
Abstract. The current theory of superradiance is described. The
effect is due to interatomic correlations (phase-locking) which
arise under the action of a general electromagnetic field and are
determined by the competition between the electron motion
anharmonicity and the interatomic dipole ± dipole interaction.
The latter affects significantly the nature of the superradiance
effect. A common nature for the radiations from aDicke atomic
ensemble and from collective waves in a substance (for example,
cyclotron waves in a magnetized plasma) is established. Super-
radiance manifests itself in hot magnetically confined plasmas
and accounts, among other things, for anomalous heat conduc-
tivity in tokamaks.

1. Introduction

Superradiance (SR) is cooperative radiation resulting from
spontaneous origination and reinforcement of correlations
between initially independent atoms (phasing) [1 ± 8]. The
study of mechanisms of phasing started in fact 30 years after

Dicke's seminal work [8] that had put forth the concept of SR.
Phasing was found to depend on two effects: the electro-
magnetic interaction between the atoms, and the nonlinearity
of motion of electrons in an atom. Both effects are universal
and fundamental; this is the reason why the seemingly greatly
different phenomena as cooperative emission by a micro-
scopic specimen, radiation of cyclotron resonance masers,
gyrotrons, collective waves in a gas of dipole oscillators, etc.,
have a common background. Such a sufficiently general
approach allows one to presume that it is the electron
cyclotron waves in magnetized plasma that are primarily
responsible for the anomalous energy transfer in tokamak
plasma.

In the SR regime, a system of a large number N of excited
atoms emits radiation for a time ts which is much shorter than
the time t0 of emission of an isolated atom [1 ± 8]. Another
feature of SR, which is a consequence of the first, consists in
that the intensity of radiation I grows in proportion with the
square of the number of atoms N 2. These features sharply
distinguish SR from spontaneous emission of radiation by a
system of excited atoms (luminescence), for which t � t0,
I � N. The reason is that there are phase correlations between
the atoms in the case of SR, such as do not exist in the case of
luminescence. By itself, the dependence I � N 2 is not exotic,
and by no means constitutes the main peculiarity and the
main distinguishing feature of SR. Rather, it is phasing that is
the main property of SR that attracts attention and raises this
effect to the rank of a fundamental phenomenon (related to
phase transitions). It is phasing that sets SR off from other
cooperative radiation processes which are the result of
correlations created in the first place by means of external
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pumping Ð decay of free polarization, photon echo, optical
nutation, and the like. A correlated ensemble of atoms can be
created, for instance, by applying a short resonant laser pulse
to the system.Owing to the initial correlation, this gives rise to
cooperative radiation with the above properties �I � N 2,
t5 t0�, which does not involve phasing. We may point to
an obvious situation when the phasing of atoms is precluded,
but the radiation is cooperative. Assume that at t � 0 we have
N dipoles located within a volume with characteristic size L
that start oscillating at t � 0, and stop at t � t. The
electromagnetic field at any remote observation point is
equal to the sum of signals coming from DNÿNct=L atoms
confined in the layer ct thick. If ct5 l, and DN4 1, where
l � nÿ1=3 is the characteristic distance between the atoms,
then the phasing is precluded but the radiation is cooperative
because I � DN 2 � N 2.

This review is devoted to the analysis of SR theory. Special
attention is paid to the study of mechanisms of phasing and
the role of dipole ± dipole interaction between the atoms. A
unified treatment is applied to the effects of SR in diverse
physical systems, including small bodies (ensembles of Dicke
atoms) and extended objects (coherent waves in magnetized
plasma).

2. The nature of superradiance

Superradiance, one of the most interesting phenomena in the
physics of cooperative electromagnetic radiation [1 ± 7], was
predicted by Dicke [8]. Assume that an inverse population is
created in a system of N4 1 atoms (numbered
a � 1; 2; . . . ;N) for two states j2i and j1i with the energy
levels E2 and E1 Ð based, for example, on the three-level
pumping scheme (Fig. 1), or by passing a short electromag-
netic pulse through the system (for example, a p-pulse, Fig. 2).
As a result of such pumping, over the characteristic time tp
near t � 0, state j2i is attained by a certain number of atoms
N � � NW, where W is the share of inverted atoms (observe
that for a three-level scheme N is the number of excited
atoms). Under certain conditions that will be discussed below,
SR begins. Its characteristic features are illustrated in Figs 3
and 4. AtN � < Nc, whereNc is the critical number of inverted

atoms (the so-called SR threshold, see below), conventional
spontaneous transitions to state j1i take place (see Fig. 3),
whose duration coincides with the time t0 of spontaneous
transition j2i ! j1i of an isolated atom. The characteristic
intensity of emission by a system of atoms is (for the sake of
simplicity we setW � 1)

I � NI0 ; �2:1�

where I0 � �ho0=t0 is the intensity of radiation of an isolated
atom, ando0 � �E2 ÿ E1�=�h is the frequency of radiation. At
N � > Nc, the system undergoes a phase transition which in
every aspect is similar to a phase transition of the second
order [1, 3]. The radiation becomes markedly anisotropic (see
Fig. 4) and appears as a short powerful burst (`SR pulse') with

ts � t0
N
; I � N 2I0 ; �2:2�

emitted after the time lag

t0 � tsL ; L � lnN �2:3�

in the direction of the major axis of the body (i.e. in the
direction of its largest thickness).

Superradiance is based on two effects which determine its
essential properties:

(a) phasing of atoms, and
(b) collective intensive emission by a system of correlated

atoms.
Let us illustrate this point with a simple example. Let the

size L of the emitting system (which will occasionally also be
referred to as a `body') be small compared with the emitted
wavelengths l � 2p=k, k � o0=c (`the pointlike Dicke model'
[8]):

L5 l : �2:4�

We start with the classical (Lorentz) model of atoms. There
areN charges e of massm attached to springs with stiffness k.
The charges occur at points with the coordinates ra � na. The

o0

2

1

0

Figure 1. Three-level scheme of superradiance for the j2i ! j1i transition.
Level 0 is the ground state of atoms. In the case of pumping over the

characteristic time tp the atoms undergo the transition j0i ! j2i.
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Figure 2. Pumping with the p-pulse in the two-level scheme; level 1 is the

ground state.
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Figure 3. Fluorescence in a system of N � inversely populated atoms (a).

The atoms undergo independent spontaneous transitions over the char-

acteristic time t0 with intensity I � N � (b). The radiation is isotropic.

(Reproduced from Ref. [1]).
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I

Figure 4. Superradiance occurring at N � > Nc in the Markovian regime

L < cts. (Reproduced from Ref. [2]).
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other ends of the springs are fixed at points ra, which also host
compensating charges ÿe. Hence, the dipole moments of the
atoms are

da � ena � ega cos�o0t� ja� ; �2:5�

where o0 �
���������
k=m

p
are the eigenfrequencies of atoms ±

oscillators (the meaning of da, ga, ja for real quantum
atoms will be explained later on). The intensity of radiation
averaged over the fast oscillations of dipoles is [9]

I � 2

3c3
��D�2 � I1 � I2 ; �2:6�

where D �PN
a�1 da is the dipole moment of the system,

I1 � 2

3c3

X
a

h�d 2
a i ; I2 � 2

3c3

X
a6�b

sab ; �2:7�

sab � h�da�dbi � 1

2
e2o4

0�gagb� cos�ja ÿ jb� : �2:8�

If the amplitudes ga and phases ja are not correlated, and
vary at random from one atom to another, then I2 5 I1,
I � I1 � Nwhich implies the regime of spontaneous emission
(2.1). If, however, there is correlation (phasing) between
phases and amplitudes of different dipoles (atoms), then
I2 4 I1, I � I2 � N 2, and the body emits in the regime of SR
(2.2)

These arguments infer the necessary (but not sufficient)
conditions for the onset of SR:

tp 5 ts ; �2:9�

i.e. brief pumping, and

ts 5Tr � min�t0;T2� ; �2:10�

i.e. preserve the coherence of the atomic subsystem during the
entire process. Here

T2 � min

�
1

DoD
;Tf

�
�2:11�

is the phase memory time over which the interatomic phase
correlations are preserved; DoD � o0nT=c is the Doppler
broadening of the frequency of atomic transition; nT is the
thermal velocity of atoms; Tf is the time of phase desynchro-
nization of atoms caused by collisions [5, 10, 11] (transverse
relaxation time). Since, according to Eqn (2.2), ts diminishes
as N increases, the condition (2.10) defines the threshold of
SR Ð that is, the number Nc.

Figure 4 relates to a small-size body:

L5 cts : �2:12�
When

L4 cts �2:13�
(the Arecchi ±Courtens condition [12]), the effects of propa-
gation of electromagnetic waves in the body become
important (see below). The coherence of atoms that is
necessary for SR is preserved in sufficiently small bodies:

L5 cTr : �2:14�
Note that when the density of atoms n is high, then in place of
c in Eqns (2.12) ± (2.14) one should use the group wave

velocity vg, which may happen to be much less than c. As
will be shown below, the intensity of radiation under
condition (2.14) is proportional to the square of the number
of atoms, and this domain therefore ought to be referred to as
the range of SR. Conditions (2.9), (2.10), (2.14) will be
concretized below.

The extensive literature available on SR fails (at least in
the author's opinion) to offer a comprehensive account of all
the most important features of SR, like the mechanism of
phasing of atoms, the role of the dipole ± dipole interaction
between the atoms, etc. In the case of SRwe are dealing with a
nonequilibrium phase transition of the second order Ð that
is, with the emergence of nonzero mean values (quasi-
averages, parameters of order, etc.) of operator variables.
These aspects Ð such as the kinetics of transition to the
superfluid state [14] Ð have only recently received attention
(see, for example, Ref. [13] and references therein). We
anticipate new interesting results concerned with these
aspects of SR.

The mechanism of phasing of atoms has not been
explored in Ref. [8]: the prediction of SR was based on the
symmetry of the Hamiltonian and wave function in the Dicke
model with respect to permutation of coordinates of any pair
of atoms. This symmetry allowed the wave function of the
atomic system to be surmised, and the intensity of radiation to
be calculated without answering the difficult (and probably
the principal) question concerning the mechanism of phasing.
The small size of the body postulated in Ref. [8] would
seemingly preclude staging of experiments in the optical
range, thus making SR of little practical interest. The
feasibility of SR in extended bodies

L4 l ; �2:15�

was theoretically predicted in Refs [15 ± 23] and confirmed by
the first experiment [24] with SR on rotational transitions in
HF molecules (note that the feasibility of SR in extended
bodies had been conjectured in Ref [8] from incorrect
assumptions). The same experiment revealed time oscilla-
tions of SR intensity (Fig. 5), earlier predicted theoretically in
Ref. [18] (the quantitative estimate for the frequency of
oscillations was obtained in Ref. [25]).

In this way, by 1973 it had become clear that SR is a
universal phenomenon that can be practically realized using
the available technology of short powerful laser pulses
required for fulfilling conditions (2.9), (2.10).

The duration ts of SR for an extended specimen differs
from the estimate (2.2) for small bodies compliant with (2.4).
For the case of (2.12) it can be derived from simple
considerations [12]. The estimate is based on the assumption

t

Figure 5. Oscillatory regime of superradiance [24].
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that within the time ts the entire energy

E0 � �ho0nLS �2:16�
stored in a rod with the cross section S � pR2, radius R and
length L �R5L� is emitted in the direction of the axis of the
rod as electromagnetic waves with frequencyo0 which form a
train of length cts. From the energy balance condition
�E0 � SctsE 2=8p� we find the amplitude of the electric field
characteristic of the pulse of SR:

E �
�

�ho0nL

cts

�1=2

: �2:17�

Under the action of this resonant field, each atom performs a
half Rabi oscillation (see, for example, Refs [5, 26]) over the
time

ts � �h

V21
; V21 � Ed ; �2:18�

and is found in the lower state j1i. Here d � jdj,
d � d21 � h2jd̂j1i is the matrix element of the atomic transi-
tion j2i ! j1i responsible for spontaneous emission

1

t0
� l0 � 4k3d 2

3�h
: �2:19�

Equations (2.18), (2.19) infer the estimates

ts � �h

kd 2nL
� t0

j
; j � 3pnL

k2
�2:20�

and the main condition of realization of SR in extended
bodies (2.15)

j4 1 : �2:21�

Condition (2.21) has a profound meaning that is readily
understood when

l5 l ; �2:22�

where l � nÿ1=3 is the mean distance between the atoms. Then
every atom occurs within the wave zone of another atom, and
the electromagnetic waves scattered by the atoms have time to
form new waves before reaching the adjacent atoms. The
electromagnetic field within themedium in the case of (2.22) is
an assemblage of independent photons scattered by the
atoms. The frequency spread of the electromagnetic field is
Do � 1=ts. According to Rabi's theory, the field may be
regarded as resonant if Do9V12=�h. Hence, and from Eqn
(2.18), we conclude that the field is resonant. The scattering
cross section of resonant photon by the atom is [9, 27, 28]

s � 1

k2
; �2:23�

therefore, in accordance with Eqn (2.20), the main condition
(2.21) is written in the form

j � nsL4 1 : �2:24�
Hence it follows that the number of scatterings undergone by
the photons over the length of the body must be large. This
points to the importance of the induced radiation for the
mechanism of SR.

The arguments developed above [12] based on the
considerations of energy balance allow the field amplitude
(2.17) to be found. In the case of SR, however, the principal
role belongs to phases.

Another argument is instructive. Assume that we have an
elongated body of length L (a rod or a cylinder of radius R).
By the mechanism of phasing, each atom a obtains phase
ja � kra, where the vector k is directed along the body,
k � o0=c. First let us consider the case of (2.22). The
oscillating dipole in the quasistatic zone creates a field
E � d=r3, and E � dk2=r exp�ikr� in the wave zone (see Refs
[9, 27]). The field Eb at the atom b is equal to the sum of fields
created by all other atoms, so, with due account for the phases
of dipoles, we get

Eb �
X
a 6�b

dk2

r
exp�ikr� ija� ; �2:25�

where r � rab, rab � ra ÿ rb, and the dipole moment d includes
the factor exp�ÿio0t�. The main contribution to the sum
(2.25) comes from those atoms a for which

jDjj91 ; �2:26�

where Dj � kr� jab � krab � krab, jab � jb ÿ ja � krab.
These atoms are located near the axis z that passes through
atom b in the direction k (Fig. 6). We refer to the region (2.26)
as the region of constructive interference (RCI): the signals
that come to atom b from atoms a located within RCI add up
Ð undergo constructive interference.

Further on we shall be almost invariably concerned with
the practically most interesting case

F4 1 ; �2:27�

where

F � kR2

L
� R2

lL
�2:28�

is the Fresnel number defined as the ratio of the geometric
angle R=L to the diffraction angle yD � 1=kR � l=R, or,
which is the same, as the number of Fresnel zones fitting into
the end of the cylinder. From equations (2.26) and (2.27) it
follows that the radius of RCI is small compared with R and
L; therefore,

z � rk

k
; r5 jzj ; jzj � L ; r �

���������������
z2 � r2

p
� jzj � r2

2jzj ;

Dj � k
ÿjzj � z

�� kr2

2jzj : �2:29�

zz

r
a

b

k

Figure 6. Region of constructive interference that determines the field at

atom b (dashed line). The origin of coordinates z � 0 is at atom b.
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The equation of the boundary of RCI jDjj � 1 is

z < 0 ; r � r0jzj �
��������
2jzj
k

r
: �2:30�

Hence, and from Eqn (2.27), it follows that the characteristic
thickness of RCI,

r0 � r0�L� �
����
L

k

r
; �2:31�

is small compared with the transverse dimension of the body,

r0
R
� 1���

F
p 5 1 : �2:32�

The volume of RCI is

V0 � Lr20 �
L2

k
: �2:33�

By virtue of Eqns (2.15) and (2.21) the number of atoms in
RCI is large,

N0 � nV0 � jkL4 1 ; �2:34�
which allows us to replace the summation in Eqn (2.25) by
integration:X

a

! n

�
d3ra � 2p

�
rdr dz : �2:35�

On account of Eqn (2.27), integration with respect to r can be
extended to the entire interval �0;1�. Then from Eqns (2.25),
(2.29), (2.35) we get

Eb � dk2n

�
dz r dr
jzj exp

�
ik
ÿjzj � z

�� ikr2

2jzj
�

� dk2n

�
dz

jzj
ijzj
k

exp
�
ik�jzj � z�� :

Hence follows the estimate

Eb � ndkL : �2:36�

This estimate holds [and hence does Eqn (2.20)] both in the
case of (2.22) and in the opposite extreme

l5 l ; �2:37�

when the RCI features both the wave zone �r > l� and the
static zone �r < l�. The contribution to Eb from the quasi-
static zone we approximate as the field inside a uniformly
polarized sphere Ð of the order of nd. Hence, and from Eqn
(2.36), it is clear that in our current case of (2.15) the
contribution from the quasistatic zone is negligibly small,
and the field at any atom is determined by the entire RCI
associated with this atom.

Using the estimate (2.36), from Rabi's formula (2.18) we
get Eqn (2.20). We can also do without formula (2.18). The
intensity of radiation is equal to the flux of energy across the
ends of the rod:

I � ScE 2
b

4p
: �2:38�

Hence, using Eqn (2.16) and ts � E0=I, we again derive Eqn
(2.20).

Now the overall picture is clear. After the pumping pulse,
the atoms exchange electromagnetic signals. Each atom
develops a fluctuating field dE � dk2=l [in the case of (2.22)].
Then, on account of the phasing discussed in sections to
follow, the collective field (2.36) is established. Since dE=Eb �
kl 2=L5 1 a fortiori, fluctuations can be neglected. Later we
shall demonstrate that the fluctuative component of the field
can also be neglected in the case of (2.37). As already said,
phasing gives rise to amplified collective radiation.

As L increases, the duration of SR ts decreases [see Eqn
(2.20)], so at certain values of L (or at certain values of n in
experiments) the condition (2.12) is violated, and the pattern
of SR becomes more complicated. We estimate the length L0

over which this occurs, and the characteristic time of SR t0s ,
from definition L0 � ct0s and Eqn (2.20):

L0 � k

�
ct0
n

�1=2

; t0s � k

�
t0
nc

�1=2

: �2:39�

The pumping of a long rod in the case of (2.13) can be
realized in either of two ways: by sending a short pulse along
the body, or by simultaneously pumping all portions of the
body (transverse electric discharge, transverse laser pulse,
etc.). Different portions of the rod of length of about L0 then
start emitting independently of one another, since there is no
correlation between adjacent portions owing to the fact that c
is finite. Radiation from each portion travels out to adjacent
portions and brings some of the relaxed atoms back into the
excited state, the atoms emit again, and so on. An oscillatory
regime (see Fig. 5) sets in an elongated body [18, 25, 29, 30],
whereas other shapes host the diffusion regime, when
different portions exchange energy with each other (this
latter case has not been studied well enough).

Now what happens when

L4 cTr? �2:40�

This is the typical laser regime [5, 31 ± 34] when the atomic
system is stochastic, and the photon system is coherent. A
photon emitted lengthwise generates an avalanche of induced
photons with the characteristic length of coherence L. If the
body (activemedium) is placed in a high-Q resonator, we get a
generator on eigenmodes Ð that is, a nonequilibrium phase
transition in the photon subsystem [31]. The coherence length
increases Q-fold (as does the monochromatism of radiation).
In the case of (2.40) the nondiagonal elements of the atoms'
density matrix, responsible for the coherence, are negligibly
small [5]. Because of this, the atoms are described by the
diagonal elements Ð the populations W1,W2 � 1ÿW1 (the
proportions of atoms occupying states j1i and j2i). The
populations and the emission intensity J (the photon flux
density) are described by the standard laser equations [32 ±
34], which involve in particular the cross section of photon
scattering by atoms s. The equation for dJ=dx features the
term nsJW2, which describes the effect of induced emission
discovered by Einstein (another term, nsJW1, is referred to as
induced absorption). Generation begins when the effective
length of the active medium LQ is large compared with the
photon's free path length 1=ns [cf. Eqn (2.24)].

Let us discuss the role of induced radiation in the effect of
SR. The approach depends on the definition of this phenom-
enon.With reference to the above-mentioned Einstein term in
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the equation for intensity, it is often assumed that the atomic
system must be stochastic (this is the case in Einstein's
treatment which is concerned with thermal equilibrium).
This is probably the reason why it is sometimes assumed
that induced emission of a system of excited atoms is only
possible under condition (2.40), when the atoms are subject to
frequent random impacts. For this reason, this effect is of
little relevance to SR. We believe that a different definition of
induced radiation is more general (see, for example, Refs
[35 ± 37]), which infers the importance of the latter for the
phenomenon of SR. For example, the scattering of electro-
magnetic waves by a charged oscillator in classical electro-
dynamics also ought to be classified as induced radiation
processes: induced emission and absorption that in classical
electrodynamics cannot be separated [38, 39]. Under the
action of the wave's field the charge oscillates with an
amplitude that is large compared with the amplitude of zero
oscillations (since we are dealing with classical mechanics) Ð
that is, the oscillator is excited to higher quantum states.
Receiving additional acceleration from the wave, the charge
emits bremsstrahlung in phase with the incident wave, with
the intensity proportional to that of the incident wave J as it
ought to be in the case of induced radiation. If this takes place
in a resonator, then, given that the split of frequencies
between the modes is large enough, the charge will emit only
in a single mode, and therefore the intensity of bremsstrah-
lung will be proportional to the number of photons in this
mode nl (since J / nl), in accordance with Einstein's
conclusions. With this definition, the presence of induced
radiation is in no way related to the frequency of atomic
collisions, and therefore the induced radiation is present not
only in the laser regime (2.40), but also in the regime of SR
(2.14). Spontaneous radiation and induced radiation are
equally important for SR.

Consider one of the atoms (labeled b). It occurs in the total
field E, and in unit time through radiation gives an energy
I � ÿe _nE to the field. Assume that the interaction of the atom
with the field turns on at t � 0 Ð that is, the charge varies as
e�t� � ey�t�. Following Ref. [38], we regard the charge as
small; then n � n�0� � n�1�,E � E�0� � E�1�, where n�0�,E�0� are
the coordinate of the electron of atom b and the electric field
at e � 0. Obviously, E�1� � 2e=�3c3�n::: is the field of reaction
of the radiation [9, 27]. With respect to the selected atom, E�0�

is the external field; therefore, E�0� � Eb [see Eqn (2.36)].
Thus,

I � I1 � I2 � I3 ; �2:41�
where

I1 � ÿeE�0�n�0� ; I2 � ÿeE�0�n�1� ;

I3 � ÿeE�1� _n�0� � ÿ 2e2

3c3
_n�0� n

:::�0�
:

If E�0� � 0, then I1 � I2 � 0. Accordingly, the first two
terms ought to be regarded as induced processes (emission
and absorption), and the third term I3 as spontaneous. In the
absence of interatomic correlations hI1i � 0. Phasing results
in the collective field (2.36), the scattering of which by each
atom amplifies the field, thus giving rise to induced radiation:
hIi > 0, hIi � hI1i4 jI2;3j. This important effect was first
pointed out in Ref. [36] which started a new direction in
physics and engineering, leading to the development of high-
power generators of electromagnetic radiation: gyrotrons,
cyclotron resonance masers, and the like [37, 40, 41].

Initially the field is absent, and therefore wemust treat SR
as spontaneous emission by the entire atomic system (referred
to in Ref. [8] as collective spontaneous radiation). Nowwe see
that, owing to the phasing of atoms, the same radiation must
be treated as the net effect of the induced emission by
individual atoms. The dipole moment of atom b oscillates
synchronously (but in counterphase) with the collective field
(2.36). In unit time the atom gives an energy eEb

_n � Ebo0d to
the field, and all atoms together give N times that much,
which agrees with Eqn (2.38).

The importance of induced radiation for the phenomenon
of SR is further supported by the following argument. Under
condition (2.27), SR is confined to the geometric solid angle
O � �R=L�2 (see Section 8.1), and has a frequency spread of
Do � 1=ts. Accordingly, the number of photons that cross
the unit cross-sectional area of the rod per unit time is of the
order of J � npk

2DkO, where Dk � Do=c � 1=cts, np is the
occupancy of the photon states (the number of photons in one
given photon state). On the other hand, J � cE 2

b =�ho0. Hence,
and from Eqns (2.20) and (2.36), it follows that np � N=F 2;
therefore, np 4 1 with certainty, which is a straightforward
proof of the importance of induced processes. This point can
also be proved by a different course of reasoning, introducing
the real physical volume �cts�3O occupied by the emitted
photons. Boundary conditions of any kind Ð for example,
zero boundary conditions Ð can be defined on the boundary
of the volume. The exact type of these conditions does not
matter, since photons only reach the boundaries at the end of
SR. The values of np defined above are the occupation
numbers of electromagnetic eigenmodes of this volume.

