case the
vortex number density is low, and in the second one has to
deal with a vortex lattice. It occurs that the structure of an
isolated vortex and the properties of a vortex lattice for d-
wave superconductors differ substantially from those for
ordinary s-wave superconductors [41 ± 68]. We begin with
the equations near the field Hc1.

5.3 The structure of an isolated vortex
Let us find the solutions of Eqns (5.15) and (5.16) when there
is only one vortex and when l4 xd. We can easily establish
the asymptotic behavior of this solution in the following three
regions: (1) r! 0, (2) xd 5 r5 l, and (3) r4 l.

1. At the core of the vortex (r � 0) both order parameters,
s and d, vanish. As r increases, so does d, and this generates s
and f, thanks to the mixed gradient term. At
r � xd �

��������������
gd=jadj

p
, the amplitude d almost coincides with its

value in a homogeneous d-wave superconductor,
d0 �

�����������������jadj=2b2
p

. At the time, s is assumed small and all
s-terms in Eqn (5.15) can be ignored, with the result that this
equation becomes

�ad � gP2�d� 2b2jdj2d � 0 ;

which is a well-known equation in the theory of ordinary
superconductors. As r! 0, the solution of this equation
expressed in polar coordinates becomes

d�r;j� � d1r exp�ij� : �5:18�

The leading term for s�r;j� can be obtained from the
linearized equation (5.16),

�as � gsP
2�s� gv�P2

y ÿP2
x�d � 0 :

Let us calculate the result of the operatorP2
y ÿP2

x acting
on Eqn (5.18):

�P2
y ÿP2

x�d�r;j� � ÿ
eh0
�hc

d1r exp�ÿij� :

This leads to the following result:

s�r;j� � s1r exp�ÿij� ; �5:19�

where

s1 � 3

8

�
gv
asx

2
d

�
d1 5 d1 :

The most interesting feature of the solution specified by Eqns
(5.18) and (5.19) is that the s- and d-components of the
superconducting order parameter have opposite vorticities.
This agrees with the general prediction of Volovik's symmetry
analysis [41].

2. We assume that outside the core d has already reached
its limit d0, so that

d�r;j� � d0 exp�if� : �5:20�

Wemust now study Eqn (5.17) with this value of d and assume
that jsj5 jdj and jHsj5 jHdj. Under these two conditions the
vector potentialA can be put equal to zero and Eqn (5.16) can
be replaced by the following equation:

gv�q2x ÿ q2y�d� ass� b3jdj2s� 2b1d
2s� � 0 :

In terms of polar coordinates, the action of the operators on
the d-functions results in

�q2x ÿ q2y�d0 exp�ij� �
1

2r2
�
3 exp�3ij� ÿ exp�ÿij��d0 ;

so that the equation yields the following asymptotic behavior:

s�r;j� � 1

r2
�
f1 exp�ÿij� � f3 exp�3ij�

�
; �5:21�

where f1 and f3 are constants of order f3 � ÿ3f1 � gvd0=as.
The first to obtain the solution specified by Eqns (5.20) and
(5.21) were Xu et al. [37]. In the given region, the s-component
decreases as 1=r 2, while the d-component remains constant.
Here the angular dependence of the s-component is more
complicated than in the core region because of the additional
term � exp�3ij�.

3. Finally, in the region r4 l we can easily determine the
exponential asymptotic behavior of the s-component of the
order parameter:

s�r;j� �
�
p
2

l
r

�1=2

exp

�
ÿ r

l

��
s1 exp�ÿij� � s3 exp�3ij�

�
;

�5:22�
where s1 � ÿs3 � gvd0=2l

2as.
Thus, at distances r4 l the vortex has the same structure as in
ordinary superconductors. At the distance r5 l the d-
component mixes with the s-component, which increases as
1=r2 as we move closer to the core but nevertheless is always
smaller than the d-component. Finally, inside the core both
components decrease with r (as r! 0). These patterns of
asymptotic behavior are corroborated by numerical solutions
of the Ginzburg ±Landau equations (5.15) and (5.16) (Fig. 9).
The angular dependence of the singular solution of the
Ginzburg ±Landau equations is depicted in Figs. 9 and 10.
The spatial distribution of the s-component acquires four
singularities positioned around the core, and the phases of
these singularities have a vorticity opposite to that of the core.
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What is remarkable is that the general pattern of the
topological structure of the isolated vortex represented in
Figs. 9 and 10 is conserved even if the free-energy parameters
change.

5.4 A vortex lattice
In the vicinity of the upper critical fieldHc2, where the vortex
number density is high, the vortices form an ordered pattern
in space, which is known as a vortex lattice. For d-wave
superconductors, the periodic solution of the Ginzburg ±
Landau equations can be obtained in the same way as
Abrikosov did for the first time for ordinary superconduc-
tors. The sole complicating factor here is the anisotropic
distribution of the order parameter in an isolated vortex,
which requires using numerical methods.

Analysis of the Ginzburg ±Landau equations shows [40]
that instead of a triangular lattice, which is present in
ordinary superconductors, in this case we are forced to deal
with an oblique vortex lattice. A characteristic feature of such
a lattice is the presence of periods Lx and Ly along the
corresponding directions of the initial square lattice. The
measure of the obliqueness is the ratio R � Lx=Ly, which for
a square lattice is R � 1, for a triangular lattice R � ���

3
p

, and
for an oblique lattice an intermediate value. For a given
magnetic field, the equilibrium value of this ratio,Rmin, can be
found by minimizing the free energy. Obviously, this
parameter determines the angle y between the shortest
vectors of an oblique vortex lattice. The lattice's shape and
periodicity is determined primarily by the magnetic field and
an important parameter ev � gv=gs. In numerical calculations
it is assumed that gs � gd. Figure 11 depicts an example of
numerical calculations of a vortex lattice. For the specified
parameter values, the shape of the lattice is characterized by
Rmin � 1:29 and y � 76�. At ev � 0 the s-component of the
order parameter vanishes and the lattice becomes triangular,
as in ordinary superconductors. As ev increases, the lattice
continuously changes its shape and becomes more and more
like a square lattice.

It is possible, at least in principle, to study a vortex lattice
in experiments by using small-angle neutron diffraction.
Keimer [55] reported observing an oblique lattice in the
YBCO system in magnetic fields 0:5T4H4 5T, with an
angle of y � 73�between primitive translations. These obser-
vations agree with the results of calculations of Franz et al.
[40], but Walker and Timusk [42] argue that the observed
neutron scattering can be explained not only by the oblique-
ness of the lattice but also by orthorhombic distortions of the
ab-plane. Walker and Timusk [42] report observing, by
another method, an oblique lattice with y � 77�. A different
method, with which the ambiguity in interpreting the results
of experiments could be removed, consists in studying the
lineshapes in msR and NMR experiments.

5.5 Further development of the theory
Symmetry considerations imply (see Volovik [41]) that the
dx2ÿy2 -wave order parameter contains not only an admixture
of the s-wave order parameter but also order parameters of
other symmetries, e.g. dxy-wave. However, the coupling
between dx2ÿy2 - and dxy-wave order parameters is ensured
not by gradient terms in the free energy that are of second
order in derivatives (as in the case of the admixture of the
s-wave order parameter) but gradient terms of the fourth
order [43]:
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Figure 9. Amplitude of the d- and s-components of a vortex along the x

axis (solid curve) and along the diagonal x � y (dashed curve) for the

following values of the parameters: b1 � b3 � 0, b4 � 0:5b2, a3 � 10jadj
and gd � gs � gv [40].
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�q2x ÿ q2y�dx2ÿy2qxqydxy : �5:23�

Ichioka et al. [43] studied this situation with a semiclassical
approach used earlier by Schopohl et al. [44, 45]. One
advantage of this approach is that the results are valid at all
temperatures, in contrast to the Ginzburg ±Landau theory,
which can be used only near Tc.

It was found that the accompanying order parameter
changes near the core as dxy � r3 , while far from the core it
changes as dxy � 1=r 4. The angular dependence of the order
parameter is given by the formula

dxy � d1�r� exp�ÿ4ij� � d2�r� exp�4ij� ; �5:24�

which means that the contour map of the vortex for the
dxy-wave order parameter is not four-lobe (as in the case of
the s-wave order parameter) but eight-lobe. The relative
intensity of the accompanying component of the order
parameter is determined by the value of the coefficient of the
invariant (5.23) in the free energy.

