
Abstract. Basic ideas of the statistical topography of random
processes and fields are presented, which are used in the analysis
of coherent phenomena in simple dynamical systems. Such
phenomena take place with probability one, and provide links
between individual realizations and statistical characteristics of
systems at large. We confine ourselves to several examples:
transfer phenomena in singular dynamic systems under the
action of random forces; dynamic localization of plane waves
in randomly stratified media; clustering of randomly advected
passive tracers; and formation of caustic structures for wave
fields in randomly inhomogeneous media. All these phenomena
are studied based on the analysis of one-point (space-time)
probability distribution functions.

1. Introduction

Many physical processes take place in complex media, whose
parameters may be viewed as space-time realizations of
chaotic (or stochastic) fields. Such dynamic problems are
too complex to allow an explicit mathematical solution for
specific realizations of the media. However, one is often
interested in generic features of random solutions, rather
than particular details. So one is naturally inclined to adopt
the well developedmachinery of random fields and processes,
that is to replace individual realizations with statistical
(ensemble) averages. Nowadays, such an approach is com-
monly used in many problems of atmospheric and oceanic
physics.

The randomness of a medium gives rise to stochastic
physical (solution) fields. Thus a typical realization of, say
2D scalar (density) fields r�R; t� with R � fx; yg would
resemble a complex mountain terrain with randomly dis-
tributed peaks, valleys, passes, etc. But the standard statistical
tools, like means hr�R; t�i, and moments hr�R1; t�r�R2; t�i,
where h. . .i indicates ensemble averaging over random
parameters, often smooth out some important qualitative
features of individual realizations.

So the resulting `mean fields' would bear little resem-
blance to a typical (individual ) realization, and sometimes
give conflicting predictions. For instance, ensemble average
of a randomly advected passive tracer often yields a diffusive
process, that smooths out the mean-(solution) field, whereas
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individual realizations tend to evolve a very rugged and
fragmented shape.

Thus, standard statistical means could reasonably predict
some `global' spatial-temporal scales and parameters of
solutions, but tell little about the fine (small scale) structure
and details of evolution. Such details (for an advected tracer)
may strongly depend on some special properties of random
velocities, for instance, compressibility vs. incompressibility.

In the former case the turbulent transport would typically
bring about the formation of clustersÐregions of high tracer
concentration surrounded by low density `voids' [1, 2].
However, all statistical moments of the particle's position
(or separation-function) show an exponential increase in
time, which implies `statistical dispersion' of particles [2 ± 4].
Similarly, optical rays in randommedia diverge exponentially
in the `mean' [3 ± 5], yet the caustics are formed at finite
distances within the layer with probability one [6 ± 9].

Another example of the kind is the dynamic localization
of plane waves by randomly layered media. When a plane
wave is incident upon a randomly layered half-space, its
intensity decreases exponentially with the distance from the
boundary, for almost all realizations. Yet all statistical
moments show an exponential increase [10 ± 13].

We shall call physical phenomena that occur with
probability one and characterize `typical realizations' coher-
ent. Such statistical coherence, could be viewed as a way to
`organize dynamic complexity', and identify its `statistically
stable' properties, by analogy with the usual notion of
coherence, as self-organization of complex, multi-compo-
nent systems, arising from their chaotic interaction (cf. Ref.
[14]).

Although our notion of coherence differs from the
standard usage, we find it natural. In general there is no
simple way to assert that a given phenomenon occurs with
probability 1. However, it becomes possible to do it
theoretically for certain problems with simple models of
fluctuating parameters. In other cases one could do it by
numeric modeling, or analyzing physical experiments. Of
course, our notion of coherence makes it more a mathema-
tical problem, rather than a physical one.

Let us also remark that in many cases we don't have a full
understanding of the physical causes that lead to coherence.
For instance, the above clustering of Lagrangian particles
advected by random potential velocities represents by itself a
purely kinematic phenomenon in the absence of any real
particle interaction.

The complete statistics (e.g. all n-point moments) would
allow in principle a complete description of the dynamical
system. But in practice one could handle only a few simple
statistics, typically expressed through the one-point prob-
ability distributions (PDF) in space-time variables. The
natural problem then is to deduce some important qualita-
tive and quantitative characteristics of individual realizations
from such limited data. It takes on a particular significance
for atmospheric and oceanic problems, where `statistical
ensembles' do no exist in the strict sense, or require a long
temporal exposure (time series) and experimentalists deal
most often with individual realizations.

A possible answer to the problem is suggested by the
methods of statistical topography. The name statistical
topography was first coined in the book [15], though the
main ideas go back to papers [16 ± 19] (see also survey [20], for
a complete bibliography). The early works applied statistical
topography of random fields to the statistical analysis of the

rough sea surface, and the radar and TV images. Applications
of statistical topography to the turbulent transport problem
came later [2, 21 ± 23], while [24] adopted these ideas for the
wave propagation in random media.

The methods of statistical topography call into question
the basic `philosophy' of statistical analysis of stochastic
dynamical systems. We believe such an approach could be
useful for experimentalists who apply statistical tools to large
experimental data.

In the present paper we shall exploit some basic ideas of
statistical topography of random fields and processes to
analyze coherent phenomena in a few model examples,
chosen from a great variety of such systems, namely:

Ð transfer phenomena in (nonlinear) dynamical systems
with `singular solutions' and random forcing. Similar transfer
phenomena for a general class of randomly forced dynamical
systems with finite/discrete set of stable/unstable equilibria,
are well known and discussed in many textbooks;

Ð dynamic localization of plane waves in randomly
stratified media;

Ð clustering of passive tracers by random (turbulent)
velocity fields;

Ð formation of caustics for wave propagation in random
media.

All these phenomena may be approached through a
unified method based on the analysis of the one-point
probability distribution functions (PDF), that result from
their dynamic evolution.

We shall start with the dynamic description of model
systems, and discuss specifics of their solutions in the presence
of random parameters. The statistical analysis will follow.

Though our examples are drawn mostly from statistical
hydrodynamics, radio-physics and acoustics, Ð the areas of
interest to the authors, we believe the methods developed in
the paper could find applications in other areas of physics.

2. Examples of dynamical systems, problem
formulation, and special features of solutions

2.1 Particles in random velocity and force fields
A particle moving in a (random) velocity field is described by
an ordinary differential system

d

dt
r�t� � U�r; t� ; r�t0� � r0 : �2:1�

Here U�r; t� � u0�r; t� � u�r; t� is made of the deterministic
(mean) component u0�r; t� and the random perturbation
u�r; t�. In the absence of randomness (u � 0), and constant
u0 we get a simple rectilinear motion

r�t� � r0 � u0�tÿ t0� :
The same system (2.1) could also describe the particle

motion under the action of random forces. Indeed, a simple
linear friction law yields

d

dt
r�t� � v�t� ; d

dt
v�t� � ÿlv�t� � f�r; t� ;

r�0� � r0 ; v�0� � v0 : �2:2�

Once again in the absence of friction and forcing we get a
simple rectilinear motion

v�t� � v0 ; r�t� � r0 � v0t :

166 V I Klyatskin, D Gurarie Physics ±Uspekhi 42 (2)



Let us discuss some qualitative features of stochastic
system (2.1) in the absence of the mean flow. Formally
equation (2.1) describes the motion of independent particles,
as no interaction takes place. If however, field u�r; t� has finite
correlation radius lcor, then particles within lcor-proximity of
each other lie in the common domain of influence of velocity
u�r; t�. Hence, they could exhibit a collective behavior.

In general, the velocity field u�r; t� is made of solenoidal
[such that div u�r; t� � Hu�r; t� � 0] plus potential [such that
u�r; t� � Hc�r; t�] components. Numeric simulations [22, 25]
of multiparticle systems show a marked difference between
the two cases. Figure 1a shows a divergent-free random field
u�r; t� advecting a uniformly distributed set of particles over
the disk. Here the total area enclosed by the deformed
contours is conserved, and the particles fill the area in the
(approximately) `uniform' manner. Observe, however, that
the contours become increasingly more rugged and `fractal-
like'.

In the presence of potential component (div u�r; t� 6� 0),
the initial uniform distribution of particles (over the square)
evolves into clusters Ð compact regions of high concentra-
tion amidst low-density voids. The results of numeric
simulations are shown in Fig. 1b. Let us stress here the
kinematic nature of this effect. Indeed, the ensemble aver-
aging over velocity realizations could completely obliterate it.
Let us also note, that numeric simulations of Fig. 1 were
conducted for stationary (time-independent) fields u�r�.

Such clustering of particle systems was first observed in
papers [26, 27], via computer simulation of a simple model of
atmospheric dynamics, based on the so-called EOLE experi-
ment. This global experiment was conducted in Argentina in
1970 ± 1971, and involved launching 500 air balloons of
constant density, that spread over the entire Southern hemi-
sphere at an altitude of roughly 12 km. Figure 2 shows a
numeric simulation of the distribution of balloons 105 days
after the beginning [27], and clearly exhibits their convergence
into clusterized groups.

Now let us turn attention to another stochastic feature of
randomly stirred dynamic systems (2.1), the so-called transfer

phenomena. The well known examples of transfer phenom-
ena involve systems with finitely many stable equilibria (see,
for instance, Refs [3, 28]). Here we shall confine ourselves to a
simple case, that arises in the statistical theory of wave
propagation (below), and exhibits singular solutions in time:

d

dt
x�t� � ÿlx2�t� � f �t� ; x�0� � x0 ; l > 0 : �2:3�

Here f�t� stands for a random function of time. In the absence
of forcing (f �t� � 0) it has an exact solution of the form

x�t� � 1

l�tÿ t0� ; t0 � ÿ 1

lx0
:

If the initial point x0 > 0, then t0 < 0, and x�t� converges
monotonically to 0 as t!1. If x0 < 0, then solution x�t�
approachesÿ1, i.e. `blows up' in a finite time t0 � ÿ1=�lx0�.
In this case random forcing would play no significant role. It
becomes significant only for positive x0:

Indeed, in this case x�t� first slightly fluctuating decrease
with time, and when it becomes sufficiently small a random
force f �t� will `transfer' it (`kick over') into the negative half-
line where it would be dragged to ÿ1 in a finite time.

Thus, stochastic forcing may turn any initial state x0 into
an unstable (`explosive') solution, that reaches ÿ1 in a finite
time t0. Figure 3 gives a schematic view of a particular
solution realization x�t�, for various times: t < t0, t > t0,
that exhibits a `quasi-periodic' pattern. The principal coher-
ent phenomenon here is the explosive character of realizations
of the process.

The above example involves additive random noise f. The
simplest case of a multiplicative noise is given by the
stochastic parametric resonance model Ð a second order
differential equation

d2

dt 2
x�t� � o2

0

�
1� z�t��x�t� � 0 ;

x�0� � x0 ;
d

dt
x�0� � v0 �2:4�

Time 4.00Time 0.00
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b
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Figure 1. Particle dynamics in solenoidal (a) and potential (b) velocity

fields.

Figure 2.Distribution of air balloons in the atmosphere 105 days after the

launch.
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with random potential z�t�. This appears in many areas of
physics. From the physical standpoint, dynamic system (2.4)
is subjected to a parametric excitation, since process z�t�may
contain harmonics of all frequencies, including 2o0=n,
n � 1; 2; 4; . . . Those modes may produce a parametric
resonance, as for the well known periodic (Mathieu) case
z t� � (see, for instance, Refs [3, 5, 10]).

2.2 Plane waves in randomly layered media
In the previous section we considered two examples of the
initial value problems described by ordinary differential
equations. Next we shall review a simple boundary value
problem, namely the 1D stationary wave problem.

Let us consider a inhomogeneous layered medium
occupying a strip L0 < x < L. A plane wave of unit
amplitude u0�x� � exp�ÿik�xÿ L�� is incident upon it from
the right half-space x > L (Fig. 4a). The wave field in the strip
obeys the Helmholtz equation

d2

dx2
u�x� � k2

�
1� e�x��u�x� � 0 ; �2:5�

with function e�x� representing inhomogeneities of the
medium. We assume e�x� � 0 outside the strip, and
e�x� � e1�x� � ig within, the real part e1�x� responsible for
the wave scattering, while the imaginary part g5 1 describes
wave attenuation by the medium.

In the right half space �x > L� the wave field is made
up of the incident and reflected components, u�x� �
exp�ÿik�xÿ L�� � RL exp�ik�xÿ L��, where RL is the (com-
plex) reflection coefficient. In the left half x < L0 we have
u�x��TL exp�ik�L0ÿx0��, with the (complex) transmission
coefficient TL. The boundary conditions for Eqn (2.5) are

continuity relations for u�x� and its derivative du�x�= dx at
x � L and x � L0 :

i

k

d

dx
u�x� � u�x���

x�L � 2 ;
i

k

d

dx
u�x� ÿ u�x���

x�L0
� 0 :

�2:6�

So the wave field in the inhomogeneous medium is
determined by the boundary value problem (2.5), (2.6), as
opposed to the initial value problem (2.4) with the same
differential equation.

If parameter e1 is random, one is interested in the statistics
of the reflection and transmission coefficients:
RL � u�L� ÿ 1, and TL � u�L0�, that depend on the bound-
ary values of the wave-field (2.5), (2.6), as well as the field
intensity I�x� � ju�x�j2 within the layer (statistical radiative
transport).

Equation (2.5) implies the energy conservation (dissipa-
tion) law at x < L

kgI�x� � d

dx
S�x� ;

where S�x� denotes the energy-density flux

S�x� � 1

2ik

�
u�x� d

dx
u��x�ÿu��x� d

dx
u�x�

�
:

Furthermore, one has S�L� � 1ÿ jRLj2, S�L0� � jTLj2.
If the medium does not dissipate waves (g � 0), then the

energy-conservation yields

jRLj2 � jTLj2 � 1 : �2:7�

Let us turn to some special features of the stochastic
boundary value problem (2.5), (2.6). In the absence of
medium fluctuations e1�x� � 0, and for sufficiently small
attenuation g the field intensity decays exponentially inside
the layer as

I�x� � ju�x�j2 � exp
�ÿ kg�Lÿ x�� : �2:8�

Figure 5 shows numeric simulations of two wave
intensities in a sufficiently thick layer, that come from two
different realizations of the medium [29]. Skipping further
details and parameters of the problem, let us only note a
clearly perceived exponential fall-off trend accompanied by
large intensity fluctuations, directed bothways (to zero and to
infinity). They result from the multiple scattering processes in
randomly inhomogeneous media, and demonstrate the so-
called dynamic localization.

Similarly a point-source located inside the strip is
described by the boundary value Green's function of the

t

x�t�

x0

0

Figure 3. Typical realization of solutions of equation (1.3).

exp�ik�Lÿ x��TL exp�ik�L0 ÿ x��

RL exp�ÿik�Lÿ x��

e�x�

L0 L x

a

T2 exp�ÿik�Lÿ x��T1 exp�ik�L0 ÿ x��
e�x�

L0 L xx0

b

Figure 4. Incident plane wave on a layer of random medium (a), and the wave-source inside the medium (b).
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Helmholtz equation

d2

dx2
G�x; x0� � k2

�
1� e�x��G�x; x0� � 2ikd�xÿ x0� ;

i

k

d

dx
G�x; x0� � G�x; x0�jx�L � 0 ;

i

k

d

dx
G�x; x0� ÿ G�x; x0�jx�L0

� 0 : �2:9�

Here the exterior wave field (outside the layer) consists of
outgoing waves (Fig. 4b) with the transmission coefficients
T1 � G�L; x0�, T2 � G�L0; x0�. Moreover, the wave field in
the left half-space x < x0 is proportional to the plane wave
incident from the half-space x > x0 upon the layer �L0; x0�
[10], i.e.

G�x; x0� � u�x; x0� ; x4 x0 :

Let us also remark that the scattering problem (2.5), (2.6)
corresponds to putting the source (2.9) on the boundary
x0 � L, i.e. taking u�x� � G�x;L�.

Boundary value problems (2.5), (2.6) and (2.9) could be
solved by the embedding method of Refs [30 ± 32], that
reformulates them as initial value problems in parameter L
Ð the right boundary end of the strip [11]. Thus the reflection
coefficient RL of Eqns (2.5), (2.6) obeys the Riccati equation
in L,

d

dL
RL � 2ikRL � ik

2
e�L��1� RL�2 ; RL0

� 0 ; �2:10�
whereas field u�x� � u�x;L� inside the layer obeys the linear
equation

d

dL
u�x;L� � iku�x;L� � ik

2
e�L��1� RL�u�x;L� ;

u�x; x� � 1� Rx : �2:11�

Hence follows the equation for the squared modulus of the
reflection coefficientWL � jRLj2:
d

dL
WL �ÿ2kgWL ÿ ik

2
e1�L��RL ÿ R�L��1ÿWL� ; WL0

� 0 :

�2:12�
If boundary L0 is completely reflective, the initial

condition becomes WL0
� 1. So in the absence of damping

(g � 0) the incident wave is fully reflected,WL � 1. Hence the
reflection coefficient RL � expfifLg, and Eqn (2.10) would
imply the following evolution of the `reflection phase'

d

dL
fL � 2k� ke1�L��1� cosfL� ; �2:13�

valid over the entire range �ÿ1, 1� of variable fL. On the
other hand Eqn (2.11) for the wave-field u involves only
trigonometric functions of fL. In order to make a transition
from ÿ1;1� � to the natural range �ÿp; p� of fL, we
introduce another function [13, 33]

zL � tan

�
fL

2

�
; �2:14�

that obeys a nonlinear dynamic evolution of type (2.3),

d

dL
zL � k�1� z2L� � ke1�L� ; �2:15�

with singular-type (exploding) solutions.
When the left boundary is let arbitrary far �L0 ! ÿ1�,

and the media is non-dissipative (g � 0), there exists a
`stationary' solution WL � 1, independent of L, which
corresponds to the complete reflection of incident waves.
Such solution will be shown to appear in the stochastic
problem with probability one [10].

Researchers often deal with multidimensional situations,
when certain wave-types generate other types due to spatial
inhomogeneity of the medium. In some cases such media
could be approximately divided into a discrete set of distinct
strata, with continuously changing parameters within each
stratum. As an example wemention large scale/low frequency
oscillations in the atmosphere and ocean, known as Rossby
waves. These modes are derived in the context of the
quasigeostrophic model, where the atmosphere (or ocean) is
viewed as an aggregation of thin multi-layer films, stratified
by density variations and thicknesses [34]. The role of
`localizing media' for the Rossby waves is played by the
(inhomogeneous) bottom topography. The simplest one-
layer model (for the so-called barotropic modes) could be
reduced to the Helmholtz equation, while the two-layer
system could account for the baroclinic effects [35 ± 37].