The arguments developed above allow the correction of a
weak point in the reasoning of Arecchi and Courtens which
brought us to Eqn (2.17): the shape of the train of emitted
waves is other than cylindrical. These waves take a time ts to
cross the end of the rod; therefore, Its � E0, which once again
brings us to Eqn (2.17).

The theory of SR has been pursued in several directions,
the most important being the SchroÈ dinger and the Heisen-
berg approaches, the semiclassical approximation. Each is
applicable for a particular range of parameters of the system,
and therefore these approaches are supplementary to one
another. These directions will be discussed later; here we just
point to the common methodological flaw of all these
approaches: like in Ref. [8], the mechanism of phasing
remains `behind the scenes', although practically all papers
on SR contain perfectly correct but methodologically useless
statements like ``... phase correlations between atoms arise
by virtue of the common radiation field...''. It would be
appropriate to quote a passage from Ref. [5] (p. 188) related
to the mechanism of transition from random to phased state
of the atoms: ``The nature of this transition, which displays
certain space, time and statistical properties, is not comple-
tely known''. Such a conclusion is apparently rooted in the
fact that the above approaches are based on quantum
concepts: operators, density matrix, averages over the
quantum ensemble, and the like. Obviously, this is the most
comprehensive description. Any lecturer, however, will agree
that the feeling of complete understanding can only be
achieved in the consideration of the quasiclassical limit. A
good example is the problem of quark confinement [42],
where the search for the classical solution with the string is
actively pursued, notwithstanding the fact that the issue has
been resolved to satisfaction by numerical quantum lattice
calculations.
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So one may hope that the nature of phasing of the atoms
will be better understood with the aid of the classical model of
superradiance (CMS) [43 ± 46], which treats the atoms as
classical Lorentz oscillators (generally speaking, anharmo-
nic), where the field is described by the classical Maxwell
equations.

According to the SchroÈ dinger approach [19, 20, 47],
detailed in Ref. [2], first constructed is the Liouville ±
Neumann quantum equation for the density matrix F of the
entire system (atoms� field), which is then used in the Born ±
Markov approximation which holds under condition (2.12)
for deriving the equation for the density matrix of atoms
r � SpF, where the trace is taken with respect to field
variables (`master equation'). In the Born approximation,
which holds in the limit of Eqn (2.12), F � rrf, where
rf � j0ih0j is the field density matrix in the initial (vacuum)
state. This approach does not take into account the distortion
of r and rf caused by the interaction between atoms and field,
which is similar to the conventional Born approximation in
the scattering theory [26, 48]. Under condition (2.12), the
energy of the field contained within the medium is smaller
compared with the energy stored in the atoms: the ratio of
these two energies is of the order ofL=cts 5 1. Because of this,
the back influence of the field on the state of the atomic
subsystem is small, and the calculations of the behavior of the
atomic subsystem may assume that the field occurs in the
vacuum state. The key role of the field occurring inside the
body consists in phasing the atoms, which does not require
any energy expenditure. One may presume that Born's
approximation becomes valid after the phasing is complete.

The Markovian approximation disregards the `memory'
effects which result from the elimination of field variables in
the equation describing the behavior of the matrix of atom
density r. The main memory effect is the retardation of
electromagnetic waves, which under condition (2.12) is of
little consequence. In this case the derivative dr=dt is
determined by the value of r�t� at the same instant, as each
subsequent jump of Brownian particle does not depend on its
history.

As pointed out in Ref. [2], a drawback of the SchroÈ dinger
approach is the complexity of the master equation, and hence
the lack of physical clarity. In this respect it falls short of the
Heisenberg and the semiclassical approaches that will be
discussed later and that have yielded more nontrivial results.
The greatest advances in the SchroÈ dinger approach have been
made in the framework of the one-mode model of SR [19 ±
21], which has a limited and not well fathomed range of
applicability. Apparently (although this has yet to be proved),
this model is good for thin rods with F5 1.

The idea of this review was conceived in connection with
the preparation of lectures, and one of its purposes is
therefore methodological. In a sense, this review is comprised
of two parts: SR in atoms, and SR in the system of classical
oscillators (CMS). The first part is of methodological interest,
since the known results are presented in a clear and simple
manner. The presentation also includes a number of original
results, some of which have been published in Ref. [46]. The
latter include the nonlinear effect of diminishing angular
divergence of the SR beam. The second part of the review is
mainly concerned with the original results (detailed calcula-
tions can be found in Ref. [46]). We start with the nonlinear
mechanism of phasing of atoms in the pointlike Dicke model
[43], and show that phasing disappears when the spread of
atomic frequencies is sufficiently large. Then we analyze

papers [49 ± 51], which point out the inconsistency of the
Dicke model which fails to include the dipole ± dipole
interaction. We show that the conclusions made in Refs
[49 ± 51] with regard to destruction of SR in small systems
[as defined by Eqn (2.4)] by dipole ± dipole interaction are not
correct. This interaction has been consistently taken into
account for a sufficiently general class of ellipsoidal bodies,
and the feasibility of SR in such bodies has been proved,
whichmay stimulate experiments with small bodies as defined
by Eqn (2.4). Metastable nonradiative states are discovered
which differ from their Dicke counterparts [8] assumed by the
body as a result of dipole ± dipole interaction between the
atoms. There are two mechanisms of phasing of atoms:
nonlinear and linear dipole ± dipole mechanisms. These
mechanisms compete with each other and act in opposite
directions: the first mechanism assumes that each atom
creates a cloud of surrounding atoms oscillating in sym-
pathy, whereas the second holds that the surrounding atoms
oscillate in antipathy. In this way, the dipole ± dipole
interaction results in screening of SR, a kind of coherent
blocking. The dipole ± dipole interaction is demonstrated to
be a long-range effect, which implies that the pattern of SR
depends considerably on the shape of the body. In ellipsoidal
bodies the dipole fields cancel out to some extent, and SR
proceeds in full agreement with Dicke's predictions [8].

This problem has three characteristic lengths: l, L, and
l � nÿ1=3. Below we consider the most interesting case of
N4 1; therefore, we always have l5L, and there are only
three possibilities that will be discussed in this review:

l5L5 l ; �2:42a�
l5 l5L ; �2:42b�
l5 l5L : �2:42c�
Along with the two-level systems where nonlinear phasing

plays a crucial role, we consider weakly linear systems Ð for
example, electrons in magnetized plasma Ð and perform
detailed calculations in the approximation of linear CMS.We
demonstrate that the transfer of collective cyclotron radiation
across the magnetic force lines, which is one of the manifesta-
tions of SR, may in principle be responsible for the effect of
anomalous energy transfer that defies theoretical treatment
and is observed in tokamaks, necessitating an increase of
dimensions of the installation.

At the end of the review we summarize the results and
formulate the issues that call for further investigation.

Further on we always disregard the noncoherent compo-
nent of radiation of the medium, assuming it to be small
compared with the coherent part. The noncoherent emission
of radiation by excited medium is well studied, and is
described by the Biberman ±Holstein equation (see, for
example, Ref. [11]). Like coherent radiation, it is resonant.

Let us now embark on the quantitative description of the
principal effects of SR.

3. Ensemble of atoms in an electromagnetic
field. Quantum mechanical description

This section pursues methodological goals. Here we express
the Hamiltonian of the system of atoms and field, and discuss
the main approximations.

Assume that there areN atoms whose nuclei bear charge z
and rest at points ra �a � 1; 2; . . . ;N�. The behavior of atoms
in the electromagnetic field Am�r; t� � �j;A� is described by
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the Hamiltonian (here and further �h � me � e � 1)

Ĥ �
X
a; s

�
1

2

�
ÿiHas � 1

c
A�ras; t�

�2
ÿ j�ras; t�

�
� u ;

where ras are the coordinates of electrons pertaining to atom a
(we disregard the exchange of electrons between the atoms);
s � 1; . . . ; z; u is the potential energy of electrons and nuclei.
The Hamiltonian is simplified in the dipole approximation
�qas � ras ÿ ra�:

A�ras; t� � A�ra; t� ;
j�ras; t� � j�ra; t� � qasHraj�ra; t� ; �3:1�

which holds under the condition

l4 a0 � 1 a:u:; �3:2�
where l is the characteristic wavelength.

In the SchroÈ dinger equation i qC=qt � ĤC for the wave
function of electrons C�ras; t� � C�r1s; . . . ; rN;s; t� we carry
out the gauge transformation

C�ras; t� � exp

�
ÿi
X
a; s

qasA�ra; t� ÿ i

�t
ÿ1

j�ra; t 0� dt 0
�
C 0:

By direct substitution we prove that the SchroÈ dinger
equation for the new wave function C 0 assumes the form
i qC 0=qt � Ĥ 0C 0, where

Ĥ 0 �
X
a; s

�
ÿ 1

2
H2
as

�
� u� v̂ ; �3:3�

v̂ � ÿ
X
a

daE�ra; t� ; �3:4�

where da � ÿ
Pz

s�1 qas is the operator of dipole moment of
atom a, and

E�r; t� � ÿHjÿ 1

c

qA
qt

is the electric field. Thus, the formulas (3.3), (3.4) hold for an
arbitrarily extended system of atoms under condition (3.2)
(and not under the condition L5 l, as it is sometimes
argued).

Following Ref. [8], let us consider the approximation of
two-level atoms, when only the two states with the wave
functions C1 and C2, and energies E1 and E2 �E2 > E1� are
taken into account. Levels E1 and E2 are assumed to be
nondegenerate.

The wave function of a two-level atom may be written in
the form c � c1c1 � c2c2, or as a two-component vector
e � �c1; c2�. Accordingly, the operator of any physical
quantity can be represented as a complex Hermitian
�2� 2� matrix acting upon the column e. Thus, the
description of states of a two-level atom is completely
similar to the description of states of the spin s � 1=2. In
particular, the states a and b with sz � �1=2 and sz � ÿ1=2
correspond to the upper and lower states of the atom. The
states of the system of N two-level atoms may be interpreted
as the eigenstates of operators t2 and tz, where s �PN

a�1 sa
is the total (energy) spin: c � jt;M; ai. Here M is the
eigenvalue of tz. The meaning of quantum number a is
explained in Ref. [1].

At first we shall disregard collisions and Doppler broad-
ening caused by the motion of atoms. The latter becomes

important in an extended body (2.42c). It will be rigorously
included in the analysis of SR in plasma.

After standard [28, 48] secondary quantization of the
electromagnetic field, the Hamiltonian of the system of
atoms and field becomes

Ĥ � Ĥ0 � v̂ ; �3:5�
Ĥ0 �

X
k

okĉ
�
k ĉk �

1

2
o0R3 ; �3:6�

v̂ �
X
k

� fkck � f �k c�k � ; �3:7�

fk �
�����������
2pok

v

r
�ek;Qk� � gk�R�k � Rÿÿk� ;

Qk �
X
a

d̂a exp�ikra� � d�R�k � Rÿÿk� :

Here we use the notation

R3 � Rz
0 �

X
a

sza ; Rz
k �

X
a

sza exp�ikra� ;

R�k �
X
a

s�a exp��ikra� ; �3:8�

and also denote the operators of annihilation and creation of
photons by ĉk, ĉ�k , the quantum numbers of photons
(momentum, polarization, m � �1) by k � �k; m�; ok � ck,

sza � 1 0
0 ÿ1

� �
a

� 2s za ;

s�a � 0 1
0 0

� �
a

; sÿa � 0 0
1 0

� �
a

;

gk �
����������������
2pok=v

p �ekmd�; v is the normalization volume,
d � h2jdj1i; ekm is the photon polarization vector. In the
transition from Eqn (3.4) to Eqn (3.7) we use the relation

d̂a � d�s�a � sÿa � �3:9�

and reverse the sign of ĉk, ĉ�k , which is a canonical
transformation not affecting the observables. This sign
convention is used in practically all works on SR.

Operators (3.8) satisfy the commutation relations

�Rz
k;R

�
k 0 � � �2R�k 0�k ; �R�k ;Rÿk 0 � � Rz

kÿk 0 : �3:10�

As usual, the apparent simplicity of the Hamiltonian (3.5)
for a many-body system conceals the diverse and complex
phenomena that we are going to study.

4. A Dicke model

In 1954 Dicke [8] looked into spontaneous radiation by a
system of atoms of small size brought at t � 0 into an excited
state, and found that it differs dramatically from the
conventional spontaneous radiation, when atoms radiate
independently of one another [see Eqns (2.1) ± (2.3)]. Cur-
rently this phenomenon is called superradiance, although the
original term coined by Dicke Ð collective spontaneous
radiation Ð is no less germane. Later it became clear that
the most striking feature of SR is not that it differs from
conventional spontaneous emission, but the fact that phase
correlations (phasing) arise between the initially independent
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atoms, which is rather similar to a phase transition of the
second order. This aspect of SR will be discussed later; here
we shall analyze Dicke's original work and its conventions,
and consider the quantum properties of SR.

The effects of propagation of electromagnetic waves,
which are important in extended bodies (2.15), bear no direct
relation to themechanisms of SR.Accordingly, and following
Ref. [8], we consider the case of Eqn (2.4) Ð that is, Eqn
(2.42a).

Dicke assumed that the main role is played by the wave
vectors near the resonance,

k � k0 � o0

c
� 1

l
; �4:1�

therefore, by virtue of Eqn (2.4), in Eqn (3.8) we may set

exp�ikra� � 1 : �4:2�

This, however, is not correct, since an important role in the
case of (2.4) belongs to the dipole ± dipole interaction of
atoms. We shall see shortly that this interaction embraces
the entire body Ð that is, it is characterized by the length L
and the wave vectors

k � 1

L
4

1

l
: �4:3�

We represent the Hamiltonians (3.5) ± (3.7) in the form
Ĥ � Ĥ1 � Ĥ2, where Ĥ1 and Ĥ2 include terms with, respec-
tively, k < k1 and k > k1, where k1 satisfies the condition
k0 4 k1 4 1=L. In the first sum �Ĥ1� the approximation (4.2)
holds that yields Dicke's Hamiltonian ĤD [8]:

Ĥ1 � ĤD � 1

2
o0R3 �

X
k

�
okc

�
k ck � gk�R�ck � Rÿc�k �

�
;

�4:4�

where R� �Pa s
�
a . Here we have dropped the nonresonant

terms R�c�k and Rÿck. They define the Lamb shift [5] which
we assume to be already included in o0. This is the
approximation of rotating wave [1, 2, 5, 31]. In addition, in
Ĥ1 we set k1 � 1. This leads to ultraviolet divergences
commonly encountered in electrodynamics, which are
resolved by renormalization [28] of the constants occurring
in Eqn (4.4). In the term Ĥ2 the field is the fast subsystem, and
the atoms are the slow one; this allows the separation of the
fast variables using the Born ±Oppenheimer method known
in the theory of molecules [26, 48]. So, we have

Ĥ2 �
X
k>k1

�okc
�
k ck � fkck � f �k c�k � :

According to the Born ±Oppenheimer method, at the first
step the atomoperators must be regarded as c-numbers. In Ĥ2

we select the `perfect square' Ð that is, perform the canonical
transform

ck � bk ÿ fk
ok

; �4:5�

which reduces the Hamiltonian Ĥ2 to the form

Ĥ2 �
X
k>k1

okb
�
k bk � Vd ; �4:6�

Vd � ÿ
X
k

1

ok
f �k fk � ÿ

1

2

X
a6�b
�da�a�db�bGab�rab�

� 1

2

X
a 6�b

1

�rab�3
�
dadb ÿ 3�das��dbs�

�
; �4:7�

Gab�rab� � 3sasb ÿ dab
�rab�3

: �4:8�

Here and further a; b; g . . . � x; y; z; the summation is carried
out with respect to repeated indices; s � nab � rab=rab,
rab � ra ÿ rb. Calculation of Eqn (4.7) is based on the
formulasX

m

�ekm�a�ekm�b � dab ÿ k̂ak̂b ; k̂ � k

k
;

�
d3k

�2p�3 k̂ak̂b exp�ikr� � ÿ3R̂aR̂b � dab
4pR3

;

where R̂ � R=R, R 6� 0. We also note that

1

v

X
k

Fk �
�

d3k

�2p�3 Fk ;

and take advantage of the fact that the main contribution to
the integral over k comes from k � 1=R � 1=L, and therefore
the integration can be extended to include k < k1. Observe
that the nonresonant terms are not important in Ĥ1, but they
are important in Ĥ2. If we drop them at the very beginning in
the initial expressions (3.5) ± (3.7), we get a result for Vd that
differs from Eqn (4.7) by a factor of 1=2.

Let us now write the final expression for the Hamiltonian
of the system of small size (2.4)

Ĥ � ĤD � V̂d : �4:9�

In Eqn (4.9) we have dropped the terms of the order of 1=c2,
which were retained in Refs [49 ± 51]. This approximation will
be proved rigorously later.

Dicke [8] disregarded the dipole interaction Vd, which is
not correct [49 ± 51, 1]. Indeed, the terms with the coupling
constant gk in Eqn (4.4) in the classical limit describe
radiation friction (we shall discuss this point again later in
connection with the CMS). The electric field that causes
radiation damping of oscillations of dipoles E1 � 2D

:::
=3c3 is

determined by the total dipole moment of the system
D �Pa da�t�, and by order of magnitude is
E1 � o3

0Nda=c
3 � Nda=l

3. The local electric field created by
dipoles is of the order of E2 � da=l

3 � nda. Accordingly,
E1=E2 � �L=l�3 5 1, which proves the mistake of Ref. [8].
As will be proved below, the inclusion of the dipole ± dipole
interaction radically changes the situation. The author is not
aware of publications that treat this interaction in a consistent
way, so we shall include here detailed calculations. Ellipsoidal
bodies exhibit compensation of dipole interaction; accord-
ingly, in this section we discuss Dicke's work [8] and its
implications under the assumption that Ĥ � ĤD:

Ĥ � Ĥ0 � v̂ ; Ĥ0 �
X
k

okĉ
�
k ĉk �

1

2
o0R3 ;

v̂ �
X
k

gk�R�ĉk � Rÿĉ�k � : �4:10�
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The total moment t is a conserved quantum number, since
�t2; Ĥ� � 0. It takes on the values 04t4N=2. Operator v̂
adds one to or subtracts one from zÐprojection of total spin
tz � �1=2�R3 Ð �Mf ÿMi � �1�, and creates or annihilates
one photon. If we `switch off ' v̂, we get a continuum of field
states, and an equidistant spectrum of states of matter,
independent of each other:

EtM � o0M ; ÿt4M4t :

According to Fermi's `golden rule', the rate of transition
�t;M� ! �t;Mÿ 1� is

lM �
X
k

��h1k; t;Mÿ 1jv̂j0; t;Mi��22pd�ok ÿ o0�

� �tÿM� 1��t�M�l0 ; �4:11�

where l0 � 1=t0 � 4o3
0d

2=3c3 is the rate of spontaneous
transition 2! 1 for an isolated atom. Assume that at t � 0
the system of atoms occurs in the state jt;M0i. As a result of
emission, the mean energy �E � o0

�M of the atoms decreases
according to the law d �E=dt � ÿI, where I � o0lM �
I0�t2 ÿM 2� is the total intensity of radiation, I0 � o0l0 is
the intensity of radiation of isolated atom. Assuming the
dispersion ofM to be small �DM5 t,M � �M� and using Eqn
(4.11), we find

M � ÿt tanh�lst�tÿ t0�
�

; �4:12�

I � I0
t2

cosh2
�
l0t�tÿ t0�

� ; �4:13�

where t0 is the pulse delay found from the initial condition

M0 � t tanh�l0tt0� : �4:14�
Especially interesting is the case of the system of atoms

completely inverted at t � 0:

t � N

2
�M0 : �4:15�

In order to find t0, in Eqn (4.14) we setM0 � tÿ k, k � 1 (this
exposes the mistake made by replacingM! �M). Then, to the
logarithmic accuracy, we have

t0 � 1

2l0t
ln t : �4:16�

From Eqn (4.13) we see that the delay time t0 is followed by a
strong �I � I0N

2� short �ts � 1=l0N� pulse. Note that
t0 � ts lnN4 ts.

Strictly speaking, result (4.13) only holds when k4 1 [2]
[the expression under the logarithm in Eqn (4.16) then must
be replaced by t=k], when the intensity fluctuations are small.
In the case of k � 1 there are substantial quantum fluctua-
tions:

DI
I
� 1 : �4:17�

In other words, at k � 1 we are dealing with a macroscopic
�N4 1� quantum system. Indeed, according to Eqn (4.12),
(4.13) the maximum of intensity occurs at the state with zero
inversion �M � 0�, attained by the system via the states
04M4 r, r � N=2. This takes the time t0 �

Pr
M�0 TM,

where TM is the time of transition jr;Mi ! jr;Mÿ 1i. The

dispersion of t0 is

Dt0 �
�
�t 20 ÿ ��t0�2

�1=2 � �X
M

�DtM�2
�1=2
�
�X

M

lÿ2M

�1=2

� ts ;

�4:18�

whence follows Eqn (4.17). The calculation of the mean pulse
delay

�t0 �
X
M

TM �
X
M

1

lM

again brings us to Eqn (4.16).
A direct quantum mechanical calculation of the mean

intensity and its dispersion is instructive. Assume that the
body occurs in state jii with energy Ei. Then the classical
formula (2.6) (see Ref. [28]) must be rewritten in the form

I �
X
f

4

3c3
�Ef ÿ Ei�4

��h f jDÿjii��2 ; �4:19�

where �h � 1, and from the total dipole moment of the system
D � Dÿ �D� �D� � dR�� we only retain the negative-
frequency part Dÿ. Then the sum (4.19) only includes terms
corresponding to the transitions of the system of atoms from
upper to lower levels, as it ought to be in the case of radiation
into vacuum (see Section 1). Making use of the completeness
of basis j f i, we transform Eqn (4.19) to the form

�I � hÎi ; �4:20�

Î � 4

3c3
Q�Q � I0R�Rÿ ; �4:21�

where I0 � �ho0l0, Q � �Ĥa�Ĥa;D
ÿ�� � o2

0dRÿ, Ĥa �
o0R3=2 is the Hamiltonian of atoms. Now we must recall
that the body is not a closed system, and is therefore
necessarily described by the density matrix r which we are
presently going to calculate. Hamiltonian (4.10) commutes
with operator �1=2�R3 �

P
k c
�
k ck; because of this, the sum of

the number of excited atoms and the number of photons is
conserved. Assume for definiteness that at t � 0 all atoms are
excited, and the number of photons is zero. Then the vector of
state of the system will be written in the form

jci �
XM�r
M�ÿr

cM�t�jr;Mi 
 jrÿM photonsi : �4:22�

The orthogonality of the photon states implies thatmatrix r is
diagonal: r � Spf

ÿjcihcj� � diag�rM�, where the trace (spur)
is taken with respect to field variables. Numbers rM on the
diagonals of matrix r are the populations of states jr;Mi and
obey the master equation which assumes the form of a kinetic
equation:

_rM � ÿlMrM � lM�1 rM�1 : �4:23�

Observe that the accuracy of this equation is very high (of the
order of 1=o0ts). An analytical solution of Eqn (4.23) is given
in Ref. [2] [see Eqn (5.33)]. It holds in the limit N4 1 and
permits calculation of the mean intensity:

�I � Sp�rÎ � �
Xr
M�ÿr

rMIMM ;
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where IMM � �ho0lM in accordance with Eqn (4.21), and the
dispersion of the intensityDI 2 � Sp

�
r�Î 2 ÿ ��I �2�, which once

again proves the validity of Eqn (4.17).
There may be some uncertainty concerning the physical

meaning of operator Î. Because of this, and so as to reconfirm
the quantum nature of the pointlike Dicke system of atoms,
we shall consider a direct experiment designed to measure the
characteristics of the system. Some distance r away from the
body, for the sake of simplicity in the wave zone �L5 r5 l�,
we place the Unruh detector [52 ± 54] which is a two-level
atom with the gap DE between levels jii and jfi (the operator
of its dipole moment we denote by d̂). In the neighborhood of
this atom, the Dicke system creates a field

Ê � 3q̂�q̂D̂� ÿ D̂

r3
; �4:24�

which excites the atom as a result of interactionÿd̂Ê (which is
considered sufficiently small). Observe that this interaction is
included in operator V̂d. Assume that the excited atom, by
contrast to the non-excited one, is capable of starting some
kind of chain chemical reaction. This means that it will be
easy to measure the probability W of excitation of the atom.
From perturbation theory we find

W � J �
��1
ÿ1

dtdt 0 exp
�
iDE�tÿ t 0��
i��D̂�t�D̂�t 0���i�; �4:25�

where D̂�t� � exp�iĤDt�D̂ exp�ÿiĤDt� is the operator of
dipole moment of the Dicke system in the Heisenberg
representation. If the system were classical, then the operator
D̂ in Eqn (4.24) could be replaced by the classical dipole
moment D; in place of Eqn (4.25) we would then get

J �
�����1ÿ1 dt exp�iDEt�D�t�

����2 : �4:26�

From equations (4.25) and (4.26) we conclude that the system
is classical (but made up of quantum microscopic objects)
under the condition


D�t�D�t 0�� � 
D�t��
D�t 0�� : �4:27�

The latter is only possible when the spread with respect to
quantum numbersM is small:

DM5N ; �4:28�

that is, in the state with small quantum fluctuations M. In
such states any two physical quantities obey the relation

hABi � hAihBi : �4:29�

These are packets of the form

c �
X
M

cMjMi ; �4:30�

where cM are slow functions of M localized near the mean
value �M �PM jcMj2M; 15DM5N, DM 2 �M 2 ÿ � �M�2.
As a matter of fact, in place of Eqn (4.30) we ought to write a
more rigorous expression which follows from Eqn (4.22)
upon replacement of jr;Mi by a packet of the form (4.30).