Heeb et al. [46] did a detailed symmetry analysis within the
Ginzburg ±Landau theory for d-wave superconductors. In
addition to studying the tetragonal symmetry of the initial
crystal, they investigated the orthorhombic symmetry. These
studies corroborated the isolated-vortex structure, earlier

studied by Xu et al. [37], Soininen et al. [38], Berlinsky et al.
[39], and Franz et al. [40], but the analysis took into account
more thoroughly the magnetic field in the linearized Ginz-
burg ±Landau equations. As is known, the behavior of type-
II superconductors in a magnetic field is determined by the
Abrikosov parameter K � l=x. Heeb et al. [46] found that the
approximations adopted in Refs [38 ± 40] correspond to the
K!1 limit. But if K is finite, two singularities emerge. Four
satellite vortices for the s-wave order parameter move away
from the center, and their intensity diminishes. The effect
becomes appreciable when K < 10. When K < 2, which is
close to the limit at which a type-II superconductor exists, the
satellite vortices disappear completely. This explains the fact
that the numerical calculations done by Xu et al. [37] (who
used a microscopic approach in deriving the Ginzburg ±
Landau equations) did not reveal a four-lobe vortex struc-
ture, although strong anisotropy in the s-component of the
order parameter with a fourfold symmetry axis was discov-
ered.

In the orthorhombic phase one must allow for the mixed
invariants

sd � ; �Pxs���Pxd� ; �Pys���Pyd� �5:25�
and the complex-conjugate expressions. The invariant
sd � � s�d leads to a mixing of s- and d-wave order para-
meters, so that the main d-wave order parameter induces the
s-wave order parameter everywhere in the bulk. This
phenomenon can be detected in experiments involving
Josephson junctions. For instance, Sun et al. [47] measured
the tunnel current in the contact of Pb ±YBa2Cu3O7ÿd with
the sample surface that was perpendicular to the c-axis. If
YBa2Cu3O7ÿd were a superconductor with a purely d-wave
order parameter, the tunnel current in this contact would be
zero, since in Pb the order parameter is s-wave. The induction
of the s-component leads to a finite current, with a value
determined by the fraction of the s-component in the order
parameter for this compound. Reasoning along these lines,
one can explain the origin of the current observed in the
contact.

The fact that the s-component is finite also affects the
vortex structure and, in particular, the arrangement of the
satellite vortices.When the distortion of a tetragonal crystal is
small, a slight displacement appears along the x and y axes in
opposite directions. The gradient terms in Eqn (5.25) lead to
other effects in the vortex structure. For instance, depending
on the size of the distortion, six, four, two, or zero satellite
vortices may appear in the s-component of the order
parameter.

Arovas et al. [48] proposed a new type of vortex, which
can realize itself in d-wave superconductors. The core of the
vortex is not the paramagnetic state of a metal, as it is in an
ordinary superconductor, but the antiferromagnetic state.
This conclusion was reached on the basis of the theory
developed in Ref. [49], which employs the SU(5) symmetry
of the order parameter. In systems such as cuprates, where the
antiferromagnetic state is close to the superconducting state,
it is advisable to combine the three-component magnetic
order parameter and the two-component superconducting
order parameter (meaning its real and imaginary parts). Then
the free energy can be expanded in a power series in such a
five-component order parameter and the different phases and
the transitions between these phases can be studied.

Note that surface states in dx2ÿy2 -wave superconductors
have been studied by Walker et al. [50].

d

s

a

b

Figure 11. Contour curves for the altitude of an order parameter of d-type

(a) and s-type (b) for a vortex lattice in a field H � 0:8Hc2 at T � 0:75Td

and the following parameter values: b1 � b2 � b3 � b4 � 1, ev � 0:45,
and Tc � 0:5Td. The light areas are characterized by the highest intensity

[39].
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Along with the phenomenological approach to d-wave
superconductors, microscopic approaches were employed
[51]. For instance, Feder and Kallin [51] used the strong-
coupling method to study superconductivity in two models,
an extended Hubbard model proposed by Micnas and
Ranninger [52] and an antiferromagnetic model with a Van
Hove singularity (AvH) proposed by Dagotto et al. [53]. The
first model allows from the start for repulsion between
electrons at a single site and attraction between electrons at
different sites. The second model allows for attraction
between electrons at neighboring sites and for next-nearest-
neighbor and next-next-nearest-neighbor electron hopping
(there is no nearest-neighbor electron hopping). Nazarenko et
al. [54] recently found that the extended model leads to
instability in relation to phase stratification or to the
formation of a spin density wave. Nevertheless, there is a
fairly restricted region of parameter values within which a
superconducting state with high Tc can exist. On the other
hand, the AvH model leads to an instability in relation to
d-wave superconductivity.

The Ginzburg ±Landau equations have been derived for
both lattice models by a technique that uses the Gor'kov
equations. This means that the microscopic expressions for
the phenomenological coefficients of the Ginzburg ±Landau
functional are known. It was found that within a broad range
of values of the system parameters both models lead to a
gradient coefficient ratio of order gv=gd � 0:1ÿ0:4. This
agrees with the results of recent observations [55, 56] for the
vortex lattice in YBCO with angles y � 73� and 77� .

Another work worth mentioning here is that of Liu et al.
[57], who used the AvH model to study the possible super-
position of s- and d-wave order parameters. The problem of
mixed �s� d�- or �s� id�-wave states was first investigated by
Ruckenstein et al. [58] and Kotliar [59], and recently it was
studied by Donovan and Carbotte [60], Ren et al. [61], and
Musaelian et al. [62] in the two-dimensional model of a Fermi
liquid. In the AvH model it was established that the
�s� id�-phase emerges under orthorhombic distortions of a
tetragonal crystal. Maki and Beal-Monod [63] derived the
Ginzburg ±Landau equations for an orthorhombic crystal, in
which there must be a superposition of s- and d-states. The
anisotropy in the ab plane in the normal phase is taken into
account via the anisotropy of the quasiparticle effective
masses. The researchers calculated the critical fields Hc2

when an external field was applied in the base plane and
perpendicular to that plane. The anisotropy in Hc2 is
accompanied by the anisotropy in penetration depth. For
YBCO the calculated value Hb

c2=H
a
c2 � 3:15 proved to be

much larger than the values obtained in experiments [64].
Other research that is worth mentioning here is that of Wang
and Wang [65], who derived dynamic Ginzburg ±Landau
equations and studied the resistance in the mixed super-
conducting phase, of Vicente Alvarez et al. [66], who studied
the Hall effect, and of Kopnin and Volovik [67], who studied
low-temperature scaling.

Won and Maki [68] and Sun et al. [47] used the
microscopic approach in calculating Hc2 and the density of
states N�0� on the Fermi surface in a dx2ÿy2 -wave super-
conductor. The structure of an isolated vortex in such a
superconductor placed in a magnetic field H k c can be
represented by the formula

Fd � cos 2y
�
1� C�ay�4 � . . .

�
Fs ; �5:26�

where Fs describes the order-parameter distribution in an
isolated vortex of an s-wave superconductor, and

ay � 1

2
�������
eH
p

�
ÿi q

qx
ÿ q
qy
� 2ieHx

�
:

The dimensionless parameter C can be found by solving the
self-consistent equations of the theory of superconductors
with weak coupling. It depends on temperature approxi-
mately the same way as Hc2, and at T � 0 reaches its
maximum value of 0.03. Finally, y in Eqn (5.26) is an angle
measured from the a axis. A microscopic calculation of N�0�
for a mixed superconducting state in a field Hc1 < H < Hc2

leads to an explicit field dependence of the density of states. In
fields Hc1 5H5Hc2 the result of Won and Maki [68]
transforms to Volovik's formula N�0� � ����

H
p

[41], which was
derived in the semiclassical approximation.

6. Experimental studies of the symmetry of the
superconducting order parameter

There are three groups of experiments in which the symmetry
of the order parameter may manifest itself. The first group
deals with measurements of various low-temperature char-
acteristics of superconductors, such as the Knight shift and
the relaxation rate in NMR, measurements of the tempera-
ture dependence of the penetration depth, and the like. If the
superconducting order parameter has zeros in various
sections of the Fermi surface (as it does in the dx2ÿy2 -wave
case), these quantities follow a power-law temperature
dependence instead of an exponential-law dependence. The
second group of experiments is based on direct measurements
of the order-parameter phase by studying the interference
phenomena in Josephson junctions placed in amagnetic field.
The third group deals with direct measurements of the gap by
spectroscopic methods. The best results were achieved with
ARPES, although Raman and neutron spectroscopy meth-
ods have also been used. Below we study all three groups of
experiments.

6.1 Low-temperature studies of the superconducting phase
The low-temperature behavior of the various transport
properties depends on the behavior of the density of states
of the quasiparticle spectrum of the superconductor near the
Fermi surface. The presence of zeros in the order parameter
dramatically changes the function N�o� within a narrow
energy interval near eF, which results in the emergence of
temperature anomalies in properties of the superconductor.
We will study this problem using the example of the
temperature dependence of the penetration depth, l�T� [69].
In the BCS theory this quantity is given by the relationship�

l�0�
l�T�

�2
� 1ÿ 2

T

�1
0

do
N�o�
N0�0� f�o�

�
1ÿ f�o�� ; �6:1�

whereN0�0� is the density of states at the Fermi surface in the
normal phase.

