
Einstein's paper under the title ``Die formale Grundlagen der
allgeminer RelativitaÈ tstheorie'' (Formal principles of the
general theory of relativity) 1 appeared in the records of
proceedings of Berlin Academy of Sciences in 1914 and
should be considered as his first fundamental work on the
principle of relativity. Later in 1916, this paper, somewhat
amended and completed, was published in Annalen der
Physik. The reprints of this work were offered for sale.
Owing to this fact, the work of Einstein became especially
popular 2. HLorentz, who in 1915 ± 1916 delivered lectures on
relativity in Leiden, named them On Einstein Theory of
Gravitation 3; mathematician D Hilbert called his papers,
appearing in 1915 ± 1916, ``Die Grundlagen der Physik''
(Basics of physics) 4; at last, mathematician H Weyl issued a
book in 1918, dedicated to these theories, under the title
Raum, Zeit, Materie (Space, Time, Matter) 5. Already these
titles show clear enough that the theory created by Einstein
embraces the whole physics, and theories of such a kind could
not but arise deep, exciting interest; this is confirmed by the
fact that from the very moment of its appearance Einstein's
theory became the subject of consideration for such out-
standing physicists and mathematicians as Lorentz, Hilbert,
andWeyl. For a more or less complete exposition, this theory
requires rather subtle mathematical tools, hardly under-
standable for almost all the physicists. As to the popular
expositions, however brilliantly written, they are good for
nothing except vague, loose and dissolving views for those
who would like to receive something more than a general
notion on Einstein's theory.

The proposed paper is too concise to lay claim to any
exhaustive explanation of Einstein's theory. Its aim is to
elucidate the main concepts and their application to the
solution of two or three comparatively simple questions
such as, for example, questions on the motion of Mercury's
perihelion or the deviation of a light ray in the gravitational
field of the Sun, about which recently there was much ado. It
goes without saying that the main Einsteinian concepts

should not be considered as theorems which could be derived
in a purely deductive way from other statements which are
beyond any doubt. The elucidation of the fundamentals of the
theory comes to the explanation, or better to say, to the
enumeration of the reasons why the fundamentals should be
considered as such. The proof of the validity of Einstein's
theory should be looked for not a priori, but a posteriori. Not
experimental validation of the conclusions and the foreseeing
of new, unknown phenomena are the most important thing in
Einstein's theory. The fundamentals of Einstein's theory are
of great importance in principle, and here one should seek the
main value of the theory but not in several experiments
strengthening Einstein's theory, however brilliant these
experiments may be.

Geometry and physics. Prior to Einstein, the geometry and
physics were considered as two essentially quite different
sciences. In physics they considered geometry as something
external in respect to physics; really the content of physics was
only given by experiment. The Euclidean geometry of 3-
dimensional space was only a frame, true enough necessary
Ð because any physical phenomenon took place in this space
Ð but in any case having nothing in common with the
phenomenon. True, in the case of the now so-called `special'
principle of relativity (1905) HMinkowski used a geometry of
4-dimensional space without any signs of Euclidean geometry
and connected with physics via one constant it included,
which is equal to the speed of light. In Minkowski geometry
the element of length was defined as ds2 � dx2 � dy2�
dz2 ÿ c2 dt 2, where x, y, z are properly space coordinates, t
is time, and c is the speed of light. This geometry is non-
Euclidean, because in Euclidean geometry one would have
ds2 � dx2 � dy2 � dz2 � dc2t 2; moreover, it was connected
with physics, because it included the constant cÐthe speed of
light; nevertheless Minkowski geometry was considered as
purely formal just in the same way as in physics one is viewing�������ÿ1p

, but more an intimate connection between physics and
geometry did not exist yet.

Geometry was for physics a kind of a frame, something
external, outside in respect to the content of physics. On the
contrary, for some geometers physics seemed sometimes to be
a science whose experimental data were necessary for
consolidation of the very foundations of geometry. It is self-
evident that to come to know the particulars of the
foundations of geometry is beyond the scope of the present
paper. In his bookLa Science et l'Hypothese (The Science and
Hypothesis) 6 PoincareÂ gives an excellent universally under-
standable analysis of what refers to the foundations of
geometry, how one has to consider the axioms of Euclidean
geometry as well as the geometries of Lobachevsky, Riemann
and all other numberless non-Euclidean geometries. We shall
restrict ourselves here only to the discussion of the association
between an experiment and axioms or geometrical theorems
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derived on the basis of these axioms. The elucidation of this
point is of importance for comprehension of the Einsteinian
viewpoint on geometry.