We shall consider a simple two-layer wave-model given by
system [38]

d2

dx2
c1 � k2c1 ÿ a1F�c1 ÿ c2� � 0 ;

d2

dx2
c2 � k2

�
1� e�x��c2 � a2F�c1 ÿ c2� � 0 : �2:16�

Here parameters a1 � 1=H1, a2 � 1=H2 designate charac-
terizes waves interaction, while coupling constant F char-
acterizes waves interaction.

As before we assume the random function e x� � to vanish
outside the finite interval �L0;L�. The schematic geometry
of problem (2.16) is shown in Fig. 6. The boundary

0 2.5 5.0 Dx

2

I

1

Figure 5. Numeric modeling of the dynamic localization for two realiza-

tions of random media.
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conditions include the radiation condition at 1, and the
continuity of wave fields along with their derivatives at
boundary points L0 and L.

Parameter F encodes the vertical stratification, and gives
the horizontal length scale for the `cross-mode' generation.
The specific form of Eqn (2.16), like coefficients ai measuring
layers' thicknesses etc., arise in the geophysical fluid setup
[35 ± 37]. The basic equations and parameters could change,
depending on the physical system in question. But one
essential feature should remain, namely the linear form of
the wave interactions.

System (2.16) could be formally reduced to a single-layer
case by setting F � 0, c1 � 0, and the corresponding wave
equation takes on the `Helmholtz form' (2.5). Another way to
reduce the system to a `single-layer' is via limitH1 ! 0, hence
c1 � c2. Let us remark however, that the order of two
limiting procedures, L0 ! ÿ1 (half-space) and Hi ! 0
(single layer), cannot be interchanged in the statistical
problem [35]. The layers' relative thickness could be made
arbitrarily small, but should remain nonzero.

Let us consider the equations for the Green's function,

d2

dx2
c1 � k2c1 ÿ a1F�c1 ÿ c2� � ÿv1d�xÿ x0� ;

d2

dx2
c2 � k2

�
1� e�x��c2 � a2F�c1 ÿ c2�� ÿv2d�xÿ x0� ;

�2:17�
with sources in either the upper or the lower layer, respec-
tively. Introducing vector field
w�x; x0� � fc1�x; x0� ; c2�x; x0�g, and vector v � fv1 ; v2g,
we can recast Eqn (2.17) in the vector form�

d2

dx2
� A2 � k2e�x�G

�
w�x; x0� � ÿvd�xÿ x0� ; �2:18�

where

A2 � k2 ÿ a1F a1F
a2F k2 ÿ a2F

� �
;

A � k
~a2 � l~a1 �1ÿ l�~a1
�1ÿ l�~a2 ~a1 � l~a2

� �
; G � 0 0

0 1

� �
; �2:19�

here we introduce the parameter

l2 �
�
1ÿ �a1 � a2� F

k2

�

describing the mode we call the `l-wave' (taking l2 > 0), and
the relative layer thicknesses

~a1 � a1
a1 � a2

� H2

H0
; ~a2 � a2

a1 � a2
� H1

H0
; ~a1 � ~a2 � 1 :

This resembles the scalar Helmholtz equation (2.18). Here
matrix A plays the role of a `uniform background' (constant
refraction index), while eG represents medium inhomogene-
ities.

Next we consider the fundamental matrix-solution C�
d2

dx2
� A2 � k2e�x�G

�
C�x; x0� � ÿEd�xÿ x0� ; �2:20�

that gives all other `vector-solutions' w�x; x0� as
w�x; x0� � C�x; x0� v : �2:21�

The columns fc11; c21g and fc12; c22g of matrixC describe
waves generated by the point sources fv1; 0g and f0; v2g in
the upper and lower layers, respectively. The fundamental
matrixC satisfies boundary conditions�

d

dx
ÿ iA

�
C�x; x0�

��
x�L � 0 ;�

d

dx
� iA

�
C�x; x0�

��
x�L0

� 0 : �2:22�

Following Ref. [38] we shall place the wave source on the
boundary x0 � L. The corresponding boundary value pro-
blem, with the `jump-condition' at the source gives�

d2

dx2
� A2 � k2e�x�G

�
C�x;L� � 0 ;�

d

dx
ÿ iA

�
C�x;L���

x�L � E ;�
d

dx
� iA

�
C�x;L���

x�L0
� 0 : �2:23�

The latter could be further simplified by diagonalizing the
constant matrix-coefficient A (2.19) with the help of matrices

K � 1 ÿ1
~a2 ~a1

� �
; Kÿ1 � ~a1 1

ÿ~a2 1

� �
:

The transformed coefficients A and G become

B � k
l 0
0 1

� �
; eG � KGKÿ1 � ~a2 ÿ1

ÿ~a1~a2 ~a1

� �
;

and the transformedC,

U�x;L� � ÿ2iKC�x;L�Kÿ1B ; �2:24�
obeys the equation�

d2

dx2
� B2 � k2e�x�eG�U�x;L� � 0 ;�

d

dx
ÿ iB

�
U�x;L���

x�L � ÿ2iB ;�
d

dx
� iB

�
U�x;L���

x�L0
� 0 : �2:25�

Boundary-value problem Eqn (2.25) describes the inter-
action and generation of k- and l- waves of unit amplitude
(labeled according to the diagonal entries of B) . Here the
incident l-wave U11 generates k-wave U21, whereas incident
k-wave U22 generates l-wave U12.

It follows from Eqn (2.25) that the amplitude of
the generated k-wave U21 is proportional to

L0 L

H0

H1

H2 e�x�

x

Figure 6. Two-layer medium.
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d � l~a1~a2 � lH1H2=H
2
0 . Parameter d is always less than l=4.

In real (geophysical) media d becomes a small parameter, as
~a1~a2 5 1. Indeed, in the atmosphere H2 5H1, hence ~a1 5 1,
~a2 � 1, whereas in the ocean H1 5H2, so ~a2 5 1, ~a1 � 1.
Should it happen that the relative depths of two layers are
comparable (H2=H1 � 1), parameter d becomes small,
provided l is small.

To continue the discussion of wave systems we introduce
the reflection and transmission matrices R�L� � U�L;L� ÿ E
and T�L� � U�L0;L�, whose (complex) entries Ri j, Ti j give
the reflection and transmission coefficients of l and k incident
and scattered modes.

System (2.25) has two conserved integrals for the energy
current of the k- and l-modes

~a1~a2

�
U�11�x�

d

dx
U11�x� ÿU11�x� d

dx
U�11�x�

�
�

�U�21�x�
d

dx
U21�x� ÿU21�x� d

dx
U�21�x� � const ;

~a1~a2

�
U�12�x�

d

dx
U12�x� ÿU12�x� d

dx
U�12�x�

�
�

�U�22�x�
d

dx
U22�x� ÿU22�x� d

dx
U�22�x� � const :

The latter could be recast in terms of the reflection and
transmission coefficients as

d
�
1ÿ jR11j2 ÿ jT11j2

� � jR21j2 � jT21j2 ;
1ÿ jR22j2 ÿ jT22j2 � d

�jR12j2 � jT12j2
�
: �2:26�

Complete localization in the band (L0, L) implies that the
transmission coefficients Ti j converge to zero, as the band-
width increases.

Equations (2.26) establish certain algebraic relations
between the reflection and transmission coefficients. Next
we apply the embedding method [37, 38] to produce a closed
system of differential equations for the coefficients. The
embedding method allows a boundary value problem for the
matrix function U�x;L� to be converted to an initial value
problem forU�x;L� andU�L;L�, as functions of variableL (x
is now viewed as a parameter):

q
qL

U�x;L� � iU�x;L�B� i

2
k2e�L�U�x;L�Bÿ1eGU�L;L� ;

U�x;L�jL�x � U�x; x� ;
d

dL
U�L;L� � ÿ2iB� i

�
U�L;L�B� BU�L;L��

� i

2
k2e�L�U�L;L�Bÿ1eGU�L;L� ; U�L;L�jL�L0

� E :

�2:27�
The latter gives the matrix Riccati equation for the reflection
matrix R�L� � U�L;L� ÿ E,

d

dL
R�L� � i

�
R�L�B� BR�L��

� i

2
k2e�L��E� R�L��Bÿ1eG�E� R�L�� ; R�L�jL�L0

� 0 :

�2:28�
Expanding Eqn (2.28) in terms ofmatrix entriesRi j, one could
derive another relation for the reflection coefficients
R21 � dR12, which reduces the system to 3 unknown
quantities R11, R12, R22.

So far we have discussed the dynamic evolution of finite
dimensional systems given by ODE's. Next we turn to
dynamical fields described by partial differential equations.

2.3 Passive tracer advection by random velocities
The simplest example of the kind is a linear continuity
equation for a tracer density advected by the velocity field
U�r; t�:�

q
qt
� q
qr

U�r; t�
�
r�r; t� � 0 ; r�r; 0� � r0�r� : �2:29�

It conserves the total mass

M �M�t� �
�
drr�r; t� �

�
drr0�r� :

The first order linear PDE (2.29) is solved by the method
of characteristics, a family of ODE solutions

d

dt
r�t� � U�r; t� ; r�0� � n ; �2:30�

that describe the evolution of r:

d

dt
r�t� � ÿ qU�r; t�

qr
r�t� ; r�0� � r0�n � : �2:31�

The latter gives the so-called Lagrangian formulation of the
original Eulerian PDE (2.29). It depends on the characteristic
parameter (initial point) x. Notice that equation (2.30) has the
same form as the particle evolution (2.1) driven by random
velocities.

The dependence of solution (2.30), (2.31) on the initial
point x will be designated here and henceforth by a vertical
bar,

r�t� � r
ÿ
tjn � ; r�t� � r

ÿ
tjn � : �2:32�

The first equation (2.32) gives an algebraic relation
between n and r, which could be solved (for a fixed t) to find

n � n �r; t�
provided its Jacobian j�tjn � � Det jjik�tjn �j,
jik�tjn � � qri�tjn �=qn k, is nonzero. This would yield the
Eulerian density (2.29) in terms of x�r; t�:

r�r; t� � r
ÿ
tjn �r; t�� : �2:33�

The Jacobian j�tjn � itself solves a first order ODE along
the characteristics:

d

dt
j
ÿ
tjn � � qU�r; t�

qr
j
ÿ
tjn � ; j�0� � 1 : �2:34�

So the transported density in the Lagrangian variables
becomes

r
ÿ
tjn � � r0�n �

j
ÿ
tjn � :

Combining it with Eqn (2.33), we get the Eulerian density
r in the form of integral

r�r; t� �
�
dnr0�n �d

�
r
ÿ
tjn �ÿ r

�
: �2:35�

The latter provides an explicit connection between the
Lagrangian and Eulerian characteristics. The delta-function
on the RHS of Eqn (2.35) becomes an indicator of the
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position of a Lagrangian particle (see next section). So
performing ensemble averaging of Eqn (2.35) we get the well
known relation of the mean Eulerian density to the one-point
Lagrangian PDF P�tjn � � hd�r�tjn � ÿ r�i (see for instance,
Ref. [39]):

hr�r; t�i �
�
dnr0�n �P

ÿ
t; rjn � :

In the case of the divergent-free velocity (divU�r; t� � 0),
the `particle Jacobian' and the Eulerian density are conserved
along the characteristics:

j
ÿ
tjn � � 1 ; r

ÿ
tjn � � r0�n � :

Hence the solution

r�r; t� � r0
ÿ
n �r; t��

maintains its initial value along the path.
Let us dwell now on the stochastic features of the

transport problem (2.29). For the divergent-free velocities
the tracer's iso-contours r�r; t� � const evolve along the
particle trajectories, as described in Section 2.1, and illu-
strated in Fig. 1a. Here the total area enclosed by the contour
is conserved, but as evidenced from the plot, the contour
grows increasingly rugged, with sharpening gradients and
evolving small scale structures. At the other extreme
(potential velocities) the enclosed area goes to zero, as the
tracer density concentrates in small clusters. We refer to Ref.
[25] for further results and numeric simulations, and remark
that the ensemble averaging would typically obliterate all
these dynamic features.

The above discussion clearly indicates that dynamic
evolution (2.29) gives an adequate physical picture only
within a limited time range. A more complete description of
the system should involve also the tracer gradient, that obeys
a system of PDEs�

q
qt
� q
qr

U�r; t�
�
pi�r; t� � ÿpk�r; t� qUk�r; t�

qri

ÿ r�r; t� q
2Uk�r; t�
qri qrk

; p�r; 0� � p0�r� � Hr0�r� : �2:36�

Furthermore at some stage, one needs to bring into play the
molecular diffusivity (with coefficient K), that obeys the
second order linear PDE�

q
qt
� q
qr

U�r; t�
�
r�r; t� � KHr�r; t� ; r�r; 0� � r0�r� ;

�2:37�

and would flatten sharp gradients.

2.4 Waves in random media
We shall discuss wave propagation in random 2D and 3D
media within the so-called scalar parabolic approximation [5,
40, 41]. It holds for large scale inhomogeneities and relatively
short waves, hence small scattering angles:

q
qx

u�x;R� � i

2k
DRu�x;R� � ik

2
e�x;R�u�x;R� ;

u�0;R� � u0�R� : �2:38�
Here x denotes the preferred direction of wave propagation,
RÐtransverse variable (s), and e�x;R�Ðthe deviation of the

dielectric permeability from its uniform value 1. This
equation is clearly an approximation.

The complete 3D-Hemlholtz equation with the preferred
direction z�

q2

qz2
� Dq � k2

�
1� e�z���G�z; q ; z0� � d�zÿ z0�d�q �

is not parabolic. However in special cases, like stratified
medium e � e�z�, the Green's function of the 3D Helmholtz
could be represented through the 2D parabolic propagator

q
qt

c�t; z; z0� � i

2k

�
q2

qz2
� k2e�z�

�
c�t; z; z0� ;

c�0; z; z0� � d�zÿ z0� ;
in the auxiliary variable t. Namely, G is a superposition of
parabolic solutions c [13, 42]

G�z; q ; z0� � ÿ 1

4p

�1
0

dt
t
exp

�
ik

�
r2 � t 2

2t

��
c�t; z; z0� :

Next we introduce the complex phase for wave-field u of
(2.38),

u�x;R� � A�x;R� exp�iS�x;R�	 � exp
�
w�x;R� � iS�x;R�	 ;

where w�x;R� � lnA�x;R� gives the so-called amplitude level
of wave-field u, while S�x;R� is the standard real phase, and
shows that the field-intensity I�x;R� � u�x;R�u��x;R� obeys
the transport equation

q
qx

I�x;R� � 1

k
HR

�
HRS�x;R�I�x;R�

	� 0 ; I�0;R��I0�R� :
�2:39�

Hence follows the conservation of the wave-field power in the
transverse planes x � const:

E0 �
�
dR I�x;R� �

�
dR I0�R� :

Equation (2.39) closely resembles Eqn (2.29), and could be
viewed as the `tracer transport' by the potential velocity
(U � HS). However, tracer I could be considered passive
only in the geometrical optics approximation, when the
phase evolution is uncoupled from that of the amplitude/
intensity. Then phase S, its gradient p�x;R� �
�1=k�HRS�x;R�, and the second-derivative (curvature) matrix

ui j�x;R� � 1

k

q2

qRi qRj
S�x;R�

of the wave-front S�x;R� � const, all evolve according to a
closed system of differential equations:

q
qx

S�x;R� � k

2
p2�x;R� � k

2
e�x;R� ;�

q
qx
� p�x;R�HR

�
p�x;R� � 1

2
HRe�x;R� ;�

q
qx
� p�x;R�HR

�
ui j�x;R� � uik�x;R�ukj�x;R�

� 1

2

q2

qRi qRj
e�x;R� : �2:40�

In general, one has to account for the diffraction, and that
would make I an `active tracer'.
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As we mentioned earlier the realizations of the intensity
field should cluster into the caustic structures. Indeed, the
cover page of book [41] shows a cross sectional photograph of
a laser beam propagating through a turbulent atmosphere.
The fragment, shown in Fig. 7, clearly demonstrates the
appearance of such caustic structures (see Refs [43 ± 45] for
further experimental results and numeric simulations).
Figure 8 shows a swimming pool with clear caustic structures
at the bottom. The latter arises due to the refraction and
reflection of light by the perturbed water surface, so the light
is scattered by the so-called phase screen.

Following Refs [5, 13], we shall consider the example of a
Gaussian beam

u0�R� � u0 exp

�
ÿ R2

2a2

�
�2:41�

propagating through a random parabolic wave-guide

e�x;R� � ÿ�a2 ÿ z�x��R2 ; �2:42�

Here r designates the radial variable in the transverse
plane, a Ð beam's width, a Ð a deterministic (mean)
component of the refractive index curvature at the center of
the wave-guide, and z x� � Ð its random variation along the
axis of the wave-guide. If the beam's wave-number k agrees

with the wave-guide parameters,

kaa2 � 1 ; �2:43�

and dielectric fluctuations z are absent, then function (2.41) is
the transverse eigenmode, and equation (2.38) has an exact
solution

u0�x;R� � u0 exp

�
ÿ R2

2a2
ÿ iax

�
as the beam remains strictly parallel with constant amplitude
along x-rays.

In the presence of dielectric fluctuations of the wave-guide
curvature we look for solutions of the form

u�x;R� � u0 exp

�
ÿ R2

2a2
A�x� � B�x�

�
with complex variable coefficients A�x� and B�x�, which give
the relative deviations of the complex phase from its constant
(mean) values A0 � 1, B0 � iax. The coefficients A;B obey a
nonlinear differential system

d

dx
A�x�� ÿ i

ka2
�
A2�x�ÿ a2k 2a4

�ÿ ika2z�x� ; A�0��1;

d

dx
B�x� � ÿ i

ka2
A�x� ; B�0� � 0 : �2:44�

Assuming an initial field-intensity I � ju0j2 � 1 one could
derive from Eqn (2.44) a closed form solution

I�x;R� � I�x; 0� exp
�
ÿ R2

a2
I�x; 0�

�
�2:45�

in terms of the level-function on the wave-guide axis (see Refs
[5,13]):

I�x; 0� � 1

2

�
A�x� � A��x�� : �2:46�

Later on we shall see that the randomly inhomogeneous
wave-guide could effectively localize Gaussian beams at
finite distances in the direction of propagation.