For an s-wave order parameter with a constant gap D0,

N�o�
N0�0� � Re

o�����������������
o2 ÿ D2

0

q :

In the case of a gap having zeros, at energies o low compared
to the maximum value D0 we have
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N�o�
N0�0� �

o
D0

: �6:2�

For s-wave superconductors, formula (6.1) leads at low
temperatures, T5D0, to an exponentially small variation in
l�T�:

l�T� ÿ l�0�
l�0� �

�
2pD
T

�1=2

exp

�
ÿD
T

�
:

However, for a dx2ÿy2 -wave superconductor, formulas (6.1)
and (6.2) yield a linear temperature dependence:

l�T� ÿ l�0�
l�0� � T

D0
ln 2 : �6:3�

Figure 12 depicts the results of experimental measure-
ments of l�T� for the YBCO crystal [70]. Clearly, at low
temperatures the dependence on T is linear, which corrobo-
rates formula (6.3). The slope of curve is in good agreement
with the numerical coefficient in Eqn (6.3) for pure YBCO
(the effect of impurities will be discussed in Section 7). The
linear dependence l�T�, as a consequence of Eqn (6.2), may
also occur in superconductors with an extended s-symmetry
of the order parameter, so that conducting a single experi-
ment is not enough to reliably establish whether YBCO
exhibits d-wave properties. Other data are also needed so
that we can distinguish between d- and s�-symmetries of the
order parameter.

One experiment of this kind is an NMR experiment, in
which the Knight shift K is measured as a function of
temperature (Fig. 13). Qualitatively this behavior agrees
with the results of the BCS theory and serves as an indication
of singlet pairing in cuprates. The dashed curve represents the
results of numerical calculations of K via the magnetic
susceptibility for the Hubbard model in RPA [see formula
(6.13)], calculated for the superconducting phase by formulas
of the BCS theory under the assumption that the order
parameter is d-wave [71, 72]. Similar agreement was found

to exist between the results of experimental observation of the
NMR relaxation rate in YBCO [73] and the calculations done
by Bulut and Scalapino [71, 72] under the assumption that the
order parameter is d-wave. Thus, the NMR data and the
experimental data on the temperature dependence of the
penetration depth in the YBCO system do not contradict the
dx2ÿy2 -wave nature of the order parameter. However, a direct
conclusion concerning the d-wave nature of the order
parameter must be made on the basis of other experiments
in which the value or phase of the order parameter is
measured directly.

Before describing these methods, let us briefly discuss the
possibility of accessing the symmetry of the order parameter
using the data on the anisotropy of the upper critical fieldHc2.
In their theoretical work, Takanaka and Kuboya [74]
calculated the anisotropy of the upper critical field applied
to the base plane of a tetragonal crystal, a dx2ÿy2 -wave
superconductor. The anisotropy is specified by the quantity


F2�k�v4?
� � A� B cos 4y : �6:4�

HereF�k� � �k2x ÿ k2y� is the Cooper-pair wave function, v? is
the electron velocity at the Fermi surface (the velocity is
perpendicular to the magnetic field H), h. . .i stands for
averaging over the Fermi surface (the surface is assumed
isotropic), and y is the angle between H and the crystal-
lographic axis in the base plane. The constants A and B are
expressed in terms of the averages over the Fermi surface of
the product ofF�k� and combinations of the fourth powers of
the electron-velocity projections.

Formula (6.4) shows that Hc2 has a fourfold symmetry
axis. Hanaguri et al. [75] observed a strong anisotropy (of
about 8%) of Hc2 in the La1:86Sr0:14CuO4 crystal with the
magnetic field applied in the base plane: Hc2 was found to
have maxima in the directions ��1; 0; 0� and �0;�1; 0� and
minima in the directions ��1;�1; 0�, which suggests that the
order parameter is dx2ÿy2 -wave. This conclusion agrees with
the data extracted from Raman spectroscopy experiments of
Chen et al. [76]. Koike et al. [77] detected fourth-order aniso-
tropy forHc2 in the superconductor Pb2Sr2Y0:62Cd0:38Cu3O8
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Figure 12. Microwave data on penetration depth for an YBa2Cu3O6:95

crystal [69].
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using the data on the anisotropy of electrical conductivity r in
a magnetic field for the superconductor's resistive state.

The zeros in the superconducting order parameter can
manifest themselves in the field dependence of the density of
states at the Fermi surface for a superconductor that is in a
mixed state:Hc1 < H < Hc2. This dependence emerges due to
variations, in themagnetic field, of the electronic states within
an isolated vortex line. In ordinary superconductors, the
contribution of an isolated vortex to the density of states is
� N0�0�x2. As shown by Volovik [41], in the case of an order
parameter with lines of zeros this is � N0�0�xmin fR; lg,
where R is the distance between vortices. It occurs that the
main contribution is provided by the peripheral regions of the
vortex, that is, for r's satisfying the conditions
x5 r5 min fR; lg. For a vortex lattice in the range
Hc1 < H < Hc2, R � x

��������������
Hc2=H

p
< l, with the result that the

density of states averaged over the vortices is given by the
formula

dN�0� � CN0�0�
��������
H

Hc2

r
; �6:5�

where C is a quantity of value unity. Measurements of the
low-temperature specific heat in YBa2Cu3O6:95 have shown
that the coefficient g of the linear term in the specific heat
depends on the field as

����
H
p

. This is one more confirmation
that in this superconductor the order parameter has zeros at
the Fermi surface.

6.2 Measurements of the Josephson tunnel current
The most detailed information about the symmetry of a
superconducting order parameter can be extracted from the
phase of the order parameter bymeasuring the critical current
in Josephson junctions placed in a magnetic field. In the
standard rectangular geometry of junctions, the critical
current oscillates with the field according to the law of
Fraunhofer diffraction,

Ic�F� � J0A
sin�pF=F0�
pF=F0

; �6:6�

whereF is themagnetic flux through the junction,F0 � hc=2e
is the quantum of magnetic flux, J0 is the critical-current
density in a zero field, andA is the junction's surface area. The
diffraction pattern is depicted in Fig. 14a.

Let us assume that we have a crystal with tetragonal
symmetry, say, the superconductor YBCO. Suppose that its c
axis points in the direction perpendicular to the plane of the
figure. In a tunneling junction of angular geometry, the
superconductor touches both faces of the first superconduc-
tor perpendicular to a and b, so that the two superconductors
are in contact (Figs. 14b and c). In this case we have a
superposition of the tunnel currents generated by the motion
of electrons with wave vectors kx and ky, so that the resulting
diffraction pattern depends on the symmetry of the order
parameter being investigated. For the s-wave case (including
the anisotropic case), the order parameters on both edges of
the angular junction coincide, and the resulting diffraction
pattern is the same as in the case of a standard junction. But if
we are dealing with the dx2ÿy2 -wave case, the order parameters
on the two edges of the angular junction have opposite signs,
which radically changes the diffraction pattern. The super-
position of two tunnel currents leads to an entirely different
pattern (Fig. 14c). In a zero field the critical current proves to

be zero because of the perfect balance of its two components.
In a symmetric junction (the dimensions of the junctions at
the edges a and b are the same), the field dependence is given
by the formula [79]

Ic�F� � J0A
sin2�pF=2F0�

pF=2F0
; �6:7�

reflected by the pattern in Fig. 14c.
Wollman et al. [79, 80] carried out such an experiment

involving the tunneling junction YBCO±Au ±Pb. The results
of their experiment, depicted in Fig. 15, suggest that the order
parameter in the superconductor YBCO is dx2ÿy2 -wave.

All the experiments with Josephson junctions mentioned
above used the single crystal YBa2Cu3O6:6. Brawner and Ott
[81] studied another single crystal, YBa2Cu3O6:9, enriched
with oxygen. The results of measurements of the critical
current in Josephson junctions with an angular geometry
corroborate the diffraction pattern in Fig. 14c.

Other experiments in measuring the tunnel current
between two superconductors with a different boundary
geometry have also been proposed [82]. The results of these
measurements do not agree with the d-wave nature of the
order parameter. Other studies worth noting are those of Sun
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Figure 14. Critical current in a Josephson junction as a function of the

applied magnetic field: (a) standard tunnel junction, (b) angular tunnel

junction for a superconductor with an s-wave order parameter, and (c)

angular tunnel junction for a superconductor with a dx2ÿy2 -wave order

parameter [79].
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et al. [83] and Kleiner et al. [84], who examined the Josephson
junction between ordinary superconducting Pb and YBCO,
with the c axis of the latter pointing in the direction
perpendicular to the junction. The tunnel current generated
in the junction proved to be approximately ten times weaker
than the current in the standard-geometry junction. If the
order parameter in the crystal were dx2ÿy2 -wave, there would
be no current along the c axis. The fact that such a current
exists can be explained if we assume that the crystal is
orthorhombic rather than tetragonal. In this case there is an
admixture of the s-component of the order parameter to the
main d-component, and this ensures that the tunnel current is
finite [85]. A detailed theoretical analysis of experiments with
Josephson junctions in this geometry was done by Kirtley et
al. [86].