As long as there was only one geometry Ð that of Euclid,
there was no doubt in the `physical' truthfulness of its axioms,
though as far back as Gauss considered it necessary to test
directly the proposition according to which the sum of angles
in a triangle is equal to two right angles. Since the advent of
the geometries of Lobachevsky, Riemann and others the
problem of an experimental test of geometry has become of
especial importance. As is known, Lobachevsky geometry
denies the Euclidean postulate, according to which through a
given point one can draw only one straight line parallel to a
given straight line, and offers a counterpostulate: one can
draw as much such parallels as one wishes. The so-called
spherical Riemann geometry deviates in the opposite direc-
tion from Euclidean geometry and completely denies the
possibility of the existence of parallel straight lines. Both
Lobachevsky and Riemann (in his spherical geometry) accept
all other Euclidean axioms. As it is very nicely and simply said
in PoincareÂ 's book mentioned above, both geometries are
logically quite possible and do not contain any intrinsic
contradictions. Neither Lobachevsky, nor Riemann find the
sum of the angles of triangle to be equal to two right angles. In
Lobachevsky's geometry the sum of the angles was less than
two right angles, in Riemann's geometry the sum was more
than two right angles. Gauss in his experimental test found
that to within observational error the sum of the angles of a
triangle turned out to be equal to two right angles. Because
the angles can be measured with a high precision, it might
appear at first sight that Gauss's experiment showed that real
`physical' space (by `physical' space one understands the
space where all physical phenomena take place, in contrast
to spaces which we can imagine or construct logically) is the
so habitual for us normal Euclidean space. But, first, the
deviations from Euclidean geometry may be so small that,
despite their existence and Gauss's observations being
comparatively precise, they nevertheless cannot be detected
specifically in this experiment. Second, even if the experiment
would give with absolute accuracy that the sum of the angles
of triangle is equal to two right angles Ð even in this case it
would be impossible to assert that physical space is Euclidean
without mentioning one circumstance which is important in
principle. Really, let us suppose that the experiment also
brings to the sum less than two right angles. Could a physicist
draw from this fact a conclusion that Euclidean geometry is
not valid? First of all he would ask how the measuring of
angles was carried out. The answer would be Ð by counting
the divisions on the circular limb and by using the telescope.
The latter means that the light beam is used as a straight line
between two vertices of a triangle whose angles are to be
measured and summed up, and the deviation from two right
angles for the sum physicist could interpret, if he liked, not as
the invalidity of Euclidean geometry but just as `bending' of
the light beam (on the contrary, in the case of the sum equal to
two right angles, a scientist at all price upholding the
viewpoint of Lobachevsky geometry could also explain the
deviation from the corresponding Lobachevsky theorem as
`bending' of the light beam). But a physicist speaking of
bending of a ray means that in some or other way the bending
under discussion can be detected; to this end he has to use
some other `physical' apparatus which would produce a `real',
in his opinion, straight line; comparing the light beamwith this
straight line, he could show that the ray is really bent and that

his new measuring apparatus gives the sum equal to two right
angles. But his triumph would be very superficial and short-
term; the scientist upholding the Lobachevsky viewpoint
would ask him to prove that his new apparatus produces a
straight line, and without inventing some other new appara-
tus our physicist in no way could make such thing. And
because it is impossible to invent new apparatus without end,
it is clear that an experiment can answer our question only as
far as we ascribe to our main apparatus, say, the light beam,
the properties of a straight line. But ascribing the properties of
straight line precisely to the light beam and not to some other
thing depends exclusively on our will. We emphasize this fact
because the geometry which Einstein makes use of Ð is non-
Euclidean, and it may seem that the validity or nonvalidity of
Einstein's theory serves as a proof of the validity or non-
validity of Euclidean geometry. Meanwhile this is not so;
those who want to consider Euclidean geometry to be
something exclusive can continue to do so without being
disturbed by Einstein's arguments and theories, but in this
case he should refuse to consider as straight lines those which
are produced by our main measuring instruments: the light
beam, the edge of a ruler, and so on. As it will be shown, if one
takes a light beam or the edge of a ruler as a straight line, then
observations more precise than those carried out by Gauss
will reveal deviations from Euclidean geometry.

But independently of the results given or possibly given by
observations that are really carried out, it is important in
principle to establish that if a straight line is physically
defined, say, using the light beam, then only experiment can
indicate us what kind of geometry is valid for the physical space.
But there are infinitely many geometries; how one can
experimentally test them, which conclusions and proposi-
tions of geometries could be tested better and more con-
veniently? There are only a few geometries which allow the
displacement of unchangeable figures (the transfer of a figure
from one place in space to another; the displacement or
movement of figures; the existence of a rigid body); the main
of them are the geometries of Lobachevsky, Riemann and
Euclid. The main propositions of these geometries were
discussed by Hermann Helmholtz, Sophus Lie, Bertrand
Russell and others. The so-called Riemann geometries
include a much wider class of geometries. As a starting point
for each of his geometries Riemann makes use of a definition
of the element of length.

Let us have an n-dimensional space, x1; x2; . . . ; xn be n
coordinates defining the position of a point in this space, and
let ds be an element of arc length. The expression

ds 2 �
X
i k

ai k dxi dxk ;

where ai k are functions of x1; x2; . . . ; xn, is characteristic for
the geometry under consideration. For each given geometry
the functions ai k are of some quite definite form. For
example, in the case of Euclidean geometry in 3-dimensional
space

ds 2 � dx 2
1 � dx 2

2 � dx 2
3 ;

for the Lobachevsky geometry

ds 2 � dx 2
1 � dx 2

2 � dx 2
3

1ÿ �a2=4��x2 � y2 � z2� ;

where a is some constant.
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Putting in general ds 2 �Pi k ai k dxk, we reject not only an
Euclidean axiom on parallels but some other axioms as well;
thus, in the most general case the axioms which allow the
possibility of transferring and superposition of figures cease
to be valid (these axioms are not stated explicitly by Euclid;
the details on these items can be found in ``Die Grundlagen
der Geometrie'' by Hilbert 7).

According to Einstein, this relation, fundamental for
every geometry, should be tested experimentally. Of course,
only an ideal imaginary experiment is possible here; really the
test is carried out not over the expression for ds 2 itself, but
over the conclusions which can be drawn from it. If the test
gives for 3-dimensional space ai k � 0 for i 6� k and ai k � 1 for
i � k, then we have Euclidean geometry; if ai k turn out to be
functions of xi, then we have a geometry whose character
depends on the form of these functions.

In an Einsteinian `special' principle of relativity one
should consider time as a quantity closely linked with space
measurements, inseparable from them. Naturally, Einstein
takes as the basis for his new, more general theories not 3-
dimensional space, but 4-dimensional space where one
coordinate is time. Each physical phenomenon is determined
by the position where it takes place (three space coordinates)
and the moment when it happens (time coordinate); the
expression for the element of length consists of increments
of these four coordinates:

ds 2 �
X
i k

ai k dxi dxk ; i; k � 1; 2; 3; 4 ;

here all four coordinates play the same role; really time (say,
x4) is not identical to space coordinates x1, x2, x3. Hilbert 8

derived the conditions for ai k to be satisfied in order that the
fourth coordinate Ð time Ð should not lose its distinctive
special signs which it should reserve in any theory.