Let us now take a close view of the geometrical optics
approximation for a general parabolic equation (2.38). Here
the transverse gradient obeys a quasilinear partial differential
equation (2.40), solved by the method of characteristics (see
for instance Ref. [46]). The characteristic curves (rays) R t� �
obey the differential system

d

dx
R�x� � p�x� ; d

dx
p�x� � HRe�x;R� ; �2:47�

while the wave-intensity I and the second derivative matrix
uij�x� � q2S=qRiqRj of the phase-function evolve along the
characteristics according to

d

dx
I�x� � ÿI�x�uii�x� ;

d

dx
ui j�x� � ui k�x�ukj�x� � 1

2

q2

qRiqRj
e�x;R� : �2:48�

The Hamiltonian system (2.47) could be formally viewed
as frictionless motion of a particle (2.4) in a potential force
HRe�x;R�.

Figure 7. Cross-section of a laser beam in a turbulent medium.

Figure 8. Caustic structure in a swimming pool.
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Equations (2.47) and (2.48) are further simplified in the
2D case (R � y):

d

dx
y�x� � p�x� ; d

dx
p�x� � q

qy
e�x; y� ;

d

dx
I�x� � ÿI�x�u�x� ; d

dx
u�x� � u2�x� � 1

2

q2

qy2
e�x; y� :
�2:49�

The last equation in u�x� is similar to equation (2.3) with
singular (`blow up' type) solutions, the only difference being
themore complicated random (forcing) term. Yet solutions of
stochastic problem (2.49) would still blow up at finite
distances, where the curvature u x� � goes to ÿ1, while the
intensity I grows to +1. This singularity manifests itself by
(random) focusing of the wave field and formation of caustics
[6 ± 9].

2.5 Equations of geophysical fluid dynamics
We shall consider hydrodynamic flows on the rotating Earth
in the so-called quasigeostrophic approximation [34]. In the
simplest case of a single layer fluid its state is described by the
2D potential vorticity field in variables r � �x; y�, that obeys
equation

q
qt
Dc�r; t� � b0

q
qx

c�r; t� � J
ÿ
Dc�r; t� � h�r�;c�r; t�� ;

c�r; 0� � c0�r� ; �2:50�
where J�c;j� is the Jacobian of two functions, b0 the
latitudinal derivative of the local Coriolis parameter f0, and
h�r� � f0 ~h�r�=H0 takes into accounts the deviation of the
bottom topography ~h�r� from the uniform (mean) depth H0.
The velocity field is computed from c via

v�r; t� �
�
ÿ qc�r; t�

qy
;
qc�r; t�

qx

�
:

Let us remark that neglecting the Coriolis and topo-
graphic factors would reduce Eqn (2.50) to the standard
Eulerian 2D hydrodynamics [47].

The scalar equation (2.50) describes so-called barotropic
fluid motion, where density stratification plays no role. The
simplest way to incorporate the baroclinic effects (due to
density stratification) involves a two-layer model, made of
two coupled PDEs [34]:

q
qt

�
Dc1 ÿ a1F�c1 ÿ c2�

�� b0
q
qx

c1

� J
ÿ
Dc1 ÿ a1F�c1 ÿ c2�;c1

�
;

q
qt

�
Dc2 ÿ a2F�c2 ÿ c1�

�� b0
q
qx

c2

� J
ÿ
Dc2 ÿ a2F�c2 ÿ c1� � f0a2h;c2

�
: �2:51�

Additional parameters appear in Eqn (2.51): a1 � 1=H1 and
a2 � 1=H2 are reciprocals of the layers' depths,
F � f 20 r=g�Dr� depends on the local Coriolis parameter, and
Dr=r � �r2 ÿ r1�=r0 > 0 is the relative density variation.

A special case of Eqns (2.50) and (2.51) arises when one
drops the Earth rotation (2D Eulerian fluids), but takes into
account the topography and density stratification. Such
linearized equations would describe the effect of topography
on propagation of Rossby waves. Let us remark that in all the
above geophysical models the topography enters the dynamic
equations in the form of derivatives.

2.6 Solution dependence on initial parameters
and coefficients of equations
We have considered several examples of dynamical systems,
both ordinary and partial differential ones. In many applica-
tions, like the statistical analysis of chapter 4, one needs to
know how solutions of such dynamical systems depend on the
initial/boundary parameters, as well as their (functional)
dependence on coefficients of the equations. There are two
common features for all such dependencies, important for
their statistical analysis. We shall illustrate them for the
simplest problem given by an ordinary differential system of
type (2.1), that describes the particle dynamics in a (random)
velocity field U�r; t�. It could be recast in the (equivalent)
integral form

r�t� � r0 �
�t
t0

dtU
ÿ
r�t�; t� : �2:52�

The solution of Eqn (2.52) has a (functional) dependence on
the vector-field U�r0; t�, and the initial parameters r0, t0.

2.6.1 Dynamic causality principle. Let us take a variational
derivative of solution (2.52) over the vector field U�r; t�.
Assuming an initial condition r0, we get a linear equation for
the variational derivative,

dri�t�
dUj�y; t 0� � di jd

ÿ
yÿ r�t 0��y�t 0 ÿ t0�y�tÿ t 0�

�
�t
t0

dt
qUi

ÿ
r�t�; t�
qrk

drk�t�
dUj�y; t 0� ; �2:53�

where d�yÿ y0� designates the Dirac delta, while y�z� stands
for the Havyside step-function. From Eqn (2.53) it follows
that

dri�t�
dUj�y; t 0� � 0 ; if t 0 > t or t 0 < t0 ; �2:54�

so the solution r�t� of Eqn (2.52) considered as a functional of
field U�y; t 0� depends only the values of U�y; t 0� in the range
t0 < t 0 < t. So function r�t� remains independent of the
variations of U�y; t 0� outside the interval (t0; t

0). Condition
(2.54) is called the dynamic causality principle.

Taking into account dynamic causality we can recast Eqn
(2.53) in the form

dri�t�
dUj�y; t 0� � di jd

ÿ
yÿ r�t 0��y�t 0 ÿ t0�y�tÿ t 0�

�
�t
t 0
dt

qUi

ÿ
r�t�; t�
qrk

drk�t�
dUj�y; t 0� ;

which yields in the limit t! t 0 � 0

dri�t�
dUj�y; t 0�

����
t�t 0�0

� di j d
ÿ
yÿ r�t 0�� : �2:55�

Integral equation (2.53) for the variational derivative has
an equivalent differential form

q
qt

dri�t�
dUj�y; t 0� �

qUi�r; t�
qrk

drk�t�
dUj�y; t 0� ;

dri�t�
dUj�y; t 0�

����
t�t 0
� di j d

ÿ
yÿ r�t 0�� : �2:56�
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Dynamic causality is a common feature of all initial value
problems, but not boundary value ones. So for problem (2.5),
(2.6) for a plane wave in the randomly stratified medium, the
wave-field u�x� at point x as well as the the reflection-
transmission coefficients have a functional dependence on
the refractive index e�x� over the entire range (L0, L).
However, the embedding method allows this problem to be
recast as an initial value one in the auxiliary variable L, and
apply the dynamic causality for the `embedded problem'.

2.6.2 Dependence on initial conditions. Next we shall consider
the dependence of the solution r�t� of Eqn (2.52) on the initial
parameters r0, t0 and designate this dependence by the vertical
bar:

r�t� � r�tjr0; t0� ; r0 � r�t0jr0; t0� : �2:57�
Taking derivatives of Eqn (2.52) in r0k and t0, we get the

linear integral equations for the Jacobian matrix
qri�tjr0; t0�=qr0k and vector qri�tjr0; t0�=qt0:
qri�tjr0; t0�

qr0k
� dik �

�t
t0

dt
qUi

ÿ
r�t�; t�
qrj

qrj�tjr0; t0�
qr0k

;

qri�tjr0; t0�
qt0

�ÿUi

ÿ
r0�t0�; t0

���t
t0

dt
qUi

ÿ
r�t�; t�
qrj

qrj�tjr0; t0�
qt0

:

�2:58�

Multiplying the first by Uk

ÿ
r0�t0�; t0

�
, summing over k and

adding the second one, we obtain a linear integral relation for
the vector-function

Fi�tjr0; t0� �
�

q
qt0
�U�r0; t0� q

qr0

�
ri�tjr0; t0� ;

namely,

Fi�tjr0; t0� �
�t
t0

dt
qUi

ÿ
r�t�; t�
qrj

Fj�tjr0; t0� ;

whose only solution is F�tjr0; t0� � 0. Hence follows the first
order linear PDE for ri in the `initial variables',�

q
qt0
�U�r0; t0� q

qr0

�
ri�tjr0; t0� � 0 ; �2:59�

with the terminal condition at t0 � t

r�tjr0; t� � r0 : �2:60�

Here the variable t enters the problem (2.59), (2.60) as the
parameter.

Equation (2.59) is solved backward in time relative to Eqn
(2.1), and is called the backward problem.

Notice that the `terminal value' problem (2.59), (2.60) also
satisfies the dynamic causality in t0 and

d
dUj�y; t 0� ri�tjr0; t0� � 0 ; if t 0 > t or t 0 < t0 ;

and in this case, as follows from Eqn (2.59), the following
holds:

d
dUj�y; t 0� r�tjr0; t0�

����
t 0�t0�0

� d�r0ÿ y� q
qr0j

r�tjr0; t0� : �2:61�

3. Indicator function and the Liouville equation

The modern theory of random processes allows one to get a
closed form description of stochastic systems, if those are
described by either linear differential equations, or certain
integral equations [5], and obey the dynamic causality
principle. In general, nonlinear dynamical system could be
transformed into equivalent linear PDEs by means of
indicator functions [5]. Of course, such a transition would
typically increase the number of variables. We shall outline
this method for the models of the previous section.

3.1 Ordinary differential equations
Consider the stochastic system (2.1), and introduce the scalar
(distributional) function

F�t; r� � d
ÿ
r�t� ÿ r

�
; �3:1�

supported at the cross-section of random process r�t� by the
plane r � const, and called the indicator function.

Differentiating Eqn (3.1) in time t and applying dynamic
system (2.1), we get a linear PDE [3, 5]�

q
qt
� q
qr

U�r; t�
�
F�t; r� � 0 ; F�t0; r� � d�r0 ÿ r� ; �3:2�

which is equivalent to the original system and is called the
Liouville equation.

Transition from an ODE (2.1) to a PDE (3.2) enlarges the
phase-space, but the number of variables remains finite. Let
us remark that Eqn (3.2) coincides with the transport
equation (2.29), the only difference being their initial
conditions.

Solutions of both Eqns (2.1) and (3.2) depend on the
initial data. Thus the position-function r�t� � r�tjr0; t0� solves
a linear PDE (2.59) in variables r0, t0. Similar derivation
works for the indicator function, indeed, t0-derivative of Eqn
(3.1) along with PDE (2.59) yields a linear equation�

q
qt0
�U�r0; t0� q

qr0

�
F�t; rjt0; r0� � 0 ;

F�t; rjt; r0� � d�r0 ÿ r� ; �3:3�

called the backward Liouville equation.

3.2 First order partial differential equations
If the original dynamic evolution is given by PDEs, we could
pass to an equivalent description using variational derivatives
in the infinite-D space (of functions), called the Hopf
equation [5, 39, 48]. However, in special cases such infinite-
D linear transport could be further simplified.

For instance, if the original dynamic system is described
by a first order PDE, either linear, like a `passive tracer'
(2.29), or quasilinear of type (2.40) Ð for the cross-sectional
phase gradient in random media, then certain indicator
functions (e.g. iso-contour indicators in the `passive trans-
port') live on the reduced (finite-D) phase-space [3, 5]. This
link is established by the method of characteristics for first
order PDEs.

Let us elaborate it for the `passive transport' (2.30), (2.31)
in random velocities. The state of the transported tracer could
be described either by the Lagrangian field r tjx� � (x Ð
Lagrangian label), or in the Eulerian form by r�r; t�.

The Lagrangian indicator-function

FLag�t; r; rjn � � d
ÿ
r�tjn � ÿ r

�
d
ÿ
r�tjn � ÿ r

� �3:4�
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could be shown to obey a linear Liouville equation

q
qt
FLag�t; r; rjn ��

�
ÿ q
qr

U�r; t�� qU�r; t�
qr

q
qr

r
�
FLag�t; r; rjn �;

FLag�0; r; rjn � � d�n ÿ r�dÿr0�n � ÿ r
� �3:5�

that incorporates explicit dependence on label n Ð the initial
position of a parcel.

To pass from the Lagrangian to Eulerian description one
could employ the Jacobian matrix ji k�tjn � � qri�tjn �=qxk,
whose determinant j�tjn � measures the rate of volume
compression/expansion along the Lagrangian path, and
satisfies the linear transport equation (2.34). Augmenting
the indicator-function FLag�t;R; rjn � with the j-factor,

FLag�t; r; r; jjn ��d
ÿ
r�tjn � ÿ r

�
d
ÿ
r�tjn � ÿ r

�
d
ÿ
j�tjn � ÿ j

�
;

�3:6�

one could write a Liouville equation similar to Eqn (3.5):

q
qt
FLag�t; r; r; jjn ��

�
ÿ q
qr

U�r; t�� qU�r; t�
qr

�
q
qr

rÿ q
qj

j

��
� FLag�t; r; r; jjn �;

FLag�0; r; r; jjn � � d�n ÿ r�dÿr0�n � ÿ r
�
d�jÿ 1� : �3:7�

The Eulerian indicator

F�t; r; r� � d
ÿ
r�t; r� ÿ r

�
; �3:8�

is supported on the iso-surfaces (or 2D iso-contours) of level
r�r; t� � r � const. The evolution could be derived either
from Eqn (2.29) as in Ref. [5], or from the Lagrangian
Liouville equation (3.7). Indeed, taking into account the
equality

d
ÿ
r�tjn � ÿ r

� � 1

jqra=qxbj
d
ÿ
n ÿ n �t; r��

� 1

j�tjn � d
ÿ
n ÿ n �t; r�� ;

we recast Eqn (3.6) as

FLag�t; r; r; jjn � � 1

j
d
ÿ
n ÿ n �t; r��dÿj�tjn � ÿ j

�
F�t; r; r� :

�3:9�

Hence

F�t; r; r� �
�
dn

�1
0

j djFLag�t; r; r; jjn � : �3:10�

Multiplying Eqn (3.7) by j and integrating over j and n , we
get the `Eulerian' equation�

q
qt
�U�r; t� q

qr

�
F�t; r; r� � qU�r; t�

qr
q
qr

rF�t; r; r� ;

F�0; r; r� � d
ÿ
r0�r� ÿ r

�
: �3:11�

For divergent-free velocities U�r; t� all three equations
(3.3), (3.5), (3.11) coincide, their differences are due to
compressible (potential) velocity component.

The indicator functions have many applications, for
instance they yield one-point probability distributions for
stochastic processes generated by dynamical systems via
ensemble averaging of corresponding indicator functions:

P�t; r; r; jjn ��
FLag�t; r; r; jjn �
�
; P�t; r; r��
F�t; r; r�� :

That explains their importance in the `statistical' dynamical
theory.

Furthermore, indicator functions carry some important
qualitative and quantitative geometric information about
random fields. Let us elaborate the last point.

3.3 Statistical topography of random fields
The main subject of statistical topography, like the usual one
(i.e. topographic maps of `mountain terrains'), is the set of
iso-contours in 2D (or 3D iso-surfaces) of constant density r;

r�r; t� � r � const : �3:12�
To analyze such contours (for the sake of the presentation

we shall talk about the 2D case) let us introduce a (singular)
indicator function of level r, viewed as a `functional' of the
media parameters. Such a function (3.8) yields several
geometric characteristics of contours. Those include the
total area, enclosed by r�r; t� � r,

S�t; r� �
�
y
ÿ
r�r; t� ÿ r

�
dr �

�1
r

d~r
�
drF�t; r; ~r� ; �3:13�

the total mass inside the region,

M�t; r��
�
r�r; t�yÿr�r; t�ÿ r

�
dr �

�1
r

~r d~r
�
drF�t; r; ~r� ;

�3:14�

etc., all expressed through the indicator F�t; r; r�.
Functionals (313), (3.14) obey the time-evolutions,

derived from the Liouville's equation (3.11) for F�t; r; r�,
that take the form

q
qt
S�t; r��

�
dr

�1
r

d~r
q
qt

F�t; r; ~r�

�
�
dr

�1
r

d~r
qU�r; t�

qr

�
q
q~r

~r� 1

�
F�t; r; ~r� ;

q
qt
M�t; r� �

�
dr

�1
r

~r d~r
q
qt

F�t; r; ~r�

�
�
dr

�1
r

d~r
qU�r; t�

qr
~r
�

q
q~r

~r� 1

�
F�t; r; ~r� :

In the special case of divergent-free velocities the total area
bounded by contour r, and the totalmass inside the region are
conserved. Such flows also conserve the number N of r-
contours. Indeed, the contours could not arise or disappear,
but only evolve in time starting from their initial distribution
on the slice r0�r� � r � const.

Of course, compressible flows with nonzero potential
component of u, would have both quantities evolving in time.

As we already mentioned, the ensemble average of
indicator function (3.8) gives one-point PDFs of the tracer
density

P�t; r; r� � 
F�t; r; r�� � 
d�r�r; t� ÿ r�� : �3:15�
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Hence one could also get statistical means of geometric
invariants (3.13), (3.14) determined by F and the one-point
PDFs.

Additional geometric information about density contours
could be obtained from values of r�r; t� combined with its
spatial gradient p�r; t� � Hr�r; t�. For instance, integral

l�t; r� �
�
dr
��p�r; t���dÿr�r; t� ÿ r

� � � dl �3:16�

gives the total contour length at level r [18 ± 22].
The augmented indicator-function for Eqn (3.16) has

extra variables p,

F�t; r; r; p� � d
ÿ
r�r; t� ÿ r

�
d
ÿ
p�r; t� ÿ p

�
; �3:17�

and satisfies the extended Liouville equation, that follows
from Eqns (2.29), (2.36)�

q
qt
�U�r; t� q

qr

�
F�t; r; r; p�

�
�
qUk�r; t�

qri

q
qpi

pk � qU�r; t�
qr

�
q
qr

r� q
qp

p

�
� q2Uk�r; t�

qri qrk

q
qpi

r
�
F�t; r; r; p� ;

F�0; r; r; p� � d
ÿ
r0�r� ÿ r

�
d
ÿ
p0�r� ÿ p

�
: �3:18�

Equation (3.18) yields the evolution of the total contour
length,

q
qt
l�t; r� �

�
dr

�
dpp

q
qt

F�t; r; r; p�

�
�
dr

�
dp

�
ÿ qUk�r; t�

qri

pipk
p
� qUk�r; t�

qrk
p
q
qr

r

ÿ q2Uk�r; t�
qri qrk

pi
p
r
�
F�t; r; r; p� ; �3:19�

whose RHS is typically nonzero (positive) in all cases,
including divergent-free velocities.