Other variants of tunnel experiments involving the YBCO
system in a magnetic field were carried out byMiller et al. [87]
andMathai et al. [88]. Their results agree with the assumption
that the order parameter in such a system is dx2ÿy2 -wave.
Recently, in their fundamental work, Tanaka andKashiwaya
[89] built a complete theory that describes the flow of a
Josephson current between two superconductors separated
by an insulator. They derived a general formula for the
current, and all results described in the literature prove to be
particular cases of this formula. Along with the case of
junctions between s-wave and d-wave superconductors, they
studied the Josephson current flowing between two super-
conductors with the d-wave order parameter.

It occurs that the magnetic current has an anomalous
temperature dependence in relation to s ± s and s ± d super-

conducting pairs in the junction. The current in a d ± d pair
exhibits different properties, and this fact can be used to
determine the symmetry of the order parameter. Tanaka and
Kashiwaya [89] have provided a complete list of the
experimental and theoretical papers that deal with the
problem of Josephson junctions between superconductors
with anomalous order parameters. The most recent experi-
mental studies of Josephson junctions in cuprates are
discussed in [90].

6.3 Measurements of flux quantization by tricrystal
devices
Another type of experiment in which the symmetry of the
order parameter is determined is based on measurements of
the quantum of magnetic flux in a superconducting ring with
specially designed Josephson junctions. The idea of such an
experiment is based on the theoretical result of Sigrist and
Rice [91], who found that in the case of dx2ÿy2 -wave super-
conductors the tunnel current between two superconducting
crystals separated by a thin boundary depends on the
orientation of the order parameter (the Cooper-pair wave
function) in relation to the boundary. The current between
the i th and j th superconductors is given by the formula

I ijs � �Aij cos 2yi cos 2yj� sinDFij : �6:8�

Here Aij is a constant characterizing the ij-junction, yi and yj
are the angles between the crystallographic axes and the
boundary plane, and DFij is the phase difference of the order
parameters on both sides of the boundary.

Sigrist and Rice [91] also found that if there is a super-
conducting ring with a single Josephson junction and a phase
difference p, spontaneous magnetization corresponding to
half of F0 sets in. More than that, if the ring has an odd
number of p-junctions, the results is the same. The discovery
of a half-quantum of themagnetic flux passing through such a
ring would suggest that the order parameter is d-wave. Tsuei
et al. [92] conducted such an experiment. They used super-
conducting YBCO junctions with zero, two, and three
boundary Josephson junctions. The geometry of their
experiment is depicted in Fig. 16. YBCO rings were prepared
on the substrate of an epitaxial film SrTiO3, manufactured as
three single crystals, which form rectangular boundaries. The
a and b axes of the tetragonal crystals SrTiO3 lie in the plane
of the figure. YBCO, in which the a and b axes coincide with
the substrate axes, is epitaxially grown on the crystalline
substrate. Thus, the superconducting rings are crystallogra-
phically oriented in different sectors of the substrate as shown
in Fig. 16. Calculations by Eqn (6.8) show that the central ring
with three boundaries has a p-junction, and this ring can trap
a half-integral number of quanta of magnetic flux, i.e.
F � �n� 1=2�F0.

The field strength in the ring was measured by a SQUID
microscope with a 10-mm measuring loop. A series of
measurements of the trapped flux was conducted in each
superconducting ring at temperatures ranging from slightly
above Tc (Tc � 90K) down to 4.2 K. It was found that the
difference of fluxes trapped in the third and second (or zeroth)
rings always constitutes a half-integral value of F0. The
details of this experiment can be found in Refs [92 ± 94].
Kirtley et al. [94] discussed a similar experiment with a
thallium superconductor Tl2201. A detailed theoretical
analysis of the potential of the tricrystal Josephson technique
was carried out in a recent paper by Samanta and Datta [95].
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Figure 15. Critical current as a function of the magnetic field in the

Josephson junction YBCO±Au±Pb in two geometries: (a) standard, and

(b) angular [79].
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6.4 Angle-resolved spectroscopy
Angle-resolved photoemission spectroscopy (ARPES) makes
it possible to measure the gap in different segments of the
Fermi surface. The intensity of the emitted photons, gener-
ated by the X-rays of electrons knocked out from the inner
atomic shells, is proportional to f�o�A�k;o�, where f�o� is the
Fermi function, and A�k;o� is the spectral density of
quasiparticles of energy o and quasimomentum k. The edge
in the energy distribution of photons determines the Fermi
level. In the superconducting state, the spectral density of
quasiparticles in the BCS theory is given by the formula

A�k;o� � u2k
G=pÿ

oÿ E�k��2 � G 2
� v2k

G=pÿ
o� E�k��2 � G 2

;

�6:9�
where E�k� � ��e�k� ÿ m�2 � D2

k

�1=2
is the quasiparticle

energy, and G is the damping (we assume it to be independent
of k), Dk is the superconducting gap, and v2k � 1ÿ u2k �
� �1ÿ e�k�=E�k��=2. On the Fermi surface E�k� � Dk, so
that the energy distribution of the photons exhibits a peak,
whose position is determined by the size of Dk. The
photoemission spectrum from the superconducting sample is
formed at two temperatures, only slightly higher than Tc and
at low temperatures, at which the gap is at its maximum. The
shift of the edge of the spectrum as T lowers is determined by
the size of the gap.

Detailed ARPES experiments have been conducted with
Bi2Sr2CaCu2O8 crystal (Bi2212 in concise notation) [96 ±
100]. Typical spectroscopic data are depicted in Fig. 17. For
the wave vector kA a shift on the emission edge under cooling
is clearly visible, while for kB no such shift has been recorded.
These data point to a strong anisotropy of the gap. Further
studies clearly showed that there are points at the two-
dimensional Fermi surface where the gap vanishes (Fig. 18).
A good description of the behavior of the gap in k-space is
provided by the function Dk � �cos kx ÿ cos ky�, which
suggests that the order parameter is dx2ÿy2 -wave. ARPES is
a powerful method of studying not only the superconducting
properties of a metal but also the electron characteristics of
the metal's normal phase. For instance, for the Bi2212 system

the various properties of the quasiparticle spectrum and the
Fermi surface have recently been studied by Ding et al. [101].

6.5 Raman and neutron spectroscopy
Information about the symmetry of the superconducting gap
can be extracted from experiments in inelastic scattering of
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Figure 16.Geometry of an experiment that makes it possible to measure a

half-integral number of quanta of magnetic flux trapped by a super-

conducting ring with three Josephson junctions with a d-wave order

parameter [94].
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light or neutrons by electronic excitations. The Raman
spectrum emerges when light is scattered by electronic
excitations near the Fermi surface. Of interest here is the
transformation of the observed spectrum of the superconduc-
tor when the temperature drops below Tc, a transformation
that is due to the appearance of a gap in the electron energy.
The dependence of the cross section of scattering of light by
quasiparticles in a superconducting metal is given by the
formula [102]

d2R

dodO
� 4N�0�r20

o

� ��g�k���2jDkj2
�o2 ÿ 4jDkj2�1=2

�
SF

: �6:10�

Here r0 � e2=mc2 is the electromagnetic radius of the
electron, g�k� is the matrix element of the electron Raman
scattering, and h. . .iSF

stands for averaging the wave vector k
over the Fermi surface. Equation (6.10) is valid in the limit
where l4 x, i.e. for short scattering vectors, q! 0. In the
nonresonance limit, the tensor g�k� is given by the formula

gab�k� �
m

�h2
ea

q2e�k�
qkaqkb

e 0b ; �6:11�

where ea and e 0b are the components of the polarization vector
of the incident and scattered photon beams. In contrast to the
case of ordinary s-wave superconductors, where there is no
scattering foro < 2D, in superconductors with an anisotropic
gap there can be scattering at frequencies much lower than D.

Equations (6.10) and (6.11) make it possible to examine
the gap behavior as a function of the wave vector, D�k�, in
experiments. Selecting ea and e 0b in accordance with the
geometry of the experiment, one chooses [in the general
expression (6.10)] separate segments of the Fermi surface
and finds the gap size in these segments. This yields
information about the anisotropy of Dk . For instance, we
can select ea and e 0b in such a way that g�k�2 transforms as
k2x ÿ k2y or as kxky. In these cases Eqn (6.10) yields different
functions of o for dx2ÿy2 -, dxy- and s-symmetries.

Devereaux et al. [103] studied the Raman spectra of the
superconductor Bi2Sr2CaCu2O8. The theoretical analysis of
the polarization dependence of the spectrum intensities and
the way in which this spectrum varied with temperature as the
sample was cooled from T > Tc to a low temperature
suggested that the order parameter is dx2ÿy2 -wave. However,
Krantz and Cardona [104] disagreed and argued that the
presented experimental data were insufficient to distinguish
between dx2ÿy2 -wave and extended s-wave order parameters
in the superconductor in question. Continuation of the
discussion has not resolved the issue (see Ref. [105]).