In the state of SR (with �M � 0) the spread ofM is large,

DM � N ; �4:31�

and therefore relation (4.27) does not hold. This follows from
Eqns (4.12), (4.18). Moreover, according to Eqn (4.22)
hDi � 0, and therefore the right-hand side of Eqn (4.27) is
zero, while the left-hand side is not.

It is interesting to observe the spreading of the systemwith
respect to quantum number M. Time-differentiating the
relations

�M �
X
M

MrM ; M 2 �
X
M

M 2rM ;

from Eqn (4.23) we get

d �M

dt
� ÿ

X
M

lMrM ;

dM 2

dt
� ÿ

X
M

�2Mÿ 1�lMrM � ÿ
X
M

2MlMrM ;

dDM 2

dt
�
X
M

�2 �Mÿ 2M� 1�lMrM � 2
X
M

� �MÿM�lMrM :

Hence, and from the expansion lM � l� l 0�Mÿ �M�, where
l � l �M, l 0 � dlM=dM (at M � �M), we get d �M=dt � ÿl,
dDM 2=dt � ÿ2l 0DM 2. Integrating these equations, we get

DM 2

DM 2
0

� l2

l2M0

; �4:32�

where DM 2
0 is the dispersion of M at t � 0. Assuming that in

the initial state DM0 � 1, from Eqns (4.11) and (4.32) we find
that DM 2 � �r2 ÿ �M 2�2=r2, whence follows Eqn (4.31).

We see that the Dicke system, flung into the upper
state, behaves as a typical microscopic quantum object. It
differs from a classical object in the same way as a
hydrogen atom differs from the hypothetical classical
atom with Keplerian orbits of size of order a0. However,
it is difficult or even impossible to stage an experiment
aimed at observing such behavior. The fact is that weak
random external forces at the very beginning of the
evolution bring the system into a classical state of type
(4.30). Further evolution is determined by the classical
equations of motion and is characterized by weak
fluctuations in accordance with Eqn (4.32): DM=N �
DM0=k5 1, k � rÿM0. Here M0 is the quantum num-
ber of the packet into which the system had collapsed as
a result of the measurement occurring in the course of
external interference. These ideas have been tacitly implied
in Ref. [2]. The feasibility of measurements without the
involvement of an observer is discussed in Refs [55 ± 57].
According to Refs [55 ± 57], it is the external world
possessing a great number of degrees of freedom that is
responsible for the irreversibility associated with measure-
ments. Hopefully, the mechanism of irreversibility will be
explained in the future.

Assume that we have staged a perfect experiment at
T! 0, and the external perturbations can be neglected. In
such a case, the initial Dicke state is disturbed by the dipole ±
dipole interaction which does not conserve the cooperative
quantum number t:

�t2;Vd� 6� 0 : �4:33�
At t � 0 all atoms occur in state j2i. If Vd is taken into
account, there is a small admixture of state j1i:c � j2i � aj1i,
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where

a � 1

�ho0

X
b

�Vd�ab �
nd 2

�ho0
;

and therefore at t � 0

hRÿi � hR�i � Na : �4:34�
Observe that the dipole ± dipole interaction has fluctuating
and permanent (long-range) parts (see below). The macro-
scopic characteristics of the body are determined by the
permanent part, which is reflected in Eqn (4.34); the
contribution from the fluctuating part is zero.

Let us now discuss the above-mentioned classical equa-
tions of motion and their implications that we shall need.
They are most readily derived from Heisenberg's operator
equations (such a derivation of classical equations is not
ridiculous, since there is no such thing as a classical two-level
atom). Recall that in the Heisenberg representation any
operator A satisfies the equation i�h dA=dt � �A;H�, where
currently we haveH � HD. The sought-for equations are

i _ck ÿ okck � gkRÿ ; i _c�k � okc
�
k � gkR� ;

i _Rÿ � o0Rÿ ÿ
X
k

gkR3ck ; i _R� � ÿo0R� �
X
k

gkR3c
�
k ;

i _R3 � 2
X
k

gk�R�ck ÿ Rÿc�k � : �4:35�

The next step consists in replacing the operators in these
equations with c-numbers Ð the mean of the packet (4.30)
[displaying the property (4.29)]. The first two formulas in
(4.35) are Maxwell equations. Noting that at t � 0 the field is
absent, we find

ck�t� � ÿigk exp�ÿiokt�
�t
0

exp�iokt
0�Rÿ�t 0� dt 0 : �4:36�

The electric field is connected with the operators ck, c
�
k (now

they are c-numbers):

E�r; t� �
X
k

ek

�����������
2pok

v

r �
ck exp�ij� � c�k exp�ÿij�� ; �4:37�

where j � krÿ okt. By contrast to ck, c
�
k , the field is an

observable variable.
We feel that a comment is due here. It is worth recalling

that the `field is force divided by charge' and to heed an
original standpoint (see Ref. [54] and references therein)
which argues that the observable is not the field, but rather
the response of detector to this field Ð that is, the
probabilities (4.25). From this standpoint (which essentially
is operationalistic) it is easy to resolve the paradoxes
contained in such questions as `does a charge hovering
above the earth radiate?', `does a uniformly accelerated
charge radiate?', etc. (these issues are discussed in Refs [39,
58, 59]). The nontrivial conclusion that follows consists in
admitting non-invariance and the provisional nature of the
concept of a particle [52, 60].

Obviously, the last three equations in (4.35) that describe
the behavior of atoms involve the electric field within the
limits of the system �r � L�. Hence, after substituting Eqn
(4.36) into (4.37) and carrying out summation with respect to
k, we see that the main contribution to E�r; t� comes from

frequencies ok and times t 0 such that

jok ÿ o0j9 c

L
; tÿ t 09

L

c
: �4:38�

This is the retardation of electromagnetic signals, and the
above substitution yields nothing else but the formula of
`retarded potentials' for E�r; t�. In the asymptotic range
r!1, the first expression in (4.38) is changed: the principal
role here is played by the resonant photons ok � o0, which
corresponds to the fully developed diverging electromagnetic
waves.

According to the third and fourth equations in (4.35),

R��t� � exp��io0t�F��t� ; �4:39�

where F��t� are functions that vary slowly compared with the
exponential coefficient:���� 1

F�

dF�
dt

���� � 1

ts
5o0 : �4:40�

Combining Eqn (4.39) with (4.36), we get

ck�t� � ÿigk exp�ÿiokt�Q ; Q �
�t
0

e1Fÿ�t 0� dt 0 ; �4:41�

where e1 � exp
�
i�ok ÿ o0�t 0

�
. Hence, from Eqn (4.38) and

(4.40) we see that under condition (2.12), which is satisfied
with certainty in the Dicke case (2.4), the quantity Fÿ in Eqn
(4.41) varies slowly compared with e1. From the second
relation in (4.38) we infer that we must factor Fÿ�t 0� out of
the integral Q and set t 0 � t: Q! Fÿ�t�

� t
0 e1 dt

0. If this only
concerns Eqn (4.41), this procedure is invalid. And yet, as
explained above, it gives a correct value of the electric field.

After these manipulations and integration with respect to
dt 0, we get the following replacement rule:

ck�t� ! ÿigkRÿ�t� f �ok ÿ o0� ; �4:42�

f �O� � 1ÿ exp�ÿiOt�
iO

� pd�O� ÿ iP

�
1

O

�
; �4:43�

where the latter approximation holds at o0t4 1 (see
Appendix A in Ref. [48]). After substitution of Eqn (4.42)
into (4.35), the last term in Eqn (4.43) gives a small frequency
shift o0 (known as the collective Lamb shift). The sign of this
frequency shift depends onR3, and is therefore different in the
beginning and at the end of SR (this is the effect of frequency
modulation [1]). Since the shift is small compared to o0, in
Eqn (4.43) we only retain the first term:

ck�t� ! ÿpigkRÿ�t�d�ok ÿ o0� ;

c�k �t� ! pigkR��t�d�ok ÿ o0� : �4:44�

Similar manipulations can be performed not only with c-
numbers, but also with the Heisenberg operators. The
operator relations (4.44) are the basis of the method of
elimination of boson variables which holds, as we have seen,
in the Markovian limit (2.12).

To avoid misunderstanding, the following explanation is
due. We split the space of wave vectors of photons into two
parts: k < k1 and k > k1. The latter gives the dipole ± dipole
interaction Vd. The photons from this range subsequently do
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not take part in any interactions, and therefore the first term
in Eqn (4.6) may be dropped, which leaves us only the
photons from the first range. It is for these photons that the
formulas of Eqn (4.44) hold; the second nonresonant term in
Eqn (4.43) can be neglected. Alternatively [2, 51], it is possible
not to define the two ranges of photons. Then the nonreso-
nant term in Eqn (4.43) givesVd [this is clear if only from Eqn
(4.5) which corresponds to Eqn (4.43) at ok 4o0]; the main
contribution to Vd comes from the range k > k1.

After substitution of Eqns (4.44) into the last three
expressions in Eqns (4.35), we get the equations for the
atomic subsystem with the eliminated field:

_Rÿ � ÿio0Rÿ � 1

2
l0R3Rÿ ;

_R� � io0R� � 1

2
l0R3R� ; _R3 � ÿ2l0R�Rÿ ; �4:45�

where we have noted that

l0 � 2p
X
k

g2kd�ok ÿ o0� � 4k3d 2

3�h
: �4:46�

Equations (4.45) also hold for operators. The noncommuta-
tivity ofR3,R� introduces a negligibly small inaccuracy of the
order of 1=N.

The existence of the integral of motion t2 (the energy
spin),

t2 � 1

4
R2

3 �
1

2
�R�Rÿ � RÿR�� ; �4:47�

allows Eqns (4.45) to be reduced to the equation _R3�
ÿ2l0�t2 ÿ R2

3=4� [in the case of c-numbers, the term in
parentheses in Eqn (4.47) is 2R�Rÿ]. Its solution with the
initial conditions (4.34) is given by Eqn (4.13), (4.13), where

t0 � 1

l0t
ln

1

a
: �4:48�

From the arguments developed above we conclude that
experimental observation of the quantum behavior of the
Dicke system is hardly possible, since it invariably passes into
the classical state.

The phenomenon of SR has an elegant electromechanical
analogy [61]. Consider a classical magnet with magnetic
moment M, which occurs at zero gravity in an external
magnetic field H0. The magnet experiences the action of
torque M�H0; it starts to rotate and therefore emits
radiation. Losing energy by radiation, it finally arrives at the
energeticallymost advantageous stateM k H0. This process is
described by equation [61] _M � gM� �H0 � h�, where g is the
gyromagnetic ratio, h � 2M

:::
=3c3 � ÿ2o2

0
_M=3c3, o0 � gjH0j.

This equation is easily integrable. For the projection of Mz

onto H0 we get a formula similar to Eqn (4.12), and the
intensity of radiation is given by a formula similar to Eqn
(4.13).

Let us now give a brief summary of this section. Assume
that at time zero there are no correlations between the atoms.
Then some of the atoms undergo spontaneous transitions
which lead to randomly occurring initial correlations of the
phases of atoms. These correlations escalate and lead to
collective emission. Observe that the mechanism of phasing
is implicitly incorporated in Dicke's solution, and will be
discussed specially in the sections to follow. We shall also

discuss the effects of the dipole ± dipole interaction of atoms
Vd, which was unduly neglected in Ref. [8]. We have already
mentioned some of these effects in this section. Under the
action of Vd, and influenced by weak external forces, the
Dicke ensemble of atoms behaves as a classical object. As
explained above, the reason is that the dipole ± dipole
interaction creates small initial correlations, and together
with spontaneous transitions triggers the mechanism of
phasing of atoms.

5. Nonlinear mechanism of phasing of atoms

As indicated above, SR depends on the effect of phasing of
atoms Ð that is, the inception of correlations between the
initially independent atoms. In the beginning of this section
we shall refine upon the meaning of these correlations and
their linkage with the phase correlations in a system of
classical dipoles. In Section 2 we noted that there are two
competing mechanisms of phasing. In this section we use the
pointlike Dicke model for analyzing the first of these Ð the
nonlinear mechanism of phasing.

We rewrite Eqns (4.20), (4.21) in the form

�I � I0�s� S� ; �5:1�

s �
X
a

hs�a sÿa i ; S �
X
a 6�b

Sab ; Sab � hs�a sÿb i : �5:2�

The first term in Eqn (5.1) describes spontaneous transitions
�s � N�. If Sab 6� 0, then S � N 2, so the second term
describes spontaneous emission.

In the Dicke model all atoms are equivalent, becauseVd is
dropped. Therefore, Sab are the same for all �a; b�, which
allows the calculation of these correlators:

hR�Rÿi � �t�M��tÿM� 1� � Nhs�1 sÿ1 i �N�Nÿ 1�Sab :

Disregarding infinitesimals of the order of 1=N, we find that

Sab � 1

N 2
�t2 ÿM 2� ; �5:3�

where we have used the relations

s�sÿ � 1� sz
2

; hsz1i �
1

N
hR3i � 2M

N
: �5:4�

If Sab 6� 0, this does not necessarily mean that there are
correlations between the atoms. For example, in the state

c �
YN
a�1

ja ; ja � c1j1ia � c2j2ia ; �5:5�

calculation gives hs�a i � c�1c2, hsÿa i � c1c
�
2, so Sab �

hs�a ihsÿb i 6� 0, but there are no correlations because
Qab �


�s�a ÿ hs�a i��sÿb ÿ hsÿb i�� � 0.
Observe that at

c1 � cos a exp
�
ib
2

�
; c2 � sin a exp

�
ÿ ib

2

�

and b � o0t� j, we have oscillating dipole moments hdai
from Eqn (2.5), whence we see correspondence between
quantum and classical description of atoms. Note, however,
that Eqn (5.5) is merely a special case of quantum states that
agrees with the classical description.
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The Dicke states jt;Mi do not belong to the class of Eqn
(5.5); for these states we have

hs�a i �

P

a s
�
a

�
N

� hR�i
N
� 0 ; hsÿb i � 0 ;

and therefore Sab � Qab Ð in other words, in the case of
Sab 6� 0 there are correlations between the atoms. In a sense,
the Dicke state and the state of Eqn (5.5) are extreme cases.
In the general case, a system of two-level atoms is described
by the density matrix r of the format 2N � 2N. In special
cases this matrix may split into fragments of lower
dimension, or be diagonal, etc. In comparison with the
classical case, the diagonal matrix r corresponds to a
completely stochastic atomic system Ð that is, to the
random initial phases ja.

If at t � 0 the system is brought into the Dicke state jt; ti,
then, according to Eqn (5.3), correlations are absent. As we
have seen, with time the system passes into states jt;Mi with
M < t, for which Sab 6� 0Ð that is, the atoms become phased
(correlated). The mechanism of phasing becomes clearer
when we consider the classical limit Ð the CMS as described
in Section 2.

This universal mechanism, proposed by A V Gaponov-
Grekhov in 1960 [36], is described in full detail in Ref. [37]. In
Ref. [43] it is demonstrated that this mechanism is responsible
for phasing in the system of classical nonlinear oscillators,
and eventually for the start of SR. It ought to be noted,
however, that the dipole ± dipole interaction in Ref. [43] was
traditionally neglected, which is not justified. In this review
we demonstrate that the dipole ± dipole interaction leads to
fast SR of some of the energy and to formation of a
metastable state (the effect of screening). In many cases of
practical interest, the nonlinearity at this stage is not
manifested. The simultaneous description of dipole ± dipole
interaction and the effect of nonlinear phasing is a challenge
for the future. One may anticipate that nonlinear phasing
destroys the metastable state and results in the release of the
remaining energy in the regime of SR. It is most likely that this
is what happens in the system of two-level atoms.

Following Ref. [43], we disregard the dipole ± dipole
interaction and consider one-dimensional charged oscilla-
tors �a � 1; 2; . . . ;N�, concentrated in the quasistatic region
L5 l:

�xa � o2
0�1� gx2a�xa � ÿ

2e2o2
0

3mc3

X
b

_xb ;

where the right-hand side represents the radiation friction.
After substitution

xa � b
�
Fa�t� exp�ÿiot� � F �a �t� exp�iot�

�
and up to the second derivatives of Fa, we get

_Fa � id
ÿjFaj2 ÿ 1

�
Fa � ÿ 1

2
b0
X
b

Fb ; �5:6�

where o � o0 � d, d � 3go0b
2=2, b0 � 2r0o2

0=3c,
r0 � e2=mc2; and b is the characteristic amplitude of oscilla-
tions.

From components of the complex dimensionless ampli-
tude Fa � Ra � ita it is convenient to construct a three-
dimensional two-component vector ra � �Ra; ta; 0�, with the

z-component equal to zero. Then the motion of the system of
oscillators is rather clearly represented by N points lying in
the plane �x; y�, and is described by the equation

va � x�ra� � ra � f ; �5:7�

where va � _ra, f � ÿb0=2
P

a ra, x�r� � ÿ0; 0;ÿd�r2 ÿ 1��.
Thus, the points perform a circular motion around the origin
of coordinates �x � y � 0�with angular velocityo � o�r�. In
addition, if the center of mass of the system of points
q0 �

P
a ra=N does not coincide with the origin, then the

system as a whole moves with the velocity f in the direction
opposite to r0.

In the case N4 1, the continuum approximation is
applicable. From conservation of the number of oscillators
qn�r; t�=qt� H�nv� � 0, and the property Hv � 0 that follows
from Eqn (5.7), we conclude that the movement of points is
similar to the flow of an incompressible fluid:

qn
qt
� vHn � 0 ; �5:8�

where n�r; t� is the density of points on the plane �x; y�.
The velocity v�r; t� is expressed, in accordance with Eqn

(5.7), in terms of this density:

v � x�r� � r� f�t� ; �5:9�

f�t� � ÿ 1

2
b
�
d2r rn�r; t� ; �5:10�

and so Eqn (5.8) for n�r; t� is nonlinear:
qn�r;j; t�

qt
ÿ d�r2 ÿ 1� qn

qj
� � fx cosj� fy sinj� qnqr

� �ÿfx sinj� fy cosj� 1
r

qn
qj
� 0 ; �5:11�

where j is the angle between r and the x axis.
Assume that at t � 0 the distribution of oscillators with

respect to phase is homogeneous, n�r;j; 0� � n0�r�. Then
from Eqn (5.11) it follows that this distribution is stationary:
n�r;j; t� � n0�r�. Let us analyze the stability of this distribu-
tion, for which we linearize Eqn (5.11) with respect to a small
perturbation n�1�:

n�r;j; t� � n0�r� � n�1��r;j; t� ;

qn�1�

qt
ÿ d�r2 ÿ 1� qn

�1�

qj
� � fx cosj� fy sinj�n 00�r� � 0 ;

�5:12�
f � ÿ 1

2
b0

�
d2r rn�1��r; t� : �5:13�

Now we expand n�1� in eigenmodes:

n�1� �
X1
n�ÿ1

nm�r; t� exp�imj� ; nm � n�m :

The mode with m � 0 must be assigned to n0�r�, and so
n0 � 0. Velocity f is determined by the dipole �m � �1�
modes: fx � �t� t��=2, fy � i�tÿ t��=2, where

t�t� � ÿpb0
�1
0

dr r2n1�r; t� :
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Hence, and from Eqn (5.12), we get

qn1�r; t�
qt

ÿ id�r2 ÿ 1�n1�r; t� ÿ p
2
b0t�t�n 00�r� � 0 ; �5:14�

qnm�r; t�
qt

ÿ imd�r2 ÿ 1�nm�r; t� � 0 ; m 6� �1 : �5:15�

According to Eqn (5.15), we have

nm�r; t� � nm�r; 0� exp
�
imd�r2 ÿ 1�t� ;

therefore as t!1 the modes m 6� �1 give a contribution to
n�r; t� that oscillates faster and faster as r varies. This means
that the modesm 6� �1 give a contribution to any observable
(the intensity of quadrupole radiation, etc.) that declines
exponentially as t!1.

The solution of Eqn (5.14) for the dipole mode is sought in
the form n1�r; t� � exp�pt�n1�r�, where p � p 0 � ip 00 is a
complex number, assuming a priory the existence of instabil-
ity �p 0 > 0�. Then we find

n1�r� � pb0n
0
0�r�

2
�
pÿ id�r2 ÿ 1�� t0 ; t0 �

�1
0

dr r2n1�r� :

Hence follows the equation t0D � 0; therefore

D � 1� b0N
2
�t1 � idt2� � 0 ; �5:16�

t1 �
�1
0

dr g0�r�r
pÿ id�r2 ÿ 1� ; t2 �

�1
0

dr g0�r�r2�
pÿ id�r2 ÿ 1��2 : �5:17�

Here we have introduced the function of a distribution of
oscillators with respect to the energy g0�r�:
g0�r� � �2p=N�n0�r�, normalized from condition�1

0

dr rg0�r� � 1 : �5:18�

Let us consider the interesting case of the small initial (at
t � 0) spread of oscillators with respect to the energy
DE=E5 1, when all points in the plane �x; y� are concen-
trated near the circle r � 1, displaced with respect to the
origin of coordinates by Dy in the positive direction of the y
axis. Since jzj � DE=E, where z � rÿ 1, we have

jzj5 1 : �5:19�

Formulas (5.17), (5.18) become simpler:

t1 �
�1
ÿ1

dz g0�z�
pÿ 2idz

; t2 �
�1
ÿ1

dz g0�z�
�pÿ 2idz�2 ;�1

ÿ1
dz g0�z� � 1 :

Let

g0�z� � Dz
p

1

z2 � �Dz�2 ;

then

t1 � 1

p� 2dDz
; t2 � 1

�p� 2dDz�2 :

Hence, and from Eqn (5.16), we get

p � ÿ2dDzÿ b0N
4
� b0N

4

������������
1ÿ iy
p

; �5:20�
where

y � 8d
b0N

; �5:21�

and the root must be taken with the positive real part. The
case of p 0 > 0 is only possible when the plus sign is selected in
Eqn (5.20), whence it follows that

p 0 � b0N
4
�ÿyDzÿ 1�D� ; �5:22�

where

D �
�
1

2

�
1�

�������������
1� y2

p ��1=2
:

At Dz 6� 0 the rotation of points about the origin of
coordinates is nonuniform Ð there is a spread Do with
respect to the frequency o. Points with r > 1 move clock-
wise, and those with r < 1 counterclockwise (for the sake of
definiteness we consider the case d > 0). Owing to the spread
of frequencies the perturbation n1 extends in the azimuthal
direction (with respect to j) and dies out, which is described
by the second term in Eqn (5.12). The third term describes the
effect of phasing of oscillators. Assume that at t � 0 all points
are concentrated in the upper part of the circle r � 1 (see
Fig. 7). Then, as a result of emission at the initial moment, the
circle as a whole will move down with the speed f Ð in the
negative direction of the y axis. The initial displacement of
particles along radius r depends on the initial angle j (phase):
Dr � Dy sinj. Each of these points starts rotating with the
frequency o � ÿ2dDy sinj counterclockwise; the points
j � 0 and j � p remain at rest and stay, as before, on the
circle r � 1 (with accuracy to Dy2). The points start to
concentrate near j � p. This is the initial stage of phase
grouping (Fig. 8). Subsequently, the motion of points
becomes more complicated, and no longer reduces to simple
grouping with respect to angle j.