The first Einstein fundamental proposition. Thus, the first
proposition of Einstein's theory runs as follows:

T h e e l em e n t o f l e n g t h i s d e t e rm i n e d a s

ds2 �
X
i k

ai k dxi dxk ; i; k � 1; 2; 3; 4 ;

a n d t h e e x p e r im e n t s e t t l e s w h a t t h e f u n c t i o n s
ai k a r e.

Geometry and mechanics. Newtonian mechanics ascribes
quite exclusive significance to rectilinear and uniformmotion.
If instead of a given coordinate system we take another one
moving in respect to the first system rectilinearly and
uniformly, then this change cannot be found by a direct
physical experiment. Any other motion can be revealed by an
experiment, because new forces would appear which did not
exist before. Let us consider a very simple case: motion along
a circle. This case gives us an opportunity to indicate two
remarkable facts: one of which is very important in principle
and the other Ð from the experimental viewpoint.

Let us take a physical body having the form of a sphere,
and suppose that in the whole of space there are no other
bodies. Can we solve the question of whether this sphere

rotates or not?Beyond the sphere there is no physical body, no
physical point which could help us in this respect. We have to
consider what happens on the very surface of the sphere or
inside it. Let us suppose that we found on the surface the
presence of some centrifugal force, took notice that the sphere
is somewhat flattened at the poles and that the plane of
oscillation of a Foucault pendulum rotates. This will compel
us to suppose that our sphere is rotating, we even shall
calculate the velocity of its rotation. But then will come the
question with respect to what does it rotate, because there are
no external bodies in respect to which it could rotate.
Evidently, there must be some space which itself is not
distinguished by anything, does not contain any physical
body and for this reason is not accessible by itself for
observation; it is in this `absolute' nonphysical space the
rotation of our sphere takes place. But everything which
does not have physical reality and for this reason is
inaccessible to physical observation refers, if you like, to
metaphysics but in no way to physics. One can believe or not
believe in such an absolute space, but it is impossible to use it
as an object which exists really, physically. But then one has to
say that Newtonian mechanics can answer a question which in
essence cannot be answered `physically'. It is a paradox, to
which attention for the first time was drawn by E Mach;
Einstein drove this paradox out of oblivion and gave the
answer: Newtonian mechanics, in general, is not valid. Real
mechanics gives for such a sphere neither a centrifugal force,
nor a movement of the plane of oscillation for a Foucault
pendulum, etc.Ðall these forces and phenomena appear only
when the rotation of our body takes place in respect to some
other `physical' space which can be detected with the physical
bodies which it contains. Rectilinear and uniform motion as
well as circular or some other motion does not play any
exclusive role; all coordinate systems and all possible their
displacements are of equal worth. If there is only one sphere
and nothing else, then we can assert that it rotates or rests,
jumps or moves as it likes. No physical phenomena can reveal
this, because all these jumps, rotations, etc. take place not in
respect to `physical' space, but can only be thought in respect
to other space which does not really exist. To show the
possibility of such mechanics was among the greatest services
of A Einstein.

The other remarkable fact stemming from observations of
rotation is that the centrifugal force is always proportional to
the mass of the rotating body. According to the second
Newton's law, gravitational force is also proportional to
mass, but in the formula of Newton's law mass plays the
role of the cause creating gravity; meanwhile, in the formula
of centrifugal force engendered by rotation, it plays quite a
passive role; mass actively creating a force and inert or passive
mass Ð just a numerical coefficient Ð under experimental
tests turn out to coincide with high accuracy 9. This fact
cannot be accidental, but Newtonian mechanics does not
explain it. Newton in his second law of motion just put
forward, like a postulate, the requirement according to
which the inert mass times acceleration should be equal to
the force Ð in particular, to the force produced by the same
mass, the same quantitatively, but already operating actively.

The identity of massesÐ active or gravitating and passive
or inert Ð Einstein raises to a principle and calls it the
principle of equivalence.

7Hilbert D ``Die Grundlagen der Physik. Zweite Mitteilung'' (GoÈ thingen
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Let us imagine one coordinate system K which rests, and
another coordinate system K 0 which is in a state of uniformly
accelerated and rectilinear motion in respect to the first
system. A material point moving along a straight line in K
moves along a parabola inK 0. Taking the direction of motion
of K 0 or the parabola axis for x-axis, one gets in system K 0

d2x 0

dt 2
� g � const :

If m is the mass of the point, then each equation written as
m d2x 0=dt 2 � mg can be considered as symbolizing the
equality between the product of inert mass by acceleration
and the forcemg. On the basis of the principle of equivalence,
the forcemg can be considered as gravitational, withm in this
casemeaning not the inert mass but an active onewhich exerts
the force mg in the same way as the force mg is exerted by an
active mass m of some heavy body on the Earth's surface (in
the latter case mg means mM=r2, where m is the mass of the
heavy body,M is the mass of the Earth, and r is the radius of
the Earth; it is clear that in this case m exerts force).

Thus, the observer inside the K 0 system may take no
notice of its accelerated and rectilinear motion, if one accepts
that such accelerated motion is equivalent to the presence of a
gravitating field and that the observer explains all the
phenomena which take place around him just on the basis of
this gravity. The principle of equivalence enables us to
consider the centrifugal force as one which according to its
nature coincides with gravitational force and essentially is not
different from it; at last, the same can be said about all forces
which arise kinematically in a coordinate system linked with a
moving body.

There are masses in nature which exert around them the
so-called gravitating field; if we take some coordinate system
K �, then the character of the gravitating field will depend on
what coordinate system we chose; in another coordinate
system K � 0 moving in respect to the first one there will be
another gravitating field. Moving together with K � 0, we can
ascribe everything which happens in K � 0 not to the motion of
K � 0 in respect toK � but to the gravitating field which exists in
K � 0 and differs from the field in K �.

But the transition from one coordinate system to another
arbitrarily chosen coordinate system implies the change of the
form of those functions ai k which determine the properties of
the geometry of physical space; if in one coordinate system

ds 2 �
X
i k

ai k dxi dxk ; i; k � 1; 2; 3; 4 ;

then in K � 0 we obtain

ds 2 �
X
i k

a 0i k dx
0
i dx

0
k ;

and evidently a 0i k 6� ai k, because the dependence between xi
and x 0i is arbitrary.