Chen et al. [76] measured the low-energyRaman spectrum
in the single crystal La1:83Sr0:17CuO4 at temperatures above
and below Tc. They discovered a redistribution of intensities
resulting from the appearance of a finite superconducting
gap. By analyzing the dependence of intensity on photon
polarization they found that the gap is anisotropic and has
zeros along the directions ��1;�1� and maxima along the
directions �0;�1� and ��1; 0�. This suggests that the order
parameter is dx2ÿy2 -wave. The maximum value of the gap is
related toTc by the formula 2jDmaxj � 7:7Tc . The behavior of
Raman spectra in the lanthanum system is similar to that
observed in the low-oxide superconductors YBCO [106] and
Bi2212 [103].

Further theoretical studies of the Raman spectra, which
allowed for electron screening [107], revealed the worse

agreement with the experimental data for the superconduc-
tor YBCO. All this implies that although Raman spectro-
scopy does provide amethod for establishing the symmetry of
the order parameter of a superconductor, there is still not
enough convincing evidence for cuprates [108, 109].

Many experiments have been conducted using optimally
doped YBCO compounds. Today, however, the focus is on
underdoped and overdoped substances. ARPES experiments
[110 ± 113] involving underdoped compounds have revealed
that the Fermi surfaces of such compounds have segments
near ��p; 0� and �0;�p� where the spectral intensity is much
lower than it is for doped compounds. Additional informa-
tion was obtained in a Raman scattering experiment with the
compound YBa2Cu3O6:5 (Tc � 61K) [114], which showed
that the low-temperature spectra have zeros near the direc-
tions ��1;�1� in k-space. What was also recorded was a
significant reduction in the spectral intensities in the same
segments as in ARPES experiments. The observed change in
the spectra at T > Tc and in the superconducting phase and
the comparison of the spectra with those in optimally doped
compounds led Marshall et al. [110], Loeser [111], Ding et al.
[112, 113], and Chen et al. [114] to the conclusion that this
reduction in spectral intensity of the quasiparticles in the
segments of the Fermi surface near ��p; 0� and �0;�p� is due
to the opening of a dx2ÿy2 -wave normal pseudogap in these
segments. The possible mechanisms of pseudogap formation
were discussed byKivelson andEmery [115] andWen andLee
[116], although they did not arrive at a definite theoretical
explanation of this phenomenon.

In recent years there have beenmany experimental studies
of spin fluctuations in copper-oxide cuprates by neutron
spectroscopy methods. Since these methods require rather
large single crystals, neutron studies have been limited to
LSCO [117, 118] or YBCO [119] type superconductors. In the
latter case there is no low-frequency fluctuation spectrum, but
in the lanthanum system fluctuations have been observed in
the normal phase (T � 40K); however, their strength rapidly
decreases in the superconducting phase (T � 4K) at o � 3:5
meV. This quantity must be identified with the superconduct-
ing gap. The size of this gap and the value Tc � 37K are in
qualitative agreement with the fact that the order parameter is
of the dx2ÿy2 -wave type, although the experiments do not
make it possible to directly observe the effects associated
precisely with a d-wave order parameter. There is a method
developed by Lu [120] for observing the type of nonstandard
superconducting order parameter by employing the data on
the q-dependence of the dynamic structure factor S�q;o�,
which can be found from inelastic neutron scattering studies.
It occurs that for a superconductor whose order parameter
has zeros, the dynamic structure factor exhibits peaks at low
temperatures and large scattering vectors q. These peaks are
high when the energy transfer o is much smaller than the
maximum value of the superconducting gap Dk.

The structure factor S�q;o� corresponding to magnetic
neutron scattering can be expressed in terms of the imaginary
part of the dynamic susceptibility:

S�q;o� � �1� n�o�� Im w�q;o� ; �6:12�
where n�o� is the Bose distribution function. To detect the
above-mentioned anomalies in S�q;o� it is enough to study
w0�q;o�, which is the dynamic susceptibility in the single-loop
approximation. This function can be expressed in terms of the
Lindhard function, which in the BCS theory is given by the
following formula:
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Here the first term on the right-hand side allows for scattering
of quasiparticles, and the second and third terms are
responsible for the creation and annihilation of a pair of
quasiparticles. In the case of creation (or annihilation), the
minimum pair energy is D, with the result that the second and
third terms can be ignored if o5 2D. The first term has
resonances at

o � E�k� q� ÿ E�k� ; �6:14�
and these resonances are responsible for the peaks in S�q;o�.

If the symmetry of the order parameter allows for zeros
for the gap, at low temperatures the quasiparticles concen-
trate near the corresponding values of k. In the two-
dimensional case the zeros appear on lines in k-space. At the
points of intersection of these lines and the Fermi surface the
energy of excitations is zero. We denote these points by ki.
Then we have the following equations:

E�ki� � 0 ; D�ki� � 0 ; ki 2 kF : �6:15�

At low temperatures, quasiparticle whose quasimomenta are
close to ki dominate in scattering processes. In the scattering
of quasiparticles in the neighborhood of the same point ki, the
scattering vector q is, obviously, small compared to kF for
o < D < eF. However, quasiparticles can hop from the
neighborhood of one point ki to the neighborhood of
another point kj, provided that condition (6.14) is met. In
this case, as condition (6.14) implies, the scattering vector q is
large. Thus, it becomes clear that resonances lead to peaks in
the dynamic structure factor. The arrangement of these peaks
is fully determined by the symmetry of the order parameter
and the geometry of the Fermi surface. A peak at small values
of q is masked by intense Bragg scattering, while the peaks at
large values of q, which emerge due to quasiparticle hopping
between different zeros of the gap D�k� are observable (at
least in principle). For a square lattice with a dx2ÿy2 -wave
order parameter, the arrangement of the expected peaks is
determined by the vectors �2kF; 2kF�, �2kF; 0�, and �0; 2kF�,
when in the model that allows only for nearest-neighbor
hopping kF can be found from the equation for the chemical
potential:

cos kF � ÿ m
4t
:

Lu [120] calculated (6.13) for parameter values and a
Fermi surface corresponding to the compound La2SrxCuO4.
However, in the experimentally measured structure factor

S�q;o� considered a function of q (i.e. witho fixed) no special
peaks were found [117]. Zha et al. [121] calculated w�q;o� by
applying the RPA technique in the three-band model of the
compound YBCO. Here, too, no peaks were discovered in
S�q;o�. At the same time, the quantity Im w�q;o�, measured
via inelastic neutron scattering, was found to exhibit a
temperature behavior at low frequencies that agreed with
the assumption that the order parameter is dx2ÿy2 -wave. For
instance, near Tc a temperature maximum was found to exist
for frequencieso4 3meV, and this maximum disappeared at
high frequencies, o � 6 meV, in accordance with the
assumption that the order parameters is of the d-wave type.
The absence of the predicted peaks in S�q;o� in some
experiments [117, 121] does not mean, however, that in the
studied cuprates the gapD�k� has no zeros. These peaks could
be masked by electron scattering by impurities if the samples
are not clean enough. Notwithstanding the failure of the
experiments conducted by Mason et al. [117] and Zha et al.
[121], we must assume that neutron spectroscopy is one of the
direct methods by which zeros in the superconducting order
parameter of unconventional symmetry can be detected.

In conclusion of this section we would like to mention
papers [122 ± 127] which describe the latest achievements in
the experimental study of the symmetry of the order
parameter in cuprates.

7. The role of impurities

7.1 The gap, the superconducting transition temperature,
and the density of states
For ordinary superconductors, the effect of impurities on the
properties of the superconducting state was established long
ago. Nonmagnetic impurities have a small effect on Tc

(Anderson's theorem) Ð their role amounts to isotropiza-
tion of the gap. On the contrary, magnetic impurities strongly
suppress Tc (the Abrikosov ±Gor'kov depairing mechanism)
and lead to formation of a gapless state [128]. For super-
conductors with unusual order parameters, nonmagnetic
impurities may have a strong effect on Tc and other proper-
ties. This problem was first studied theoretically for systems
with heavy fermions [129] and recently for high-Tc com-
pounds [130, 131]. It was found that, in superconductors
with an anisotropic order parameter that has zeros at the
Fermi surface, nonmagnetic impurities can strongly suppress
Tc, and that the extent of this suppression depends on the
symmetry of the order parameter, a fact that can be used to
identify this symmetry by the behavior of many properties of
superconductors considered as functions of the impurity
concentration. On the other hand, magnetic impurities
suppress Tc in the same way as they do in ordinary super-
conductors.