The mean values of Eqns (3.17) ± (3.19) are related to the
joint PDF of random fields r�r; t� and p�r; t� via statistical
(ensemble) averaging of the indicator function (3.17):

P�t; r; r; p� � 
d�r�r; t� ÿ r�d�p�r; t� ÿ p
�
: �3:20�

Higher derivatives of r (e.g. second order) furnish
additional geometric information, like the total number of
closed contours at a given level r�r; t� � r � const. The latter
could be approximately expressed (excluding non-closed
ones) by the formula [19]

N�t; r� � Nin�t; r� ÿNout�t; r�

� 1

2p

�
dr K�t; r; r���p�r; t���dÿr�r; t� ÿ r

�
: �3:21�

Here K�t; r; r� denotes the curvature along the contour, while
Nin�t; r�, Nout�t; r� count contours with inward or outward
pointing gradient p.

In the case of the statistically homogeneous random field
r�r; t�, one-point PDFs P�t; r; r� and P�t; r; r; p� are indepen-
dent of r. So dropping the r-integration but taking statistical

(ensemble) averages we could produce the corresponding
specific quantities (per unit area/volume), whenever appro-
priate.

Next we shall proceed to the statistical analysis of the
above problems.

4. Statistical analysis of dynamical systems

4.1 The forward and backward Fokker ± Planck equation
We consider a general dynamical system

d

dt
x�t� � v�x; t� � f�x; t� ; x�0� � x0 �4:1�

for the vector-function x�t� � fx1�t�; x2�t�; . . . ; xN�t�g, where
v�x; t� and f�x; t� denote the deterministic and random
Gaussian vector-fields. The latter is assumed to have zero
mean,



f�x; t�� � 0, and the correlation tensor

Bi j�x; t; x0; t 0� �


fi�x; t� fj�x0; t 0�

�
:

As before angular brackets h. . .i indicate averaging over the
ensemble of all realizations of field f�x; t�. The Liouville
equation for the indicator-function F�t; x� � d�x�t� ÿ x�
takes the form

q
qt
F�t; x� � ÿ q

qx

�
v�x; t� � f�x; t��F�t; x� ;

F�0; x� � d�xÿ x0� : �4:2�
After averaging Eqn (4.2) over the f-ensemble, we get a

non-closed equation for the one-point PDF P�t; x� �
hF�t; x�i,

q
qt
P�t; x� � ÿ q

qx
v�x; t�P�t; x� ÿ q

qx



f�x; t�F�t; x�� ;

P�0; x� � d�xÿ x0� ; �4:3�
where the cross-correlations of f�x; t� and F�t; x� appear on
the right-hand side, the latter being a functional of f�x; t�.

The correlation splitting procedures depend on the type of
random field f�x; t�. For Gaussian fields and their functionals
one could use the so-called Furutsu ±Novikov formula [49,
50] (see also Refs [5, 39]),


fk�x; t�R� f �
� � � dx0

�
dt 0Bkl�x; t; x0; t 0�

�
�

d
d fl�x0; t 0�R� f �

�
; �4:4�

that holds for an arbitrary functional R� f � of random
Gaussian field f�x; t� and could be viewed as an `integration
by parts formula' in functional spaces [51]. Applying it to Eqn
(4.3) and using the dynamic causality principle (2.54) we get

q
qt
P�t; x� � ÿ q

qx
v�x; t�P�t; x�

ÿ q
qxi

�
dx0
�t
0

dt 0Bi j�x; t; x0; t 0�
�

d
d fj�x0; t 0�F�t; x�

�
;

P�0; x� � d�xÿ x0� : �4:5�
Equation (4.5) is still non-closed in general.
It could be closed for delta-correlated fields f�x; t�. To this

end we introduce the effective correlation tensor (see, for
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instance Ref. [5])

Beff
i j �x; t; x0; t 0� � 2d�tÿ t 0�Fi j�x; x0; t� ; �4:6�

whose spatial component Fi j is given by the time-integral

Fi j�x; x0; t� � 1

2

�1
ÿ1

dt 0Bi j�x; t; x0; t 0� :

Inserting such a delta-correlated field f�x; t� in formula
(4.6) we get

q
qt
P�t; x� � ÿ q

qx
v�x; t�P�t; x� ÿ q

qxi

�
dx0Fi j�x; x0; t 0�

�
�

d
d fj�x0; t�F�t; x�

�
;

P�0; x� � d�xÿ x0� : �4:7�
The variational derivative in Eqn (4.7) should be understood
as the limit d=df�x0; tÿ 0�.

Taking into account Liouville transport (4.2) we obtain
the variational derivative

d
d fj�x0; t�F�t; x� � ÿ

q
qxj

�
d�xÿ x0�F�t; x�	

expressed through F itself. Hence Eqn (4.5) turns into the
standard Fokker ± Planck equation

q
qt
P�t; x� � q

qxk

�
vk�x; t� � Ak�x; t�

�
P�t; x�

� q2

qxk qxl

�
Fkl�x; x; t�P�t; x�� ;

P�0; x� � d�xÿ x0� ; �4:8�

whose coefficients depend on themean (transport) field v, and
the effective correlation tensor Fi j:

Ak�x; t� � q
qx0l

Fkl�x; x0; t�
��
x0�x :

So the d-correlated approximation in Eqn (4.1) gives rise
to a Markov process, a system without `memory' [such
memory would be encoded in the integral term of (4.5)]. Its
transitional probabilities

p�x; tjx0; t0� �


d�x�t� ÿ x�jx�t0� � x0

�
obey the FP-equation (4.8), subject to the initial condition

p�x; tjx0; t0�
��
t!t0
� d�xÿ x0� :

The partial differential equation (4.8) is often called the
forward Fokker ± Planck equation. Its solutions depend on
the type of initial/boundary conditions, determined by the
physical conditions.

The delta-correlated approximation applies when the
time correlation radius t0 of random field f�x; t� is short
compared to the typical time scales of the process, that is
t0 5 t1 � L=v, or L=

���������h f 2ip
, where L is the typical length-

scale. The latter could involve the flow-properties, e.g. a
typical eddy size L � v=jHvj, or the scale L � r=jHrj of
tracer distribution. In either case, the time-evolution of the
flow-transport dynamics would typically bring the length

scale down by creating `small-scale' structures. At this step
one has to take into account the finite value t0 of the
correlation time.

One way to accommodate the finite correlation radius is
given by the so-called diffusion approximation (see for
instance, Refs [1, 23, 52]). The `integral-type' approxima-
tions used here are more natural and physically relevant than
the mathematical abstraction of `delta-correlated' random
fields. The basic assumption here is that random sources have
a negligible effect on the dynamics of Eqn (4.1) on time scales
of order t0, so the system would follow the deterministic
(mean-field) evolution.

The diffusion approximation starts with the exact relation
(4.5), and computes the variational derivative
dF�t; x�dfi�x0; t0� by solving the mean field transport for F
and dF=df,

q
qt
F�t; x� � ÿ q

qx
v�x; t�F�t; x� ;

q
qt

dF�t; x�
d fi�x0; t 0� � ÿ

q
qx

�
v�x; t� dF�t; x�

d fi�x0; t 0�
�
;

subject to the initial conditions

F�t; x���
t!t 0 � F�t 0; x� ;

dF�t; x�
d fi�x0; t 0�

����
t!t 0
� ÿ q

qxj

�
d�xÿ x0�F�t 0; x	 :

The latter condition couples the variation dF
df to the value

of functional F at the initial moment t0.
Let us remark that the large scale limit, t4 t0, of the

diffusion approximation to Eqn (4.1) would turn into another
(approximately) Markovian process.

Averaging the backward Liouville equation (3.3) over the
ensemble of realizations, we get the backward FP-equation
that describes transitional probabilities as functions of the
initial parameters t0, x0 (see, for instance Ref. [28]):

q
qt0

p�x; tjx0; t0� �
�
vk�x0; t0� � Ak�x0; t0�

� q
qx0k

p�x; tjx0; t0�

�ÿFkl�x0; x0; t0� q2

qx0k qx0l
p�x; tjx0; t0� : �4:9�

The forward and backward FP-equations are equivalent.
The forward problem is convenient for studying the temporal
evolution of the basic statistics (means, moments) of system
(4.1), while the backward one yields such properties as the
occupation time of the process in a particular phase-space
region, the arrival time at the boundary of the region, etc.
Indeed, the probability of finding particle x�t�within regionV
is given by the integral

G�t; x0; t0� �
�
dx p�x; tjx0; t0�

which is described due to Eqn (4.9) by the closed form
equation

q
qt0

G�t; x0; t0� �
�
vk�x0; t0� � Ak�x0; t0�

� q
qx0k

G�t; x0; t0�

� ÿFkl�x0; x0; t0� q2

qx0k qx0l
G�t; x0; t0� ;

G�t; x0; t0� � 1; if x0 2 V;
0; if x0 2= V:

�
�4:10�
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One also needs additional boundary conditions, that depend
on the properties of V, and the `physics' at the boundary
(absorption, reflection et al.).

As we mentioned in the introduction, solutions of many
stochastic dynamical problems exhibit large fluctuations
about special deterministic curves, that determine the `large-
scale dynamics' of the system over the entire time-interval.We
shall call such curves typical realizations, and define them
through one-point PDFs of the process.

4.2 Typical realizations of random processes
Let y�t� be a random process with a one-point PDF

P�t; y� � 
d�y�t� ÿ y�� ;
and a dimensionless `time' parameter t. The integral distribu-
tion function of the process is defined by averaging the
Havyside step-function Y�y�, equal to 1 for y > 0 and 0 for
y < 0

F�t; y� � P
ÿ
y�t� < y

� � 
Y�yÿ y�t��� :
We call a typical realization of the process a deterministic
median curve y��t� computed from an algebraic equation

F
ÿ
t; y��t�� � 1

2
:

The motivation for this definition comes from the properties
of the median. Namely, for any time-interval (t1; t2) process
y�t� `winds around' themedian in such away that it spends on
average half of the time above it, y�t� > y��t�, and half below,
y�t� < y��t� (see Fig. 9 and Ref. [12, 13]):

hTy�t�>y��t�i � hTy�t�<y��t�i � 1

2
�t2 ÿ t1� :

Of course, such y��t� would bear little resemblance to any
particular realization of the process, and say nothing about
the scope and size of fluctuations.

Evidently, the typical realization y��t� of random process
y�t� is well defined over the entire time range t 2 �0;1�.

For special random processes one could get additional
information about the fluctuations of y t� � around y� t� �.

One such class of examples consists of log-normal
(positive valued) processes, that arise in a large number of
physical applications, and have some remarkable properties
[12, 13]. Theymanifest themselves in such important coherent
phenomena as localization and clustering.

4.3 Log-normal processes
We define a log-normal random process as

y�t� � exp

�
ÿ t�

�t
0

dx z�x�
�
; �4:11�

where z�x� stands for Gaussian white noise:

z�x�� � 0;



z�x�z�x0�� � 2d�xÿ x0� :

It could be described by the stochastic equation

d

dt
y�t� � �ÿ 1� z�t�	y�t� ; y�0� � 1

and has the following properties.
1. The log-normal process isMarkovian, and its one-point

PDF solves the FP-equation
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Solution of Eqn (4.12),

P�t; y� � 1

2
�����
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p

y
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ÿ 1

4t
ln2�yet�

�
; �4:13�

has long tail which shows that the one-point statistics of y�t�
are dominated by large deviations (Fig. 10). The integral
distribution function

F�t; y� � P
ÿ
y�t� < y

� � F
�

1

�2t�1=2
ln2�yet�

�

is expressed through the standard error-function

F�z� � 1

�2p�1=2
�z
ÿ1

dy exp

�
ÿ y2

2

�
:

2. The moments of y increase exponentially in time:

hyn�t�i�exp
�
n�nÿ 1�t	 ; � 1

yn�t�
�
�exp

�
n�n� 1�t	 ;

n � 1; 2; . . . ; �4:14�
3. Yet the typical realization of the process falls off

exponentially

y��t� � eÿt : �4:15�
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Figure 9. Typical realization of a random process.
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Figure 10. Probability distribution function of a log-normal process.
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Hence, exponential growth of the moments is due to large
fluctuations about y� t� � on both sides (large and small values
of y). However, the probability of y < 1, for large times t4 1,
goes rapidly to 1

P
ÿ
y�t� < 1

� � F�t; 1� � 1ÿ 1

�pt�1=2
eÿt=4 :

4. For any probability 0 < p < 1 there exists a one-
parameter family of exponentially decaying curves,

Yp�t; b���1ÿ p�ÿ1=b exp�ÿ �1ÿ b�t	 �04b4 1� ;
�4:16�

that dominate the process in the sense that a sizable fraction
of realizations lie below Yp�t; b�, i.e.

P
�
y�t� < Yp�t; b� for all t 2 �0;1�	 � p :

In particular, `half of realizations' (probability p � 1=2)
satisfy

y�t� < 4 exp

�
ÿ t
2

�
�4:17�

over the entire time-range t 2 �0;1�:
5. Random variables Sn �

�1
0 dtyn�t� that characterize

large deviations, have finite (stationary) probability distribu-
tions

Pn�S� � nÿ2=n

G�1=n�
1

S 1�1=n exp
�
ÿ 1

n2S

�
�4:18�

with polynomial fall off at large S. In particular, for the `area
integral' S1 �

�1
0 dty�t� we get a PDF and integral distribu-

tion of the form

P1�S� � 1

S 2
exp

�
ÿ 1

S

�
; F�S� � exp

�
ÿ 1

S

�
:

This means that `large deviations' of process y enclose `small
areas'.

All the above properties are characteristic of log-normal
processes, and follow from their one-point PDFs (4.13).

Now we can proceed to the statistical analysis of specific
problems formulated in the previous part .

5. Transfer phenomena in dynamical systems
with singularities

5.1 Simple case
We start with the stochastic equation (2.3) written for l � 1,

d

dt
x�t� � ÿx2�t� � f�t� ; x�0� � x0 ; �5:1�

and assume the random process f�t� to beGaussian and delta-
correlated:


f�t�� � 0 ;


f�t� f�t 0�� � 2Dd�tÿ t 0� :

In the absence of sources, Eqn (5.1) has the exact solution

x�t� � 1

tÿ t0
; t0 � ÿ 1

x0
:

So if the initial point x0 > 0, solution goes monotonically to
zero, but in the case of x0 < 0 it explodes toÿ1 in finite time
t0.

Solution of the stochastic problem (5.1) is determined by
the forward and backward Fokker ± Planck equation in terms
of the difference tÿ t0, that we shall relabel as t:

q
qt
p�x; tjx0� � q

qx
x2p�x; tjx0� �D

q2

qx2
p�x; tjx0� ;

q
qt
p�x; tjx0� � ÿx20

q
qx0

p�x; tjx0� �D
q2

qx20
p�x; tjx0� ;

p�x; 0jx0� � d�xÿ x0� : �5:2�

Here the variables x, p�x; tjx0� and D have dimensions
�x� � tÿ1, �D� � tÿ3, �p� � t, that allows Eqn (5.2) to be
brought to the dimensionless form

q
qt
p�x; tjx0� � q

qx
x2p�x; tjx0� � q2

qx2
p�x; tjx0� ;

q
qt
p�x; tjx0� � ÿx20

q
qx0

p�x; tjx0� � q2

qx20
p�x; tjx0� ;

p�x; 0jx0� � d�xÿ x0� : �5:3�

Next we set up boundary conditions for Eqn (5.3) at singular
points �1. Two kinds of problems are of special interest to
us.

The first type appears, if curve x�t� is assumed to
terminate at t0 by turning toÿ1. It corresponds to vanishing
of the PDF's flux density

J�t; x� � x2p�x; tjx0� � q
qx

p�x; tjx0� �5:4�
at x!1. Thus we get the boundary conditions

J�t; x�! 0 as x!1 ; p�x; tjx0� ! 0 as x! ÿ1 :

In this case the total space-integral

G�tjx0� �
�1
ÿ1

dx p�x; tjx0� 6� 1

defines the probability that function x�t� would stay finite
over the entire range (ÿ1, 1), i.e. it gives the probability
P�t < t0� that there is no singularity at time t. So the
probability of reaching the singularity in finite time t is given
by

P�t > t0� � 1ÿ
�1
ÿ1

dx p�x; tjx0�

(see, for instance Ref. [28]). Its density function

p�tjx0� � q
qt

P�t > t0� � ÿ q
qt

�1
ÿ1

dx p�x; tjx0� �5:5�

obeys the backward FP-equation that follows fromEqn (5.3):

q
qt
p�tjx0� � ÿx20

q
qx0

p�tjx0� � q2

qx20
p�tjx0� : �5:6�

Let us estimate the mean `blow-up' time for the system to
transfer from state x0 to ÿ1, hT�x0�i �

�1
0 tdt p�tjx0�. This

function solves the time-independent DE

ÿ1 � ÿx20
d

dx0



T�x0�

�� d2

dx20



T�x0�

�
; �5:7�
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a consequence of Eqn (5.6), with the boundary condition
hT�x0�i ! 0 at x0 ! ÿ1, and the requirement that hT�x0�i is
bounded at x0 !1. This problem can be is easily integrated:


T�x0�
� � �x0

ÿ1
dx
�1
x

dZ exp
�
1

3
�x3 ÿ Z3�

�
: �5:8�

Thus we get from Eqn (5.8) the mean time between two
subsequent singular points (the `explosive' events of Fig. 3):



T�1�� � ���

p
p 121=6

3
G
�
1

6

�
� 4:976 :

Let us also remark that hT�0�i � �2=3�hT�1�i corresponds to
a transition from x0 � 0 to x0 � ÿ1.

A different set of boundary conditions arises if one lets
x�t� be discontinuous, and considers it over the entire range of
t, so as x�t� reaches ÿ1 at time t! t0 ÿ 0, it immediately
reappears at 1 at t! t0 � 0. The corresponding boundary
conditions for Eqn (5.3) impose continuity of the PDF flux at
�1:

J�t; x���
x!ÿ1 � J�t; x���

x!1 :

In this case the limiting (t!1) stationary probability
distribution

P�x� � J

�x
ÿ1

dx exp
�
1

3
�x3 ÿ x3�

�
�5:9�

is independent of the initial state x0 and has the normalising
coefficient J � 1=hT�1�iÐ the stationary probability flux .