It should be admitted that the transition from one
coordinate system to another changes not only the gravitat-
ing field but the geometry of physical space as well, and this
indicates that there should be a link between the gravitating
field and ai k, i.e. geometry.

Relying on this basis, Einstein calls the quantities ai k
gravitational potentials and denotes them gi k by analogy with
Earth's acceleration, but this term does not contain anything
except for the indicated parallelism between geometry and
gravity.

The second Einstein fundamental proposition. Thus, con-
sidering the Mach paradox, Einstein arrives at a conclusion
on the admissibility not only of transition from one uniformly
and rectilinearly moving coordinate system to another
coordinate system of the same kind, but to all coordinate
transformations in general (because the latter include motion,
this means that the new coordinates x 0i , i � 1; 2; 3; 4 can be
arbitrary functions of four coordinates xi, i � 1; 2; 3; 4).

The third Einstein fundamental proposition. Considering
the equivalence principle, Einstein comes to the conclusion
that the element of arc, underlying the properties of physical
space, i.e.

ds 2 �
X
i k

gi k dxi dxk ; i; k � 1; 2; 3; 4 ;

includes 10 functions gi k which determine not only the form of
the geometry but the gravitating field in a given coordinate
system as well.

The fourth Einstein fundamental proposition. To erect
mechanics and physics on this basis, it is necessary to make
one essential reservation. If the choice of coordinate system is
arbitrary, then how can one describe nature using it? How one
can achieve results which do not depend on the established
arbitrariness? Because it is quite clear that the laws of nature
do not depend on it. The answer inevitably comes to mind:
since the laws of nature do not depend on our arbitrary choice,
they must be independent of the coordinate system chosen by us.
Speaking mathematically, the laws of nature should be
invariant in respect to any coordinate transformations. Ein-
stein genius managed to find and to state the laws of
mechanics and physics in just that form invariant and
independent of a chosen coordinate system. Now we proceed
to the exposition of the fundamental equations of mechanics
and physics. All said above only explains the path travelled by
Einstein but cannot serve as proof of the validity of his
propositions, though principally his statements have an
obvious advantage over corresponding statements of New-
tonian mechanics.

The fundamental Einstein equations. Further we shall not
follow the path travelled by Einstein but instead shall take
after Hilbert who gave a clear and simple exposition of
Einstein's theory. In his original work Einstein takes as a
starting point the Poisson equation Dj � 4p%, where j is the
normal gravitational potential, and % is the density of matter.
Generalization of this equation by means of introduction of
10 potentials gi k instead of j, and 10 other quantities,
determining the state of matter, instead of % gives Einstein
the possibility to derive the equations wanted and to show
their validity. But the process of generalization is not so
simple and so unambiguous in order that one could easily
estimate all the significance of the results achieved in this way.

Let us, following Hilbert 10, suppose that all the events
which happen in nature depend on some `world' function H;
this functionH depends on three coordinates x1, x2, x3 which
are purely spatial ones, the fourth coordinate x4 in the given
coordinate system means time. The function H does not
depend on the coordinate system chosen by us, and it may
be shown that for this reason it does not depend explicitly on
x1, x2, x3, x4; it depends on them only via following
quantities.

10 Einstein, Lorentz and others use the same way of exposition. We follow

Hilbert who was the first author who applied this method.
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(1) 10 functions gi k and their derivatives over xi; we could
also suppose thatH depends on derivatives of any order, but
by analogy to Poisson equation we suppose that H depends
only on gi k and their first and second order derivatives. We
suppose also that these gi k as well as their derivatives are
everywhere single-valued and continuous.

(2) Those parameters which determine the state of matter.
For example, such parameters are the density of matter, the
density of electricity, and electric potentials (vector-potential
and scalar potential); if the theory of matter cannot get by
with only these parameters, then one has to incorporate the
other necessary parameters as well; if one holds the viewpoint
of the electromagnetic theory of matter, then it would be
sufficient to use as the parameters only the electric density and
vector and scalar potentials. At last, sharingMie's viewpoint,
to create the theory of matter it would be sufficient to know
the vector-potential and scalar potential, and because the first
potential has 3 components, then one should know at all four
parameters q1, q2, q3, q4 as functions of x1, x2, x3, x4. Taking
Mie theory as a basis, Hilbert supposes thatH depends on q1,
q2, q3, q4 and their first derivatives over xi. But for many
problems solved by Einstein's theory this supposition is not
essential at all.

Thus, let us suppose that there is the `world' function

H � H

�
gi k;

qgi k
qxl

;
qgi k

qxl qxm
; qi ;

qqi
qxk

�
;

where i; k; l;m � 1; 2; 3; 4.
Let us consider the integral

J �
�
H

���
g
p

dx1 dx2 dx3 dx4 ; �1�

where dx1 dx2 dx3 dx4 is an element of volume, g is the
determinant formed from all gi k, and H, by definition, is an
invariant. One can show that

���
g
p

dx1 dx2 dx3 dx4 is also an
invariant, i.e. does not depend on the coordinate system.
Obviously J as well as any variation of this integral, is also an
invariant.

All phenomena which take place in nature occur in such a
way that the variation of this integral ddJ is equal to zero:

dJ � 0 : �2�

This is the main law of Einsteinian physics. It should substitute
all other laws of physics: Newton's law of gravitation, Maxwell
equations, the law of mass interaction and so on.

In order that this law could be of practical significance,
one should, of course, know the expression for the function
H. Let us suppose that we know it. The expression for H
includes 10 unknown functions gi k and 4 unknown functions
qi, but from the condition dJ � 0 follow 14 differential
equations, the first 10 of them can be obtained by means of
variation of the functions gi k; for brevity we shall denote them

Gik � 0 11 ; i; k � 1; 2; 3; 4 ; �3�
the last 4 equations can be obtained by means of variation of
the functions qi; we shall denote them

Qi � 0 : �4�

The set of equations (3) and (4) enables us to determine gi k
and qi in a given coordinate system.