The marked difference between s- and d-wave super-
conductors in relation to impurities can be understood even
in the weak-coupling setting. The matrix of the Green's
function for a superconductor, g�k;on�, with a nonmagnetic
impurity has a form as that for a pure superconductor,

g�k;on� � ~ot0 � ~xkt3 � ~Dkt1
~o2 ÿ ~xk ÿ jDkj2

; �7:1�

with the renormalized frequency ~o � oÿ S0, quasiparticle
energy ~xk � xk ÿ S3, and order parameter ~Dk � Dk ÿ S1. In
the Born approximation for scattering, the quantities
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Sa�a � 0; 1; 3� are the corresponding elements of the matrix

S�k;on� �
X
a

Sa�k;o� �
X
k 0
Ukk 0g�k 0;on� : �7:2�

Here Ukk 0 is the matrix element of the electron ± impurity
center interaction potential. For s-scattering, U0 is indepen-
dent of the wave vectors k and k 0. Then Sa depends only on
the frequency on.

To find the superconducting transition temperature Tc,
we can limit ourselves to the D-linear approximation. Then
the matrix equation (7.2) splits into a pair of equations for ~o
and ~D:

~on � on � ig0

�
dx
�2p
0

dy
2p

~on

~o2
n � x2

; �7:3�

~Dn � Dn � ig0

�
dx
�2p
0

dy
2p

~Dn

~o2
n � x2

�7:4�

(we have ignored the renormalization of the quasiparticle
spectrum xk). Here g0 � nipN�0�U0 is the isotropic scattering
frequency, and ni is the impurity concentration. Equation
(7.3) yields the well-known formula for frequency renormali-
zation,

~on � on � g0 signon : �7:5�
The linearized equation for the gap Dn, which is used to find
Tc, has the form

Dn�k� � Tc

X
n 0

�
dk 0

�2p�2 Vkk 0
~Dn�k 0�

~o2
n 0 � x2k 0

; �7:6�

with the wave vectors k and k 0 lying on the Fermi surface. Let
us examine a two-dimensional systemwith an isotropic Fermi
surface and a d-wave pairing potential:

Vkk 0 � V�y; y 0� � Vcd�y�cd�y 0� ; �7:7�

where cd�y� � cos 2y for a dx2ÿy2 -wave state. Equation (7.4)
shows that the impurity term vanishes after we have
integrated with respect to y, so that the gap function is not
renormalized:

~Dn � Dn : �7:8�
For the anisotropic s-state

V�y; y 0� � V
��cs�y�cs�y 0�

�� �7:9�

with the same zeros at the Fermi surface as in the case of the
dx2ÿy2 -state, Eqn (7.4) has the solution

~Dn � Dn � 2
���
2
p

g0
pjonj D0

n : �7:10�

Equations (7.5) ± (7.10) lead to an equation for Tc:

ln
Tc0

Tc
� a

�
c
�
1

2
� g0
2pTc

�
ÿ c

�
1

2

��
; �7:11�

where a � 1 for the dx2ÿy2 -symmetric case and a � 1ÿ 8=p2

for anisotropic s-pairing [130, 131].
Thus, for dx2ÿy2 -wave superconductors the equations for

Tc coincide with the equation of the Abrikosov ±Gor'kov
theory for ordinary superconductors with magnetic impu-
rities [128]. This means that nonmagnetic impurities strongly

suppress Tc in such superconductors. The critical concentra-
tion nc0 at which Tc vanishes can be found from the formula
g � gc � 0:88Tc0. In the anisotropic s-case the dependence of
Tc on g is much weaker, so that for g4Tc0 we have
Tc � Tc0

�
1ÿ a ln�g=pTc0�

�
(Fig. 19). Outside the scope of

the Born approximation the effect of impurities on a super-
conductor with an anisotropic order parameter was studied
by Borkowski and Hirschfeld [130] and Fehrenbacher and
Norman [131], who used the T-matrix formalism [129].
Qualitatively, the results were the same. Even in the unitary
limit (which is the opposite of the Born approximation), the
dependence of Tc on the intensity of impurity scattering
resembles the obtained in [130, 131]. Note that the role of
anisotropic scattering by impurities (which, in addition to s-
scattering, incorporates processes with finite orbital angular
momentum) has been discussed by Posazhennikova and
Sadovskii [133].

The presence of nonmagnetic impurities in d-wave super-
conductors leads to another important effect, the emergence
of a finite density of states at the Fermi level. The first to show
this were Gor'kov and Kalugin [134], who studied super-
conductivity in systems with heavy fermions. Later the
hypothesis was corroborated by Borkowski and Hirschfeld
[130] and Fehrenbacher and Norman [131], who also
calculated the frequency dependence of the spectral density
of states A�k;o� for s- and d-wave superconductors with
nonmagnetic impurities (Fig. 20). The interaction with the
impurities was taken into account in the Born approximation.
Figure 20 shows that impurities in an anisotropic s-wave
superconductor (with zeros at the Fermi surface) open a gap
whose width increases with the impurity concentration. The
gap opens over the entire Fermi surface. At the same time, in
d-wave superconductors the superconducting state remains
gapless.

If the impurity has a localized magnetic moment, the
exchange term J�Sr� leads to a depairing interaction, and the
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Figure 19. Superconducting transition temperature Tc as a function of the

disorder parameter g=Tc0, calculated in the Born approximation for a

dx2ÿy2 -wave superconductor and an anisotropic s-wave superconductor

[132].
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resulting effect of impurities is determined by the ratio of the
magnetic impurity frequency gs � niJ

2S�S� 1�N�0� to the
potential-scattering frequency g0 (Fig. 21). In all cases, the
gap induced in s-wave superconductors increases in size with
the potential-scattering intensity, but finally, thanks to the

switch-on of the magnetic depairing interaction, the gap size
passes its maximum and vanishes.

The various approximations used in analytic calculations
of the dependence of Tc on the impurity concentration and
the parameters of scattering by impurities have been checked
by Xiang andWheatley [135], who solved the equation for the
gap on a square lattice of 21� 21 atoms with several impurity
centers. The calculations were carried out under the assump-
tion that T � 0 and with averaging over a large number of
impurity configurations and with a large set of values of two
scattering parameters, V0 and V1, where V0 corresponds
directly to scattering by an impurity center and V1 to
scattering by the neighbors nearest to that center. In this
way not only isotropic scattering was included in the picture
but so was scattering with finite orbital angular momentum.
The solution for a gap function with an isolated impurity
revealed deep minima in D�r� at points occupied by impurity
centers, and the local density of states was found to oscillate.
The finite impurity concentration averages these oscillations.
If the concentration dependence of the gap function at T � 0
is assumed to be equivalent to the dependence of Tc, the
results of numerical calculations are in good agreement with
the analytic results obtained by the self-consistent T-matrix
technique in both limits, one corresponding to the Born
approximation and the other to the unitary limit for both s-
and d-wave superconductors. In particular, for d-wave
superconductors a finite density of states appears at the
Fermi level, while a gap is induced for anisotropic s-wave
superconductors with zeros at the Fermi surface. It was found
that the effect of impurities depends on the degree of
localization of the impurity potential: the weaker the
localization the stronger the effect (see also Ref. [136]).

Note that Riera et al. [137] investigated the effect of
impurities on the formation of Cooper pairs in the Tj-model
using the technique of exact diagonalization of small clusters.
The starting point of their studies was an earlier result
obtained by the same technique: in the two-dimensional
Tj-model on a square lattice (without impurities) for a half-
filled band, a bound state of two holes appears for
J > Jc � 0:3t with a dx2ÿy2 -symmetric wave function of the
pair. It was shown, by numerical calculations, that a
nonmagnetic impurity has a stronger depairing effect on
Cooper pairs than a magnetic impurity �S � 1=2�. There-
fore, this effect, described earlier in this review for the simple
model of a superconductor, also manifests itself in strongly
correlated electron models.

Nonmagnetic impurities have been found to suppress Tc

in high-Tc compounds. For instance, it is known that a low
concentration of Zn atoms substituting Cu (2%) in YBCO
reduces Tc by 25%. It is difficult to compare this result with
theoretical estimates because of the unknown scattering
parameters (e.g. the fact that potential scattering dominates
is ignored). There are certain arguments in favor of the fact
that Zn atoms change the magnetic correlations in their
vicinity and lead to additional scattering by an impurity
center accompanied by spin flip [138]. In this case, the
magnetic impurity center effectively behaves as a magnetic
impurity center. The problem merits additional investiga-
tions.

7.2 Thermodynamics and kinetics
The differences in the dependence of Tc on impurity
concentration for anisotropic superconductors of the d- and
s-wave types can be studied (at least in principle) with the aim
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of identifying the symmetry of the order parameter. However,
the other properties of superconductors, properties that are
sensitive to the presence of impurities, are more specific.
Among these properties are the penetration depth l, the
upper critical field Hc2, IR absorption, and Raman spectro-
scopy.