From Eqn (5.4) we get an asymptotic formula for P at
large x:

P�x� � 1

hT�1�ix2 : �5:10�

This asymptote is produced by the distribution of pole-like
jumps of x�t�,

x�t� � 1

tÿ tk
;

and randomness plays little role here. Indeed, given suffi-
ciently large t4 hT�1�i and x, one finds the PDF

p�x; tjx0� �
X1
k�0

�
d
�
xÿ 1

tÿ tk

��
� 1

x2

X1
k�0



d�tÿ tk�

�
� 1

2px2

�1
ÿ1

dK exp�ÿiKt�
X1
k�0



exp�iKtk�

�
� 1

2px2

�1
ÿ1

dK exp�ÿiKt� F0�K�
1ÿ F�K�

expressed in terms of two characteristic functions:
F0�K� � hexp�iKt0�i Ð the first `explosive' point, and
F�K� � hexp�iKT�i Ð the characteristic function of time
gaps between two subsequent explosives. As t!1 we get
an asymptotic formula

P�x� � ÿ 1

2pix2


T�1��

�1
ÿ1

dK exp�ÿiKt� 1

K� i0
� J

x2
;

that coincides with Eqn (5.10).

5.2 Caustics in random media
The problem of caustics in random media is similar to
the previous one. Indeed, in the 2D case the curvature
of the phase surface in �x; y� plane is described by the
equation

d

dx
u�x� � ÿu2�x� � f�x� ; u�0� � u0 ; �5:11�

where f�x� � �1=2�q2e�x; y�x��=qy2, while the vertical displa-
cement y�x� obeys the differential system (2.49), both
determined by variations of the refraction index e along the
ray. If the field e�x; y� is Gaussian, homogeneous, isotropic
and delta-correlated,


e�x; y�e�x0; y0�� � d�xÿ x0�A�yÿ y0� ;

the one-point PDF of the curvature-function is independent
of the vertical displacement and obeys the FP-equation:

q
qx

P�x; u� � q
qu

J�x; u� ; P�0; u� � d�uÿ u0� : �5:12�
Here the probability flux density and the diffusion coefficient
are given by

J�x; u� � u2P�x; u� �D

2

q
qu

P�x; u�;

D � 1

4

q4

qy4
A�0� � p

�1
0

K4 dKFe�0; K� ;

where Fe�0; K� denotes the 2D spectral density of random
field e�x; y�:

Equation (5.12) was studied in the previous section. We
have shown the random process u�x� to be discontinuous and
drop to ÿ1 at finite distances x0 � x�u0� determined by the
initial condition u0 (here x plays the role of time t of the
previous section). This `blow-up' means the focusing of
optical rays by randomly inhomogeneous medium. The
mean focusing distance hx�u0�i is given by the integral


x�u0�
� � 2

D

�u0
ÿ1

dx
�1
x

dZ exp
�

2

3D
�x3 ÿ Z3�

�
; �5:13�

hence [6 ± 8]

D1=3


x�1��� 6:27 ; D1=3



x�0��� 2

3
D1=3



x�1��� 4:18 :

Here quantity hx�0�i gives the mean `focusing distance' of the
incident plane wave (zero curvature), while hx�1�i measures
the mean distance between two follow-up focusing events.

In the method of smooth perturbations [5, 40, 41] one
utilizes the level function of intensity w�x; y� � ln I�x; y� to
study its fluctuations. All the statistical characteristics of w
depend on its variance s2�x�, which is approximately (to first
order) cubic: s2�x� � Dx3. One distinguishes two regions of
intensity fluctuations: s2�x�5 1 (weak fluctuations), and
s2�x�4 1 (strong ones). As formula (5.13) shows, random
focusing occurs in the region of strong fluctuations.

Equation (5.12) has a limiting stationary PDF, as x!1,
that corresponds to the constant probability flux density, and
looks similar to Eqn (5.9),

P�u� � J

�u
ÿ1

dx exp
�

2

3D
�x3 ÿ u3�

�
; �5:14�
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where J � 1=hx�1�i. From Eqn (5.12) we get large-u
asymptotes of P,

P�u� � 1

x�1��u2 ;

which indicates that the stationary statistics are determined
by the behavior of u�x� in the vicinity of jumps

u�x� � 1

xÿ xk
:

The wave-field intensity has a similar structure due to Eqn
(2.49),

I�x� � xk
jxÿ xkj ;

the asymptotes of its PDF at large I and x takes the form

P�x; I� � 2x

x�1��I 2 ;

depending on the distance x traveled by the wave.
The probability of focusing at a distance x, found in the

previous section, was

P�x > x0� � 1ÿ
�1
ÿ1

duP�x; u� :

Hence its PDF is related to the flux density by the following
equation [6 ± 8]:

p�x�� q
qx

P�x > x0��ÿ q
qx

�1
ÿ1

duP�x; u� � lim
u!ÿ1 J�x; u� :

To find the asymptotic dependence of p�x� on the small
parameter (D! 0), we adopt the standard analytic techni-
ques for parabolic problems with a small leading coefficient
(see, for instance, Ref. [28]). The solution of Eqn (5.12) is
represented as exponential

P�x; u� � C�D� exp
�
ÿ 1

D
A�x; u� ÿ B�x; u�

�
: �5:15�

After substitution of Eqn (5.15) into Eqn (5.12) we select
terms of order D0 and Dÿ1 and get PDEs for the unknown
functions A�x; u� and B�x; u�. The constant factor C�D� is
determined by the known probability distribution (of the
plane wave) as x! 0

P�x; u� � 1

�2pDx�1=2
exp

�
ÿ u2

2Dx

�
:

That gives an estimateC�D� � Dÿ1=2. Substituting Eqn (5.15)
in the expression for probability of `focusing', we get

p�x; u� � lim
u!ÿ1P�x; u�

�
u2 ÿ 1

2

q
qu

A�x; u�
�
: �5:16�

The exponential form (5.15) along with the probability
distribution of `focusing' immediately yield the structural
dependence of p�x� on x from the dimensional analysis [9].
Indeed, u;D and P�x; u� have dimensions

�u� � xÿ1 ; �D� � xÿ3 ; �P�x; u�� � x :

Hence from Eqns (5.15) and (5.16) we get the scaling law

p�x� � C1D
ÿ1=2x

ÿ5=2
exp

�
ÿ C2

Dx3

�

with unknown coefficients C1, C2. The latter were computed
in Ref. [6] and the final result takes the form

p�x� � 3a2�2pD�ÿ1=2xÿ5=2 exp
�
ÿ a4

6Dx3

�
; �5:17�

with a � 1:85.
The applicability condition for Eqn (5.17) is Dx3 5 1.

However, numeric simulations [6] show that Eqn (5.17) also
gives an accurate prediction of PDF p for Dx3 � 1.

In the 3D case one could apply the dimensional analysis to
compute the PDF of caustic formation [9],

p�x� � aDÿ1xÿ4 exp
�
ÿ b
Dx3

�
;

with certain constants a, b. This scaling law with a � 1:74,
b � 0:66 was obtained in Ref. [7].

5.3 The reflection phase for plane waves in layered media
In some cases the above discontinuous random processes
prove to be useful in stochastic systems with no apparent
discontinuity of solutions. One such example are fluctuations
of phase-functions in wave-propagation. For instance, we
have shown in Section 2.2 that the incident plane wave in
randomly layered medium has a reflection coefficient with
phase functionfL that obeys equation (2.13).Wewant to find
the distribution law of random variable fL.

The problem with solution (2.13) is that it gives fL as a
real-valued function over the entire line fL (ÿ1, 1).
However, in applications we need the distribution of fL

over its natural domain �ÿp; p�. Furthermore, the half-space
limit offL should be independent ofL (uniform distribution).
To get the finite-interval distribution we replace the phase fL

with a trigonometric function zL � tan�fL=2�, that possesses
singular poles. The dynamic equation for zL has the form
(2.15). We assume the random coefficient e1 L� � (the real part
of the complex refraction index) to be Gaussian, delta-
correlated with variance s2e and correlation radius l0:


e1�L�
� � 0 ;



e1�L�e1�L0�

� � 2s2e l0d�Lÿ L0� :
Then the stationary (L-independent) half-space limiting
PDF,

P�z� � lim
L0!ÿ1

P�L; z� ;

solves the equation

ÿK d

dz
�1� z2�P�z� � d2

dz2
P�z� � 0 �5:18�

whose coefficients, K � k=2D, and D � k2s2e l0=2 depend on
the incident wave number k and the media parameters. The
solution of Eqn (5.18) with constant probability flux at the
boundary (1) has the following form [11, 33]

P�z� � J�K�
�1
z

dx exp
�
ÿ Kx

�
1� x2

3
� z�z� x�

��
;

Jÿ1�K��
�
p
K

�1=2 �1
0

xÿ1=2 dx exp
�
ÿ K
�
x� x3

12

��
: �5:19�
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The PDFof such a phase-function over the finite interval (ÿp,
p),

P�f� � 1� z2

2
P�z�z�tan�f=2� ;

is shown in Fig. 11 for different values of parameter K: K � 0:1
(A), K � 1 (B), and K � 10 (C).

As K grows large, K4 1, we get the asymptotic expansion
P�z� � 1=p�1� z2� overÿ1 < z <1, that corresponds to a
uniformly distributed phase

P�f� � 1

2p
; ÿp < f < p :

6. Localization of plane waves in randomly
stratified media

Our main goal here is the wave-propagation in single and
multi-layer media.

The issues of wave localization by randomly stratified
media with or without dissipation have been actively pursued
and debated over the last few years (see review articles [11 ±
13]). However, different physical systems and conditions
produced inconclusive and often inconsistent results.

The reason is largely due to the complex spatial structure
of field realizations inside the media. Namely, the general
decay of intensity away from the source is accompanied by
increasingly strong and rare bursts due to the coherent
superposition of multiple scattering events (Fig. 5). As a
result one could observe dynamic localization for almost all
individual realizations, whereas statistical averages (like the
mean intensity and higher moments) show no statistical
(energy) localization on the level of ensembles of realizations.

6.1 Single layer medium.
The one-layer, 1D model of wave propagation and scattering
was set up in Section 2.2. Here the statistical problem has two

parts: statistical analysis of the reflection and transmission
coefficients on the boundary of random layer, and statistical
analysis of the field intensity inside the layer.

6.1.1 The reflection and transmission coefficients. The embed-
ding method gives closed form equations (2.10), (2.12) for the
squared modulus of the reflection coefficient as function of
the (right) moving boundary parameter L. Once again we
assume the random component of the medium refraction
coefficient e1�x� to be Gaussian, and use the delta-correlation
approximation with variance s2e and correlation radius l0:

e1�L�

� � 0 ;


e1�L�e1�L0�

� � Be�Lÿ L0� � 2s2e l0d�Lÿ L0� :

The resulting Fokker ± Planck equation for the PDF,
P�L;W� � hd�WL ÿW�i, has the form [10]

q
qL

P�L;W� � 2kg
q
qW
�WP� ÿ 2D

q
qW

�
W�1ÿW�P�

�D
q
qW
�1ÿW�2W q

qW
P ; P�L0;W� � d�W� ; �6:1�

with the diffusion coefficient D � k2s2e l0=2. Derivation of
Eqn (6.1) exploits averaging over fast oscillations of the
`reflection phase', and is valid under an additional constraint
k=D4 1 (see Section 5.3).

Taking into account the finite correlation radius l0 of
e1�L� and using the diffusion approximation, the FP-equa-
tion (6.1) doesn't change its form, but the diffusion coefficient
becomes

D � k2

4

�1
ÿ1

dxBe�x� cos�2kx� � k2

4
Fe�2k� ; �6:2�

whereFe�2k� denotes the spectral function of random process
e�L�. The diffusion approximation assumes that e1�x� has
negligible effect on the wave-field on the scale of the
correlation radius l0, that is Dl0 5 1 .

In the absence of dissipation (g � 0) the FP-equation (6.1)
could be integrated [10]. Assuming the random layer L0;L� � to
be sufficiently wide, t � D�Lÿ L0�4 1, we get the following
asymptotes for the moments of the transmission coefficient
jTLj2 � 1ÿWL:


jTLj2n
� � ��2nÿ 3�!!�2p2 ���

p
p

22nÿ1�nÿ 1�! tÿ3=2 exp
�
ÿ t
4

�
:

Thus all the statistical moments of the transmission/
reflection coefficients have a universal asymptotic depen-
dence on the (dimensionless) layer width t, but their
coefficients vary with n. As all the statistical moments of jTj
converge to zero with increasing t, we get the reflection
modulus jRj ! 1 with probability one. Hence the randomly
stratified half-space is fully reflective.

The nonzero dissipation g does not allow a closed form
solution of Eqn (6.1) for a finite width interval. However, the
half-space limit (L0 ! ÿ1, t!1) has stationary L and t
independent distribution forWL � jRLj2,

P�W� � 2b

�1ÿW�2 exp
�
ÿ 2bW
1ÿW

�
; �6:3�

where b � kg=D represents the dimensionless absorption
coefficient. PDF (6.3) has an obvious physical meaning. It
gives the statistical properties of the reflection coefficient for a
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Figure 11. PDF of the plane wave phase in stratified media.
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stochastically inhomogeneous layer wide enough that an
incident wave is unable to cross it because of dynamic
absorption by the medium.

PDF (6.3) yields all moments ofWL � jRLj2, in particular
it gives asymptotic formula for the mean value



W�L�� � 1ÿ 2b ln

�
1

b

�
; b5 1 ,

1

2b
; b4 1 ,

8>><>>: �6:4�

as well as the recurrence for higher moments:

nhWn�1i ÿ 2�b� n�hWni � nhWnÿ1i � 0 �n � 1; 2; . . .� :
�6:5�

If we place the source inside the stratifiedmedia, the wave-
field solves the boundary value problem (2.9). In the infinite
space limit �L0 ! ÿ1, L!1�, the mean intensity at the
source becomes [5, 10]


I�x0; x0�
� � 1� bÿ1 :

Its unlimited growth, as b! 0, indicates the accumulation of
energy by randomly stratified media.

6.1.2 Wave intensity within a random layer. Let us study the
wave-field structure inside a chaotically disordered layer. If
layer L0;L� � is sufficiently wide (t � D�Lÿ L0�4 1), and
dissipation-free (g � 0), one has the so-called stochastic
parametric resonance, manifested by the initial exponential
growth of all moments hI n�x;L�i of the intensity divided by
hI n�L;L�i (I�x;L� � ju�x;L�j2), in variable L [10]. They then
reach maximum somewhere in the middle of the layer (Fig.
12). In the half-space limit �L0 � ÿ1� the range of exponen-
tial (explosive) growth extends through the entire half-line,
but the mean intensity remains fixed, hI�x;L�i � 2.

In this case the realizations of wave-intensity have the
form

I�x;L� � 2W�x;L��1� cosfL� ; �6:6�

where the phase-function fL solves a stochastic equation
(2.13) (see Section 5.3). The amplitude-function

W�x;L� � exp
n
ÿ �q�L� ÿ q�x��o

is expressed through q�L� that solves the related stochastic
equation

d

dL
q�L� � ke1�L� sinfL : �6:7�

The initial condition for Eqn (6.7) is imposed at a far-
distant point B and reads q�B� � 0, and the random variable
fB is uniformly distributed [10].

The random functions q�L� and fL are statistically
independent here. Averaging the PDF P�L; q� �
hd�q�L� ÿ 1�i over the fast oscillations, we get the Fokker ±
Planck equation

q
qL

P�L; q� � ÿD q
qq

P�L; q� �D
q2

qq2
P�L; q� ;

P�B; q� � d�q� : �6:8�
Hence the random function q�L� is Gaussian, while the
distribution W�x;L� is log-normal, having all moments
starting with the second one growing exponentially inside
the random layer:


W�x;L��� 1 ;


Wn�x;L��� exp

�
n�nÿ 1�D�Lÿ x�	 :

�6:9�

Its typical realization, due to log-normality, becomes

W ��x;L� � exp
�ÿD�Lÿ x�	 : �6:10�

So its realizations meet the inequality

W�x;L� < 4 exp

�
ÿD�Lÿ x�

2

�

with probability 1=2, and the latter is valid in the half-space
limit.

In the physics of disordered systems such an exponential
fall-off in variable x � D�Lÿ x� for a typical realization
(6.10) is associated with dynamical localization [11, 53, 54],
the localization length being lloc � 1=D. However, the energy
is not localized in the statistical (mean) sense here.

To conclude: one-point PDFs yield the detailed evolution
of the field intensity on the level of individual realizations,
and allow one to estimate the parameters of evolution
through the statistics of the media.

Dissipation arrests the exponential growth of the
moments (6.9), and at large x4 4�nÿ 1=2� ln�n=b� they
revert to the decaying asymptotic law of [13]:


W�x�� � Anb
ÿ�nÿ1=2� ln

�
1

b

�
xÿ3=2 exp

�
ÿ x
4

�
:

As for the mean field intensity of a point source in the layer,
one finds [13]


I�x; x0�
� � p5=2

8b
xÿ3=2 exp

�
ÿ x
4

�

at large distance from the source x � D�xÿ x0�4 1. So one
has both statistical and dynamical localization in this case.
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Figure 12. Stochastic wave parametric resonance.

184 V I Klyatskin, D Gurarie Physics ±Uspekhi 42 (2)



6.2 Stratified two-layer model
The simplest model of wave propagation in stratified (two-
layer) media was outlined in Section 2.2. It satisfies the
differential system (2.17).