Equations (3) and (4) derived from the invariant dJ � 0
are invariants themselves (we shall not explain the more exact
sense of this statement in this paper due to the lack of space)
and do not depend on the coordinate system chosen by us.
The arbitrariness of the chosen coordinate system manifests
itself here in the fact that these 14 equations are not
independent of each other but linked with 4 identities. This
means that 4 of the 14 functions gi k and qi can be chosen
arbitrarily and are not determined from equations (3) and (4).
The chosen coordinate system is fixed by arbitrary values of 4
of 14 functions.

It may seem at first sight that the determination of the
form of the `world' function H should meet insurmountable
difficulties.Meanwhile, the choice of the functionH for a very
large class of phenomena is almost unambiguous. In fact, let
us consider the case (we consider such a case as possible, and
the results of the theory imply that this situation really occurs)
when the parameters q1, q2, q3, q4 are small quantities, and
instead of them we introduce the quantities eq1, eq2, eq3, eq4,
where e is some small number and q1, q2, q3, q4 have finite
values. Let us expandH over increasing powers of e; we arrive
at

H � K 0 � eL� e2M� . . .

Let us consider only the first terms of this expansion K 0 and
eL. Then K 0 depends only on gi k and the first and the second
derivatives of these functions over xi; L depends on gi k and
their derivatives, qi and their derivatives. H is an invariant;
K;L;M; . . . should also be invariants. It turns out that there
exists only one invariant K 0 depending on gi k, their first and
second derivatives and containing the second derivatives only
linearly; this fact is remarkable. This only invariant is the so-
called Rieman curvature of 4-dimensional space. Let us
denote it K. It is evident that K 0 may be equal to K or K� l,
where l is some constant number which does not depend on
xi. We shall put l � 0; later Einstein and Weyl revealed in
their works what great significance the constant l has; in this
paper due to the lack of space we have to abandon this
problem and put

K 0 � K :

Let Dmn be a minor of the determinant g formed from
gi k, corresponding to the term gmn of the determinant; let us
denote Dmn=g as g mn and introduce following notation as
well.

Let

ik
m

� �
� 1

2
�gimk � gmki ÿ gikm� ;

and let

ik
m

� �
�
X
m

gnm ik
m

� �
; i; k;m; n � 1; 2; 3; 4 :

One can show that

K � ÿ 1

2

X
i k

g i kKi k ;11We have 10 equations instead of 16 because gi k as well as Gik are

symmetric in respect to indices i and k.
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where

Kik �
X
l

q
qxi

kl
l

� �
ÿ q
qxl

ik
l

� �

�
X
lm

kl
m

� �
mi
l

� �
ÿ ik

m

� �
ml
l

� �
:

Kik is called the Rieman tensor of curvature: the derivation of
this formula can be found in Bianchi's differential geometry.
As one can see, the expression forK in the general case is very
complicated, but for the solution of some special problems it
becomes rather simplified.

The expression for L requires especial consideration.
However, following Mie theory, to find L is not difficult.
K Schwarzschield has shown that the Maxwell equations
could be derived from a kind of Hamiltonian principle. Let us
denote the components of the vector-potential A1, A2, A3 as
q1, q2, q3, and scalar potential j as q4; let the vector r1, r2, r3
mean the electric transfer current %v1, %v2, %v3, where % is the
electric density, v is the normal velocity, and r4 is equal to %; at
last, let

Mik � qqk
qxi
ÿ qqi
qxk

: �a�

Let us consider the integral

L 0 �
��X

i k

M 2
i k ÿ

X
i

riqi

�
dx1 dx2 dx3 dx4

and put dL0 � 0.
Variation of this integral gives us Maxwell equationsX

i

qMik

qxi
� ÿrk ; �b�

qMik

qxl
� qMkl

qxi
� qMli

qxk
� 0 : �c�

(In the usual notation instead of (a) one writes

E1 � ÿ qj
qx1
ÿ qA1

qt
� qq4

qx1
ÿ qq1
qx4
�M14 ;

H1 � qA3

qx2
ÿ qA2

qx3
�M32 and so on ;

instead of (b) and (c) one writes

curlH � qE
qt
� %v ;

curlE � ÿ qH
qt

;

divE � % ;
divH � 0 :�
In the space free of electricity the second term in L1 drops,

and we obtain the Maxwell equations in vacuum.
Mie in his theory also considers such a function L but

substitutes some function f of qi instead of the second termP
i ri qi; as a result, the electric density turns out to be function

of the potential qi. But Mie created his theory not for the
general principle of relativity; in his work he was guided by
the first `special' principle of relativity, which is why his L0

cannot be directly transferred into the expression forH in the
case of the Hilbert `world' function. To employ the Mie

function in the general principle of relativity, the latter
should be properly generalized, and in the theory of
invariants one can easily prove that such a generalized and,
therefore, invariant in respect to any transformation expres-
sion will be

L �
��X

i k l m

MikMlm g ilg km ÿ f

�X
i k

g i kqi qk

��
� ���

g
p

dx1 dx2 dx3 dx4 : �5�

This very expression Hilbert inserts as the second term in
the expression of the functionH. The dimension of (5) differs
from the dimension of K; in order both the dimensions would
coincide, L should be multiplied by some numerical coeffi-
cient e. It turns out that e � 8pk=c2, where k is a gravitational
constant, c is the speed of light, i.e. e � 1:87� 10ÿ27 is an
extremely small quantity which corresponds to our expansion
of the `world' functionH in infinite series 12.

It is remarkable that the number of such invariants L,
which can be obtained using qi and their first derivatives, is
also strongly restricted. Mie counts four invariants in total,
but chooses from them that invariant which gives him the
Maxwell equations at once.

Not holding to the Mie electric theory of matter, one can
give L the other form. For some problems, for example, for
astronomical ones, de Sitter, Einstein and others do just so;
but, as we shall show later, the form of the functionL does not
play any role for the solution of the most simple and
interesting astronomical problems.