In Section 6 we showed that in pure d-wave super-
conductors at temperatures much lower than Tc, the devia-
tion Dl of the penetration depth for its value at T � 0 is, due
to the zeros of the gap at the Fermi surface, proportional toT.
However, experiments on high-Tc single crystals revealed that
Dl � T 2. Hardy et al. [70] hypothesized that the change in the
temperature dependence of the penetration depth is due to the
presence of impurities. A theoretical investigation of this
problem was done by Hirschfeld and Goldenfeld [139].
Calculating the penetration depth requires knowing the
electromagnetic response tensor K, which links the current j
to the vector potential A: j � KA. The penetration depth is
determined by the eigenvalues of this tensor. If Kab is
diagonal, la can be found from the relationship lÿ2a �
� �4p=c�Kaa. In the BCS model, the tensor Kab is determined
by the formula

Kab � e2

c

�
va�k�vb�k�

�1
0

do th
o
2T

Re
D2
k

�~o2 ÿ D2
k�3=2

�
; �7:12�

where va�k� is the velocity at the Fermi surface, and h. . .i
stands for averaging over the Fermi surface. The quantity ~o is
the renormalized (due to the impurity) frequency:
~o � oÿ S0�o�. The calculation of S0�o� by the self-consis-
tent T-matrix technique makes it possible, via Eqn (7.12), to
find l�T� for different impurity scattering intensities. In the
event of resonance scattering, which corresponds to the
parameter interval between the Born and unitary limits,
Hirschfeld and Goldenfeld [139] found that for d-wave
superconductors there is crossover between linear and
quadratic behavior of Dl with a crossover temperature
T � � ����

ni
p

(in the case of resonance scattering this is true to
within logarithmic corrections). It occurs that Dl � T for
T < T �5Tc and Dl � T 2 for T � < T5Tc. These results
agree with the results of measurements involving the YBCO
system [70].

The difference between s- and d-wave superconductors
manifests itself in the behavior of the slope of the temperature
dependence ofHc2 with respect to the impurity concentration
[133]. The upper critical field can be expressed in terms of the
correlation length:

Hc2 � F0

2px�T�2 �7:13�

(F0 is the quantum of magnetic flux, and x�T� can be found
from the Ginzburg ±Landau expansion for the free energy in
the BCSmodel). For a dx2ÿy2 -wave order parameter, dHc2=dT
rapidly decreases with increasing impurity concentration on a
scale g0 � Tc0, while for an anisotropic s-wave superconduc-
tor, dHc2=dT increases with g0. When g0 4Tc0, the slope is
determined by the Gor'kov formula [140]:

s
N�0�

����dHc2

dT

����
Tc

� 8e2

p2
Hc2 ; �7:14�

which was obtained for an ordinary isotropic superconductor
in the `dirty' limit. Here s � N�0�e2vF=3g0 is the electron

conductivity in the normal phase. Thus, in an anisotropic
s-wave superconductor, the slope of Hc2 also varies mono-
tonically with g0 when g0 is large.

IR absorption, which is described by the conductivity's
real part, exhibits specific properties in the case of anisotropic
superconductors with zeros of the gap at the Fermi surface
[141 ± 144]. The frequency dependence s�o� in this case is
extremely sensitive to the presence of impurities. Generally,
this dependence is determined by the inelastic scattering of
electrons by Bose excitations of the system and by elastic
impurity scattering. In the BCS model the conductivity is
calculated by the formula

Re sab�o� � ÿ ImLab�o�
o

; �7:15�

where

ImLab�o� � pe2
�
do 0



va�k�vb�k�

�
f�o� o 0�

ÿ f�o 0��Tr �A�k;o� o 0�A�k;o 0��� ; �7:16�
andA�k;o� � ÿ�1=p� ImG�k;o� is the spectral density of the
matrix one-particle Green's function. Hirschfeld et al. [144]
used the Hubbard model on a square lattice with an electron
spectrum

e�k� � ÿ2t�cos kx � cos ky� :

They allowed for scattering by spin fluctuations in the
electron self-energy S�k;o�, and the spin susceptibility was
accounted for in the RPA. The results of numerical calcula-
tions by Eqns (7.15) and (7.16) for systems with a nonmag-
netic impurity characterized by the scattering parameterG are
depicted in Fig. 22 together with the experimental data of
Basov et al. [146] on the YBCO crystal. Clearly, there is
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Figure 22. Real part of the microwave conductivity calculated for the

normal phase with T � Tc and G � 0:018Tc (the dot-dash curve) and the

superconducting phase with T � 0:1Tc [145] as compared to the experi-

mental data (the solid curve) on conductivity along the a axis in the normal

�T � 100K� and superconducting �T � 20K� phases of YBCO crystal

[146]. The dashed and dotted curves represent the results of calculations

for the superconducting phase with the following parameters of impurity

scattering: G � 0:018Tc (long-dash curve), G � 0:1Tc (short-dash curve),

and G � 0:008Tc (dotted curve).
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qualitative agreement between the theoretical and experi-
mental results, which is an indication that the order para-
meter has zeros on the Fermi surface due to the spin-
fluctuation pairing mechanism.

7.3 Localization
It is well known that when the disorder in a metallic system is
substantial, Anderson localization of the charge carrier can
emerge in the system [147]. The essence of such localization is
that in the continuous spectrum a point oc emerges (the
mobility edge) above which all the states are delocalized
(extended) but below which these states are localized, i.e.
their wave functions decrease exponentially with increasing
distance, with the extent of localization specified by a
parameter known as the localization length, Rc. The disorder
created by impurities can lead to the localization of the low-
energy states in an ordinary superconductor, too [148, 149].
When we are dealing with d-wave superconductors, the
problem of localization is much more complicated. Earlier
we saw that because of zeros in the superconducting order
parameter the presence of impurities in such superconductors
leads to a finite density of states at the Fermi surface, while in
pure d-wave superconductors N�o� � o when o5D0. What
is the nature of the low-energy states in such a superconductor
in which there are nonmagnetic impurities of a certain
concentration? The answer to this question is especially
important if we wish to interpret the results of experiments
involving high-Tc compounds, since such compounds always
have impurities and, on the other hand, many thermody-
namic and transport properties of superconductors are
determined by the contribution of low-energy states.

Using the idea of scaling, Lee [150] demonstrated that
impurities in d-wave superconductors in the unitary limit
generate localized states below the mobility edge oc, whose
value is a fraction of the maximum gap D0. The mobility edge
and the localization length depend on D0 in the following
manner:

oc � D1=2
0 ; Rc � Dÿ1=20 exp

�
eF
D

�
: �7:17�

Balatsky and Salkola [151] criticised Lee's work on the
grounds that it does not allow for electron hopping from
one impurity center to another due to the long-range tails of
the single-impurity states. This hopping plays an important
role in the localization of electronic states. The tails emerge
because of the zeros in the superconducting order parameter,
and their contribution may be lost in coarse averaging over
the impurity configurations. Balatsky and Salkola [151]
believe that in the case of d-wave superconductors one must
begin with the exact solution of the single-impurity. The wave
function at point r � 0 of the impurity state varies in space
according to the law [152]

cimp�r; y� � sin�kFr�
1��
r
p exp

�
ÿ r

x�y�
�
; y 6� p

4
� n

p
2
;

1

r
; y � p

4
� n

p
2
;

8>><>>:
�7:18�

where x�y� � �hvF=
��D�y��� � x0=j cos 2yj is the angle between

the radius vector r and the crystallographic axis in the base
plane, and n � 0, 1, 2, 3 correspond to four diagonals of the
square on which the zeros of the order parameters are

arranged. It is along these directions that the wave function
has long-range tails. If another impurity atom lands on one of
these diagonals, there is an impurity ± impurity interaction
even if the distance is great. Since the energies of the states
centered at these two impurities are the same, the interaction
is resonant, i.e. the states will be hybridized. Thus, if the
impurity concentration is finite, the impurity states become
collectivized via the long-range tails. This conclusion is in
sharp contrast with the results of weak-localization theory,
which predicts that all quasiparticles in a two-dimensional
system are localized.

When the impurity concentration is low, or x2ni 5 1, the
matrix element of electron hopping between two impurities
centered at ri and rj is given by the formula Vij �
� G0�ri ÿ rj ; 0�, where G0�r;o� is the matrix Green's func-
tion for a pure superconductor. In these conditions, a
superconductor with impurities is described by the effective
Hamiltonian

H �
X
ij

cyi Vijcj �
X
i

cyi eit3ci ; �7:19�

where ci is the wave function in the Nambu representation,
and the ei are the impurity levels. It is assumed that these levels
are distributed at random within a certain energy interval
04ei 4W with an equal probability 1=W. The matrix
element of overlap along the diagonals varies with distance
as 1=rij:

Vij � ÿV0
�hvF
rij

sin�kFrij�t3 ; �7:20�

where V0 is a dimensionless parameter characterizing the
magnitude of the matrix element. Analysis of model (7.20)
shows that the quasiparticle states induced by the impurities
are delocalized states at energies o < oc, where
oc � exp�ÿc=ni� is the characteristic energy, which exponen-
tially depends on the impurity concentration, and c is a
positive constant. When o > oc, the impurities form a band
of localized states, with the result that there is the inversion of
localized and delocalized states with respect to the mobility
edge.