In this way, the second and third terms in Eqn (5.22)
describe the formation of clusters of particles which leads to
release of the entire energy in the regime of SR. The first term

R

t

Figure 7. Phase distribution of oscillators in the initial state.
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describes the opposite effect Ð dissipation of clusters, which
may prevent the occurrence of SR. From equation (5.22) and
the condition p 0 > 0 we conclude that nonlinear `pumping' of
SR only occurs when the energy spread of oscillators is
sufficiently narrow:

DE
E
� Dz <

Dÿ 1

y
: �5:23�

Recalling that the dipole ± dipole interaction leads to coherent
phase-conserving blocking of radiation (screening) we have to
admit the complexity of phenomena that take place when all
of the above effects act at the same time. This is one of the
tasks for the future; our next step will consist in using the
linear CMS for analyzing the role of dipole ± dipole interac-
tion of atoms.

6. Equations of the classical model of
superradiance. Dipole mechanism of phasing

The quantum mechanical problem of SR is extremely
complicated. For example, the Heisenberg approach
requires solving the set of nonlinear operator equations. The
simplifying approximations, that will be discussed in the
sections to follow, have a limited and often ambiguous
range of applicability. Many difficult issues can be resolved
with the aid of the CMS; in this way, classical and quantum
approaches supplement one another. These issues include the
nonlinear mechanism of phasing, which has become clear in
the previous section after we dropped the dipole ± dipole
interaction. To understand the role of this interaction, we
are going to consider now the opposite extreme Ð disregard-
ing the effects of nonlinearity, we shall analyze the Lorentzian
model of atoms represented by charged harmonic oscillators.

Assume that springs are fixed at points with coordinates ra
�a � 1; . . . ;N�, which also contain the compensating charges
ÿe. Attached to the other ends of springs are point masses m
with charge e. The coordinate of the ath charge counted from
the point where the spring is attached is na. The potential
energy of the spring is assumed to be harmonic:
Ua � mo2

0x
2
a=2. In this way, we do not take the nonlinear

effects into account, nor the motion of atoms and the
associated Doppler broadening of spectral lines. This broad-
ening is small compared with the dipole ± dipole and natural
broadening. As far as the latter is concerned, observe that,
owing to the brevity of the process of SR, it is much greater
than the ordinary natural broadening for an isolated atom [8].

For the case of (2.42c) we shall consistently include the
Doppler broadening in the consideration, and prove its
importance Ð this is due to the large dimensions of plasma
to which the theory is applied. The motion of charges is
considered nonrelativistic (the relativistic effects will be
included at a later point), which allows us to disregard the
effects of the magnetic field and to write the equations of
motion in the form

m�na �mo2
0na � eE�ra; t� ; �6:1�

E�r; t� � e
XN
b�1

HHr �
�
HHr � nb�tÿ Rb=c�

Rb

�
; �6:2�

where Rb � rÿ rb. The expression for the electric field of the
dipoles is taken from Ref. [9].

Upon substitution of Eqn (6.2) into (6.1) we get an infinite
term in E�ra; t� with b � a. For the correct calculation of this
term one must `smear' the charges �e and ÿe over regions of
finite size. After that, na�tÿ Ra=c� must be expanded in
powers of 1=c down to (and including) terms of order 1=c3.
The term of zero order gives the proper field of charges ÿe
and �e. Obviously, the field of charge �e cannot accelerate
the charge, so the corresponding term is zero. The field of
charge ÿe creates the force that acts upon charge �e. This
force must be included in the stiffness of the spring and thus
formally eliminated. Thus, the harmonic potential is the total
net potential acting upon the charge ÿe. In other words, the
zero-order term leads to renormalization of the stiffness of the
spring. The term of first order in 1=c as follows from Eqn
(6.2), is zero. The second-order term in E�ra; t� reduces to
ÿ�4=3e�mf

�na, and must be included in the first term on the
left-hand side of Eqn (6.1). The quantity mf � ef=c2 (where ef
is the energy of the electromagnetic cloud surrounding the
dipole) is the mass of this cloud, and therefore must be
included in the mass m (renormalization of the mass). The
factor 4=3 at one time caused animated discussions on what
was known as `the 4=3 paradox'. The solution of this paradox,
given long ago by H PoincareÂ and other authors (see, for
example, Ref. [62]), consists in that one must take into
account those forces that are not described by classical
electrodynamics (chemical bonds, Van der Waals interac-
tion, etc.) and prevent the repulsion of components of the
charge. Finally, the term of the order 1=c3 is

Ef � 2

3c3
da
::: � 2e

3c3
na

::: � ÿ 2eo2
0

3c3
_na :

This term corresponds to radiation friction, which causes
damping of dipole oscillations in an isolated atom. Observe
that in a collective of atoms similar damping is caused by
terms with b 6� a. The approximation na

::: � ÿo2
0
_na allows

wrong solutions corresponding to the self-accelerated charge
to be avoided [9]. Such solutions arise because of the
approximate nature of the adopted procedure of elimination
of electromagnetic field variables from the equations of
motion (neglect of the terms of order 1=c4 and higher).
Thus, the system (6.1), (6.2) becomes

�na � o2
0na � g _na �

e2

m

X
b 6�a

HHa �
�
HHa � nb�tab�

rab

�
; �6:3�

where HHa � q=qra, rab � ra ÿ rb, tab � tÿ rab=c,
g � 2r0o2

0=3c, r0 � e2=mc2. Hereinafter we assume that

R

t

Figure 8.Nonlinear phasing of oscillators.
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g5o0, and, moreover, gN5o0, which corresponds to the
practically most interesting cases. Here gN is nothing else but
1=ts Ð the reciprocal of the characteristic time of SR ts (see
below).

The system (6.3) must be solved with the initial condition

t � 0 ; na � ga cosja ;
_na � ÿo0ga sinja ; �6:4�

where ga, ja are the initial amplitudes and phases of
oscillators. Since we are interested in the solution at t > 0,
we may assume that at t < 0 we have xa � 0. The initial
energy of the ath oscillator is

t � 0 ; E
�a�
0 � 1

2
m _n2a �

1

2
mo2

0n
2
a �

1

2
mo2

0g
2
a : �6:5�

In the case of an isolated atom, the right-hand side in Eqn
(6.3) equals zero:

na�t� � ga exp

�
ÿ gt

2

�
cos�o0t� ja� ;

Ea�t� � E
�a�
0 exp�ÿgt� ;

whence we see that in the comparison between the classical
and quantum results for a solitary atom we must take
g � l0 � 1=t0.

From Eqn (6.2) it follows that as r!1

E�r; t� ! e

rc2
n�

�
n�

X
b

�nb

�
t 0 � 1

c
nrb

��
; �6:6�

where t 0 � tÿ r=c, n � r=r, r is a vector drawn from the origin
of coordinates (whose position is arbitrary) to the point of
observation.

Calculating the Poynting vector

S � c

4p

�
E�r; t��2n ;

we find the intensity of radiation into the solid angle dO:

dI � dO
e2o4

0

4pc3
Q2 ; �6:7�

Q � n�
X
a

na

�
t 0 � 1

c
nra

�
; �6:8�

where we have noted that �na � ÿo2
0na.

The system (6.3) is much simplified by the substitution

na�t� � Fa�t� exp�ÿio0t� � F �a �t� exp�io0t� ; �6:9�

where Fa�t�, in accordance with Eqn (4.40), is a slowly varying
function compared with the exponential term. Dropping the
terms with �Fa�t�, setting Fb�tÿ rab=c� � Fb�t�, which is
justified in the case of Eqn (2.12) that is considered in this
section (the opposite situation will be discussed at the end of
Section 8.2), we get the equation for Fa:

_Fa � g
2
Fa � ib

X
b 6�a

HHa �
�
HHa

exp�ikrab�
rab

� Fb�t�
�
; �6:10�

where b � e2=�2mo0�, k � o0=c. According to Eqns (6.4) and
(6.9),

Fa�0� � Ba ; Ba � exp�ÿija�ga

2
: �6:11�

There are a number of processes in which the coherence is
lost [10, 11]: the collision quenching of atoms, which results in
a nonradiative inelastic transition, the break of phase of
atoms due to elastic collisions, etc. In the latter case, the
electron energy levels of the atom are perturbed when the
atom comes close to another one �En ! En � DEn�t��, and the
wave function of the nth state is multiplied by the phase
coefficient exp�ÿijn�,

jn �
1

�h

�1
ÿ1

DnE�t� dt :

The dipole moment of the transition n! n 0 is multiplied by
exp�ÿijn � ijn 0 �. Since these coefficients are different for
different atoms, and there is no correlation between them and
the coherence is destroyed. These processes are taken into
account by introducing the additional damping
g! G � g� gc, where gc � 1=T2 is the effective width that
accounts for these processes. We assume that tsgc 5 1, and
therefore gc will be dropped.

Equations of the CMS (6.3), (6.11) are linear, which
means that the sum of their solutions taken with arbitrary
coefficients is also a solution. This allows us to use the
formalism of Green's functions. For this purpose, we must
first find the solution of Eqn (6.3) n�b�a �t� (Green's function)
with the initial condition

t � 0 ; n�b�a � gb cos�jb�dab ; _n�b�a � ÿo0gb sin�jb�dab ;
�6:12�

where dab is the Kronecker symbol (dab � 0 if a 6� b, and
dab � 1 if a � b). A solution with the arbitrary initial
condition (6.4) is

na�t� �
X
b

n�b�a �t� : �6:13�

Let us consider the situation when at t � 0 the atoms are
completely non-correlated:


exp
�
i�ja ÿ jb�

�� � 0 : �6:14�

Because all phases are independent, we have

dI �
X
b

dIb ; �6:15�

where dIb is given by Eqns (6.7), (6.8), where na ought to be
replaced with n�b�a .

In subsequent sections we demonstrate that, even though
there are no correlations at t � 0, correlations arise in the
CMS at t > 0, and collective coherent effects develop. This is
another mechanism of phasing Ð the dipole mechanism. Let
us discuss it in greater detail.

Consider for definiteness the case of (2.42a), and evaluate
the intensity Ib for the pointwise initial condition (6.12). For
estimating Ib and ts it is sufficient to assume that atom b
oscillates with constant amplitude: nb � gb cos�o0t� jb�.
Atom b at the location of the initially nonexcited atom a
creates a resonant field Ea that starts to jolt the oscillator a:

Ea � eZb
R3

a

cos�o0t� jb� ; xa �
e2Zb

mo0R3
a

t sin�o0t� jb� ;
�6:16�

here and further Ra � rab � ra ÿ rb.
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For the purpose of making our estimates we assume that
the typical distance between the atoms is

Ra � L : �6:17�
After some time, the initial energy of atom b is distributed

between all the atoms of active medium. Their amplitude
becomes of the order of

xa �
1����
N
p Zb : �6:18�

Now there is a coherent ensemble of N atoms. Coherence
gives to the intensity Ib the factorN

2 (see Section 2); by virtue
of Eqn (6.18), however, there is also an additional factor of
�1= ����

N
p �2 � 1=N, so eventually Ib � NI0, where I0 is the

intensity of emission by a solitary atom. Hence follows the
estimate ts � eb=Ib � t0=N. According to Eqn (6.15), the
total intensity of radiation by a medium of initially non-
correlated atoms is of the order of I � NIb�N 2I0.

These arguments are correct in the sense that they
emphasize the importance of collective effects for the
emission of an atom surrounded by resonant partners, but
they are not exact. This is because estimate (6.17) is not
correct. This becomes clear if only fromEqn (6.16): xa falls off
rather rapidly as Ra increases, and, as will be shown in the
next section, this circumstance dramatically changes the
simple picture described above. We shall show that atom b
creates a cloud of dipole moments that oscillate in counter-
phase. This results in shielding that hampers the escape of
radiation. For this reason it would bemore correct to speak of
dipole antiphasing rather than phasing.

7. Effects of the dipole interaction of atoms
in the Dicke model

In this section we shall apply the linear CMS with a dipole ±
dipole interaction to a small-sized system (2.42a), in order to
refine the Dicke model. Unfortunately, the calculation can
only be carried through for ellipsoidal bodies, which,
however, is of some practical utility. A good deal of this
section is concerned with the effect of dipole shielding. At the
end of the section we give a critical analysis of the conclusions
of Refs [49 ± 51] regarding the destruction of SR by dipole ±
dipole interaction of atoms.

In the case l5L5 l, the expansion of the exponential in
Eqn (6.10)must be carried out down to and including terms of
order k3. The term of order k is zero, the purely imaginary
term of order k2 is small compared with the imaginary term of
the zero order and must be dropped. As proved at the end of
this section, attempts to include the term of order k2 lead to
contradictions. The term of the order of k3,

ÿ g
2

X
b 6�a

Fb ;

is real, and therefore must be retained. Equation (6.10)
reduces to the form

_Fa � g
2
F � ib

X
b 6�a

3nab�nabFb� ÿ Fb

�rab�3
; �7:1�

where nab � rab=rab,

F �
X
a

Fa�t� : �7:2�

In the index notation, Eqn (7.1) becomes

_Faa � g
2
Fa � ib

X
b 6�a

Gab�rab�Fbb ; �7:3�

where

Gab � 3SaSb ÿ dab
�rab�3

; S � nab ; a; b � x; y; z :

In equation (7.3) and later summation is carried out over the
recurring indices.

The Green function F �b�a �t� of Eqn (6.10) satisfies the
initial condition

t � 0 ; F �b�a � Bbdab : �7:4�
The solution with arbitrary initial condition (6.11),

similarly to Eqn (6.13), is

Fa�t� �
X
b

F �b�a �t� : �7:5�

Further on we assume that the medium is ellipsoidal in
shape. This includes the important particular cases of a
sphere, an ellipsoid of revolution, and a long thin rod. Let us
first consider the `point' solution of Eqn (7.3) F �b�a . To
simplify the notation, the superscript b will be dropped.

The intensity of radiation in the case l5L5 l is

I � 2

3c3
��D�2 � 2o4

0

3c3
�D�2 ; �7:6�

where

D � e
X
a

na � e
�
F exp�ÿio0t� � F � exp�io0t�

�
: �7:7�

Carrying out summation in Eqn (7.3) with respect to a, we
get

_Fa � gN
2

Fa � ib
X
b

tab�rb�Fbb ; �7:8�

where

tab�rb� �
X
a

Gab�rab� : �7:9�

The phenomenal feature possessed only by an ellipsoid is
the fact that tab does not depend on rb [63 ± 65] (see also
Appendix I). The quantity tab can be calculated by solving the
known problem of dielectric ellipsoid in a homogeneous
external electric field E0. The field inside the ellipsoid is

Ei � E0 � E 0 ;

where E 0 is the proper field of the ellipsoid created by all the
dipole moments of the ellipsoid:

E 0a �
X
b

Gab�rb�dbb � ÿ4pQabPb ; �7:10�

where P is the vector of polarization of the medium (dipole
moment of unit volume),

Qab � r�x�iaib � r�y�ja jb � r�z�KaKb ; �7:11�
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where i, j, K are unit vectors directed along the main axes of
the ellipsoid, the corresponding semiaxes are a, b, c; and r�x�,
r�y�, r�z� are the depolarizing factors

r�x� � abc

2

�1
0

dS

�S� a2�Rs
; �7:12�

where Rs �
���������������������������������������������������S� a2��S� b2��S� c2�p

.
The formulas for r�y� and r�z� follow from Eqn (7.12) after

replacing S� a2 in the denominator by S� b2 and S� c2

respectively. Observe that

r�x� � r�y� � r�z� � 1 : �7:13�

In particular, for a sphere

r�x� � r�y� � r�z� � 1

3
: �7:14�

We select a small sphere centered around atom a; then

E 0 � E1 � E2 ; �7:15�

where E1, E2 are fields created by dipoles occurring,
respectively, inside and outside the sphere. For physical
reasons,

P
b 6�a Gab�Rb�dbb � E2a. Noting that db � d � const

for an ellipsoid, we find that

E2a � tabdb � tabPb

n
: �7:16�

The field E1 is nothing other than the field inside a sphere
with homogeneous polarization �P � const� [63 ± 65]: E1 �
ÿ4pP=3. Hence, from Eqns (7.10), (7.15) and (7.16) we get

tab � 4pn
�
1

3
dab ÿQab

�
: �7:17�

As follows fromEqns (7.11), (7.14), (7.18), for a sphere we
have

tab � 0 : �7:18�
The above formula for E1 calls for special consideration.

It holds for ``simple, face-centered and body-centered cubic
lattices, as well as for isotropic media'' (quoting from Ref.
[64], p. 81). The latter is of special interest for experiments
with SR, since such experiments are usually designed or
staged in gaseous, liquid or amorphous bodies. As argued in
Ref. [63] (Section 35), a medium may be considered isotropic
when the ``gas molecules are chaotically distributed in space,
and the position of any one practically does not depend on the
positions of others''. According to Ref. [63], by E1 one should
mean the time-averaged field of dipoles located inside the
selected sphere of small radius.

Formula (7.1) allows the substantiation of these state-
ments. As a result of motion of atoms, the terms E1 and E2 in
Eqn (7.15) fluctuate. Fluctuations of E2 may be neglected,
since the relevant atoms are far away. Fluctuations of E1 are
substantial, and are caused by the motion of atoms closest to
b, which is characterized by the time l=vT and the impact
parameter r � l. Less frequent collisions with smaller target
parameters result in dephasing. According to Eqn (2.10), they
should be neglected. Since l=vT 5 ts, the second term on the
left-hand side of Eqn (7.1) must now be dropped. Assuming
that fluctuations of Fa are small, we write these vectors in the
form Fa � F 0a � F 00a , where F

0
a is the constant part, and F 00a is

the fluctuating part �jF 00j5 jF 0j�. According to Eqn (7.1), the
change of F 00a over the time Dt (where l=vT 5Dt5 ts) is

DF 00aa � ibn0Dt
X
b 6�a
h fabiF 0bb ;

where n0 � vT=l is the characteristic frequency of collisions,
angle brackets denoting averaging over all possible collisions
of the quantity fab �

�1
ÿ1 Gab dt. Integration here is carried

out over the straight path of atom a relative to atom b. It is
easy to see that averaging over the directions of relative
velocity of atoms yields zero �h fabi � 0�, therefore DF 00a � 0,
which was to be demonstrated. At the same time we proved
that the continuum approximation (2.35) can be used in the
calculation of E 0.

From arguments developed above we see that the
approximation of isotropic continuous medium is valid
under the condition bj fabj5 1, that is,

e2

mo0vTl 2
5 1 :

This relation is easily extended to the quantum case of two-
level atoms if we recall that the matrix element of the
coordinate of the oscillator is, in order of magnitude, equal
to x01 �

��������������
�h=mo0

p
:

d 2

�hvTl 2
5 1 : �7:19�

In other words, the phases jn (see the end of Section 6) for
collisions with r � l must be small. In the optical band, the
criterion of isotropicity and continuity (7.19) is written in the
form n5 2� 1021 cmÿ3 and is satisfied with certainty.

From Eqn (7.8) and tab�rb� � const it follows that

_Fa � gN
2

Fa � ibtabFb : �7:20�

According to Eqn (7.4), the initial condition for F is t � 0,
F � Bb � Bbxi� Bbyj� BbzK. Hence, and from Eqns (7.4),
(7.7), (7.11) we get

F�t� � Fxi� Fyj� FzK ; �7:21�

Fx � Bbx exp

�
ÿioxtÿ gN

2
t

�
;

Db�t� � D�b�x i�D�b�y j�D�b�z K ; �7:22�

D�b�x � eZbx cos
��o0 � ox�t� jb

�
exp

�
ÿ gN

2
t

�
;

where ox � od

�
3n�x� ÿ 1

�
, od � 4pbn=3.

The expressions for Fy, Fz and Dy, Dz follow from Eqns
(7.21), (7.22) after replacing the subscript x with y and z,
respectively. Expressions (7.22) define the dipole moment for
the pointwise initial conditions (6.2), (7.4). Because the
situation is linear [see Eqn (7.5)], the dipole moment of the
medium with arbitrary initial condition (6.4), (6.11) follows
from summation of Eqn (7.22) with respect to all atoms b:

D � Dxi�Dyj�DzK ;

Dx � e
X
b

Zbx cos
��o0 � ox�t� jb

�
exp

�
ÿ gN

2
t

�
: �7:23�
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Given that �D�2 � �Dx�2 � �Dy�2 � �Dz�2, let us average
�Dx�2 with respect to fast oscillations with the period 2p=o0:

hD2
xi �

1

2
e2 exp�ÿgNt�

X
a; b

ZaxZbx cos�ja ÿ jb� :

Accordingly,

hD2i � 1

2
e2 exp�ÿgNt�g ;

where

g �
X
a; b

�gagb� cos�ja ÿ jb� : �7:24�

Hence, and from Eqn (7.6) we get

I � 4e2o4
0

3c3
g exp�ÿgNt� : �7:25�

Consequently, the total released energy is

Er �
�1
0

I dt � mo2
0g

2N
:

The initial energy of oscillators is given by Eqn (6.5):

E0 �
X
a

E
�a�
0 �

1

2
mo2

0

X
a

Z2a :

For the ratio of these two energies we have

x � Er

E0
� g

N
P

a Z2a
: �7:26�

Let us prove that x4 1. From Eqn (7.24) we have
g �Pa; b ZaZbqab, where Za, Zb are the magnitudes of the
relevant vectors, qab � cos�aab� cos�ja ÿ jb�, and aab is the
angle between vectors Za and Zb. Obviously, qab 4 1, and
therefore g4

P
a; b ZaZb. Since

���������
ZaZb
p

< �Za � Zb�=2, we haveX
a; b

ZaZb 4
X
a; b

�
Za � Zb

2

�2

� 1

4

X
a; b

�Z2a � Z2b � 2ZaZb�

� 1

2
N
X
a

Z2a �
1

2

X
a; b

ZaZb :

From this inequality it follows that
P

a; b ZaZb 4N
P

a Z
2
a, and

x4 1.
Now let us show that x5 0. Consider the expression

b � 
�Pa ga cos�ja �C��2�, where the angle brackets
denote averaging with respect to a random auxiliary phase
C. Now we have

b �
X
a; b

gagb



cos�ja �C� cos�jb�C�� � g

2
:

Given that b5 0, we conclude that x5 0. We see that
04x4 1, and only part of the energy is released. The
question is where the rest of the energy goes.

The reason is that, as a result of dipole ± dipole interac-
tion, the active medium goes into the metastable coherent
state with D � 0. The remaining energy is released over a
much longer time as quadrupole radiation, or in the course of
decay of the metastable state through interatomic collisions.

Let us consider the extreme case N!1 (an infinite
medium). In order to identify the metastable states, the
solution of Eqn (7.3) must be sought in the form

F � 0 ; Fa�t� � Sa exp�ÿiot� : �7:27�

For the amplitudes Sa we get the equation

ÿoSaa � b
X
b

Gab�rab�Sbb ; �7:28�

whose solution is sought in the form

S�b�aa � Bbadab � Gab�rab�Dbb : �7:29�

From Eqns (7.28) and (7.29), making use of the formula
(see Appendix II)X
b

Gab�rab�Gbg�rbc� � ÿ 4pn
3

Gag�rac� � 32p2n2

9
dagdac �7:30�

we get the set of equations

ÿoB � 8pnod

3
D ; ÿoD � bBÿ odD :

Setting its determinant equal to zero, we find two roots:

o1 � ÿod ; o2 � 2od : �7:31�

These two frequencies correspond to two solutions

F �b�a �t� �
�
Bbdab � 3

8pn
3nab�nabBb� ÿ Bb

�rab�3
�
exp�iodt� ;

F �b�a �t� �
�
Bbdab ÿ 3

4pn
3nab�nabBb� ÿ Bb

�rab�3
�
exp�ÿ2iodt� ;

�7:32�

which describe excitations of the active medium localized on
atom b.