The diffusion approximation technique was used in
papers [37, 38] to derive the Fokker ± Planck equations for
PDFs of the intensities of reflection coefficients Wi j � jRi jj2.
Unlike the one-layer case, they now involve four diffusion
coefficients expressed through the spectral function of the
random process e x� � as follows:

D1 �
�

k

2l
H1

H0

�2

Fe�2lk� ; D2 �
�
k

2

H2

H0

�2

Fe�2k� ;

D3 �
�

k

2l

�2

Fe
ÿ
k�1� l�� ; D4 �

�
k

2l

�2

Fe
ÿ
k�1ÿ l�� :
�6:11�

For small-scale (relative to the wave length) inhomogene-
ities such, that kl0 5 1, all diffusion coefficients are propor-
tional to a single coefficient D determined by Eqn (6.2).
Namely,

D1 �
�
1

l
H1

H0

�2

D ; D2 �
�
H2

H0

�2

D ; D3 � D4 � 1

l2
D :

�6:12�
Let us also notice that the diffusion approximation

requires Dl0 5 1.
As we mentioned in Section 2 the problem has a small

parameter d that could be used to expand and simplify it.
We write the perturbation expansion in d and maintain only
the first order terms, i.e. neglect secondary radiation effects.
In such an approximation the squared moduli of the
diagonal reflection coefficients W11 and W22 are statisti-
cally independent and their PDFs P�L;W11� and P�L;W22�
obey

q
qL

P�L;W11��
�

q
qW11

�ÿD1�1ÿW11�2�2d�D3�D4�W11

�
�D1

q2

qW 2
11

�1ÿW11�2W11

�
P�L;W11� ;

q
qL

P�L;W22��
�

q
qW22

�ÿD2�1ÿW22�2�2d�D3�D4�W22

�
�D2

q2

qW 2
22

�1ÿW22�2W22

�
P�L;W22� : �6:13�

Those resemble equation (6.1) of the one-layer model, but
have an extra term 2d�D3 �D4�q�WP�L;W��=qW. This
means that the generation of cross-modes (k-incident to l-
scattered, or l-incident to k-scattered) is statistically equiva-
lent to the effective damping (dissipation) in the original
stochastic problem for incident wave-fieldsU11,U22. In other
words the dissipation-free refraction index e�x� should be
replaced by the complex one, e�x� ! e�x� � id�D3 �D4�.

Furthermore, the half-space limit (L0 ! ÿ1) has sta-
tionary (L-independent) solutions of (6.13),

P�W11� � 2g1
�1ÿW11�2

exp

�
ÿ 2g1W11

1ÿW11

�
;

P�W22� � 2g2
�1ÿW22�2

exp

�
ÿ 2g2W22

1ÿW22

�
; �6:14�

with parameters

g1 � d
D3 �D4

D1
; g2 � d

D3 �D4

D2
: �6:15�

These parameters measure the `effective dissipation' due
to cross-generation of the wave-modes, as opposed to the
`effective wave diffusion' resulting frommultiple scattering by
random obstacles.

For small scale inhomogeneities the damping parameters

g1 � 2l
H2

H1
; g2 �

2

l
H1

H2
�6:16�

are determined by the relative thicknesses of two strata (for a
fixed wave length l), and bear no other dependence on the
statistics of the media. Furthermore, one has g1g2 � 4, so two
g's are reciprocals of each other.

The probability distributions (6.14) yield the statistics of
the reflection coefficients of incident waves. It follows from
our discussion that a sufficiently wide random band (L0, L)
(or the limiting half-space) has the transmission rates jT11j2
and jT22j2 almost surely 0. So the incident l- and k-waves are
localized. Their localization length are determined either by
the `diffusion' or `dissipation' coefficients, whichever is
stronger .

So case g1 5 1 �g2 4 1� yields the localization length for
two modes proportional to the localization length lloc of the
one-layer model:

l
�1�
loc �

1

D1
�
�
lH0

H1

�2

lloc ; l
�2�
loc �

1

2d�D3 �D4� �
lH0

4H1H2
lloc :

In the opposite case g1 4 1 �g2 5 1�, we get

l
�1�
loc �

1

2d�D3�D4� �
lH0

4H1H2
lloc ; l

�2�
loc �

1

D2
�
�
H0

H2

�2

lloc :

The statistics of the `off-diagonal' modes W12 poses a
more challenging problem, since it involves coupling W12

with W11 and W22. The analysis of the corresponding
Fokker ± Planck equations shows that for the special combi-
nations T1 � 1ÿW11 ÿ dW12 and T2 � 1ÿW22 ÿ dW12

that arise in Eqn (2.26) and determine the transmission rates
of the generated cross-modes, there are no stationary (in half-
space) solutions of the form P�Ti� � d�Ti�. This means the
absence of localization for the generated cross-modes [38].

Coming back to the source-problem in the upper or lower
strata (at the boundary x0 � L of the random band), one
could show that the transmission coefficients differ from zero
in both strata (the upper and the lower), so there is no
localization whatsoever [38].

The basic model could be further compounded by
introducing inhomogeneities in both strata, or by taking
different types of wave-coupling , or by changing fluctuat-
ing parameters, e.g. e�x� to de�x�= dx, etc., all of them
relevant to certain geophysical problems [35 ± 37]. Such
changes could further complicate and modify the Fokker ±
Planck equations, as well as their dependence on the basic
geometry and statistics of the problem. But the main
conclusion Ð the absence of the dynamic localization
should still hold.

6.3 Localization in parabolic wave-guides
A wave beam propagating in the parabolic wave-guide with
randomly varying curvature is described by system (2.44).
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Function A x� � could be represented in the form

A�x� � kaa2
1� c�x� expfÿ2iaxg
1ÿ c�x� expfÿ2iaxg ;

where c�x� obeys an equation derived from Eqn (2.44):

d

dx
c�x� � ÿ i

2ak

�
exp�iax� ÿ c exp�ÿiax��2z�x� ;

c�0� � 1ÿ kaa2

1� kaa2
:

Let us introduce the phase and amplitude of c�x� via

c�x� �
������������������
w�x� ÿ 1

w�x� � 1

s
exp

n
i
ÿ
f�x� ÿ 2ax

�o
; w5 1 :

Then we get a system of equations for functions w x� � and
f x� �:

d

dx
w�x� � ÿ 1

ak
z�x�

��������������������
w2�x� ÿ 1

q
sin
�
f�x� ÿ 2ax

	
;

w�0� � 1

2kaa2
�1� k2a2a4� ;

d

dx
f�x� � 1

ak
z�x�

�
1ÿ w��������������������

w2�x� ÿ 1
p cos

�
f�x� ÿ 2ax

	�
;

f�0� � 0 : �6:17�
Hence the wave-field intensity on the wave-guide axis (2.46)
assumes the form

I�x; 0� � aka2

w�x� � ��������������������
w2�x� ÿ 1

p
cosff�x� ÿ 2axg : �6:18�

As before we assume z�x� to be Gaussian and delta-
correlated with parameters


z�x�� � 0 ;


z�x�z�x0�� � 2s2ld�xÿ x0� :

Furthermore, we assume the variance of z-fluctuations to be
sufficiently small, s2 5 1. Then the statistical properties of
w�x� and f�x� change slowly on scales of order 1=a. Hence to
determine the statistics of the wave intensity (6.18) we could
average it over rapid oscillations, regarding the functions
w�x� and f�x� as statistically independent, and over the
uniformly distributed phase f�x�. The resulting PDF
P�x;w� � hd�w�x� ÿ w�i of w�x� obeys the Fokker ± Planck
equation

q
qx

P�x;w� � D
q
qw
�w2 ÿ 1� q

qw
P�x;w� ;

P�0;w� � d
ÿ
w�0� ÿ w

� �6:19�
with the diffusion coefficient D � s2l=�2a2k2�.

Under the same assumptions we could find the moments
of intensity hI n�x; 0�i on the wave-guide axis. Here the
averaging works in two stages. In the first step we average
over fast phase-oscillations and get��

I

aka2

�n�
f
� Pnÿ1�w� ; �6:20�

withPn�w� being the n-th Legendre polynomial. In the second
step we average Eqn (6.20) over the distribution (6.19) of w.
The final result [5, 10] becomes��

I

aka2

�n�
� Pnÿ1�w0� exp

�
Dn�nÿ 1�x	 : �6:21�

If the wave-beam parameters are adjusted to the wave-
guide [see Eqn (2.43)], then w0 � 1 and formula (6.20)
becomes


I n�x; 0�� � exp
�
Dn�nÿ 1�x	: �6:22�

The latter means that I�x; 0� is distributed according to a log-
normal law.However, the typical realization of process I�x; 0�
decays exponentially inside the medium:

I ��x; 0� � expfÿDxg :
So the radiation should spread in the cross-sectional direc-
tions (away from the axis) for specific realizations, which
means dynamic localization in x. The typical realization gives
the standard Gaussian cross-sectional intensity (2.45) modu-
lated along the axis:

I ��x;R� � I ��x; 0� exp
�
ÿ R2

a2
I ��x; 0�

�
:

7. Passive tracers in random velocity fields

Nowwe shall consider the statistical problem of passive tracer
diffusion in the random velocity field introduced in Section
2.3.

We shall study general compressible velocity fields
(div u�r; t� 6� 0), assumed to be Gaussian homogeneous,
isotropic in space, stationary in time with correlation-
function and spectral tensor (assuming hu�r; t�i � 0) of the
form


ui�r; t�uj�r0; t 0�
� � Bi j�rÿ r0; tÿ t 0� ;

Ei j�k; t� � 1

�2p�N
�
drBi j�r; t� exp�ÿikr� ; �7:1�

N being the space dimension. The spectral tensor may be
decomposed into the usual solenoidal Es�k; t� plus potential
Ep�k; t� components:

Ei j�k; t� � Es�k; t�
�
di j ÿ ki kj

k2

�
� Ep�k; t� ki kj

k2
: �7:2�

The practically important cases include
Ð incompressible fluid flow: div u�r; t� � 0 (Ep�k; t� � 0);
Ð potential velocities: (Es�k; t� � 0);
Ð the mixed case.
An example of the latter is a floating tracer [2, 22]. Indeed,

if such a tracer moves over the surface z � 0 of an
incompressible 3D fluid, with horizontal and vertical velo-
city components (div u�r; t� � 0), then the surface elevation
u � �U;w� creates an effective compressible horizontal flow
with the divergence HRU�R; t� � ÿqw=qzjz�0.

We assume the entire 3D spectral tensor of u�r; t� to be

Ei j�k; t� � E�k; t�
�
di j ÿ ki kj

k2

�
�7:3�

and write the tracer density as

r�r; t� � r�R; t�d�z� ; r � �R; z� ; R � �x; y� :
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After substitution into Eqn (2.9) and integration over the
variable z the reduced 2D system would evolve according to�

q
qt
� q
qR

U�R; t�
�
r�R; t� � 0 ; r�R; 0� � r0�R� : �7:4�

The resulting horizontal (compressible) fieldU�R; t� is clearly
Gaussian, homogeneous, and isotropic with spectral tensor

Eab�k?; t� �
�1
ÿ1

dkzE�k2? � k2z ; t�
�
dab ÿ k?ak?b

k2? � k2z

�
;

a; b � 1; 2 �7:5�

expressed in terms of the horizontal and vertical wave-
numbers k� �k?; kz�.

Comparing Eqn (7.5) with Eqn (7.2), we get the solenoidal
and potential velocity components on the z � 0 plane [2]:

Es�k?; t� �
�1
ÿ1

dkzE�k2? � k2z ; t� ;

Ep�k?; t� �
�1
ÿ1

dkzE�k2? � k2z ; t�
k2z

k2? � k2z
: �7:6�

Let us now go back to the general case. In what follows we
shall assume the velocity u�r; t� to be delta-correlated in time,
and approximate its space-time correlations

Bi j�r; t� � 2B eff
i j �r�d�t� �7:7�

with the effective correlation-tensor

B eff
i j �r� �

1

2

�1
ÿ1

dtBi j�r; t� �
�1
0

dtBi j�r; t� :

The homogeneity and isotropy of u yield the following
standard relations for the matrix-function Beff, along with its
first, second and fourth derivatives:

B eff
kl �0��

D0

N
dkl ;

q
qri

B eff
kl �0��0 ;

q4B eff
kl �0�

qri qrk qrj qrl
� D

p
4

N
di j ;

ÿ q2B eff
kl �0�

qri qrj
� Ds

2

N�N� 2�
��N� 1�dkldi j ÿ dkidlj ÿ dk jdli

�
� D

p
2

N�N� 2� �dkldi j � dkidl j � dk jdli� : �7:8�

Here we have used the standard convention of summing
over the repeated indices.

We shall also define the effective spectral densities
[ eEs�k� � �10 dtEs�k; t� ; eEp�k� � �10 dtEp�k; t�] of the sole-
noidal and potential components, and introduce the follow-
ing `diffusion coefficients':

D0 �
�
dk
��Nÿ 1� eEs�k� � eEp�k�� ; Ds

2 �
�
dk k2 eEs�k� ;

D
p
2 �

�
dk k2 eEp�k� ; D

p
4 �

�
dk k4 eEp�k� : �7:9�

For the sake of presentation we shall confine ourselves to
2D motion, i.e. consider equation (7.4).

As we mentioned in Section 2.3, first order PDEs of type
(2.30) are solved by the method of characteristics. Introdu-
cing characteristic rays R�t� (2.30) (`particle trajectories'), we

can rewrite this in the form (2.31) which in our case turns into
a differential system

d

dt
R�tjn � � U�R; t� ; R�0jn � � n ;

d

dt
r�tjn � � ÿ qU�R; t�

qR
r�tjn � ; r�0jn � � r0�n � : �7:10�

The above equations describe the Lagrangian transport of
tracer particles. When supplemented by the evolution of the
Jacobian divergence,

d

dt
j�tjn � � qU�R; t�

qR
j�tjn � ; j�0jn � � 1 ; �7:11�

they yield the solution

r�tjn � � r0�n �
j�tjn � : �7:12�

7.1 Lagrangian description
The Lagrangian indicator function

FLag�t;R; r; jjn ��d
ÿ
R�tjn �ÿ R

�
d
ÿ
r�tjn �ÿ r

�
d
ÿ
j�tjn �ÿ j

�
satisfies the Liouville equation

q
qt
FLag�t;R; r; j jn � �

�
ÿ q
qR

U�R; t� � qU�R; t�
qR

�
�

q
qr

rÿ q
qj

j

��
FLag�t;R; r; jjn � ; �7:13�

FLag�0;R; r; jjn � � d�n ÿ R�dÿr0�n � ÿ r
�
d�jÿ 1� :

We shall start our analysis with such important statistics
as particle positions and density. Averaging Eqn (7.13) over
the ensemble fUg of velocity realizations gives the Fokker ±
Planck equation for the one-point Lagrangian PDF
P�t;R; r; jjn �� hFLag�t;R; r; jjn �i(see Refs [2, 23]):

q
qt
P�t;R; r; jjn � �

�
1

2
D0

q2

qR2

�D
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�
q
qr

r2
q
qr
ÿ 2

q2

qr qj
r j� q2

q j2
j2
��

P�t;R; r; jjn � ;

P�0;R; r; jjn � � d�n ÿ R�dÿr0�n � ÿ r
�
d�jÿ 1� : �7:14�

Here the initial state could be visualized as a highly
localized tracer (near the source x) of the mean specific
concentration r. Accordingly, the solution of Eqn (7.14)
could be factored into the product of three terms:

P�t;R; r; jjn � � P�t;Rjn �P�t; jjn �d
�
rÿ r0�n �

j

�
: �7:15�

The first is the standard Gaussian propagator in the
variable R, for a single randomly diffusing particle initiated
at point R0 with the effective diffusivity D0:

P�t;RjR0� � exp

�
1

2
D0t

q2

qR2

�
d�Rÿ R0�

� 1

2pD0t
exp

�
ÿ �Rÿ R0�2

2D0t

�
: �7:16�
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The second factor,

P�t; jjn � � exp

�
D

p
2 t

q2

qj2
j 2
�
d�jÿ 1�

� 1

2j
�����
pt
p exp

�
ÿ ln2�jet�

4t

�
; �7:17�

describes a similar evolution of the Jacobian density (its PDF)
generated by the differential operator q2=�qj 2� j2 on the half-
line 04 j <1:

Here and henceforth we shall often use the dimensionless
time t � D

p
2t.

The product form of solution (7.15) implies statistical
independence of the particle's position R�tjn � and the
Jacobian (flow divergence) j�tjn �. Furthermore, the Gaus-
sian distribution (7.16) corresponds to standard Brownian
motion with parameters


R�tjn �� � n ;

s2ab�t� �
D�

Ra�t� ÿ xa
��
Rb�t� ÿ xb

�E � D0dabt ; �7:18�

whereas the Jacobian (divergence factor) j has a log-normal
distribution,with constant mean hj�tjn �i � 1 and exponen-
tially increasing higher moments


j n�tjn �� � exp
�
n�nÿ 1�t	 ; n � �1;�2; . . . �7:19�

The moments of the Lagrangian density r have similar
exponential growth due to Eqn (7.12):


rn�t n �� � rn0�n � exp
�
n�n� 1�t	 : �7:20�

So both the (Lagrangian) mean density rh i and its higher
moments increase in time. Furthermore, the joint PDF of r
and j has the form

P�t; r; jjn � � P�t; jjn �d
�
rÿ r0�n �

j

�
; �7:21�

with the log-normal P�t; jjn � of Eqn (7.17).
Integrating out variable j fromEqn (7.21), we get the PDF

of the Lagrangian density alone:

P�t; rjn � � 1

2r
�����
pt
p exp
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ÿ
reÿt=r0�n �

�
4t

�
: �7:22�

The same solution could also be obtained by direct
reduction of the general Fokker ± Planck equation (7.14):
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qt
P�t; rjn � � D
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2

q
qr
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q
qr

P�t;R; rjn � ;

P�0; rjn � � d
ÿ
r0�n � ÿ r

�
: �7:23�

Some unexpected statistical features of the tracer and
Jacobian densities, like the exponential increase of their
moments, etc., find a simple explanation in terms of the log-
normality. Thus the `typical realization' of random Jacobian
density is given by an exponential curve

j ��t� � exp�ÿt� : �7:24�

Furthermore, the random process j�tjn � admits majorant
(envelope) estimates, like

j�tjn � < 4 exp

�
ÿ t
2

�
;

holding for all t 2 �0;1� with probability 1/2. As for the
tracer density it has an increasing `typical median', and
admits minorant estimates from below:

r��t� � r0e
t ; r�tjn � > r0

4
exp

�
t
2

�
:

Let us notice the marked differences of Lagrangian
statistics in the compressible and incompressible cases. The
latter have j�tjn � � 1, so the density remains constant along
(characteristic) particle trajectories r�tjn � � r0�n � � const.

The above results confirm our main thesis on the
dominant role of large fluctuations from the `typical
behavior', that shape the essential statistics of random
processes j�tjn � and r�tjn �. As for the random `particle
position' process neither case (compressible or incompressi-
ble) shows much difference.