Thus, let us put

H � K� eL ;

where K is the curvature of 4-dimensional space, and L is
given by (5).

Examples. Now we can proceed to the solution of some
individual problems which should show what can be given by
Einstein's theory and how it leads to the solution of
mechanical and physical problems.

The 1st example. Let us suppose that space is free of
matter, then L � 0, and we only have

J �
�
K
���
g
p

dx1 dx2 dx3 dx4 :

In this case dJ � 0 implies 10 equations

Gik � 0 :

If one assumes (and this should be done in according with
the essence of the theory) that gi k are continuous and single-
valued functions, then the solution of these differential
equations will be

gi k � 0 for i 6� k ; and

gii � 1 for i � 1; 2; 3 ; and

g44 � ÿ1
(the value ÿ1 and not �1 for g44 stems from those
requirements which should be satisfied by gi k in order that

12 To prove that e � 8pk=c2, one can use some very simple examples; we

shall omit the proof due to a lack of space.
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x4 mean time). Thus we get

ds 2 � dx 2
1 � dx 2

2 � dx 2
3 ÿ dx 2

4 ;

i.e. the same expression for ds 2 which we have in Einstein's
`special' principle of relativity. It does not include the speed of
light, because we put it equal to unity, which evidently affects
only the choice of the measurement unit for x4, i.e. time.

Therefore, in the absence of matter we have the usual
expression for ds 2, i.e. Euclidean geometry in a 3-dimension-
ally extent space 13.

The 2nd example. Let us suppose that we consider a space
inside some very small sphere circumscribed around a point
x1, x2, x3, x4; if the radius of this sphere is small enough, then
inside the sphere the quantities gi k can be considered as
constant. In this case it is easily shown that the expression
for ds 2 can always be transformed into

ds 2 � dx 2
1 � dx 2

2 � dx 2
3 ÿ dx 2

4 :

To this end, it is the sufficient transformation. From this fact
one can draw the conclusion that in the infinitesimal there is
always valid `small' principle of relativity. In this case the
`world' function transforms into

H � e
�
L dx1 dx2 dx3 dx4

and, carrying out its variation, we come to the usual Maxwell
equations, because all the gi k are equal to either unity (for
i � k) or zero (for i 6� k): if we put speed of light not equal to
1, then

ds 2 � dx 2
1 � dx 2

2 � dx 2
3 ÿ g44 dx

2
4 ;

obviously, g44 � c2; the same g44, as one can see from
expressions (5) for L, enters the Maxwell equations; now it is
clear why in the special principle of relativity a `physical'
quantity enters the geometrical expression for ds2; the
statement that the speed of light c is a constant quantity is
also clear. It is constant because we have the right to consider
the gi k independently of coordinates xi.

The 3rd example. Let us consider the so-called one-body
problem, i.e. the gravitational field exerted by one gravitating
mass. Let this mass be located at the origin of the coordinate
system, and let it have a spherical shape. The gravitational
field it exerts should be spherically symmetric but only if one
supposes that the sphere is at rest and everything is in a
stationary state, i.e. all the gi k do not depend on t. Let us
introduce the conditions of spherical symmetry into the
expression for ds2. According to Schwarzschield, if one
introduces the spherical coordinates

x1 � r cos# ;

x2 � r sin# cosj ;

x3 � r sin# sinj

and puts

x4 � t ;

then the most general expression for ds2 will be 14

ds 2 � F�r� dr 2 � G�r��d#2 � sin2 # dj2� �H�r� dt 2 :

But instead of r we can take

r 0 �
���������
G�r�

p
;

then

ds 2 �M�r� dr 2 � r 2�d#2 � sin2 # dj2� ÿW�r� dt 2

(we drop the prime over r).
Two arbitrary functions of r, i.e. M�r� and W�r�, should

be determined from variation of the integral J. To find this
variation, we should know not only L but the function L as
well, but we can proceed here in the same way as in the theory
of the potential when solving the Poisson equationDC � 4p%;
instead of determining the continuous and single-valued
functions C satisfying this equation, one may consider the
equation DC � 0, find its solutions and suppose that the
singular points are the points of matter concentration %; here
we proceed in the same way. We drop the function L but,
solving the remaining equations, allow solutions with
singular points and suppose that mass is concentrated at
these points.

Consequently, we have to solve the problem

d
�
K
���
g
p

dr d# djdt � 0 :

To this end we should evaluate the curvatureK by starting
from those expressions for gi k which enter the expression for
ds2. These calculations are fairly long and in the end bring us
to the following expression for K

���
g
p

:

K
���
g
p �

(�
r 2W 0����������
MW
p

�
ÿ 2

rM 0 �����Wp
M 3=2

ÿ 2
����������
MW
p

� 2

�����
W

M

r )
sin# ;

let us introduce the functionsm�r� and w�r� instead ofM and
W in such a way that

M � r

rÿm
and W � w2 rÿm

r
:

This gives

K
���
g
p �

���
rW 0����������
MW
p

�0
ÿ 2m 0w

�
sin# :

The prime 0 here means differentiation over r. Carrying
out all possible integrations, we obtain at last

d
�
K
���
g
p

dr d# djdt � ÿd
�
2m 0w dr � 0 ;

and this gives two differential equations

m 0 � 0 and w 0 � 0 ;
13 In its latest development Einsteinian theory comes to the conclusion that

in the absence of matter all g mn are equal to zero, i.e. there is no physical

space at all without matter. In principle this is, of course, the only right

conclusion. 14 See also D Hilbert, loc.cit.
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i.e.m � const andw � const. Let us putm � a andw � 1; the
latter does not restrict our problem, because it is obvious that
only a choice of the unit of time is connected with the value of
w.