Formulas (7.30) ± (7.32) are accurate (see Appendix II)
down to the terms of order 1=N, which in an infinite medium
are zero. Because of this, it is not possible to use Eqn (7.32) for
calculating the dipole moment of the medium, so as to prove,
for example, that it equals zero. For a sphere, for example,
from Eqns (7.18) and (7.32) it follows that

F � Bb exp�ÿiot� 6� 0 :

However, after we supplement F �b�a in Eqn (7.32) with

ÿ 1

N
Bb exp�iot�

the dipole moment of the medium becomes to zero. Because
of this, in the future it would be interesting to find the solution
of Eqn (7.3) accurate down to terms of the order of 1=N
inclusively, for a medium of arbitrary shape. In any case, the
above solution for an ellipsoid, the calculation of the dipole
moments, and all the inferences are true. Indeed, let us assume
that in the calculation of tab we have made an error of the
order of 1=N. Then for an ellipsoid we would get

tab�rb� � tab � n

N
Qab�rb� ; �7:33�
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where tab is our former expression (7.17), Qab�rb� are
dimensionless quantities of the order of unity. From Eqns
(7.8) and (7.33) then follows the equation [cf. Eqn (7.20)]

_Fa � gN
2

Fa � ibtabFb � ibn
N

X
b

Qab�rb�Fbb :

For the sake of simplicity let us consider the case of a sphere:
tab � 0. It is obvious that the quantities Qab�rb� change
considerably only on the characteristic scale of the medium
�rb � L�. For evaluating the necessary corrections by order of
magnitude it is sufficient to consider the case Qab � Qdab,
where Q � 1. Then in place of Eqn (7.21) we get

F�t� � Bb exp

�
ÿ gN

2
t� ibn

N
Qt

�
:

Since N4 1, these corrections may be neglected.
Solutions (7.32) are just particular cases of metastable

states. Such an arbitrary state has the form Fa�t� �
P

b F
�b�
a ,

where F�b�a is a linear combination of the two solutions from
Eqn (7.32). The eigenmodes in Eqn (7.32) are of the same
physical nature as polaritons (see Section 10); since L5 l,
however, they do not propagate in the medium. Such
oscillations could be termed quasistatic polaritons.

The case x � 1 corresponds to completely coherent
pumping (with p-pulse),

j1 � j2 � . . . � jN ; g1 � g2 � . . . � gN ;

and is the classical counterpart of the problem considered by
Dicke [8]. From equation (7.25) it follows that in the system of
classical oscillators pumpedwith p-pulse there is no shielding,
and SR occurs �I � N 2�. A special feature is the zero time lag
of the burst of SR. These characteristics indicate that Dicke's
theory holds when the pumping of an ellipsoid medium is
completely coherent, and also point to some kind of
compensation of dipole ± dipole interactions of atoms in this
case. It is quite obvious that considerable deviations from
Dicke's theory will be observed formedia of a different shape.

This analysis allows us to make several important
conclusions.

According to Ref. [8], Dicke's states jt; ti are metastable
[this is clear from Eqn (4.11)]. This conclusion, however, is
not true, because in accordance with Eqn (4.33) such states
are destroyed by dipole ± dipole interaction.

In this sectionwe considered the linear CMS.At the end of
Section 8.1 we prove that the conclusion regarding the
compensation of dipole ± dipole interaction between atoms
in a body of ellipsoidal shape with homogeneous pumping
also holds for the more realistic model of two-level atoms.

The effects of screening discussed in this section are
characterized, as we have seen, by the time 1=od. All
conclusions derived here are true in the approximation of an
isotropic continuous medium, which holds when
1=od 4 l=vT. It is easy to see that this condition is equivalent
to Eqn (7.19), and therefore is satisfied.

Special attention must be paid to the terms of order k2,
dropped very early in this section. According toRefs [49 ± 51],
these terms lead to decorrelation of atoms, which means that
SR is not feasible in the systems (2.4). This conclusion,
however, is wrong.

These terms belong to relativistic corrections �� 1=c2� to
the equations of motion of atoms. The Lagrangian of atoms
to this accuracy is L � L0 � L1 � L2 [9], where L0 is the

nonrelativistic Lagrangian (which includes Vd),

L1 �
X
a

m� _na�4
8c2

; L2 � e2

4c2

X
a 6�b

1

rab

�
_na

_nb � � _nanab�� _nbnab�
�
:

Only L2 was considered in Refs [49 ± 51], while the relativistic
correction to the kinetic energy L1 was disregarded. Since
m _n2a � e2=a0 in an atom, we have

L2

L1
� a0

l
5 1 : �7:34�

This means that a much greater nonlinear term L1 was
discarded in Refs [49 ± 51], which, in accordance with Section
5, is responsible for the correlation (phasing) of atoms.We see
that the term L2 must be discarded. Inclusion of L1 for the
systems of two-level atoms is not justified, since there is strong
nonlinearity anyway. The term L1 is of key importance in
cyclotron resonance masers [37, 40, 41]. For transfer of
cyclotron waves in a magnetized plasma, this term in the
Lagrangian may be neglected (see Section 12).

The main result of this section consists in justification of
the feasibility of SR in the case of homogeneous pumping of
small bodies �L5 l� of ellipsoidal shape. Relevant experi-
ments can be based on the method of electron paramagnetic
resonance (EPR), using a generator of microwave pulses with
wavelength 3 cm and duration 1 ms, and an electromagnetic
field energy flux density of about 3W cmÿ2. Another result of
this section is that we have duly accounted for the dipole ±
dipole interaction of atoms that causes the shielding effect.
We also noted the strong dependence of SR on the shape of
the body. The problem of SR by a body of arbitrary shape is a
challenge for the future.

8. Superradiance in extended bodies
in the Markovian limit

As indicated in Section 2, of special practical interest is SR in
extended bodies �L4 l�. Surprisingly, despite a considerable
phase gain over the size of the body, the physics of SR in this
case differs little from what happens in a small body �L5 l�:
again the phasing of atoms with a subsequent burst of SR. So,
let us analyze the effect of SR in the Markovian limit
l5L5 cts.

First we are going to consider SR in a system of two-level
atoms. The problems encountered in this quantum-mechan-
ical approach will be resolved with the aid of a CMS.

8.1 Two-level atoms
To simplify our treatment, let us first consider the case of
(2.22) when, in accordance with Sections 2 and 4, new
electromagnetic waves form after each scattering by the
atoms (the case l5 l will be considered later). In the
beginning of this section we shall be partly guided by Ref. [1].

Our aim consists in calculating the intensity of radiation

I � ÿ
�
dĤa

dt

�
� ÿ 1

2
�ho0h _R3i : �8:1�

This formula holds under condition (2.12), when the radia-
tion is not delayed inside the body.

TheHeisenberg equation for _R3 follows fromEqns (3.5) ±
(3.10):

i _R3 � 2
X
k

gk�R�k ck ÿ Rÿk c
�
k � : �8:2�
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Here and further, in accordance with Eqn (2.22) and the
results of Section 4, we drop the nonresonant terms likeR�c�,
Rÿc, etc. Now the set of equations must be closed, for which
purpose we write out the equations for photon operators:

i _ck � okck � gkR
ÿ
k ; i _c�k � ÿokc

�
k ÿ gkR

ÿ
k ;

where the nonresonant terms are dropped again. From this,
using the method of elimination of boson variables (see
Section 4), which holds in the Markovian limit (2.12), we
find [cf. Eqn (4.44)]:

ck � ÿpigkd�ok ÿ o0�Rÿk ; c�k � pigkd�ok ÿ o0�R�k : �8:3�

Hence, and from Eqns (8.1), (8.2), carrying out summation
with respect to the polarization of the photons, we get [cf.
Eqns (5.1), (5.2)]

I �
X
k

Ik � I0
4p

�
dOk fk�S0 � Sk� ; �8:4�

Ik � 4�ho0pk�S0 � Sk� ;

S0 �
X
a

hs�a sÿa i �
1

2
N�1� s� ; �8:5�

Sk �
X
a 6�b

Sab exp
�
ik�ra ÿ rb�

�
; �8:6�

_s � ÿl0�1� s� ÿ l0
2pN

�
dOk fkSk ; �8:7�

pk � 2p2ok

v
�k̂� d�2d�ok ÿ o0� ; �8:8�

fk � 3

2
�k̂� d̂�2 ; d̂ � d

d
; s � hR3i

N
: �8:9�

In equations (8.4) and (8.7) integration is carried out with
respect to directions k. In equations (8.4) ± (8.9) it is assumed
that the excited atoms are distributed uniformly within the
body, which implies that the quantities

Lab � hszaszbi ; s � hszai �8:10�

do not depend on the subscripts �a; b� (since �sza�2 � 1, we
assume that a 6� b). The first necessary condition of homo-
geneity (8.10) is the uniform pumping of the atomic system,
which is easily attained in the case of (2.12). The second
condition of homogeneity is expressed by Eqn (2.27). Later in
this section we demonstrate that SR is a narrow beam (or
rather two oppositely directed beams) directed along the axis
corresponding to the largest dimension of the body (we call it
the main axis of the body). The RCI, associated with a given
atom, is stretched along the axis of the body and is of the same
shape as the similar region of another atom; therefore the
atoms occur under similar conditions. The condition of
homogeneity is not satisfied only for a small proportion of
atoms located in the surface layer of thickness R=

���
F
p

.
Analysis indicates that the above condition is satisfied for
the practically interesting case of considerably elongated
bodies �R5L�.

Along with the condition of homogeneity (8.10), we use
the assumption that the atomic subsystem is classical, which
was discussed in Section 4 [cf. Eqn (4.28)]:

DR3 5N or hR2
3i � hR3i2 : �8:11�

Summing up Lab over indices, from Eqns (8.10), (8.11) we
get X

a 6�b
Lab � N�Nÿ 1�Lab �

X
a; b

hs z
as

z
a i ÿ

X
a


�s z
a �2
�

� hR2
3i ÿN � hR3i2 ; hs z

as
z
b i � hs z

a ihs z
b i � s2 ;
�Rz

k�2
� � hRz

ki2 �
X
a

�1ÿ s2� exp�2ikra� � hRz
ki2 :

From these relations we conclude that the operators sza and
Rz

k may be regarded as c-numbers:

ŝ z
a � s ; R̂z

k � sNp�k� ; �8:12�
where

p�k� � 1

N

X
a

exp�ikra� :

This validates the rule for uncoupling the operators used in
Ref. [1] without proof (Section 4.1.4):

hs z
as
�
b s
ÿ
c i � hs�b s z

as
ÿ
c i � hs�b sÿc s z

a i � hs z
a ihs�b sÿc i : �8:13�

With due account for Eqn (8.12), the Heisenberg equation
for s�a is (the equation for sÿa is obtained through Hermitian
conjugation):

ds�a
dt
� io0s�a � s

X
k

pk exp
�
ik�rc ÿ ra�

�
s�c : �8:14�

Hence, after some straightforward algebra, we find [1]

dSk

dt
� 1

2
l0 fkg0�k�N 2s�1� s� � l0K�k�NsSk : �8:15�

The formfactors of the medium are given by

K�k� � fkg�k� ;

g�k� � 1

4p

�
dOk 0 p�k0 ÿ k� � 1

V

�
V

d3r
sin kr

kr
exp�ÿikr� ;

g0�k� �
1

4p

�
dOk 0

�� p�k0 ÿ k���2 ; �8:16�

where in the second expression we carry out integration over
the volume of the body V. Owing to the resonant nature of
relations (8.13), in Eqns (8.6), (8.7), (8.15) and (8.16) we have
k � k 0 � o0=c. The derivation of Eqn (8.15) was based on the
property of formfactor p�k0 ÿ k� which states that k0 deviates
from k by no more than a small diffraction angle:
jk0 ÿ kj=k91=kR. This property allows us to set k0 � k in all
expressions which involve the formfactor, which can be done
under condition (2.27).

Equations (8.7), (8.15), obtained in Ref. [1], comprise a
closed system that describes SR in a sample with the proper-
ties l5L5 cts, F4 1. The function Sk describes the
correlations of atoms, and s describes their inversion: the
number of atoms in the upper and lower states isN�1� s�=2.
Let us consider the most interesting case of noncoherent
pumping

s � 1 ; Sk � 0 at t � 0 ; �8:17�

which corresponds to the complete inversion of atoms and
absence of initial correlations. From Eqn (8.15) we see that
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the correlations of atoms arise because of the first term on
the right-hand side (the second term at t � 0 is zero), which
corresponds to spontaneous radiation [this is also clear from
Eqn (8.7)] averaged over the initial state of the atoms.
Strictly speaking, the first term is only defined with an
accuracy down to a factor of b � 1, since earlier we
neglected the noncommutativity of atomic operators when
substituting Eqn (8.3) into (8.2) and other expressions
containing ck and c�k . In this way, the first term describes
the creation of order out of chaos as a result of the initial
fluctuation. The magnitude of this fluctuation is not
essential, since, as follows from the analysis of Eqn (4.16),
the dependence on b is logarithmic.

The second term inEqn (8.15) describes nonlinear phasing
of two-level atoms. It only occurs in the presence of inversion
�s > 0�, which points to the key importance of coherent
induced processes in the phasing of atoms (see Section 2). If
we take relaxation into account, the right-hand side of Eqn
(8.16) will feature the term ÿSk=T2, which indicates that,
similarly to the point of phase transition in the case of
equilibrium phase transition of the second order, there is a
threshold condition of the beginning of SR:

l0K0Ns >
1

T2
; �8:18�

where K0 � K�k0�, and k � k0 is the direction of maximum of
K�k� along which the SR is directed (see below). Formula
(8.18) specifies the threshold condition of SR as shown in Figs
3 and 4. Hereinafter we assume that T2 !1 in accordance
with Eqn (2.10).

The author was unable to find the solution of the
equations of SR (8.7), (8.15) in literature, so this solution is
given below.

In the `region of formation of SR' �t5 t0�, in accordance
with Eqn (8.17), from Eqn (8.15) we get

Sk�t� � g0
g
N�expNl0Ktÿ 1� :

Therefore, at ts 5 t5 t0 we have

Sk�t� � g0
g
N expNl0Kt : �8:19�

In the `region of SR' t4 ts, which overlaps with the region of
formation of SR, the terms with spontaneous transitions are
small, and therefore Eqn (8.17) and (8.15) become

_s � ÿ l0
2pN

�
dOk fkSk ; �8:20�

_Sk � l0K�k�NsSk : �8:21�

The solution of Eqn (8.21) is sought in the form

Sk � exp K�k�F�t� ; �8:22�

then from Eqns (8.20), (8.21) we get

s � 1

Nl0

dF
dt

; �8:23�

d2F
dt 2
� l20
2p

�
dOk fk exp K�k�F�t� � 0 : �8:24�

Multiplying Eqn (8.24) by dF=dt, we find its first integral�
dF
dt

�2

� l20
p

S � U0 ; �8:25�

S �
�
dOk

g�k� exp K�k�F�t� ; �8:26�

where U0 is the integration constant. Observe in anticipation
that the small neighborhoodF � F0 4 1 is important for SR.

Assume that the body is oblong. Then in a certain
direction k � k0 the function K�k� has an absolute maximum
K0. Since K�k� � K�ÿk�, a precisely similar maximum occurs
in the opposite direction. As will be proved later, in these two
directions ��k0� the exponential in Eqn (8.26) exhibits sharp
maxima, and practically all the radiation goes this way.

We align the z axis with k. In the case of interest (2.27) the
contribution to g�k� from Eqn (8.16) comes from the region
close to the z axis [see Eqn (2.29)]. Under condition (2.27), the
integration over r may be extended to �1, whence, by
analogy with Eqn (2.36), we get

g�k� � pL�k�
Vk2

; �8:27�

where L�k� � L�k; r � 0� is the thickness of the body at the
location where it is `pierced' by the straight line passing
through the point r � 0 in the direction of k. The obvious
drawback of our treatment is that the physical results depend
on the selection of the point r � 0. At first sight, therefore, it
may seem that our theory is only good for symmetrical bodies
that have an inversion point, which from the symmetry
considerations ought to be selected as the point r � 0. A
simple argument proves, however, that the theory can be
applied to an arbitrary body. Take two points on the surface
and connect them with a straight line. There are two points
such that the length of connecting line is the greatest and
corresponds to the maximum thickness of the body L � L0.
The line is perpendicular to the surface at these points, since
otherwise we can displace one of the points on the surface and
get another pair of points separated by a greater distance.

The two points selected as described above define
unambiguously the direction k0. Somewhere in the middle of
the connecting line we select the point r � 0. All our
calculations will be good to logarithmic accuracy �� 1=L,
L � lnN�. To the same accuracy, the location of the point
r � 0 on the connecting line is arbitrary. If the transitions
occur between levels degenerate with respect to the direction
of momentum, then the main contribution to SR will come
from those states for which fk � max Ð that is, d ? k0;
therefore, hereinafter we set fk � 3=2.

Introducing a small dimensionless deviation
n � �kÿ k0�=k0 �x5 1, nk � nk0 � 0�, we expand L�k� and
K�k� near k0:

L�k� � L0 ÿ 1

2
L1x

2
1 ÿ

1

2
L2x

2
2 ; K�k� � K0 � DK ;

DK�k� � ÿ 1

2
K1x

2
1 ÿ

1

2
K2x

2
2 ; �8:28�

where x1, x2 are the projections of two-dimensional vector n
on to the principal directions of the tensor composed from the
derivatives q2L=qxaqxb; L1;2 are the principal values of this
tensor; K1;2 � 3pL1;2=�2Vk2�, K0 � 3g�k0�=2 � 3pL0=�2Vk2�.
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For an oblong ellipsoid of revolution with semiaxes a, b
�a > b� we have

L0 � 2a ; L1 � L2 � 2a

�
a2

b2
ÿ 1

�
; g�k0� � 3

2k2b2
;

K0 � 9

4k2b2
; K1 � K2 � K0

�
a2

b2
ÿ 1

�
: �8:29�

From equations (8.26) ± (8.29), making use of the relation
dOk�dx1dx2, we get

S � exp�K0F� O
g�k0� ; �8:30�

where

O � 4p
F0

����������
K1K2
p �8:31�

is the effective solid angle into which radiation is emitted (inO
we setF � F0). The additional factor 2 in Eqn (8.31) accounts
for the contribution from ÿk0.

In the case of a thin long rod �L4R�, the major
contribution to S comes from vectors k that `pierce' its ends
Ð that is, such vectors that make an angleY with the axis of
the rod not exceeding the geometric angle Y0 � 2R=L. For a
rod O � pY2

0,

K � K0 � 3

2k2R2
at Y < Y0 ;

K � K0Y0

Y
at Y > Y0 : �8:32�

Strictly speaking, the integrand in Eqn (8.26) features
diffraction oscillations that become important at small
Fresnel numbers �F � L�. However, in the practically
interesting cases we have F4L, and therefore the oscilla-
tions may be neglected.

After substitution of Eqn (8.30), equation (8.25) takes on
the form of the energy conservation law for one-dimensional
motion in the potential U�F� � B 2 exp K0F, where B 2 �
l20O=�pg�K0��. Now we introduce the `turning point' F � F0,
in which U�F0� � U0 � B 2 exp K0F0, dF=dt � 0. From the
analogy with mechanical motion it is clear that first F�t�
increases, at t � t0 attains its maximum F � F0, and then
decreases. The effective potential energy U�F� has the shape
of a sharp peak located at t � t0:

exp K0F � g�t� exp K0F0 ; g�t� � 1

cosh2
��tÿ t0�=ts

� ;
�8:33�

where t0, ts are the integration constants satisfying the
condition

2

ts
� BK0 exp

K0F0

2
; �8:34�

which follows from Eqns (8.33) and (8.25).
From equations (8.22), (8.28) and (8.33) we find

Sk � exp KF � exp
��K0 � DK�F�

� exp�K0F� DKF0� � g�t� exp KF0 : �8:35�

Joining this formula with the asymptotic expression
(8.19), and using Eqn (8.34) and the expression for g0�k� (see
below), we get

ts � 2

l0K0N
; �8:36�

expK0F0 � l20N
2

B 2
; �8:37�

F0 � 2

K0
L ; t0 � ts

2
L : �8:38�

According to Eqns (8.4) and (8.35), the angular distribu-
tion of the intensity of SR is given by

dI � 3

2
I0g�t� exp

�
K�k�F0

�
dOk ; �8:39�

whence, with due account for Eqns (8.28) and (8.32) we see
that the radiation is confined within the solid angle O. The
following formula is useful that follows from Eqns (8.27) and
(8.38)

exp
�
K�k�F0

� � exp�K0F0� exp
�
ÿ2L L0 ÿ L�k�

L0

�
: �8:40�

From equation (8.40) we see that the region of SR for an
arbitrary body is found from relation L0 ÿ L�k� < L0=L. In
particular, the intensity of SR from a rod is practically
constant within the angles Y < Y0 and pÿY < Y0 (if we
disregard the above-mentioned diffraction oscillations), and
falls off sharply beyond these regions. In the case of a long-
drawn-out �a4 b� ellipsoid of revolution we have
O � �b=a�2=L. We see that for an ellipsoid the angular
divergence of the beam is much less than geometrical
�Y � b=a�. This is because of the competition of modes, like
in a laser [32, 33]. According to Eqns (8.21), (8.35), the
correlations are established soonest in the directions k that
are closest to�k0. As a consequence, practically all the energy
is released in these two directions. This effect is especially
important with small Fresnel numbers. For example, when
F � 1 (although our theory in this case is only good by order
of magnitude), the angular divergence of the beam is much
less than that caused by diffraction �Y � 1=kR

����
L
p �.

The intensity of SR is found by integrating Eqn (8.39) with
due account for Eqn (8.37) and the additional factor of 2 [cf.
Eqns (8.30) and (8.31)]:

I � 1

4
I0K0N 2g�t� � �ho0

2ts
Ng�t� : �8:41�

Time-integrating the intensity (8.41), we make sure that the
entire stored energy �ho0N is released.

Let us now calculate the formfactor g0 for the case of
(2.27). In the last formula in Eqn (8.16) we first carry out
integration over dOk 0 :

g0 �
1

V 2k

�
d3r d3r 0

sin�kR�
R

exp�ÿikRz� ;

where R � rÿ r 0 (z axis aligned with k). From the variables
�r; r 0�, we change to �r;R�. After integration over r, which
yields the factor of V, we get an integral of the same form as
in the first expression in Eqn (8.16), but over a different
range (since the range of variation of R does not coincide
with the body). Integration with respect to directions
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normal to k gives, by virtue of Eqn (2.27), the same factor
as in Eqn (2.27), but the integral with respect to Rz gives
2L�k� in place of L�k�. This means that under condition
(2.27) we have g0 � 2g.

The formalism developed in this section allows the
problem of SR by two-level atoms in a small-size ellipsoidal
specimen (2.4) to be resolved with due account for the
dipole ± dipole interaction between atoms. We consider
homogeneous pumping �hs z

a �t � 0�i� sa� s� const� in the
absence of initial correlations �Sab�t � 0� � 0�. The equations
for dsa=dt are obtained by averaging the Heisenberg
equations with the Hamiltonian (4.9). The calculation is
similar to that performed for expressing Eqns (8.7), (8.15),
and therefore is not reproduced here. The fastest way to solve
our equations is to assume in advance that sa�t�, Sab�t� do not
depend on the numbering of atoms a, b. This assumption is
confirmed by the absence of contradictions in subsequent
reasoning. A rigorous approach is also possible but is more
complicated. The key role in these calculations belongs to the
fact that the sum (7.9) does not depend on the rb of the
ellipsoid. The final equations are

_s � ÿl0�1� s� ÿ 2Nl0S ;

_S � 1

2
l0�1� s�s�Nl0sS ; �8:42�

where s � sa�t�, S � Sab�t�. We see that the dipole ± dipole
interaction drops out of Eqn (8.42), which validates Dicke's
results for ellipsoidal bodies with homogeneous pumping, in
spite of the above-mentioned inconsistent rejection of the
dipole ± dipole interaction in the initial equations.

8.2 Classical Lorentzian atoms
(classical model of superradiance)
The theory presented in Section 8.1 corresponds to the case
l5 l and is based on relations (8.3) which hold as long as it is
possible to drop the nonresonant (second) term in Eqns
(4.43), (4.42). This simplifies the equations, and the calcula-
tions can be carried through to the end. A justification of this
procedure, however, cannot be found in literature. This calls
for further investigation, which is the purpose of this section.
Moreover, we shall demonstrate that the effects associated
with the nonresonant term are important for the nature of SR,
and therefore the theory presented in Section 8.1 is not
complete. All that can be found in literature on the validation
of this approximation reduces to the following argument [2].
The dipole ± dipole interaction Vd is determined by the scale
of the order of l Ð that is, the range of the wave vectors of
photons k � 1=l. At l5 l the volume of this domain of k-
space is large �k3 � 1=l 3�, and therefore Vd is large compared
with the radiation friction (see Section 4). Then Vd is
identified with the nonresonant term in Eqn (4.43) [in the
sense of our comment after Eqn (4.44)]. Finally, the
conclusion is made that, since at l5 l the volume of the
above-mentioned region of k-space is small, the nonresonant
term may be dropped.