In view of the contradictory results achieved by two
similar approaches to the problem of localization in a
d-wave superconductor, the approach developed by Lee
[150] and that developed by Balatsky and Salkola [151],
Franz et al. [153] made numerical calculations for clusters of
a square lattice containing up to 50� 50 atoms and non-
magnetic impurities. The model included the Coulomb
interaction V0 at a single site and the attraction V1 at
neighbors, and all this leads to a d-wave superconductor.
They used the mean-field approximation to write the
equations for the superconductor with impurities in the site
representation and solved these equations numerically by
many iterations.

Since the impurity potential was specified only at a single
site, the method made it possible to obtain the exact solution
of the problem of an impurity in the normal phase. Numerical
solution of the problem with one impurity center revealed
that there is strong local suppression of the superconducting
order parameter near the impurity. In solving the problem of
several impurity atoms corresponding to a given impurity
concentration, Franz et al. [153] allowed, in a self-consistent
manner, for the effect of local suppression of the order
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parameter. This effect proved to play an important role in the
localization problem. Analysis of the solutions has shown
that low-energy excitations are localized up to energieso � t.
The mobility edge obtained in this way was found to be close
to Lee's result of oc � 0:84t, which was found for the same
values of the parameters. Franz et al. [153] believe that the
discrepancy between Lee's result and that of Balatsky and
Salkola [151] stems from the fact that in similar calculations
Balatsky and Salkola [151] ignored the local suppression of
the d-wave order parameter. Self-consistent allowance for
this effect leads to the conclusion that low-energy states in a
d-wave superconductor are localized. New research on this
subject is described in [154 ± 190].

8. Summary

Can we state with all certainty that the spin-fluctuation
mechanism of superconductivity dominates in the high-Tc

superconductors of the copper-oxide group and that the
superconducting order parameter is dx2ÿy2 -symmetric?
While the second part of this main question can be resolved
exclusively by experiments, the problem of the dominant
pairing mechanism is in many respects a problem of
theoretical concepts. The experimental data on the proper-
ties of the superconducting state in cuprates irrevocably
indicate that an anisotropic order parameter with zero values
of the gap at the Fermi surface is realized in such substances.
Superconductors belonging to the lanthanum, yttrium ±
barium, and bismuth groups have been studied most thor-
oughly. The overwhelming majority of the results obtained as
a result of low-temperature measurements of NMR para-
meters and the penetration depth, ARPES measurements,
and many variants of interference measurements involving
Josephson junctions suggest that the order parameter of these
superconductors is dx2ÿy2 -symmetric. However, in some
experiments on superconductors of the yttrium ± barium
group the d-symmetry could not be distinguished from the
s�-symmetry, which means that new methods and new classes
of high-Tc superconducting compounds are needed for
further experimental studies of the symmetry of the order
parameter. This path of research is fraught with surprises. For
instance, experiments on the temperature dependence of the
penetration depth in electron-doped superconductors of the
neodymium group suggest that the order parameter is more
likely to be of s-wave type.

The spin-fluctuation mechanism of superconductivity
indirectly supports the idea that the order parameter is of
dx2ÿy2 -wave type. The relationship between these two features
is established both in the phenomenological approach and in
themicroscopic approaches based on theHubbardmodel and
the tJ-model. Eliashberg-type equations for the effective
electron ±magnon interaction lie at the base of these
approaches, which use the concept of spin-fluctuation
pairing. It has been found that the renormalization of the
quasiparticle spectrum caused by this interaction plays an
important role in these approaches: renormalization leads to
certain anomalies in the properties of the normal state of
doped high-Tc superconducting compounds (e.g. their beha-
vior differs from that of an ordinary Fermi liquid). Numerical
calculations using the phenomenological and microscopic
approaches have demonstrated the need to integrate over
the entire k-space in the Eliashberg equations instead of
limiting oneself to a thin layer near the Fermi surface (as is
done in the standard electron ± phonon model of super-

conductivity). The reason is that the magnetic susceptibility
near an antiferromagnetic transition (this susceptibility
determines the effective electron ± electron coupling) has a
peak near the wave vector �p; p� and slowly diminishes as we
move away from this point. We can obtain a high Tc of order
100 K only if we take into account the effective interaction
over the entire k-space, and it is remarkable that the solutions
for a gap under these conditions are exactly dx2ÿy2 -symmetric.
This explains why observations of such a case in experiments
would be a strong argument in favor of the spin-fluctuation
mechanism in high-Tc superconducting compounds.

Notwithstanding this important fact, the problem of the
mechanism of high-Tc superconductivity in cuprates is far
from being resolved. What is needed is a consistent micro-
scopic theory for values of the model parameters correspond-
ing to cuprates. If we take the one-band Hubbard model with
two parameters, tz and U, the approaches discussed in
Sections 3 and 4 deal with two limits, of weak and strong
Coulomb interactions, while for cuprates the intermediate
case of U0zt is more likely to be true. Thus, the main
theoretical problem reduces to calculating the dynamic
magnetic susceptibility near the half-filled band under the
condition thatU � zt. It is extremely difficult to find analytic
algorithms for this intermediate case. In the case of a strongly
correlated system (U4 zt) we can use the tJ-model, but even
this model does not provide an analytic method for calculat-
ing the magnetic susceptibility if the spin polaron model is
inapplicable, i.e. if we are far from an antiferromagnetic state.
And even if the magnetic susceptibility for U0zt were
calculated, we still have to solve the difficult problem of
renormalizing the vertex of the electron ±magnon interaction
in Eqn (1.3), which leads to Eliashberg equations.

We conclude that although a rigorous theory of the spin-
fluctuation mechanism of high-Tc superconductivity in
cuprates has yet to be developed, the experimental studies of
the symmetry of the superconducting order parameter have
provided the necessary basis for such a theory. At the same,
some experimental facts seem to contradict the spin-fluctua-
tion mechanism. What we mean is that the spin-fluctuation
spectrum of the lanthanum and yttrium ±barium systems
lacks low-energy fluctuations, which are needed if we want
an effective spin-fluctuation pairing mechanism to be
realized. This fact is corroborated by the experimental data
on inelastic neutron scattering; the interested reader can find
a discussion of these data in Plakida's book [36]. Here we
would only like to mention the latest experiments on
La2ÿxSrxCuO4 single crystals with optimum Sr doping [180]
and onYBa2Cu3O6:6 [181]. In these two papers the reader can
also find references to the different papers on this topic. The
observed cutoff of the low-frequency part of the spin-
fluctuation spectrum is often referred to as the magnetic-gap
problem, although such terminology may distort the origin of
this phenomenon. As shown by various theoretical investiga-
tions, the cutoff of the low-frequency branch of the spin
susceptibility in the Hubbard model [29] and in the tJ-model
[36] is the result of nesting in the electron spectrum at the wave
vector Q � �p; p�, which probably is a characteristic feature
of an antiferromagnetic Fermi liquid. Thus, the suppression
of the low-frequency part of the spectrum in cuprates may not
be an argument against the spin-fluctuation pairing mechan-
ism.

It must be said, however, that not all researchers believe in
the concept of the spin fluctuation mechanism of pairing in
cuprates. Some propose using the mechanism of pairing via
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charge fluctuation. The reason stems from the fact that
cuprates are highly polarizable substances. The most recent
work in this field is that of Enz [162], where other papers on
the subject are cited. Bulut and Scalapino [163] discuss the
conditions under which the electron ± phonon interaction can
lead to superconductivity with a d-symmetric order para-
meter. The concept of a nearly antiferromagnetic Fermi liquid
and the spin-fluctuation mechanism of superconductivity is
criticised in the recent works of Anderson [188 ± 190]. There
he proposed an alternative mechanism of superconductivity
in cuprates based on the idea of electron confinement in the
Cu ±O planes, with the interplanar electron transition being
the reason for a coherent superconducting order parameter in
these systems. A discussion of this mechanism, however, lies
outside the scope of the present review.

In conclusion we would like to mention the work of
Mathur et al. [191], who used the spin-fluctuation mechan-
ism to explain superconductivity in a number of cerium-based
compounds belonging to heavy fermions. They found that,
for the compounds CePd2Si2 and CeIn3, the situation
resembles that with cuprates. In normal conditions these
compounds are antiferromagnets with wave vectors [110]
and [111], respectively, and have a Neel temperature of
10K. Under pressure, TN drops rapidly and at a pressure P
of about 20 kbar the antiferromagnetic order disappears. At
the same time, in a narrow region in the vicinity of this critical
value of pressure a superconducting state emerges with
Tc < 1K. For T > Tc the properties of the normal phase
differ from ordinary Fermi-liquid behavior. For instance,
within a broad temperature interval the electrical resistance
varies with temperature according to a power law with an
exponent 1:2 < n < 1:5. The phase diagrams for these
compounds in the (T;P) plane are similar to those for
cuprates in the (T; n) plane. Such similarity led Mathur et al.
[191] to believe that the spin-fluctuation mechanism of
electron pairing operates in these cerium compounds. It
would be interesting to establish the symmetry of the super-
conducting order parameter for these compounds.
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