As a result, we arrive at the following expression

ds 2 � r

rÿ a
dr 2 � r 2�d#2 � sin2 # dj2� ÿ rÿ a

r
dt 2 : �6�

We see that the solution of our problem brings us to the
functions gi k having a singular surfaceÐ a sphere of radius a;
on this sphere, masses are concentrated, exerting a gravita-
tional field with spherical symmetry. If one puts a � 0, i.e.
accepts that there is no singular surface, then the functions gi k
become continuous and single-valued functions having no
singular points, but at the same time taking that very
magnitude which they have in Euclidean geometry and
which, as we can see, corresponds to the absence of matter.

Thus, the gravitational field is determined, and we now
have to consider the laws of motion of material particles in
such a field, which do not disturb it. To find such laws let us
suppose that the motion of particles proceeds in the same way
as in Newtonian mechanics, when no forces exert their action
on the particles, i.e. we suppose that the particles move along
the shortest paths or geodesics: this means that

d
�
ds � 0 ;

and we have to solve a new variational problem.
Let us consider r, j, #, t as functions of the same

parameter p; our task is to solve the set of differential
equations derived from the condition

d
�(

r

rÿ a

�
dr

dp

�2

� r2
��

d#

dp

�2

� sin2 #

�
dj
dp

�2 �
ÿ rÿ a

r

�
dt

dp

�2
)1=2

dp � 0 :

It is easy to show that the geodesics obtained in this way will
be planar. But then we can restrict ourselves to those shortest
curves which lay in the plane of equator, and put # � p=2.
The former expression can be rewritten as

d
� ��������������������������������������������������������������������������������

r

rÿ a

�
dr

dp

�2

� r2
�
dj
dp

�2

ÿ rÿ a
r

�
dt

dp

�2
s

dp � 0 :

From here follow three second-order differential equations

d

dp

�
2r

rÿ a
dr

dp

�
� a

�rÿ a�2
�
dr

dp

�2

ÿ 2r

�
dj
dp

�
� a
r2

�
dt

dp

�2

� 0 ;

d

dp
r 2

dj
dp
� 0 ;

d

dp

rÿ a
r 2

dt

dp
� 0 : �7�

Three first integrals of these equations are

r

rÿ a

�
dr

dp

�2

� r2
�
dj
dp

�2

ÿ rÿ a
r

�
dt

dp

�2

� A ;

r 2
dj
dp
� B ;

rÿ a
r

dt

dp
� C ; �7 0�

where A, B, C are constants of integration. The value of the
constant C determines only the choice of the units for the
parameter, so we put C � 1.

Eliminating p and t from these equations, one obtain the
equation for the trajectory of motion; after obtaining, let us
make the substitution 1=r � r and then, at last, get�

dr
dj

�2

� 1� A

B 2
ÿ Aa

B 2
rÿ r2 � ar3 : �8�

This relation strongly resembles the Kepler equation for
planetary motion. The latter is derived and written in the
same way.

The law of conservation of energy gives

m

2

��
dr

dt

�2

� r2
�
dj
dt

�2 �
ÿ k

Mm

r
� a ;

where a is the energy; m is the mass of the planet, which will
further be taken equal to 1;M is the mass of the Sun, and k is
the gravitational constant.

The law of conservation of area gives

r 2
dj
dt
� b ;

eliminating t and putting r � 1=r, we obtain�
dr
dj

�2

� a

b2
ÿ kM

b2
rÿ r2 :

Let us insert new constants a and b into (8) instead of
constants A and B in such a way that

Aa
B 2
� kM

b2
; 1� A � aA

kM
;

then Eqn (8) transforms into�
dr
dj

�2

� a

b2
� kM

b2
rÿ r2 ÿ ar3 :

It is evident that the last expression in the limit, when
lim a � 0, becomes the Kepler equation of planetary motion.
If a is very small, then the last term of the equation can be
dropped if r cannot become very large, i.e. in the case when
the planet does not approach very close to the Sun.

Let us find the physical meaning of the quantity a. To this
end, let us consider circular motion. One can show that
r � const is an integral of the differential equations (7) and,
therefore, circularmotion is possible, but in this case equation
(7) gives us

r 2
�
dj
dt

�2

� a
2r

in which the unit of time is chosen in such a way that c � 1; if
c 6� 1, then

r 2
�
dj
dt

�2

� a
2r

c2 :

But from the Kepler equation it follows that for a circular
motion

r 2
�
dj
dt

�2

� k
M

r 2
:
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Comparing the last two formulas, we obtain

a
2
� kM

c 2
�� 1:5� 105 cm for the Sun� :

This means that here the constant a plays the role of the mass
of the Sun and is measured in cm. For the Sun it is equal to
1.5 km.

Really, for all planets the value of a is very small in
comparison with the radius-vector of their orbits, and the
Kepler equation should be valid with very high accuracy.
Nevertheless, the additional term ar3, not entering the
classical equation, can be significant in some special cases.
Because the value of a for all known planets really is small in
comparison with the radius-vectors of their orbits, to take the
influence of a into account, we can when solving differential
equations (8) use the expansion in powers of a; let e1, e2, e3 be
the roots of the equation

f �r� � a
b2
� kM

b2
rÿ r2 � ar3 � 0 :

It is obvious that

e1 � e2 � e3 � � 1

a

and

f�r� � �rÿ e1��t2 ÿ r��1ÿ a�r� e1 � e2�
�
:

The equation of motion is

dj � dr��������������������������������������������������������������������������
�rÿ e1��e2 ÿ r��1ÿ a�r� e1 � e2�

�q : �9�

Evidently, the motion takes place between r � e1 and r � e2.
Expanding in a series over powers of a, we obtain 15

dj � dr����������������������������������rÿ e1��e2 ÿ r�p �
1� a

2
�e1 � e2� � a

2
r
�
;

and integrating results in

jÿ j0 � ÿ
a
2

���������������������������������
�rÿ e1��e2 ÿ r�

p
�
�
1� 3

4
a�e1 � e2�

�
arcsin

�e1 � e2�=2ÿ r
�e1 ÿ e2�=2 :

This formula enables us to evaluate the angle F between the
radius-vectors of the points of the greatest and the least
distance from the Sun, i.e. between r � e1 and r � e2. It is
obvious that