The flaw in this argument is that at l5 l the main role is
played by the asymptotics of the electromagnetic waves
scattered by atoms [see Eqn (2.25)] at kr4 1. The asympto-
tics are defined by the singularities of Eqn (4.43); because of
this, the first and the second terms therein are equally
important, they are both resonant. These terms give
�k0 � o0=c�

�
pd�ok ÿ o0� exp ikrd3k � 4p2k0

cr
sin k0r ;

i

�� exp ikr

ok ÿ o0
d3k � 4p2k0

icr
cos k0r :

It is only their sum that describes the correct scattered wave
rÿ1 exp ik0r (see a similar comment in Ref. [66]).

To understand the new effects brought about by the
nonresonant term in Eqn (4.43), we shall analyze the linear
CMS in the limit of (2.42b) and (2.12), in which this term is
taken into account in an exact way. Naturally, the nonlinear
effect of phasing is then lost, so it would be desirable to
consider the nonlinear version of the CMS.

In the limit of (2.42b), (2.12), it is only the exponential that
must be differentiated in Eqn (6.10):

_Fa � g
2
Fa � ÿ ir0o0

2

X
b 6�a

exp ikrab
rab

nab � �nab � Fb� ; �8:43�

where r0 � e2=�mc2�. We make the substitution

Fa�t� � exp

�
ÿ g
2
t

�
Ga�t� ; �8:44�

and get an equation in Ga similar to Eqn (8.43), in which the
second term on the left-hand side is absent.

First let us analyze the Green function of Eqn (8.43).
Assuming that at t < 0 we have Fa � 0, and at t � 0 the
`point' initial conditions (7.4) are satisfied, we apply the
Fourier transform to the equation. For the Fourier compo-
nents

Na �
�1
0

Ga�t� exp�iot� dt �8:45�

we get the equation

Bbdab � ioNa � ir0o0

2

X
c 6�a

exp ikrac
rac

nac � �nac �Nc� : �8:46�

The inverse transform is based on the formula

Ga�t� �
��1�i0
ÿ1�i0

do
2p

exp�ÿiot�Na : �8:47�

In this way, in Eqn (8.45) it is assumed that the frequency has
a positive imaginary addition:o! o� i0. After substituting

Na � i

o
Bbdab � Sa �8:48�

into Eqn (8.46), we get

ÿ ioSa � r0o0

2o
exp ikrab

rab
nab � �nab � Bb� ÿ ir0o0

2
K ;

K �
X
c 6�a

exp ikrac
rac

nac � �nac � Sc� : �8:49�

The solution of Eqn (8.49) is sought with the substitution

Sa �Ma
exp ikrab

rab
: �8:50�
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The term

exp ik�rac � rcb� ; �8:51�
that arises in the calculation ofK , remains constant for atoms
c located on the line ab (Fig. 9) which connects atoms a and b.
This means that the main contribution to K comes from the
region adjacent to this line. Consider an atom c located at a
distance r from the line ab, and draw a plane through an atom
c perpendicular to line ab. This plane crosses line ab at some
point which is removed to a distance z from point b, and
0 < z < rab. At r5 rab we have

rcb �
���������������
z2 � r2

p
� z� r2

2z
; rac � rab ÿ z� r2

2�rab ÿ z� ;

rac � rcb � rab � rab
2z�rab ÿ z� r

2 : �8:52�

Hence, and from Eqn (8.51), it follows that the main
contribution to K comes from the region 0 < z < rab � L,
z � rab � L, r � �����������

rab=k
p � ���������

L=k
p

, where we have noted that
the typical value of rab is of the order of the size of the medium
L (this will become clear soon). Following Section 2, we call
this region the RCI. Its physical connotation is as follows.
The phase of a signal moving from b to a along ab is
j1 � krab. Let us consider a different way, bca. Electromag-
netic waves coming from b via bc pump oscillator c that starts
emitting its own waves which reach a. The signal moving via
bca corresponds to the phase j2 � k�rbc � rca�. The inter-
ference of the two signals is constructive if j2 ÿ j191. The
volume of the RCI is found from Eqn (2.33). The number of
atoms within RCI is large [see Eqn (2.34)], and therefore the
summation may be replaced with integration:X

c

! n

�
d3rc � n

�rab
0

dz

�
d2r ; �8:53�

K � n

�
d3rc

exp
�
ik�rac � rbc�

�
�rab ÿ z�z Q�z� ; �8:54�

where Q�z� � nab �
�
nab �M�z��. Here we have taken into

account that by virtue of r5 z in the RCI we have nac � nab.
In addition, the coefficient Ma in Eqn (8.50) varies slowly
compared with the exponential, and therefore in the calcula-
tion of K we may setMc �M�z; r� �M�z; 0� �M�z�.

Substituting Eqn (8.52) into Eqn (8.54), we perform an
integration with respect to d2r � 2prdr [with due account
for Eqn (2.27)]:

K � 2pin
K

exp ikrab
rab

nab � �nab � T� ; T�rab� �
�rab
0

dzM�z� :

Equation (8.49) becomes

ÿioM�r� � r0o0

2o
n� �n� Bb� � pr0cnn�

�
n� T�r�� ; �8:55�

where r � rab, n � nab � rab=rab. The substitution

M�r� � n� �n� Bb� f �r� �8:56�

allows us to go over from vectorM to scalar f:

ÿ io f �r� � r0o0

2o
ÿ pr0cnR�r� ; �8:57�

R�r� �
�r
0

dr 0 f �r 0� : �8:58�

Rewriting Eqn (8.57) in the form

dR

dr
� pir0cn

o
R � ir0o0

2o2
�8:59�

and using the boundary conditionR�0� � 0 that follows from
Eqn (8.58), we find the solution of Eqn (8.59):

R�r� � o0

2pcno

�
1ÿ exp

�
ÿ pir0cn

o
r

��
:

Hence, and from Eqns (8.47), (8.48), (8.50), (8.56), and (8.58),
we find

f �r� � dR

dr
� io0r0

2o2
exp

�
ÿ pir0cn

o
r

�
;

Na � i

o
Bbdab � io0r0

2o2
exp

�
ÿ pir0cn

o
rab

�
� exp ikrab

rab
nab � �nab � Bb� ; �8:60�

Ga�t� � Bbdab � io0r0
4p

exp ikrab
rab

nab � �nab � Bb�K ;

K �
��1�i0
ÿ1�i0

do
o2

exp

�
ÿiotÿ pir0cn

o
rab

�
: �8:61�

To calculate the integralK, we expand each exponential in the
integrand in Taylor series, and apply the residue theorem:

K � ÿ2p
��
t
p
b

J1
ÿ
2
�����
bt

p �
; �8:62�

where b � pncr0rab, and J1 is the Bessel function. From
equations (6.9), (6.11), (8.44), (8.61) and (8.62) we find

na�t� � exp

�
ÿ g
2
t

��
gb cos�o0t� jb�dab

ÿ o0r0
2rab

���
t

b

r
J1
ÿ
2
�����
bt

p �
nab � �nab � gb� sin�o0t� jbÿ krab�

�
:

�8:63�
Now we embark on the calculation of the intensity of

radiation using Eqns (6.7), (6.8):

Q � n� b ; �8:64�

b �
X
a

na

�
t 0 � 1

c
nra

�
; �8:65�

b

c

z z

r a

Figure 9. Region of constructive interference for two atoms a and b

(dashed line). Atom b corresponds to the origin of coordinates z � 0.
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where t 0 � tÿ r=c, n � r=r.We align the origin of coordinates
with atom b, then r is the distance from the remote
observation point to atom b. From equations (8.63), (8.65)
we find

b � exp

�
ÿ g
2
t

��
gb cos�o0t

0 � jb� ÿ
o0r0
2

A

�
; �8:66�

A �
X
a

1

rab

����
t 0

b

s
J1
ÿ
2
�������
bt 0

p �
nab � �nab � gb�

� sin�o0t
0 � jb �C� ; �8:67�

where C � knrab ÿ krab. We direct the z axis along n; let r
be the distance from atom a to the z axis. The main
contribution to the sum A comes from the atoms a located
within the RCI:

r �
������
rab
k

r
�

����
L

k

r
5L : �8:68�

The number of atoms in this region is given by the familiar
formula (2.34). In this case the meaning of the RCI is
somewhat different from what it used to be (Fig. 10). This
time the interference occurs between two signals that come to
the observation point. One signal comes from atom b along
vector rÐ that is, along the straight line that connects atom b
and observation point. The other signal is emitted by atom b
and reaches atom a along a straight path. Then the signal is re-
emitted by atom a, and travels to the observation point along
a straight line. With this in mind, we find

nrab � z ; rab �
���������������
z2 � r2

p
� z� r2

2z
;

C � ÿ kr2

2z
; nab � n ;

A � n� �n� gb�D ; �8:69�

D � n

�L
0

dz

z

�����
t 0

b0

s
J1
ÿ
2
���������
b0t 0

p �
P ; b0 � pncr0z ; �8:70�

P �
�
d2r sin

�
o0t

0 � jb ÿ
kr2

2z

�
� ÿ 2pz

k
cos�o0t

0 � jb� :
�8:71�

Here L � L�n� is the distance from atom b to the periphery of
the medium along the direction of observation n.

Further integration with respect to dz in Eqn (8.70) takes
advantage of the equality J1�x� � ÿJ 00�x�. For D we get

D � 2

o0r0
cos�o0t

0 � jb�
�
J0�x0� ÿ 1

�
; �8:72�

x0 � 2
������������������
pncr0Lt 0

p
: �8:73�

From equations (8.64), (8.66), (8.69) and (8.72) we get

b � exp

�
ÿ g
2
t

�
cos�o0t

0 � jb�
�
gb ÿ n� �n� gb��J0 ÿ 1�� ;

Q � exp

�
ÿ g
2
t 0
�
cos�o0t

0 � jb��n� gb��1� J0 ÿ 1�

� exp

�
ÿ g
2
t 0
�
cos�o0t

0 � jb��n� gb�J0�x0� ; �8:74�

where we have specially marked the phenomenal cancellation
of two terms, which will be discussed in a while.

From equations (6.5), (6.7), (8.74) we get the following
expression for the intensity of radiation:

dI � dIb � dO
3gE �b�0

8p
sin2�a�J 2

0 �x0� exp�ÿgt� ; �8:75�
where a is the angle between vectors n and gb. Time-
integrating the intensity (8.75) between the limits �0;1�, we
find the energy emitted into the solid angle dO:

dEr � E
�b�
0 dO

3

8p
F�j� sin2 a ; �8:76�

F�j� � exp�ÿj�I0�j� ; �8:77�

where j is defined in Eqn (2.20), and I0 is a modified Bessel
function. Integration with respect to time is based on the
formula [67]�1

0

dt exp�ÿgt�J0
ÿ
a
��
t
p �

J0
ÿ
b
��
t
p �

� 1

g
I0

�
ab
2g

�
exp

�
ÿ a2 � b2

4g

�
:

Let us discuss the physics behind these results. First we
adopt the `primitive' standpoint described in Section 6. After
some time, the energy of atom b is distributed between N
atoms of the medium. This prepares a coherent ensemble of
oscillators that vibrate with the amplitudes (6.18) and phases
ja � krab as determined by the signals coming from atom b.
The amplitude of the field at arbitrary observation point r far
beyond the limits of the medium is [cf. Eqn (2.25)]

E �
X
a

ex0����
N
p k2

Ra
exp�ikRa � ija� ;

whereRa � jrÿ raj � rÿ brra. The origin is aligned with atom
b. Replacing summation with integration, we get

E �
X
a

ex0k����
N
p exp ikr

r
J ;

where J � n
�
d3ra exp�ÿikbrra � ikra� � N0. We see that out

of N atoms it is only N0 that determines the field at an
arbitrary remote point. The fields of other atoms cancel out
through destructive interference.

According to the formula obtained above, the amplitude
of the field isN0 times the amplitude that would be created by
a solitary atom oscillating with the amplitude x0=

����
N
p

. Since
such an atom emits radiationwith intensity I0=N, the intensity
of radiation by the medium is

I � I0
N
�N0�2 � I0

n2L4

Nk2
� I0j ; �8:78�

where we have noted that nL3 � N.

b

0z zr

r a

Figure 10.Region of constructive interference for radiation arriving at the

observation point 0.
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In reality, like in Section 7, everything is much more
complicated. Instead of SR, the coherent cloud of atoms of
themedium prepared by atom b give rise to the opposite effect
of screening. This is clear from the cancellation of terms in
Eqn (8.74) above, and from the property J 2

0 < 1 and
expression (8.75) which we now rewrite in the form

dI � dIs J
2
0 �x0� ; �8:79�

where dIs is the intensity of spontaneous radiation by a
solitary atom b. Thus, dI < dIs, which means that the
medium shields even the spontaneous emission by atom b.
The extent of shielding is clear fromEqns (8.76), (8.77), (8.79).
By virtue of Eqn (2.21), we have F�j� � 1=

���������
2pj
p

5 1, that is,
Er=E

�b�
0 � 1=

����
j
p

5 1. Expression (8.79) features two char-
acteristic times: t0 � 1=g, ts � 1=�ncr0L� � t0=j. At t < ts
we have dI � dIs, and at t4 ts dI � dIs ts=t.

Now let us consider the arbitrary boundary condition
(6.4), (6.11). The intensity of radiation is now given by Eqn
(6.7), in which, in accordance with Eqns (6.13), (8.74), we
must define Q as

Q �
X
b

exp

�
ÿ gtb

2

�
cos�o0tb � jb��n� gb�J0�xb� : �8:80�

Here

tb � tÿ 1

c
jrÿ rbj � t 0 � 1

c
nrb ; t 0 � tÿ r

c
;

r, rb are radius vectors drawn to the observation point and
atom b respectively, from the origin of coordinates located
at the arbitrary point: xb � 2

��������������������
pncr0Lbtb
p

, where
Lb � Lb�rb�. The exponential term in Eqn (8.80) and the
function J0�xb� depend but weakly on the coordinates of
atom b, so we may set exp�ÿgtb=2� � exp�ÿgt 0=2�,
xb � 2

��������������������
pncr0Lbt 0
p

. If the initial phases jb of different
atoms are not correlated, then, in accordance with Eqns
(6.15), (8.75), shielding occurs in this case as well. Assume
now that j1 � j2 � . . . � jN. Then from Eqn (8.80) we see
that, owing to the fast variation of the cosine and to the lack
of correlation between the positions of atoms rb, Eqn (6.15)
will hold again, and shielding will occur.

Now let us consider the case of pumping of themedium by
a running wave with the wave vector k Ð for example, by a
short laser pulse. The pulse passes atom b at the time
Tb � zb=c � krb=o0, and therefore the dipole of this atom
vibrates by the lawY�tÿ Tb� � exp

�ÿio0�tÿ Tb�
�
. Compar-

ing the real part of this expression with Eqn (2.5), we get

jb � ÿkrb ; �8:81�

Q � exp

�
ÿ gt 0

2

�X
b

cos�o0t
0 � knrb ÿ krb�m�rb� ;

m�rb� � �n� gb�J0�xb� : �8:82�
In this case the emission by the medium will occur at

small angles �1=kL�, close to the direction of the vector
n0 � k=k. We set therefore n � n0 � d, where d is a small
two-dimensional vector, dn0 � 0, d5 1. Summation in Eqn
(8.82) may be replaced with integration [see Eqn (2.35)].
Averaging the intensity (6.7) over the fast oscillations (with
the period T � 2p=o), and integrating with respect to
angles using the formula dO � d2d, we get the following
expression for the total intensity (further on we set rb � r,

rb 0 � r 0):

I � e2o4
0

4pc3
exp�ÿgt 0�n2

�
d3r d3r 0m�r�m�r 0�A0 ;

A0 �
�
d2d



cos�o0t

0 � kr?d� cos�o0t
0 � kr 0?d�

�
� 1

2

�
d2d cos

�
k�r? ÿ r 0?�d

� � 1

2
�2p�2d�2��k�r? ÿ r 0?�

�
� 2p2

k2
d�2��r? ÿ r 0?� ;

where r? is the component of vector rb normal to n0. Thus,

I � pe2o2
0n

2

2c
exp�ÿgt 0�

�
dz dz 0 d2r? �gbgb 0 �J0�xb�J0�xb 0 � :

�8:83�

Here z is the component of rb collinear with n0. In Eqn (8.83)
we have noted the transverse character of the electromagnetic
pumping wave: n0gb � 0. If the damping of the pulse over the
length of the medium is small, in Eqn (8.83) we should set
gb � g � const, gbgb 0 � Z2.

Equation (8.83) can be rewritten as

I � pe2o2
0n

2

2c
Z2 exp�ÿgt 0�

�
d2r? F2 ; �8:84�

whereF � � L0 dz J0�x�, x � 2
�����������������
pncr0t 0z
p

. HereL � L�n0; r?� is
the thickness of the body at the point where it is pierced by the
straight line passing through point r? in the direction n0.
Using formula xJ0�x� �

�
xJ1�x�

�0
, we calculate the integral

F:

F � 1

2pncr0t 0
x0J1�x0� ;

where x0 � 2
������������������
pncr0t 0L
p

. Using Eqn (6.5), we reduce the
expression (8.84) to the form

I � E0

t 0
exp�ÿgt 0�Q�t 0� ; �8:85�

where Q�t 0� � �1=V� � d2r? LJ 2
1 �x0�, V is the volume of the

body, E0 � mo2
0Z

2N=2.
FromEqn (8.85) it follows that in the case of (8.81) there is

SR. Indeed, at t9ts we have I � I0jN, and there is no
retardation. At t0ts, the completion of the main pulse is
followed by a number of pulses whose amplitude fades as tÿ2.
Since gts � 1=j5 1, the exponential in Eqn (8.85) may be set
equal to unity.

Using the integral�1
0

dx

x
J 2
1 �x� �

1

2
;

it is easy to show that the entire stored energy is emitted:

Er �
�1
0

I dt � E0 � 1

2
mo2

0Z
2N :

In the calculations we must take advantage of the formula�
d2r? L � V. Thus, like in Section 7, the completely coherent

state in this case is not shielded: the clouds that shield
different dipoles kind of cancel out.
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Both the quantum (Section 8.1) and classical (this
section) models of SR are not perfect, and supplement one
another. The quantum model disregards the nonresonant
term [the first term in Eqn (4.43)], but includes the
nonlinearity exhibited by two-level atoms. The linear CMS
disregards the nonlinearity and the associated mechanism of
phasing (as indicated if only by the absence of delay of the
pulse of SR), but the nonresonant term is consistently taken
into account. Now we may conclude that the main effect
caused by this term is shielding. In the case of l5 l (Section
7) the shielding is caused by the static dipole ± dipole
interaction of atoms, and by the lagging dipole ± dipole
interaction in the case of l4 l.

If at t � 0 there is no correlation between the atoms, then
from Eqn (6.15) we find that the total intensity is

I � NIb ; �8:86�

where Ib is the intensity of emission by one excited atom
surrounded by nonexcited atoms. Each atom prepares its own
coherent ensemble. In accordance with the linear CMS, there
is dipole shielding. As opposed to the linear classical model,
the system of two-level atoms displays phasing of the
ensemble by the nonlinear mechanism. Then the intensity Ib
is evaluated from Eqn (8.78), and Eqn (8.86) agrees with Eqn
(8.41). The latter implies that the entire energy is released in
the regime of SR. Currently it is not yet clear what is going on
in reality. The experiments indicate that SR arises with
noncoherent pumping; we believe, however, that a compre-
hensive picture can only be given by theory. It is possible that
because of shielding it is only part of the energy that is
released in the regime of SR. The answer to these questions
can be supplied by numerical solution of the nonlinear CMS
Ð the left-hand sides of Eqn (6.3) must then include terms
nonlinear with respect to the amplitudes of dipoles. No such
treatment has been performed so far.

The effect of shielding in the system of linear charged
oscillators is rather self-evident, and it is strange that it was
not discovered earlier. As a matter of fact, it is implied in Ref.
[68] which is an elaboration of Ref. [69]. Namely, if we
integrate Eqn (8.29) in Ref. [68] with respect to frequencies,
we find that a medium of identical nuclei that contains one
excited nucleus will release only a small fraction of the energy
stored by this nucleus (the idealization with fixed nuclei was
considered). This omission is possibly explained by the fact
that Refs [68, 69] were concerned with finding the width of the
emitted spectral line.

The results of Section 8.2 are easily extended to the case of
Eqn (2.13) (and in general to any arbitrary relationship
between L and cts). For this purpose, we substitute Eqn
(6.9) into (6.3), drop the second derivatives, and keep the
retarded time on the right-hand side. The resulting equations
are solved using the Fourier transform, similar to Eqn (6.10).
The absence of delay of the pulse of SR is a considerable
drawback of the linear CMS (lagging is present in the
nonlinear version of this model [43]). We do not reproduce
here the corresponding calculation, which is rather interesting
by itself. A more advanced model of SR in the case of (2.13) is
discussed in the next section.

9. Oscillatory regime of superradiance

The oscillatory regime is realized in sufficiently extended
bodies, cts 4L < cTr. This regime was discovered in the

very first experiment on SR [24]. In a long specimen, the
radiation from portions of the body passes through other
portions and causes their coherent re-excitation. Secondary
emission by these regions gives rise to oscillations of
intensity. As a matter of fact, the effect of oscillations of
intensity has already been discussed at the end of Section
8.2. Electromagnetic waves, passing through the portions
that have already released their energy, excite them again.
Then these oscillators emit again. The oscillatory mechan-
ism allows the identification of another mechanism that acts
simultaneously. Naturally, it also works in the more realistic
case of two-level atoms. This mechanism consists essentially
in the nonstationary shielding described by the Bessel
function in the second term in Eqn (8.63). We see that the
exciting atom b is surrounded by collapsing spherical layers
of matter with the opposite phase of dipole moments. This
phenomenon is caused by polaritons traveling in the body
(see Section 10).

In the case of (2.13), the phenomenon of SR in the system
of two-level atoms is most simply and adequately described in
the framework of semiclassical theory (see, for example, Refs
[1, 2, 5, 31, 33, 34]. In this theory, the two-level atoms are
described by the one-particle density matrix r of the �2� 2�
format, and the self-consistent classical field is found from the
Maxwell equations whose right-hand sides carry the polariza-
tion of the medium P � n Sp�rd̂�, where d̂ is defined by Eqn
(3.9). As done at the end of Section 8.2, let us calculate the SR
that results from pumping with a short laser p pulse running
along the axis of the rod of length L and radiusR (the z axis is
aligned with the axis of the rod). The polarization P and
electric field E are directed along the y axis. Since the electric
induction is D � E� 4pP, from the Maxwell equation it
follows that

q2E
qz2
ÿ 1

c2
q2E
qt 2
� 4p

c2
q2P
qt 2
� ÿ4pk2P ; �9:1�

where P � d�r12 � r21�, r12 � r�21. The density matrix obeys
the Bloch equations Ð that is, the Liouville ±Neumann
equations with the relaxation terms that may be dropped on
the strength of Eqn (2.14):

i�h
qs
qt
� 2dE�r21 ÿ r12� ; i�h

qr21
qt
� dE s� �ho0r21 ; �9:2�

where s � r22 ÿ r11, r11 � r22 � 1. In Eqn (9.1) we have
dropped the terms that describe the propagation of field
transversely to the rod (diffraction), and thus the field is
regarded as homogeneous across the rod. From the preceding
sections we know that this homogeneity is violated near the
side walls of the rod to the depth of about R=

���
F
p

(the
transverse dimension of the RCI), and therefore Eqn (9.1)
holds under the condition (2.27).

Now we select the quickly varying terms

E � i

2

�
E0 exp ijÿ E �0 exp�ÿij�

�
; r21 � S exp ij ;

j� kzÿo0t, k � o0=c. Dropping the second derivatives
from E0, the fast-oscillating terms (approximation of rotat-
ing wave), and making the substitution s � cosY,
S � �1=2� sinY, we get from Eqns (9.1) and (9.2)

qE0

qz
� 1

c

qE0

qt
� 2pndk sinY ;

qY
qt
� 1

�h
dE0 ;
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whence follows the equation for Bloch's angleY [15, 21]

q2Y
qt qz

� 1

c

q2Y
qt 2
� 2

Lts
sinY ;

where ts � �h=�pknLd 2� [cf. Eqn (2.20)]. In the variables
t � 2t 0=ts, x � z=L, where t 0 � tÿ z=c is the retarded time,
this equation becomes simpler:

q2Y
qt qx

� sinY : �9:3�

The atom in the ground state corresponds to s � ÿ1, that
is, Y � p. The short pumping p-pulse travels along the path
t � 0 �z � ct� and brings the atoms into the state s � 1, that
is, Y � 0. Spontaneous transitions, which are disregarded in
the semiclassical theory, give rise to a small amount of initial
phasing (see Section 8.1). In addition, at t � 0 we have
E0 � 0. Accordingly, the boundary conditions for this
problem are

qY
qt
� 0 ; Y � Y0 at t � 0 ; �9:4�

where Y0 5 1.
Equation (9.3) with the boundary conditions (9.4) is

satisfied by the self-similar solution

Y � Y�Z� ; Z � 2
�����
tx
p � 2

���������
2t 0z
tsL

r
; �9:5�

where Y�Z� is found from the equation

Y 00�Z� � 1

Z
Y 0�Z� ÿ sinY � 0 : �9:6�

Multiplying this by Y 0, we represent it in a form admitting a
simple mechanical interpretation:

dE

dZ
� ÿ 1

Z
�Y 0�2 ; E � 1

2
�Y 0�2 �U�Y� : �9:7�

This equation describes the one-dimensional motion of a
particle of mass m � 1 in the potential field (Fig. 11) U�Y� �
cosYÿ 1 � ÿ2 sin2�Y=2� in the presence of friction ÿY 0=Z.
According to Eqn (9.7), because of dissipation the particle
sinks to the bottom of the potential pit �Y � p�.