Next we shall study the relative displacement of two
particles. The separation-function I�t� � R1�t� ÿ R2�t�
obeys the dynamic evolution

d

dt
I�t� � U�R1; t� ÿU�R2; t� ; I�0� � I0 ;

and the corresponding Fokker ± Planck equation

q
qt
P�t; I�� q2

qlaqlb
Dab�I�P�t; I� ; P�0; I� � d�Iÿ I0� : �7:25�

The diffusion tensorDab�I� � 2�B eff
ab �0� ÿ B eff

ab �I�� involves the
structure matrix of the vector field U�R; t� at two different
points. In general equation (7.25) has no closed form solution.

However, for a short initial displacement (relative to the
correlation radius of l0 5 lcor) the coefficientsDab�I� could be
expanded in a Taylor series in l, to get the first order
approximation

Dab�I� � ÿ
q2B eff

ab �I�
qlg qld

����
I�0

lgld :

The corresponding diffusion tensor Dab�I� could be further
simplified using the symmetries of the problem (homogeneity
and isotropy), that are expressed through the effective
diffusion rates (7.8):

Dab�I� � 1

8
�3Ds

2 �D
p
2 � I2dab ÿ

1

4
�Ds

2 ÿD
p
2 � lalb : �7:26�

To get a closed form equation for the moments of l, we
substitute Eqn (7.26) into Eqn (7.25), multiply by l n and
integrate over l. This yields a simple linear evolution [2],

d

dt



l n�t�� � 1

8
n
�
n�Ds

2 � 3D
p
2 � � 2�Ds

2 ÿD
p
2 �
�

l n�t�� ;

whose solutions grow exponentially in time for all
(n � 1; 2; . . .). Furthermore, the random process l�t�=l0 has
log-normal PDF with parameters

l ��t� � l0 exp

�
1

4
�Ds

2 ÿD
p
2 �t
�
:

Hence, a typical realization of the `particle-separation' grows
or decreases exponentially in time, depending on the sign of
�Ds

2 ÿD
p
2 �. In particular, incompressible flows �Dp

2 � 0� have
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exponentially increasing typical realizations, which means an
exponential divergence of particles at short distances and
times. This result holds as long as

1

4
Ds

2t5 ln

�
lcor
l0

�
;

i.e. the Taylor expansion (7.26) remains valid.
At the opposite end stand pure potential velocities

�Ds
2 � 0�. Here a typical realization of particle-separation

would exponentially decrease, so the particles tend to
coalesce. Such a tendency of the flow to `bring particles
together' could lead to the formation of clusters Ð regions
of high tracer concentration interspersed within large voids.
Indeed, our conclusion is consistent with some numeric
studies (illustrated in Fig. 1b), although our model of
random velocities is different from those used in computa-
tions.

This suggests that clustering is largely insensitive to the
specifics of the model, which qualifies it as a coherent
phenomenon.

Let us remark that the `Eulerian clustering' (to be
discussed in the next section) is possible even in the case
�Ds

2 ÿD
p
2 � > 0, as long as velocities have a potential

component.

7.2 Eulerian description
In the Eulerian form of turbulent transport we take the
indicator function FEul�t;R; r� � d�r�t;R� ÿ r�, that obeys
the Liouville equation (3.11):�
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�U�R; t� q
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� qU�R; t�
qR

q
qr

rFEul�t;R; r� ; �7:27�

FEul�0;R; r� � d
ÿ
r0�R� ÿ r

�
:

Then we get the PDF for the Eulerian tracer-field,

P�t;R; r� � 
FEul�t;R; r�i ;

by averaging Eqn (7.27) over the ensemble, or alternatively
using Eqn (3.10), as in Refs [2, 22]. The resulting FP equation
takes the form�
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P�0;R; r� � d
ÿ
r0�R� ÿ r

�
:

The equation for moments follows directly from Eqn
(7.28):�
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2 n�nÿ 1�
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rn�R; 0�� � rn0�R� : �7:29�

In particular, the mean tracer density obeys the evolution
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r�R; t�� �7:30�

consistent with that of a single-particle PDF.

Notice however, that the `mean' diffusion coefficient D0

(7.14) gives only global (large-scale) characteristics of the
tracer distribution, and carries little information about the
fine (local) structure and details of realizations.

Solutions of the moment equations (7.29) are given by the
convolution with the standard Gaussian propagator,


rn�R; t�� � exp
�
n�nÿ 1�t	 � dR0P�t;RjR0�rn0�R0� ; �7:31�

whereas the FP equation (7.28) combines the Gaussian
diffusion in variable R with `log-normal diffusion' in
r 2 0;1� �. In particular, the initial uniform density,
r0�R� � r0 � const, yields a log-normal PDF P�t; r�, inde-
pendent of R, along with its integrated probability distribu-
tion

P�t; r� � 1

2r
�����
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�
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�
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The corresponding mean-field and moments grow in t as

r�R; t�� � r0 ;



rn�R; t�� � rn0 exp

�
n�nÿ 1�t	 ; �7:33�

whereas a typical realization falls off exponentially

r��t� � r0 exp�ÿt� : �7:34�

This shows that the Eulerian statistics are also caused by large
fluctuations about a typical realization (7.34), and suggests
the clustering of tracer density for compressible flows.

So far we have studied the one-point PDF of the tracer
concentration r, and deduced some of its spatial-temporal
properties. There are a few other fine-scale structures of
realizations that could be gleaned from the FP equation
(7.34) and its PDF-solutions.

In Section 3.3 we mentioned some important geometric
characteristics of r related to iso-contours

r�R; t� � r � const

and the corresponding statistical means expressed through its
PDF (7.28). Examples include the mean area enclosed by
contours r�R; t� > r, and the mean `enclosed mass':
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One could easily derive the closed form equations for both
quantities, and find exact solutions [2]:
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At large time t4 1 the total area of high density
concentration (above r) decreases in time according to


S�t; r�� � 1��������
ptr
p exp

�
ÿ t
4

�� ������������
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p
dR ; �7:37�
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whereas the enclosed mass within the r-area,
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converges monotonically to the total mass of the system

M �
�
r0�R� dR :

The last result confirms our earlier conclusion regarding the
clustering of tracers in the tightly bounded regions of high
density.

Let us illustrate a few dynamic features of the clustering
process with an example of a uniformly distributed density
r0�R� � r0 � const. In this case specific area (per unit `2D-
volume') with concentration r�R; t� > r is equal to
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whereP�t; r� isR-independent solution of Eqn (7.28) given by
Eqn (7.32). At the same time, the specific mass (per unit `2D-
volume') enclosed in such regions is
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In follows from Eqns (7.39) and (7.40) that the specific area
drops off exponentially,
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whereas the tracers' mass aggregates (almost entirely) when
t!1:

m�t; r0� � F
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4
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Furthermore, their large-time asymptotics are independent of
the ratio r=r0.

However, the evolution leading to the asymptotic clus-
tered state crucially depends on this ratio r=r0. If we take a
low `test-level' r=r0 < 1, which corresponds to the initial
values of specific quantities, s�0; r� � 1 and m�0; r� � 1, and
let the system evolve, we first see small regions forming, where
concentration drops below r�R; t� < r. Initially they cover a
small area, but as time goes on those regions rapidly grow in
size, while the enclosed mass `leaks away' to the outer
(clustered) regions, eventually reaching the asymptotic state
(7.41), (7.42). At some particular moment t� � ln�r0=r� the
specific area drops to s�t�; r� � 1=2.

In the opposite case r=r0 > 1 (high test-level r), the initial
values are s�0; r� � 0 andm�0; r� � 0.Here the evolution first
creates a few cluster regions of high concentration,
r�R; t� > r. These continue `sucking in' a sizable portion of
the tracer mass, as their area contracts, but the enclosed mass
grows, and gradually passes to the same asymptotic state
(7.41), (7.42) (see Fig. 13).

As was pointed out in Section 2.3 to get further (fine scale)
geometric structure of the tracer concentration we need to
consider its gradient p�R; t� � Hr�R; t� and higher deriva-
tives. The tracer gradient evolves according to Eqn (2.36),

hence its indicator function

F�t;R; r; p� � d
ÿ
r�R; t� ÿ r

�
d
ÿ
p�R; t� ÿ p

�
satisfies equation (3.18), where r has been replaced by R.
Averaging Eqn (3.18) over the velocity ensemble we get the
FP-equation for the joint PDF of the tracer concentration
and its gradient P�t;R; r; p� � hF�t;R; r; p�i. Namely,
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Here we have introduced differential operators in the
`gradient variable' p,
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which represent the contributions of the solenoidal and
potential components (superscripts s and p).

In general, equation (7.43) has no closed-form solution. In
the case of divergence-free velocities it could be reduced to
[21 ± 23]
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One could show that evolution conserves the mean value of
the gradient, while the gradient's norm has a log-normal
PDF. So a typical realization as well as higher moments grow
exponentially in time. Furthermore,


p2�R; t�� � p20 expfDs
2tg :
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Figure 13. Dynamics of cluster formation for r=r0 � 1:5 (a), and

r=r0 � 10 (b).
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Besides, the average contour r�R; t� � r � const length also
grows exponentially as


L�t; r�� � l0 expfDs
2tg ;

starting from the initial length l0, as a consequence of Eqns
(7.45) and (3.16).

Let us remark that the divergent-free velocities conserve
the number of contours, as those cannot appear or disappear,
but only evolve in time from their initial value and distribu-
tion in space.

In the process of evolution, the initially smooth tracer
distribution acquires an increasingly complicated spatial
structure, its gradients grow and sharpen, and the contours
undergo distortion and fractalization. We have shown the
schematic view of the process in Fig. 1a, based on numeric
simulations for a somewhat different velocity field. Once
again we see, that the qualitative features of the process are
insensitive to the specifics of the model.

We have studied the statistics of equation (7.4) in the
Lagrangian and Eulerian formulation, and showed the
clustering of the tracer in the presence of the potential
velocity component, both on the level of particles and the
(Eulerian) fields. Alongside the dynamic equation (7.4), one is
sometimes interested in non-conservative tracer transport
(see, for instance, Ref. [47])�

q
qt
�U�R; t� q

qR

�
r�R; t� � 0 ; r�R; 0� � r0�R� :

Equation (2.59) is of the same type. Since the Lagrangian
equations for particles coincide with Eqn (7.10), the clustering
occurs on the level of particles. However, continuous Eulerian
fields do not cluster here. This case is similar to a divergent-
free one in that it conserves the mean contour number, the
mean area, and the tracermass

�
dSr�R; t� enclosed inside the

contours r�R; t� > r.

7.3 Additional factors
So far we have studied the transport problem by random
velocities in the absence of a mean flow and molecular
diffusion. Furthermore, we have used delta-correlated
approximations in time for the random velocities. While
such simplifications are justifiable under certain conditions,
those missing factors should be taken into account at some
stage, as should spatial-temporal scales. Their incorporation
brings about some new features and physical effects. In this
section we shall briefly outline a few examples that include an
additional factor for divergent-free velocities.
7.3.1 Linear shear flow. We shall consider velocity profiles
that combine a linear (horizontal) shear

vx � ay ; vy � 0

with the random component [23]. In this case equation (7.45)
is transformed into
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To derive the first and second moments of p we observe that
the ensemble means hpii, hpipji, etc. are computed from the
one-point PDF (7.46) by integrating out variables p, r. Here
the mean gradient is no longer conserved, but solves the
equation without the fluctuating velocity component, hence


px�t�
� � px�0� ;



py�t�

� � py�0� ÿ apx�0�t :
The second moments of gradient satisfy the following

differential system:
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A linear ODE system (7.47) has exponential eigenmode
solutions expfltg with eigenvalues l determined by the
characteristic equation�

l� 1

2
Ds

2

�2

�lÿDs
2� �

3

2
a2Ds

2 ; �7:48�

whose roots strongly depend on the parameter a=Ds
2.

For small a=Ds
2 5 1, the roots of Eqn (7.48) are

approximately equal to
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Hence, on the time scaleDs
2t4 2 the solutions are completely

determined by random factors. This means that the effects of
fluctuating velocity components dominate the effect of a
weak linear shear.

At the other extreme, a=Ds
2 5 1, equation (7.48) has the

approximate roots
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Since l2 and l3 have negative real parts, we get an asymptotic
solution to Eqn (7.47) of the form



p2�t�� � exp

��
3

2
a2Ds

2

�1=3

t

�
;

valid on time scales �3=2 a2Ds
2�1=3t4 1. It shows that even

small velocity fluctuations become significant for a large
shear gradient.

7.3.2 Molecular diffusivity. As we mentioned earlier, random
velocity fluctuations cause the initially smooth tracer density
to develop small scale structures with steepening gradients. In
a real physical situation the molecular diffusion flux would
tend to smooth out small scales, so the above pure `transport-
dynamics' could last only for a limited time.

From the mathematical standpoint molecular diffusion
would turn the problem into a second order stochastic partial
differential equation (2.37), whose one-point PDFs have no
closed-form FP equation.
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Here we shall confine ourselves to estimating the time
scale of the initial (`explosive') phase, and follow the
exposition of [23].

To this end we consider powers rn�R; t�, n � 1; 2; . . . that
obey a nonclosed system of equations that follow from Eqn
(2.37):�
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ÿ Kn�nÿ 1�rnÿ2�R; t�p2�R; t� :
The ensemble average over random velocities yields (non-
closed) equations for statistical moments:
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Assuming K5D0 we could write Eqn (7.49) in the integral
form
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To estimate the last term of Eqn (7.50) we exploit the FP
equation (7.45) derived for zero molecular diffusivity. As a
result we get an (approximate) closed-form equation for the
moments hrnÿ2p2i, whose solution is
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Substitution of Eqn (7.51) into Eqn (7.50) yields the
conditions where the last term on the RHS of Eqn (7.50)
gives a negligible contribution to the evolution of rnh i, and
could be dropped. They impose certain constraints on the
spatial scale R0 of the initial tracer concentration r0, and the
time range. Namely, [23]
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2 R
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:

More detailed analysis could be given in special cases, e.g.
for constant mean gradient of r, see Ref. [55] This case
corresponds to solving equations (2.29), (2.37) with the
initial data

r0�R� � GR ; p0�R� � G :

As above we shall confine ourselves to the 2D case. Breaking
r into its mean and fluctuating components,

r�R; t� � GR� ~r�R; t� ;

we get the equation for ~r�R; t�:�
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Unlike the previous problems, this one has a stationary
(limiting) probability distribution as t!1, both for the
tracer and its gradient. Lately this problem has drawn
considerable attention both from the theoretical and experi-
mental standpoint, see papers [56 ± 62]. Their authors have
used computer simulations and phenomenology to derive
among other things the `long exponential tails' of the
`gradient's PDF', while paper [62] showed a `slowly decaying
tail' for r itself in its limiting (stationary) state.

Coming back to Eqn (7.52) let us notice that the variance
of the gradient fluctuations ~p�R; t� � H~r�R; t� satisfies
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t!1
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whereas the variance of the tracer concentration is given by
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Formulae (7.53), (7.54) allow one to estimate the relaxation
time (to a stationary regime),
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as well as the variance of the stationary (limiting) state:
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Here the coefficientsD0 � s2ut0 andD0=D
s
2 � l20 are expressed

through statistics of random velocities, namely its varianceÐ
s2u, and spatial and temporal correlation radii, t0 and l0. So we
get the relaxation time T0 logarithmically dependent on the
molecular diffusivity K. As for the stationary variance of erwe
get an estimate

h~r2i � G2l20 ln

�
s2ut0
K

�
at K5 s2ut0 ;

provided K5 s2ut0.

7.3.3 Velocity fluctuations with finite temporal correlation.
One way to account for the finite temporal correlation radius
was mentioned in Section 4.1, based on the diffusion
approximation method. This method still requires some
constraints on the correlation radius, though less restrictive
than the `delta-correlated' ones. One could also discover some
new physical phenomena, due to the finiteness of temporal
correlations. These would be illustrated by two problems:
sedimentation [23, 63], and the floating tracer on a random
surface z�R; t� with statistically independent `driving velo-
cities'.

The first problem has manifestly anisotropic diffusion
tensor relative to the sedimentation direction.We shall denote
the sedimentation velocity by v, and assume its fluctuating
component to have the energy spectrum

E�k; t� � E�k� exp
�
ÿ jtj

t0

�
;

falling off exponentially in time with the correlation radius t0.
The limiting diffusion tensor, as t!1, was computed in
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Refs [23, 63],
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After we project tensor Dij�v� onto the vertical (sedimenta-
tion) direction marked by k, and the transverse (perpendi-
cular) plane ?, the corresponding diffusion rates
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For small values p (i.e. when v5 l0=t0, where l0 is the
correlation length of the velocity field) both functions fjj�k; v�
and f?�k; v� approach values close to 2p=3, corresponding to
isotropic diffusion unaffected by the sedimentation drift v.
For large values of p �vt0 4 l0� the strong anisotropy shows
up fjj�k; v� � 2f?�k; v� � p=2. Let us stress that the resulting
anisotropy is due to the nonvanishing radius of temporal
velocity correlations, and would disappear in the delta-
correlated case.

Let us turn to the second problem. Here the basic
transport equation (7.4) has to be modified to include an
additional random parameter z:
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We normalise the total mass:�
dRr�R; t� � 1 :

First we shall average over random velocities U�R; z; t�
and use the diffusion approximation. This yields the FP
equation for the mean concentration,
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where the velocity spectral tensor Eab is a function of the
horizontal and vertical wave-vectors,

Eab�k2? � k2z ; t� � E�k2? � k2z ; t�
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while

Z�R; t; t 0� � z�R; t� ÿ z�R; t 0� ; R�R; t� � 
r�R; t��
u

measures surface variation at different times t; t0. We view
Eqn (7.3) as a stochastic equation in the random parameter
Z�R; t; t 0�.

The surface elevation z is assumed to be a Gaussian field
with the following mean and correlation functions:
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Introducing the new function
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whereDz�t� � Bz�0; 0� ÿ Bz�0; t�, we rewrite the FP equation
(7.3) in the following the form:
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dkz

� Eab�k2? � k2z ; tÿ t 0� exp�ÿ k2zDz�tÿ t 0�	
� F �R; t; t 0; kz� ÿ i

q
qRa

�t
0

dt 0
�
dk?