The intensity of SR is

I � pR2C

�
E 2

4p

����
z�L

�
�9:8�

and is thus proportional to the expression

I �
�
qY
qt

�
Z�L
�
�
Y 0�b�

b

�2
; �9:9�

where

b � 2

������������������������
2z�tÿ L=c�

Lts

s
:

From equation (9.9) and Fig. 11 we see that the time
dependence of intensity agrees with the experiment (see Fig.
5), and appears as a sequence of pulses of decreasing
amplitude. The first and the strongest pulse is delayed from
the pumping pulse by the lagging time t0 � L2

0ts,
L0 � ln�1=Y0�. The characteristic number of pulses which
release the major part of the stored energy is L0; the
characteristic length of each is L0ts.

From equation (9.8) it is easy to see that I=I0 � N 2=k2R2.
The fact that the intensity is proportional to the square of the
number of particles indicates that SR occurs over the entire
range of (2.14).

The results of this section agree with the CMS (Section
8.2) at L0 � 1. Then there is no lagging in both cases Ð and
hence no nonlinear phasing, and the number of oscillations is
decreased. It is likely that this case was realized in the
experiment of Ref. [24] with elevated density.

10. Superradiance in a dense extended medium

For completeness of our analysis, we now ought to consider
SR in the case of (2.42c), which is interesting by itself since it
may be realized on polaritons in a solid [1, 7, 10], or in
magnetized plasma (see below). Now the dipoles are close to
one another, and therefore, as explained in the beginning of
Section 8.2, the most adequate description of SR is given by
the CMS (currently, like in Ref. [46], in the linear version).

At l5 l5L, the physical parameters vary little over the
interatomic distance, so the approximation of a continuous
medium may be used: ra ! r, na�t� ! n�r; t�;
E�ra; t� ! E�r; t�, etc. Magnetization of the medium is one
of the effects small in the first order in va=c that have been
disregarded from the outset. For this reason we assume that
the medium is nonmagnetic, and set B � H.

The Maxwell equations together with the equation of
motion form a closed set in the CMS in the case of (2.42c):

HH �D � 0 ; �10:1�
D � E� 4penn ; �10:2�
HH �H � 0 ; �10:3�
HH� E � ÿ 1

c
_H ; �10:4�

HH�H � 1

c
_D ; �10:5�

�n� o2
0n �

e

m
E ; �10:6�

where the dot denotes the partial time derivative q=qt.
Let V be a fixed volume within the medium. Using Eqns

(10.1) ± (10.6) to transform the derivative

dea
dt
�
�
V

d3r n _nm��n� o2
0n� ;

2p Y

Y0

u

Figure 11.Mechanical analogy of superradiance in oscillatory regime.
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where

ea �
�
d3r n

�
m _n2

2
�mo2

0n
2

2

�
is the energy of atoms in the CMS, we get the equation of
energy balance:

d

dt
�ea � ef� � ÿ

�
G
df S ; �10:7�

where G is the boundary of the volume V, df is the external
element of the surface of this boundary, and

ef �
�
V

d3rW ; W � E 2 �H 2

8p
; �10:8�

S � c

4p
�E�H�

is the density of energy flux (the Poynting vector). The
effects of spontaneous emission and collisions in this section
are considered negligible, and are not included in Eqns
(10.1) ± (10.6), since we are concerned with the applications
of the CMS to a rarefied medium like a tokamak plasma.
Shortly we shall prove that these effects are actually
negligible.

The medium in our approach is a dielectric. Substituting
into Eqns (10.1) ± (10.6) n, E, D as n�r; t� � n�r� exp�ÿiot�;
E�r; t� � E�r� exp�ÿiot�; D�r; t� � D�r� exp�ÿiot�; D�r� �
e�o�E�r�, we find the permittivity at frequency o:

e�o� � o2
0 � o2

p ÿ o2

o2
0 ÿ o2

: �10:9�

The physical essence of SR in the case of (2.42c) is as
follows. Assume that at t � 0 there is a certain excitation in
the medium, with the initial condition

t � 0 ; _n � f�r� ; n � 0 ; E � 0 ; H � 0 : �10:10�

This initial condition obviously corresponds to the case
when at t � 0 the masses that had been initially at rest
are accelerated to the velocity _na � f�ra�. If this excita-
tion is localized somewhere inside the medium, then
collective waves start in the medium, and the excitation
propagates. On the periphery of the medium these waves
convert into electromagnetic waves and leave the
medium.

Let us find the form of such collective waves in an infinite
homogeneous �n � const� medium. With this purpose, we
seek a solution of Eqns (10.1) ± (10.6) in the form n�r; t� �
� n exp�iprÿ iot�; E�r; t� � E exp�iprÿ iot�; etc., where n, E
are constant amplitudes. We get

n � e

m�o2
0 ÿ o2� E ; �10:11�

p� E � o
c
H ; �10:12�

p�H � ÿo
c
e�o�E :

We align the z axis with p. Then from Eqn (10.12) we get

ÿpEy � o
c
Hx ;

pHx � ÿo
c
eEy ;

8><>: �10:13�

pEx � o
c
Hy ;

pHy � o
c
eEx ;

8><>: �10:14�

e�o�Ez � 0 ;
Hz � 0 :

�
�10:15�

Thus, the fieldH is transverse �Hz � 0�. The fieldE can be
either transverse �Ez � 0� or longitudinal �Ex � Ey � 0,
Ez 6� 0�. Transverse waves are described by the systems
(10.14), (10.15), which correspond to two different polariza-
tions. From a condition of compatibility for each of these
systems follows the dispersion relation for transverse waves:

p2 � o2

c2
e�o� : �10:16�

Hence, and from Eqn (10.9), it follows that there are two
branches of transverse collective waves: the fast (or ordinary)
wave

o2
1 � B�

����
A
p

; �10:17�

and the slow (or extraordinary) wave

o2
2 � Bÿ

����
A
p

; �10:18�

where B � �o2
0 � o2

p � p2c2�=2, A � B 2 ÿ o2
0 p

2c2. The mag-
nitude of the wave vector p varies over the interval �0;�1�.
The value of o1 increases monotonically from o � oa �
�o2

0 � o2
p�1=2 to o � �1, and o2 also increases monotoni-

cally from o � 0 to o � o0. The waves with frequencies
o0 < o < oa fade soon, since for them e < 0. At p! 0 we
have o1 ! oa, o2 � pco0=oa. At p!1 we have o1 � pc,
o2 � o0.

In this way, at high frequencies, when the displacements of
oscillators are negligibly small �xa � 0�, the medium carries
the ordinary electromagnetic wave �o1 � pc�. The second
branch �o2� at p!1 describes the practically independent
vibrations of oscillators, slightly modified by the dipole ±
dipole interaction. Following, for example, Ref. [70], we shall
refer to such transverse waves as polaritons. They are a kind
of hybrid of mechanical and electromagnetic oscillations.

Longitudinal waves are the proper oscillations of the
medium. At Ez 6� 0 from Eqn (10.15) we see that e�o� � 0,
D � 0 Ð that is,

o � oa : �10:19�

In this case, according to Eqns (10.13), (10.14), we have
Ex � Ey � Hx � Hy � 0, and according to Eqn (10.11),

n � ÿ 1

4pne
E ; H � 0 : �10:20�

Longitudinal waves do not travel in plasma, since, according
to Eqn (10.19), their group velocity is zero: vg � qo=qp � 0.
In the limit o0 ! 0, corresponding to a completely ionized
ideal plasma, these waves become conventional plasma
oscillations.
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Let us now solve the following problem.Assume that in an
infinite homogeneous medium at t � 0 excitation (10.10) is
created for which ef � 0, ea � �1=2�nm

�
d3r f 2�r�. In this way,

the initial energy of the excitation is

E0 � ea � ef � 1

2
nm

�
d3r f 2�r� : �10:21�

Let us calculate the energy carried away by the collective
waves:

Er � lim
r!1 r2

�
dOr

�1
ÿ1

dt nS�t; r�

� c

8p2
lim
r!1 r2

�
dOr

�1
ÿ1

do n�Eÿo �Ho�

� c

8p2
lim
r!1 r2

�
dOr

�1
0

do n
��E�o �Ho� � �Eo �H�o�

�
;

�10:22�

where n � r=r, and where we have used the properties
Eÿo � E�o, Hÿo � H�o that follow from the fact that E, H
are real. Since at t < 0 all physical variables are zero �n � 0,
_n � 0, E � H � 0�, Eqns (10.1) ± (10.6) admit a Fourier
transform (8.45), (8.47). At the same time, we carry out the
Fourier transform with respect to the space variables of the
form

f�p� �
�
d3r exp�ÿipr�f�r� ; f�r� �

�
d3p

�2p�3 exp�ipr�f�p� :

The equations for the Fourier components with the initial
condition (10.10) are

p� Eop � o
c
Hop ;

p�Hop � ÿo
c
e�o�Eop ÿ 4pneo

c2�o2
0 ÿ o2� f�p� ;

�o2
0 ÿ o2�nop �

e

m
Eop � f�p� :

8>>>>><>>>>>:
Hence we find

Hop � 4pneo
c�o2 ÿ o2

0�d
�
p� f�p�� ;

where

d � o2

c2
e�o� ÿ p2 :

At r!1 the main contribution to the integral

Ho�r� �
�

d3p

�2p�3 exp�ipr�Hop

comes from the singularity 1=d (when integration is carried
out with respect to dp), and from the directions p close to
n � r=r (when integration is carried out with respect to the
directions p). Because of this, in the nonsingular terms in the
integrand we may set

p � q � qn ; q � o
c

���������
e�o�

p
; �10:23�

and factor them out of the integral. The resulting integral is
calculated by the formula

�
d3p

�2p�3
4p

p2 ÿ q2 ÿ i0
exp ipr � exp iqr

r
:

The rule of circuiting the poles used here follows from the
comment related to Eqns (8.45), (8.46) to the effect that o is
actually the complex variable o� i0. The result is

Ho�r� � ÿ neo
c�o2 ÿ o2

0�
�
q� f�q��y exp iqr

r
; �10:24�

where the coefficient y � y
��oÿ o0��oÿ oa�

�
arises because

at o0 < o < oa we have e < 0, so q is purely imaginary, and
H�r� fades exponentially. Now we apply a Fourier transform
of the form (8.45), (8.47) to Eqns (10.2), (10.5) and (10.6):

HH�Ho � ÿ io
c

eEo : �10:25�
Hence, and from Eqn (10.24), we get

Eo � ne

�o2 ÿ o2
0�e

q� �q� f�q�� exp iqr
r

y : �10:26�

Then from Eqns (10.22), (10.24) we get

Er � n2e2

4p2c3

�
dOn

�1
0

dor�o��n� f�2y � n2e2

pc3
�t1 � t2� ;

where

r�o� � o 4
��
e
p

�o2 ÿ o2
0�2

; t1 �
�1
oa

dor�o�S�q� ;

t2 �
�o0

0

dor�o�S�q� ; S�q� � 
�n� f�q��2� ;

the angle brackets denote averaging with respect to directions
r. In each of the intervals t1; 2 we replace the integration
variable o with q, and in the transformations of t1 and t2 we
use, respectively, branches o1 and o2 with the replacement
p! q in Eqns (10.17), (10.18). In this way, t2 defines the
energy carried away by the extraordinary waves, and t1
defines the energy carried away by the ordinary waves.
Differentiating the relation (10.23), we get
r�o� do � c3F�o�q2 dq, where

F�o� � o2

�o2
a ÿ o2��o2

0 ÿ o2� � o2
po2

:

Therefore,

Er � n2e2

p

�1
0

dq q2S�q�K�q� ; �10:27�

where K�q� � F�o1� � F�o2�. The factor K�q� is a symme-
trical algebraic expression with respect to the roots of
biquadratic equation

o4 ÿ �o2
a � q2c2�o2 � q2c2o2

0 � 0 ;

that follows from Eqn (10.23). We transform this expression
using the VieÁ ta theorem:

o2
1 � o2

2 � o2
a � q2c2 ; o2

1o
2
2 � q2c2o2

0 :
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The result is K�q� � 1=o2
p. Hence, and from Eqn (10.27), we

get

Er � nm

4p2

�1
0

dq q2S�q� : �10:28�

Formula (10.21) for the initial energy after transition to
the Fourier components becomes

E0 � nm

4p2

�1
0

dq q2M�q� ; �10:29�

whereM�q� � 
 f 2�qn��.
Since �n� f�2 4 f 2, then from Eqns (10.28), (10.29) it

follows thatEr 4E0. If, for example, at t � 0 the electrons are
pushed in a certain direction, and the arrangement of excited
atoms is spherically symmetrical �f�r� � k f�r�, jkj � 1,
k � const�, then Er � 2E0=3. In this way, in the case of
(2.42c) we also get non-emitting dipole states. The nature of
these states becomes clear from the analysis of formula
(10.28), according to which Er � 0 at q� f�q� � 0 Ð that is,
at

HH� f�r� � 0 : �10:30�
From equations (10.4), (10.6) and (10.10) we get

HH� Eo � io
c

Ho ; �10:31�

�o2
0 ÿ o2�no �

e

m
Eo � f�r� ; �10:32�

and from Eqns (10.30) and (10.32) follows

�o2
0 ÿ o2��HH� no� �

e

m
�HH� Eo� : �10:33�

Now we take the rotor of Eqn (10.25) and use Eqn (10.31):�
HH2 � o2

c2
e
�
Ho � 0 : �10:34�

Equations (10.31), (10.33), (10.34) form a closed system in
three variables: HH� Eo, Ho, HH� no. Since they are homo-
geneous [cf. Eqn (10.32)], and the medium is infinite, the
solution is HH� Eo � 0, Ho � 0, HH� no � 0. Therefore,

HH�Do � HH� �Eo � 4preno� � 0 :

Hence, and fromEqn (10.1) rewritten asHH �Do � 0, it follows
that Do � 0, and therefore D � 0, whence follows Eqn
(10.20). From Ho � 0 and Eqn (10.25) we conclude that
e � 0 Ð that is, the frequency o is found from Eqn (10.19).
Thus, the counterpart of the dipole nonemitting states in the
case of (2.42c) are the longitudinal waves discussed above.
Some energy of the excitation is tied up by these states for a
long time. Eventually such coherent states are destroyed by
atomic collisions, and their energy is either released or
transferred into other degrees of freedom.

Let us now consider the counterpart of the fundamental
solution of Eqn (5.12). In the approximation of a continuous
medium we must make the replacement

dab ! nd�3��ra ÿ rb� ; �10:35�

which agrees with the rule (2.35). As follows from Eqn
(10.21), however, such a replacement implies that E0 � 1,

which is physically absurd. The reason is clear: the initial
condition of the form (10.35) disagrees with the criterion of
applicability of the approximation of a continuous medium:

l5L0 ; q0l5 1 ; �10:36�
where L0 is the characteristic length of the initial excitation,
and q0 � 1=L0. This complication is actually not important,
since in the case of (2.42c) there is no need to find the
fundamental solution of Eqn (5.12). Since l5L, the
problem of evolution of any initial excitation of the medium
can be solved by other techniques: numerical, Fourier trans-
form, approximation of geometrical optics, etc.

In Section 12 we shall prove that all practically interesting
cases can be easily analyzed by considering the analog of the
fundamental solution for which

c

op
5L0 5L ; �10:37�

and in all such cases

o0 4op ; �10:38�

that is, the medium is sufficiently rare. Under conditions
(10.37), (10.38) we have

o1 � qc ; o2 � o0 ÿ
o0o2

p

2c2q2
; �10:39�

t1
t2
�
�

c

L0op

�2

5 1 :

This means that such highly enough localized initial excita-
tion is represented mainly by the slow extraordinary waves
with small l, for which the dispersion law (10.18) reduces to a
simpler expression (10.39).

The characteristic rate of dissipation of such an initial
excitation depends on the group velocity of such waves,
which, according to Eqn (10.39), is

vg � do2

dq
� o0o2

p

c2q3
� o0o2

pL
3
0

c2
: �10:40�

Comparing the conclusions of this section with those of
Section 8, we do not see any big difference between the physics
of SR in cases (2.42b) and (2.42c): in both cases SR is
promoted by collective waves. Only the speed of propagation
of these waves is different: close to c in the case of (2.42b), and
much lower in the case of (2.42c), because of the dipole ±
dipole interaction between atoms. Owing to this interaction,
long-range order sets in the system of atoms, which is
necessary for the propagation of coherent waves. The
fluctuating short-range part of the dipole ± dipole interaction
is not important under condition (7.19), which holds for all
cases of practical interest.

11. Damping of collective waves

In the preceding section we considered SR in the dense
medium of Lorentz atoms represented as charged harmonic
oscillators with the same eigenfrequency. Let us now study
the effects related to the frequency spread of oscillators. This
section is included mainly for methodological purposes, and
ought to be viewed as an introduction to the study of SR in a
magnetized plasma.
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Consider a rarefied medium, in which the main mechan-
ism of damping is Doppler broadening. Owing to this
broadening, the eigenfrequency of oscillators in the labora-
tory frame, which we denote by O, will be not the same. The
distribution function with respect to O we denote by f �O�.
The following relations hold:�1

0

dO f �O� � 1 ;

�1
0

dOO f �O� � o0 :

Let DO be the characteristic width of the distribution
f�O�. In the course of time, the phase difference between
individual oscillators builds up, and coherence is destroyed
over the characteristic time t � 1=DO Ð this is the effect of
fading of coherent waves. Naturally, the energy of excitation
of the medium remains unchanged. In the absence of
coherence, however, this energy will be released over a much
longer period of spontaneous emission, when individual
atoms emit independently of one another. Further on we
shall disregard the small intensity of spontaneous radiation.
With due account for broadening, the oscillator coordinate
will now be a function of three variables: O, r, and t:
n � nO�r; t�.

In place of Eqn (10.6) we now have

�nO � O2nO �
e

m
E�r; t� : �11:1�

The vector of polarization of the medium is

P�r; t� � ne

�1
0

dO f�O�nO�r; t� ;

therefore, for n in Eqn (10.2) we must use

n�r; t� �
�1
0

dO f�O�nO�r; t� : �11:2�

Let us find the damping length for collective waves. With
this purpose we seek the solution of Eqns (10.1) ± (10.5),
(11.1), (11.2) in the form nO�r; t� � nO exp�ÿiot� ipz�,
E�r; t� � E exp�ÿiot� ipz�, H�r; t� � H exp�iot� ipz�. We
get Eqns (10.13) ± (10.15), in which

e�o� � 1� o2
p

�1
0

dO f�O� 1

O2 ÿ �o� i0�2 � e 0�o� � ie 00�o� ;

e 0�o� � 1� o2
p

�1
0

dO f�O� 1

O2 ÿ o2
; �11:3�

e 00�o� � po2
p signo

�1
0

dO f�O�d�O2 ÿ o2� � po2
p

2o
f
ÿjoj� ;

where we have used the Sokhotsky formula

1

a� id
� p

�
1

a

�
� pid�a� :

In particular, when the broadening is Lorentzian,

f�O� � DO
2p

1

�Oÿ o0�2 � �DO=2�2
;

the permittivity is

e�o� � 1ÿ o2
p

�o� iDO=2�2 ÿ o2
0

� o2
a ÿ �o� iDO=2�2

o2
0 ÿ �o� iDO=2�2 :

�11:4�

We see that the longitudinal oscillations for which e�o� � 0
fade out as x � exp�ÿDOt=2�.

To find the damping length for transverse waves, we
represent p as p � q� ip 00. The amplitude of the waves
decreases as x � exp�ÿp 00z�; therefore, the damping length
is Ld � 1=�2p 00�. At o � o0, from Eqn (11.4) follows

e�o� � o2
p

2o0�o0 ÿ oÿ iDO=2� :

Hence, and from Eqn (10.16), assuming that the damping
is small, we get

q �
������
o0
p

op

c
���������������������
2�o0 ÿ o�p ; Ld �

o0o2
p

c2q3DO
� vg

DO
; �11:5�

where vg is defined in Eqn (10.40).

12. Application of the classical model
to plasma physics

In this and subsequent sections we consider cyclotron waves
in a plasma perhaps from a somewhat unconventional
standpoint Ð namely, as a particular case (2.42c) of SR.
This approach allows interesting conclusions to be made.

Consider a plasma cylinder placed in a longitudinal
magnetic field B0. The plasma parameters selected are typical
for tokamaks:

ne � ni � n � 1014 cmÿ3 ; T � 104 eV;

B0 � 5� 104 G; a � 3 m; �12:1�
where a is the radius of the plasma cylinder (like in the ITER
Project [71]). Under conditions (12.1), the plasma is strongly
magnetized [72, 73]:

oHtc 4 1 ; �12:2�

where oH � oB=g is the cyclotron frequency of electrons,
oB � eB0=�mc� � 1012 sÿ1, g � �1ÿ v2=c2�ÿ1=2 � 1 is the
electron relativistic factor, and v is the electron velocity,

tc � 10ÿ4 s �12:3�

is the characteristic time of electron ± electron and electron ±
ion collisions. In this way, the electrons perform a mostly
circular motion around the magnetic lines of force, and after
about 108 revolutions experience collisions which sharply
change their paths. Naturally, in such circumstances the role
of collisions is minor, and the coherent effects must come to
the fore.

The Larmor orbit of electrons is

rH � vT
oH
� 3� 10ÿ3 cm; �12:4�

where vT � 3� 109 cm cÿ1 is the thermal velocity of
electrons. Since rH 5 a, the magnetic field on the small scale
is practically uniform; therefore the electrons engaged in
cyclotron motion are in resonance with one another. As a
result of the dipole ± dipole interaction, correlations between
the orbits of different electrons are established: each electron
slightly disturbs the cyclotron motion of other electrons, and
this disturbance is in phase with the rotation of the selected
electron. From this we conclude that cyclotron radiation
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must be dominated by the collective coherent effects which
may strongly reinforce this radiation. Let us evaluate the
intensity of this radiation and the characteristic time of energy
loss by the plasma tE. The problem must be formulated as
follows. At t � 0 we `turn off ' all sources of energy in the
plasmaÐ that is, fusion and external heating. For the sake of
simplicity we also turn off the exchange of energy between
electrons and ions. Then the decrease of energy of electrons
e � T by radiation will obey the law

dT

dt
� ÿ 1

tE
T : �12:5�

Since the initial (at t � 0) phases of cyclotron motion of
different electrons are independent, the total intensity I of
radiation by the plasma must be calculated by formula (8.86),
where Ib is the intensity of radiation by one electron with the
initial energy e � T surrounded by other electrons with zero
initial energy. Naturally, we refer to the energy stored in the
oscillatory (cyclotron) degrees of freedom of electrons. It is
these degrees of freedom that are in resonance with one
another and display collective effects. Differently from
previous sections, the oscillators in a magnetized plasma are
two-dimensional: only the components dx and dy of the dipole
moment vary with time according to a harmonic law (the z
axis is aligned with B). This means that at t � 0 for all
electrons except one we must set e? � �m=2�� _x 2 � _y 2� � 0.
At the same time, there are no restrictions on the motion
along the z axis, which is not a resonant degree of freedom.
We come to the conclusion that Ib must be calculated under
the condition

T? � 0 ; Tk � T : �12:6�

We shall soon see that condition (12.6) that follows from a
relatively trivial relation (8.86) leads to rather nontrivial
conclusions. Observe that for the model of three-dimensional
isotropic oscillators considered in the previous sections the
condition used for the calculation of Ib has a form simpler
than (12.6): T � 0. In other respects, the nature of physical
effects in magnetized plasma is the same as in the case of
isotropic oscillators Ð owing to the dipole ± dipole interac-
tion between the cyclotron orbits of electrons, collective
waves travel in the plasma, and again there are two types of
wave: the fast and the slow cyclotron waves.