�1
ÿ1

kz dkz

� Eab�k2?� k2z ; tÿ t 0� exp�ikzZ�R; t; t 0�	 qz�R; t�qRb
R�R; t� :
�7:57�

The field R�R; t� is a functional of the random surface
elevation,

R�R; t� � R
�
R; t; z�eR;~t�� ;

and the mean value of the functional F�R; t; t 0; kz� over the
random field z�eR;~t� is computed via


F�R; t; t 0; kz�
�
z
�
D
exp

�
k2zDz�tÿ t 0�

� ikzZ�R; t; t0�
	
R�R; t�

E
z
�
D
R
�
R; t; z�eR;~t�

� ikz
�
Bz�eRÿ R;~tÿ t� ÿ Bz�eRÿ R;~tÿ t 0�	�E

z
:

So it depends on the mean density subjected to a `functional
shift'.

We are interested in the dispersion tensor

Sab�t� �
D �

RaRbR�R; t� dR
E
z
;

which is equal to 1=2s2�t�dab due to isotropy. It is connected
with the mean value hR�R; t�i.

To this end we need to average equation (7.57). Dropping
s4z and other terms of higher order, one could get the
following expression for the diffusion coefficient:

D�t� � q
qt

s2�t� � 2

�t
0

dt
�
dk?

�1
ÿ1

dkzEaa�k2? � k2z ; t�

� exp
�ÿ k2zDz�t�

	 �
dR


F�R; t; tÿ t; kz�

�
z
:

February, 1999 Coherent phenomena in stochastic dynamical systems 193



Thus the surface elevation has a double effect on the tracer
diffusion. On the one hand it changes the effective (random)
velocity spectrum, on the other hand it transforms the tracer
density. Both effects are due to the nonvanishing temporal
correlation radius. As for the delta-correlated case the tracer
statistics become independent of the surface elevation and
have the same form as for the tracer in an ideal fluid flow.

8. Caustic structure of wave-fields in random
inhomogeneous media

We have studied wave propagation in random media in
Section 2.4 using a parabolic approximation (2.38). From
the mathematical stand-point this problem is similar to the
passive tracer diffusion by potential velocity fields. We have
discovered a fundamental property of potential flows Ð the
clustering of tracers. For wave problems, clustering (of wave
intensity) shows up as caustic structures brought about by
random focusing and defocusing of wave fields by the
media.

The basic techniques of the delta-correlated approxima-
tion, used in the previous section for the statistical analysis of
`cluster structures', is not applicable anymore. Indeed, the
longitudinal correlation-radius (in the beam-direction) for
the beam phase is now comparable to the beam track [5, 40,
41]. So the dynamic equation (2.39) for the wave intensity has
little practical value for the analysis of random media.

However, the one-point PDF of the wave intensity,
derived from Eqn (2.38), allows one to adopt some ideas of
the statistical topography [24]. In this regard let us mention
the pioneering papers [64, 65] (see also Ref. [66]), that applied
the theory of large deviations to the analysis of wave
propagation in turbulent media.

We consider an iso-contour I�x;R� � I � const of con-
stant intensity in the fixed cross-sectional plane x � const,
and its singular indicator

F�x;R; I� � d
ÿ
I�x;R� ÿ I

� �8:1�

as a `functional of the media'. The ensemble-mean of Eqn
(8.1) defines the one-point PDF

P�x;R; I� � 
F�x;R; I�� � 
dÿI�x;R� ÿ I
�
: �8:2�

Other quantities could be expressed through Eqn (8.2), like
the mean area of domains with I�x;R� > I,


S�x; I�� � �1
I

deI � dRP�x;R; eI� ; �8:3�

and their mean field power

E�x; I�� � �1

I

eI deI � dRP�x;R; eI� : �8:4�

Further information on the field intensity and its fine
structure could be derived from the cross-sectional gradient
p�x;R� � HRI�x;R�. For instance,


L�x; I�� � � dR

�
dpjp�x;R�jP�x;R; I; p� ; �8:5�

where

P�x;R; I; p� � 
dÿI�x;R� ÿ I
�
d
ÿ
p�x;R� ÿ p

��

is the joint PDFof I�x;R� and p�x;R�, gives themean contour
length at level I�x;R� � I � const.

The higher (second) derivatives of I with the aid of
formula


N�x;I�� � 
Nin�x; I�
�ÿ 
Nout�x; I�

�
� 1

2p

�
dR


K�x;R; I�jp�x;R�jdÿI�x;R� ÿ I

�� �8:6�
would yield an estimate (modulo non-closed contours) of the
mean number of closed contours at level I. HereNin�x; I� and
Nout�x; I� count contours with inward- and outward-looking
gradient p, (i.e. `mountain peaks' and closed `valleys' of
topography I x;� R�, truncated at the level I), and K designates
the curvature of the contour:

K�x;R; I� �
�
ÿ p2y�x;R�

q2I�x;R�
qz2

ÿ p2z�x;R�
q2I�x;R�

qy2

� 2py�x;R�pz�x;R� q
2I�x;R�
qy qz

�
pÿ3�x;R� : �8:7�

Here and henceforth we shall consider a plane incident
wave, whose one-point PDFs will be independent of R due to
the (transverse) spatial homogeneity. Thus the statistical
averages (8.3) ± (8.7) could be viewed as specific (per unit
area) values of the relevant quantities.

The natural length scale in the cross-sectional plane
x � const independent of the media is the size of the first
Fresnel zone, Lf�x� �

��������
x=k

p
, that measures the light-shadow

diffraction region of a non-transparent screen (see for
instance, Refs [40, 41]).

Then the mean specific values of the contour lengths and
the number of contours are given by the following dimension-
less expressions:


l�x; I�� � Lf�x�

jp�x;R�jd�I�x;R� ÿ I�� ; �8:8�



n�x; I��� 1

2p
L2
f �x�



K�x;R; I�jp�x;R�jd�I�x;R�ÿ I�� : �8:9�

In fact, formula (8.9) gives the mean excess of contours
with the opposite orientation of normal vectors within the
first Fresnel zone.

As above we assume the random field e�x;R� to be
Gaussian, homogeneous, and isotropic with the correlation
and spectral functions

Be�x1 ÿ x2;R1 ÿ R2� �


e�x1;R1�e�x2;R2�

�
�
�1
ÿ1

dqx

�
dqFe�qx; q� exp

�
iqx�x1 ÿ x2�

� iq�R1 ÿ R2�
	
;

Fe�qx; q�� 1

�2p�3
�1
ÿ1

dx

�
dRBe�x;R� expfÿiqxxÿ iqRg :

�8:10�

The x-axis can be roughly divided into three regions,
depending on the properties of the field intensity:

Ð the region of weak (intensity) fluctuations;
Ð the region of strong focusing;
Ð the region of strong fluctuations.
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8.1 Region of weak fluctuations
In the region of weak fluctuations the statistics of intensity are
well described by the method of smooth perturbations. Here
the amplitude

w�x;R� � 1

2
ln I�x;R�

is described by a perturbation series and can be viewed as a
Gaussian random field. In this case themean and the variance
of the amplitude level are related:


w�x;R� � ÿs2w�x� :
Let us introduce an important parameter, called the

scintillation index (see, for instance, Refs [40, 41]):
b0�x� � 4s2w�x�. For small b0�x�5 1 the variance

s2I �x� �


I 2�x;R��ÿ 1 � b0�x�

of the wave intensity is approximated by b0, so the intensity is
a log-normal random process with the one-point PDF

P�x; I�� 1

I
����������������
2pb0�x�

p exp

�
ÿ 1

2b0�x�
ln2
ÿ
Ieb0�x�=2

��
:

�8:11�

The region of weak fluctuations refers to b0�x�4 1. Here
the typical realization of the log-normal process (8.11) falls
off exponentially,

I ��x� � exp

�
ÿ 1

2
b0�x�

�
;

and the essential statistics (like moments hI n�x;R�i) are
formed by large deviations of I�x;R� about I ��x�. Further-
more, the randomprocess I�x� admits themajorant estimates,
for instance, half of all realizations (probability 1=2) obey the
inequality

I�x� < 4 exp

�
ÿ 1

4
b0�x�

�
at any distance x along the beam. This clearly suggest the
onset of `clustering' of the wave intensity.

The knowledge of PDF (8.11) yields some quantitative
characteristics of the `cluster structure', such as the specific
mean area hs�x; I�i and specific mean power he�x; I�i enclosed
in domains with I�x;R� > I, see Ref. [24].

The evolving cluster-structure follows the changing
scintillation index b0�x�, and depends strongly on the level I.
In the most interesting (high intensity) case I > 1 we
havehs�0; I�i � 0, he�0; I�i � 0 at the initial plane. As b0�x�
grows, small cluster regions of high intensity, I�x;R� > 1, are
formed that persist over certain distances and rapidly absorb
a significant fraction of the wave power. Further down the
path, their area contracts, as b0�x� increases, but the entrailed
power keeps growing, creating bright spots within dark
regions. So one observes the effect of random focusing of
radiation by inhomogeneous patches of the media.

In the region of weak fluctuations the gradient of the
amplitude level HRw�x;R� is statistically independent of
w�x;R� itself. This allows one to compute the specific mean
contour length at levels I�x;R� � I, and to estimate the
specific mean number of contours. Indeed, in the region of
weak fluctuations the gradient q�x;R� � HRw�x;R� has a
Gaussian PDF, and one has [24]



l�x; I�� � 2Lf�x�


jq�x;R�j�IP�x; I�
� Lf�x�

��������������
ps2q�x�

q
IP�x; I� ; �8:12�



n�x; I�� � ÿ 1

p
L2
f �x�



q2�x;R��I q

qI
IP�x; I�

� L2
f �x�s2q�x�
pb0�x�

ln
ÿ
Ieb0�x�=2

�
IP�x; I� : �8:13�

Let us observe that formula (8.13) turns to zero for the
typical realization I � I0�x� � expfÿb0�x�=2g. This means
that the `typical intensity' has statistically equal numbers of
contours I�x;R� � I0 with different orientations (bright
`peaks' and dark `valleys').

The above discussion was based on the fundamental
parameter b0�x� determined by the medium.

If one assumes delta-correlated refraction e�x;R� in x, the
correlation function (8.10) is approximately given by

Be�x;R� � d�x�A�R� ; A�R� �
�1
ÿ1

dxBe�x;R� :

(see, for instance, Refs [5, 40, 41]).
In turbulent media [5, 40, 41] one could compute b0�x� in

terms of the 3D spectral function Fe�0; q� � Fe�q� of the
planar wave-vector q,

b0�x� � 4s2w�x� � 2k2p2x
�1
0

dq qFe�q�

�
�
1ÿ k

q2x
sin

�
q2

k
x

��
; �8:14�

provided the turbulence `fills in' the entire space. If the
random inhomogeneous e�x;R� is concentrated in a narrow
bandDx5 x (random phase screen), then

b0�x� � 4s2w�x� � 2k2p2Dx
�1
0

dq qFe�q��

�
�
1ÿ cos

�
q2

k
x

��
: �8:15�

The dielectric permeability e in Eqns (8.14), (8.15) has a
spectral function

Fe�q� � AC 2
e q
ÿ11=3 exp

�
ÿ
�

q2

K2m

��
;

withA � 0:033, coefficientC 2
e depending on the ambient flow

parameters, and the turbulence microscale wavenumber Km:
Assuming a large value of the so-called wave parameter

D�x� � K2mx=k4 1, we derive the following scaling law for
b0�x� in two cases:

b0�x� � 0:307C 2
e k

7=6x11=6 �Dx � x� ;
b0�x� � 0:563C 2

e k
7=6x5=6Dx �Dx5 x� : �8:16�

Hence follows the variance of the amplitude level-
gradient:

s2q�x� �
k2p2x
2

�1
0

dq q3Fe�q�
�
1ÿ k

q2x
sin

�
q2

k
x

��

� 1:476

L2
f �x�

D 1=6�x�b0�x� :
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Finally, one could find the dependence of the mean
(specific) length and contour-number hl�x; I�i, hn�x; I�i,
Eqns (8.12) and (8.13), on the parameters b0�x� and D�x�.
Their dependence on the turbulent microscale indicates the
presence of small ripples superimposed on the large-scale
random landscape of intensity. The ripples do not affect the
distribution of high concentration areas and the wave-power
within them, but they could bring about the roughening and
fragmentation of iso-contours.

As we mentioned earlier, the above description holds for
small scintillation values b0�x�4 1. As b0�x� grows larger
(with x), the method of smooth perturbations ceases to work,
and one has to deal with the fully nonlinear `complex phase'
equation. This region of strong focusing poses the difficult
analytic problem, and we won't discuss it here.

The further growth of b0�x�, e.g. b0�x�5 10 , would take
one into the region of strong intensity fluctuations, where the
statistics of intensity saturate.

8.2 Strong intensity fluctuations
In the region of strong fluctuations the intensity PDFmay be
approximated by

P�x; I� � 1������������������������
p�b�x� ÿ 1�p �1

0

dz

� exp

�
ÿ zIÿ

ÿ
ln zÿ ÿb�x� ÿ 1

�
=4
�2

b�x� ÿ 1

�
; �8:17�

(see, for instance, Refs [24, 67, 68]), with a different
scintillation index b�x� � hI 2�x�i ÿ 1.

In turbulent media, either continuous or localized within
the phase screen, one finds

b�x� � 1� 0:861bÿ2=50 �x� �Dx � x� ;
b�x� � 1� 0:429bÿ2=50 �x� �Dx5 x� ; �8:18�

(see, for instance, Ref. [5]), with b0�x� given by Eqn (8.16).
Let us note the gradual `slide down' of b�x� along with the

increase of b0�x� . Indeed, the long-distance limit b0�x� ! 1
yields b�x� � 1, while the moderate value b0�x� � 1 corre-
sponds to b�x� � 1:861.

Let us also remark that PDF (8.17) is not applicable in the
narrow vicinity of I � 0: the larger b0�x�, the smaller the
window about 0. This has to do with infinitely large values of
the `negative' moments 1=I�x;R�, that follow from Eqn
(8.17). However, the finite values of b0�x�, no mater how
large, give finite moments hI n�x;R�i, hence the vanishing
probability of I � 0, P�x; 0� � 0. The existence of the narrow
band near I � 0 has no effect on the behavior of `positive'
moments hI n�x;R�i at large b0�x�.

The asymptotic formulae (8.17) and (8.18) describe a
transition into the region of saturated intensity fluctuations,
b�x� ! 1. In this region the mean specific area of high
intensity I�x;R� > I, and the specific power enclosed, are
given by

P�I� � eÿI ;


s�I�� � eÿI ;



e�I�� � �I� 1�eÿI : �8:19�

Hence the fraction of the mean area and the mean power
depend only on the level I. For large I, these fractions are
insignificant.

The exponential distribution of PDF (8.19) implies that
the complex random field u�x;R� is Gaussian. Furthermore,

the gradient of the cross-sectional amplitude is statistically
independent of the wave field intensity, and is also Gaussian
[24]. Besides, it has no statistical dependence on the second
derivatives of intensity in cross-variables. In this case, one
could compute the mean specific contour length and the
contour number explicitly,


l�x; I�� � Lf�x�
������������������
2ps2q�x�I

q
eÿI ;



n�x; I�� � 2L2

f �x�s2q�x�
p

�
Iÿ 1

2

�
eÿI ; �8:20�

where

s2q�x� �
1;476

L2
f �x�

D 1=6�x�b0�x� : �8:21�

Let us remark that formula (8.20) does not apply in the
narrow vicinity of zero intensity I � 0. For the latter we
expect hn�x; 0�i � 0.

Formula (8.20) shows the mean contour length and
contour number continue to grow with b0�x�, though the
total contour-area and the power enclosed therein, remain
constant. Such a process leads to increasing roughness and
fragmentation of iso-contours. The explanation lies in the
dominant role played by the interference of partial waves
coming from various directions.

The dynamics of iso-contours depend strongly on the
balance between focusing and defocusing of radiation by
different patches of turbulent media [69]. The focusing by
large scale inhomogeneities results in high intensity peaks on
the random landscape of I. In the regime of maximal focusing
b0�x� � 1 about half of the total power is concentrated in
such high narrow peaks. As b0 x� � increases further the
defocusing prevails, which tends to smooth out high peaks
and create highly fragmented (interferential) landscape with
large number of small peaks near I � 1.

Besides the scintillation parameter b0�x� the mean
contour length and the number of contours depend on the
wave parameterD�x�, hence both would grow as the micro-
scale of inhomogeneities goes down. This process reflects the
superposition of the large scale intensity landscape with small
ripples, due to wave scattering on small scale inhomogene-
ities.

In this section we have attempted to give a qualitative
explanation of the cluster (caustic) structure of the wave field
in the cross-sectional plane, for an incident plane wave in a
turbulent medium, and to quantify and estimate some of its
statistical topography. In general, such problems have many
parameters. However, when confined to a fixed cross-section,
the solution is described by a single parameter b0 Ð the
variance of the intensity-level in the region of weak fluctua-
tions.

We have analyzed two extreme asymptotic cases, that
correspond to the weak and strong (saturated) fluctuations of
intensity. We should remark that the above asymptotic
formulae could apply only certain limits depending on the
intensity level I. As I goes down the applicability range of
these formulae should extend.

The most interesting case from the standpoint of applica-
tions involves the region of developed caustic structure. A
detailed analysis would require knowledge of the joint PDFs
of I and cross-sectional gradients at arbitrary distances along
the beam. Such an analysis could be done either using
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approximate methods for all possible values of essential
parameters [61], or using numeric simulation as in papers
[44, 45].

9. Conclusions

We conclude with some general `philosophical' comments,
that follow from our work.

Ð For many dynamical systems statistical (mean) char-
acteristics show little resemblance to individual realizations,
and sometimes gives contradictory results. For such systems
the traditional `moment-based' description carries little
information. Instead they require a statistical description in
terms of PDFs (at least `single-point' or `single-level').

ÐHowever, such stochastic dynamics could often exhibit
some statistically coherent physical phenomena, that occur
with probability one, i.e. for almost all realizations of the
process. One could suspect coherent phenomena to be
abundant in nature, as they appear in the most simple
systems described by ordinary differential equations like
(2.1). No other physical model would beat it for simplicity!
The basic statistical model for positive-valued parameters of
coherent processes is furnished by the log-normal process.

Ð Coherent phenomena are largely independent of the
specific model of fluctuating parameters. In some cases they
allow a complete characterization in terms of single-point (in
space-time) PDFs of the process, which could be deduced by
the method of statistical topography. Of course, certain
parameters of a particular phenomenon (like the character-
istic time and space scales for clustering) could depend on the
specific random model.

Ð Coherent phenomena could be particularly relevant to
physical problems where the `ensemble means' (and `ensem-
bles' themselves) are not available, and the experimentalist
most often has to deal with specific realizations. This applies,
in particular to the physics of the atmosphere and ocean.
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