So, at t � 0 we have one electron with e? 6� 0,
e? � ek � T; for all other electrons we have e? � 0, ek � T
Ð at t � 0 they only move along the z axis. Our selected
electron revolves in circular orbit of radius rH. Hence, the
characteristic value of the wave vector q is:

q � 1

rH
: �12:7�

From formulas (10.40) and (12.4), where we now set
L0 � rH, o0 � oH, we find

vg � 107 cm sÿ1 : �12:8�

First (within a time rH=vg), the selected electron transfers
the energy to other electrons that occur at a distance of rH
from it by the Coulomb interaction Ð that is, within the
Larmor orbit. This fast stage in the plasma is followed by
excitation with energy T in a region of size rH, which throws

more light on Eqn (12.7).
Since

qc

o0
� qc

oH
� c

rHoH
� c

vT
4 1 ; �12:9�

this excitation is represented mainly by the slow cyclotron
waves. Then the waves start to travel out at the velocity vg,
and the excitation `dissolves'. The motion of electrons along
the z axis gives rise toDoppler broadening, which leads to fast
damping of the majority of such waves Ð that is, to the
conversion of coherent oscillations into noncoherent ones,
whose energy, as noted in Section 11, is released very slowly.
There is, however, a small share r of undamped waves, which
leave the plasma and carry away the energy.

The physical meaning of expression (11.3) for e 00 consists
in that the d-function in the integrand selects a group of
electrons which are in resonance with the cyclotron wave of
frequency o, which absorb the energy of this wave. Consider
the electrons that move along the line of force of magnetic
field at the velocity vz (as already said, vx � vy � 0). The wave
in resonance with this electron in the electron's frame has
frequency o0 � oB and wave vector q 0, and in the laboratory
frame O and q. Since �O; q� is a four-vector, we have the
relation oB � g�Oÿ vzqz�, where g � �1ÿ v2z=c2�ÿ1=2. Hence
it follows that at nonrelativistic velocities the frequency of the
wave in resonance with the electron in the laboratory frame is

O � oB

g
� qzvz � oB ÿ oB

2c2
v2z � qzvz : �12:10�

Equating this frequency to the frequency o � o�q� of the
wave traveling in plasma, we get the condition of resonanceÐ
that is, the condition of absorption of energy:

O � o�q� ; �12:11�

which we rewrite in the form

v2z ÿ 2
c2qz
oB

vz � 2c2
oÿ oB

oB
� 0 :

Hence we find the velocities of resonant electrons

�vz�1;2 �
c

oB

ÿ
cqz �

����
D
p �

; D � c2q2z ÿ 2oB

�
o�q� ÿ oB

�
:

�12:12�

Obviously, the condition of absence of absorption is

D < 0 : �12:13�

Let us show that there exist waves that satisfy this
condition, and therefore are not absorbed. For such waves
the vector q is real, as assumed in the derivation of Eqn
(12.13). The wave vectors q of such waves are almost
perpendicular to B Ð that is, jqzj5 q. Since in Eqn (12.12)
both terms on the right-hand side are of the same order of
magnitude, and qz is small, we may set qz � 0 in the second
termÐ that is, in place ofo�q�we use the dispersion lawo�q�
for the waves with q ? B, which substantially simplifies the
calculation. For the same reason in the dispersion lawo�q� in
Eqn (12.12) we may set T? � Tk � 0. A more rigorous
calculation can be found in Appendix III.

The set of equations describing a nonrelativistic plasma in
a magnetic field B0 directed along the z axis is [cf. Eqns
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(10.1) ± (10.6)]:

m�n? �
e

c
_n? � B0 � eE? ; m�n z � eEz ; �12:14�

HH� E � ÿ 1

c

qB
qt

; HH� B � 4p
c

ne _n� 1

c

qE
qt
� 1

c

qD
qt

;

where the subscript ? marks the components perpendicular
to B0. Assuming that the dependence on r and t has the form
exp�iqrÿ iot�, for the amplitude of the wave from Eqn
(12.14) we get the system

ÿ o2n? � ÿioBon?� K� e

m
E? ; ÿo2xz �

e

m
Ez ;

�12:15�
q� E � o

c
B ; q� B � ÿo

c
D ;

where B, E are the fields in the cyclotron wave, and
K � B0=B0. Hence, and fromEqn (10.2), follow the equations

Da � eabEb ; �12:16�
q�q � E� ÿ q2E� o2

c2
D � 0 ; �12:17�

where

exx � eyy � e � o2
B � o2

p ÿ o2

o2
B ÿ o2

;

exy � ÿeyx � ÿif ; f � oB o2
p

o�o2 ÿ o2
B�

;

exz � eyz � ezx � ezy � 0 ; ezz � Z � 1ÿ o2
p

o2
:

Setting the determinant of Eqn (12.17) equal to zero, and
making use of Eqn (12.16), we get the dispersion equation for
finding the functions o � o�q� for collective waves [74]:

det

�
o2

c2
eab�o� � qaqb ÿ q2dab

�
� 0 : �12:18�

At q ? B0, from Eqn (12.18) follows the equation
F1�o�F2�o� � 0, where

F1 � o2

c2
Zÿ q2 ; F2 � e�eÿN 2� ÿ f 2 ;

N � qc=o is the index of refraction.We align the x axis with q.
By virtue of Eqn (12.15), Bx � 0. From equation F1 � 0
follows the relation o2 � q2c2 � o2

p. The latter defines the
wave for which Ex � Ey � Bz � 0, xx � xy � 0. Equation
F2 � 0 is easily reduced to

o4 ÿ �o2
B � 2o2

p � q2c2�o2 � o4
p � q2c2�o2

B � o2
p� � 0 :

�12:19�

This describes the fast and the slow cyclotron waves, for
which Ez � 0, xz � 0, Bx � By � 0. For the fast wave
o2 � A� ����

D
p � o2

f , where

A � o2
p �

o2
B � q2c2

2
; D � 1

4
�q2c2 ÿ o2

B�2 � o2
po

2
B :

For the slow wave o2 � Aÿ ����
D
p � o2

s .

At q2c2 ÿ o2
B 4opoB, we have

o2
f � o2

p � q2c2 � o2
po

2
B

q2c2 ÿ o2
B

; o2
s � o2

B � o2
p ÿ

o2
po

2
B

q2c2 ÿ o2
B

:

In particular, in the most practically interesting case (12.9),
we get

o2
s � o2

B � o2
p ÿ

o2
po

2
B

q2c2
:

Since the condition (10.38) is satisfied for parameters (12.1),
we find that

os � oB �
o2

p

2oB
ÿ o2

poB

2q2c2
: �12:20�

The comparison between Eqns (10.40) and (12.20) reconfirms
our earlier estimate (12.8).

When substituting Eqn (12.20) into (12.12), (12.13), we
may discard the last term in Eqn (12.20). The condition of
nonabsorption (12.13) becomes

jqzj < op

c
: �12:21�

We see that those waves for which the angles between wave
vectors q and the plane perpendicular to the magnetic field B0

are limited to

jaj < ac ; �12:22�

are not absorbed; here

ac � op

qc
� oprH

c
� opvT

oBc
� 0;04 : �12:23�

In degrees, ac � 3�, and the full angle of the transparency
window (12.22) is 2ac � 6�. On a unit sphere the region
(12.22) forms an annular region (a ring) of area 4pac,
therefore, after the initial excitation dissolves [see our
comment after Eqn (12.8)], all these collective waves are
absorbed with the exception of a small share

r � 4pac
4p
� ac : �12:24�

Let us now analyze the resulting picture. The equation of
energy balance (12.5) has the form

dT

dt
� ÿIb ; �12:25�

where Ib is the intensity of radiation by one electron excited at
t � 0. The undamped waves carry an energy rT, and after a
time t1 � a=vg � 10ÿ5 s reach the periphery of the plasma and
leave the system as electromagnetic waves (see Appendix IV).
Since tc 4 t1 [see Eqn (12.3)], the coherence is not destroyed
during this motion. After the time tc collisions occur, and the
system returns to status quo Ð the same as at t � 0 but with
entirely different phases of oscillators. Then each electron
releases the energy rT from the plasma, and so on. Thus,

Ib � rT
tc

: �12:26�

From comparison of Eqns (12.25), (12.26) with (12.5) we
get the estimate tE � tc=r � 3� 10ÿ3 s.
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Such will be the lifetime of a plasma not surrounded by a
metallic container. The cyclotron waves in the millimeter
range emitted by electrons are effectively reflected by the first
wall of the tokamak; however, the coherence is lost after the
very first reflection because the large phases are practically
completely random. The energy of these waves is transferred
to the noncoherent excitation of the plasma, which, as
indicated above, is practically not emitted at all. The share
of energy absorbed after the first reflection is R � ���������

o=s
p ������������

oB=s
p � 3� 10ÿ3, where s � 1017 sÿ1 is the conductivity of
the wall of the tokamak. This means that the intensity (12.26)
must be multiplied by R. Finally, we get tE � tc=�rR� � 1 s,
which agrees with the experimental time measured with
TFTR and JET [71]. This agreement, however, should not
be taken as proof of the theory developed in this section, since
we have left several effects out of the consideration. They will
be discussed in sections to follow.

To end this section, let us briefly discuss formulas (12.10),
(12.13). Equation (12.10) includes the relativistic correction
v2z=c

2, which turns out to be important in the range of small
angles a. This means that the absence of absorption of waves
at small a is a relativistic effect. There may be some doubt
concerning the fact that the inclusion of terms quadratic with
respect to velocity may violate the linearity of the CMS that
was an important assumption in our reasoning. The linearity,
however, is not violated, because the oscillatory resonant
variable is x?, with respect to which the equations of CMS
remain linear, whereas the terms included are quadratic with
respect to vz (see Appendix III).

13. The diffusion regime of transfer of coherent
cyclotron radiation in an inhomogeneous plasma

In the previous section we considered a highly idealized case
of a homogeneous plasma. Assume that l is the characteristic
length of inhomogeneity in a magnetized plasma (for
example, a magnetic islet [75]). Since rH 5 l, the main effect
identified in Section 12 remains: the coherent cyclotron
radiation is transported in a plasma across the lines of force;
differently fromSection 12, however, this time it cannot travel
further than a distance l. In this way, regions of size l
(hereinafter referred to as cells) exchange energy, and the
entire process appears as a diffusion of energy towards the
periphery of the plasma. This does not mean that the plasma
will radiate mainly at the cyclotron frequency: in the course of
diffusion, the ordered collective energy may be converted into
the energy of chaotic thermal motion of plasma particles, into
conventional bremsstrahlung, etc. These issues call for
thorough investigation, and the ideas presented in this
section must be regarded as just a hypothesis that the
diffusion of coherent cyclotron oscillations is the main
mechanism of energy transfer in a tokamak.

The density of energy flux is evaluated from the relation
ql2 � Ibnl

3, where Ib � Tr=tc is the intensity of radiation per
electron (see Section 12). Accordingly,

q � nTl
tc

r :

The total large-scale energy flow is

qD � nTl
tc

Dr ;

where Dr is the difference in r for adjacent cells;
Dr � �l=a�r0, r0 is the value of r in the midst of plasma [see

Eqns (12.23), (12.24)]. Thus,

qD � nTl2r0
tca

:

The lifetime of energy tE is estimated from the equation of
energy balance for unit length of plasma cylinder:

nTa2

tE
� qDa :

Hence

tE � tc
r0

�
a

l

�2

:

We see that, compared to tE for a homogeneous plasma (see
Section 12), the lifetime of energy in inhomogeneous plasma
is �a=l�2 times longer. Substituting the typical parameters of a
tokamak, we find (in seconds) tE � 3� 10ÿ3�a=l�2. This
result agrees with the experiment when a=l � 10.

14. Conclusions

Superradiance is defined as a phenomenon that involves two
mechanisms: the development of correlations between the
initially independent excited atoms (phasing) and the sub-
sequent reinforced collective emission by a system of atoms as
a result of phasing. From this definition we see that SR is
quite a universal phenomenon. If we consider a system of
inverted-population atoms, it is an essentially quantum effect
related to laser generation. It had been regarded as such
starting with Dicke's seminal work [8], in which the correla-
tion between atoms arose as an elegant and simple conse-
quence of the symmetry of Dicke's Hamiltonian and the
complete wave function. If we speak of classical systems Ð
for example, electrons revolving in magnetic field, clusters of
electrons in wigglers, cathode ray tubes for microwaves, etc.
Ð then the corresponding radiation is also SR, this time
represented by slowly propagating waves since the energy is
shared between the particles and the field.

It would be impossible to discuss all the aspects of SR in
one review, which, if we adopt the above definition, were
applied in practice long before the publication of Ref. [8]. We
have concentrated on a narrower task, which consists in
sorting out the main theoretical approaches, identifying
their strengths and weaknesses, presenting the theory at
different levels of complexity, improving where possible, and
resolving or trying to resolve the obscure points.

We started with the general terms discussion of the main
publications on SR, and the analysis of Dicke's theory from
different angles. Then we considered in detail the nonlinear
mechanism of phasing and its role in SR. For elucidating the
role of the dipole ± dipole interaction we introduced the CMS,
which turned out quite useful. Such interaction in a small-size
specimen �L5 l� was found to result in shielding which
prevents radiation from escaping from the sample. Shielding
creates localized excitation which has a zero dipole moment
and therefore does not emit. Subsequently, this coherent
excitation is destroyed by atomic collisions, and the excess
energy slowly leaves the specimen as noncoherent radiation.
We go on to demonstrate that in an ellipsoidal body the
dipole ± dipole interaction is kind of canceled out, which does
not happen in specimens of other shapes. This interaction
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forms the basis of another (dipole) mechanism of phasing,
concurrent and competing with the nonlinear mechanism. It
is found that the conclusions of some authors concerning the
dipole dephasing of atoms and suppression of SR are
incorrect, which may stimulate experiments on SR in small
objects.

In Section 8 we reviewed the results on SR in extended
bodies �l5L5 cts�, obtained a new solution for the known
equations of SR, and discovered the effect of nonlinear
narrowing of the angular divergence of the beam of SR. We
used the linear CMS to account for the retarded dipole ±
dipole interaction, which again leads to shielding.A nonlinear
CMS is proposed which may prove the most adequate model
of SR. For the case of a rod pumpedwith a p-pulse, we discuss
the oscillatory regime of SR observed in experiments. In
Sections 10 ± 13 we consider SR in a dense medium �l5 l�,
where it takes the form of collective waves that travel out to
the periphery and escape as electromagnetic waves. A model
of diffusion transfer of cyclotron waves is proposed which
may explain the effect of anomalous heat conduction in a
magnetized plasma [76 ± 79].

In conclusion, let us touch upon some interesting
problems for the future. Further development of the theory
of SR requires numerical simulation of SR based on the
nonlinear CMS which simultaneously includes the nonlinear
effects and the dipole ± dipole interaction. This must be done
for both L9l and L0l. Of particular interest is the
calculation of SR for a spherical body including terms of the
order of 1=c2 in the Lagrangian (see Section 7). One could
think of staging an experiment on SR in small objects based
on electron paramagnetic resonance (see Section 7). The
hypothesis of cyclotron energy transfer in magnetized
plasma is well worth further consideration. Another interest-
ing problem is related to astrophysics, where the high
radiative luminance of pulsars could be attributed to the
collective effects of SR [79, 80]. The development of the
theory of SR will also advance our knowledge of none-
quilibrium phase transitions. To be certain, there are many
fundamental problems awaiting their solution in the theory of
SR and its applications.
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15. Appendices

I. Direct calculation of sab
Themain contribution to the tensor tab�rb�, as defined by Eqn
(7.9), comes from the regions far from atom b. Indeed, let us
select a point on the surface of the medium closest to b, and
draw a tangential sphere centered at point b. Then the sum
(7.9) will split into two parts corresponding to atoms a inside
this sphere and outside of it. As explained in Section 7, the
medium may be considered isotropic under condition (7.19),
which is satisfied in all cases of practical interest. By virtue of
spherical symmetry, the first term is zero, since the quantities
Gab�rab� are composed of spherical functions corresponding
to the moment l � 2. Thus, only the second term is left,
whence follows the above statement.

Since the main contribution to tab comes from the regions
of the medium whose size is of the same order as that of the

medium itself, the sum over a in Eqn (7.9) may be replaced
with integration [see Eqn (2.35)], which means going over to
the continuum approximation. Consequently,

tab�ra� � n

�
d3rb Gab�rab� : �I:1�

According to Eqn (7.3), b 6� a. This means that at r � 0
there is no singularity, and we must define Gab�rab� at a � b:
Gab�0� � 0. Hence we conclude that in the continuum limit

Gab�rab� � �Ha�a�Ha�b
�

1

rab

�
� 4p

3
dabd�rab� : �I:2�

The singular term in Eqn (I.2) cancels out the correspond-
ing term that arises in the calculation of the first term, and
therefore there is no singularity in Eqn (I.2) at rab � 0, as
ought to be expected. From Eqns (I.1) and (I.2) we find

tab�r� � nHaHbj�r� � 4p
3

ndab ; j�r� �
�
n
d3r 0

1

jrÿ r 0j

from where it is easy to express Eqn (7.17)

II. Proof of formula (7.30)
Consider an infinite medium �N!1�. Similarly to the
quantity tab (see Appendix I), the main contribution to the
sum over b in Eqn (7.30) comes from the range of variation of
rb with the characteristic size of the order of L, and therefore
the summation may be replaced with integration. Of course,
the terms of order of 1=N will be lost, which in an infinite
medium are zero. Using Eqn (I.2), we get

Qag �
X
b

Gab�rab�Gbg�rbc�

� n

�
d3rb

�
�Ha�a�Ha�b

�
1

rab

�
� 4p

3
dab d�rab�

�
�
�
�Hb�b�Hb�g

�
1

rbc

�
� 4p

3
dbg d�rbc�

�
� n

�
d3rb �Ha�a�Ha�b

�
1

rab

�
�Hb�b�Hb�g

�
1

rbc

�
� 4pn

3
�Ha�a�Ha�g

�
1

rac

�
� 4pn

3
Gag�rac� :

The first term in this expression reduces to

n�Ha�a�Hc�g
�
d3rb �Hb�b

�
1

rab
�Hb�b

1

rbc

�
ÿ n�Ha�a�Hc�g

�
d3rb

1

rab
H2
b

�
1

rbc

�
and the first term here reduces to an integral over the surface
surrounding the medium. Since the medium is infinite, this
integral is zero (the terms of order 1=N are lost again). Using
the relation H2�1=r� � ÿ4pd�r�, after some straightforward
algebra we get Eqn (7.30). In doing this we use the
replacement rule that holds for the transition to the con-
tinuum limit dab ! nd�rab�.

III. Waves in a magnetized plasma with T?=0, Tk=T
Let us demonstrate that waves moving nearly normal to the
magnetic field in a plasma with T? � 0 do not fade.

Following Sections 10 ± 12, we use the approximation of a
continuous medium. At Tk 6� 0 we take care of the motion of
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electrons along the lines of force by replacing vector n?�r; t� in
Eqn (12.14) by nv�r; t�, where v � vz, nv ? B. In addition, _n?
must be replaced with�

q
qt
� vz q

qz

�
nv :

We also take into account the weak relativism with respect to
motion along the z axis, by including the relativistic factor g in
the left-hand side of the first equation in (12.14):

g �
�
1ÿ v

2
z

c2

�ÿ1=2
� 1� v2z

2c2
:

Then in place of Eqn (12.14) we get

mg
�
q
qt
� vz q

qz

�2

nv �
e

c

�
q
qt
� vz q

qz

�
nv � B0 � eE ; �III:1�

HH� E � ÿ 1

c

qE
qt

; HH� B � 1

c

qD
qt

; D � E� 4pren ;

n �
�1
ÿ1

dvz nv f �vz� ; �III:2�

where f �vz� is the distribution function of electrons with
respect to vz,

�1
ÿ1 dvz f �vz� � 1.

Now our task is to calculate the permittivity of the plasma
and the damping length of the waves in the plasma. Similarly
to Eqn (12.15), we get

ÿ�oÿ qzvz�nv � ÿ
ioB

g
�nv � K� � e

moB
E ;

which we express component-wise

xvx � ÿ
e

mD0
�Ex � iEy� ; xvy �

ie

mD0
�Ex � iEy� ;

xvz � ÿ
e

mo2
Ez ;

where

D0 � �oÿ qzvz�2 ÿ o2
B

g2
� 2oB�oÿ oB� ÿ 2qzvz � o2

Bv
2
z

c2
:

Hence, and from Eqns (III.1), (III.2) for the nonzero
components we get [compare with the components in Eqn
(12.16) corresponding to T? � Tk � 0�:

exx � eyy � 1ÿ o2
pA � e ;

exy � ÿeyx � ÿif ; f � o2
pA ; ezz � Z ;

where A � �1ÿ1 dvz f �vz�=D0. When calculating A, we must
make the conventional replacement o! o� id, d! �0 [73,
74], which gives us the damping

A � A 0 � iA 00 ; A 0 � 1

o2 ÿ o2
B

;

A 00 � ÿp
�1
ÿ1

dvz f �vz�d
�
�oÿ qzvz�2 ÿ o2

B

g2

�
� ÿ p

2oB

�1
ÿ1

dvz f �vz�d
�
oÿ qzvz ÿ oB

g

�
� ÿ p

2oB

�1
ÿ1

dvz f �vz�d
�
oÿ oB ÿ qzvz � oBv

2
z

2c2

�
: �III:3�

Since we are interested in the waves that travel almost
transversely to themagnetic fieldB0, in the dispersion relation
(12.18) everywhere except in A we may set qz � 0, which
considerably simplifies the problem. FromEqn (12.18) we get

�1ÿ o2
pA�
�
1ÿ o2

pAÿ
q2c2

o2

�
ÿ A2 � 0 : �III:4�

The absence of damping for the waves from the intervals
(12.21), (12.22) follows from Eqns (III.3), (III.4). The
damping length Ld � 1=�2q 00� is found by substituting
q � q 0 � iq 00 into Eqn (III.4). We see the condition of the
total absence of damping; therefore we assume that
jA 00j5 jA 0j, q 005 q 0. Further on we denote q 0 by q again.

Setting the real part of Eqn (III.4) equal to zero, we get the
dispersion relation (12.20), and the damping is found by
equating the imaginary part to zero:

q 00 � q3o2
pc

2

4o4
B

d ;

d � p
�1
ÿ1

dvz f�vz�d
�
v2z
2c2
ÿ qz
oB

vz �
o2

p

2o2
B

�
:

In this calculation, in Eqn (III.3) in accordance with Eqn
(12.20) we have made the replacement

oÿ oB �
o2

p

2oB
ÿ o2

poB

2q2c2
� o2

p

2oB
:

IV. Passage of a slow cyclotron wave across the plasma
boundary
Let us demonstrate that the wave passes across the plasma
boundary practically without reflection. For this purpose we
assume that the boundary is flat, and the wave falls at right
angles to this plane: q � �q; 0; 0�. The boundary is the plane
x � 0.

According to Section 12, the solution of Eqn (12.14) is
sought in the form

E � ÿEx�x�;Ey�x�; 0
�
exp�ÿiot� ;

B � ÿ0; 0;Bz�x�
�
exp�ÿiot� ;

n � ÿxx�x�; xy�x�; 0� exp�ÿiot� :
Hence, and from Eqn (12.14), we get Eqn (12.16), and also
equations

Ex � i f

e
Ey ; Bz � ÿ ic

o
E 0y�x� ;

E 00y �x� � q2�x�Ey�x� � 0 ;

q2�x� � o4 ÿ �o2
B � 2o2

p�o2 � o4
p

c2�o2 ÿ o2
B ÿ o2

p�
:

At op 5oB we have

q2�x� � o2�o2
B � 2o2

p ÿ o2�
c2�o2

B � o2
p ÿ o2� :

Inside and outside of the plasma the quantity q�x� in
accordance with Eqn (12.7) is qi and q � qe � o=c � oB=c,
respectively. According to Ref. [72], the width of the plasma
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boundary is

d � c

op
: �IV:1�

If the phase gain on the boundary is large, the movement of
the wave is classical, and therefore the reflection is small.
Since

qid � c

vT

oB

op
� 10 ; qed � oB

op
� 2 ;

the motion of the wave across the boundary is indeed
quasiclassical. Observe that the actual value of d is much
greater than the estimate of Eqn (IV.1), because the density of
plasma decreases gradually to zero from the middle to the
periphery [78]. Accordingly, in reality we have d � a, qa4 1,
and the reflection of waves may be disregarded.
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