F � p
�
1� 3

4
a�e1 � e2�

�
:

Returning to the point of the greatest distance (perihelion),
the planet turns at the angle

2F � 2p
�
1� 3

4
a�e1 � e2�

�
:

For Keplerian motion we have the corresponding angle
2Fk � 2p; thus, we see that according to Einstein's theory,

during one revolution of the planet around the Sun the
perihelion of the orbit shifts by the angle

o � 3

2
a�e1 � e2�p :

Let T be the period of the planet's revolution, a be the major
semiaxis of the orbit, and e be the eccentricity of the orbit.
Then

a � kM

c2
� �2p�

2a2

T 2c2
;

e1 � e2 � 2

a�1ÿ e2� :

After substitution we get

o � 24p3
a2

T 2c2�1ÿ e2� ;

this quantity is very small; for the planet Mercury over one
hundred years, i.e. forO � �100=T 0�o, whereT 0 is the period
of revolution for Mercury (expressed in terrestrial years) we
get

O � 43 00 :

This value agrees perfectly with experiment and cannot be
explained by any other theory without introducing new
hypothesis ad hoc ! 16

For other planets the quantity O is considerably less, and
an experimental test cannot be of such crucial significance as
for Mercury.

Let us consider the rectilinear motion of a mass point
falling directly on the Sun; it can be shown that geodesics
corresponding to such motion are possible. Then j � const,
and the dependence of r on t is determined from the equation

d2r

dt 2
� 3a

2r�rÿ a�
�
dr

dt

�2

ÿ a�rÿ a�
2r3

:

Here the usual speed of light is taken as unity; we see that
if ���� drdt

���� < 1���
3
p rÿ a

r
� cr���

3
p ;

then the acceleration will be positive; but if

dr

dt
>

cr���
3
p ;

then the acceleration will be negative; the quantity cr, as will
be shown later, coincides with the speed of light at the point r.

The mass of the moving planet is assumed in our
calculations to be equal to unity. Therefore, from the
viewpoint of ordinary mechanics we can consider the
expression for d2r=dt 2 as the expression for the force acting
on a unitmass.We see that Einstein's theorymanages without
the notion of a force, but a question can arise of whether the

15We drop the terms containing a2.

16Really, the observed motion ofMercury's perihelion is somewhat more,

but the difference between the observed value and the angle 43 00 is
explained by the perturbing influence of other planets; this remainder

amounting to 43 00 cannot be explained in the framework of classical

theory.
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corresponding change of Newton's law can bring us to the
same results as Einstein's theory. The answer is negative.
Really, in the case of rectilinear motion the relation for a
Newtonian force is

Fd � ÿ a
2r 2
� a2

2r 3
� 3a
2r�rÿ a�

�
dr

dt

�2

;

in the limit, for very small a, this relation becomes the classical
expression

F � ÿ kM

r 2
:

But, as was shown, for circular motion according to
Einstein's theory the force should be

Fc � ÿ a
2r 2

:

Evidently, Fc and Fd cannot be particular cases of the
same general law. If one drops the terms containing the radial
velocity, i.e. dr=dt, becoming zero for circular motion, in the
expression for Fd, then the rest will be the expression for Fc.
According to Einstein's theory, the expression for the force (if
one insists on the introduction of the term `force' and gives it
the meaning of the quantity equal to the production of mass
by acceleration) becomes dependent on the trajectory of the
mass point, i.e. it does not have the meaning of the universal
law in the same sense as theNewtonian law of gravitation. It is
self-evident that in the limit, i.e. for very small a, Fc and Fd

coincide and give F.
The 4th example. Let us turn now to the consideration of

light motion. Light, like a mass point, moves along geodesics,
but in contrast to a mass point and in the same way as in the
special principle of relativity, the length of these geodesic lines
is equal to zero, and we have for them

ds 2 � 0 :

According to this, we have to putA � 0 in the integrals of
equations (7), and the trajectories of the light beams will be
curves determined by integration of the expression�

dr
dj

�2

� 1

B 2
ÿ r2 ÿ ar3 ;

the latter in the limit for lim a � 0 can be integrated very
easily, and we get

Br � sin�jÿ j0� ;

where j0 is the constant of integration, i.e. simply a straight
line

r � B

sin�jÿ j0�
:

The quantity B here means the shortest distance of the ray
from the Sun.

Let us consider now not the limiting case a � 0, but
suppose only that a is enough small in comparison with the
closest trajectory to the Sun. Let e1, e2, e3 be the roots of the
equation

1

B 2
ÿ r2 � ar3 � 0

and let e1 and e2 become in the limit when lim a � 0 the roots
of the limiting equation

1

B 2
ÿ r2 � 0 ;

i.e. let

lim e1 � 1

B
and lim e2 � ÿ 1

B
:

The equation

dr����������������������������������
1=B 2 ÿ r2 � ar3

p � dj �10�

can be approximately integrated quite in the same way as
equation (9) on page 1243. Obviously, we obtain

jÿ j0 � ÿ
a
2

���������������������������������
�rÿ e1��e2 ÿ r�

p
�
�
1� 3

4
a�e1 � e2�

�
arcsin

�e1 � e2�=2ÿ r
�e1 ÿ e2�=2 ; �9 0�

approximate values for e1 and e2 can easily be evaluated; we
get

e1 � 1

B
ÿ 1

2

a
B 2

; e2 � ÿ 1

B
ÿ 1

2

a
B 2

:

Writing (9 0) as

r � 2

e1 � e2

�
(
1ÿ e2 ÿ e1

e2 � e1
sin

�
jÿ j0 �

a
2

���������������������������������
�rÿ e1��e2 ÿ r�

p �)ÿ1
;

one can see at once that we are dealing with a curve
resembling a hyperbola with eccentricity

e � e2 ÿ e1
e2 � e1

� 2B

a
;

Bmeans approximately the shortest distance of the trajectory
from the Sun, i.e. is supposed to be very large in comparison
with a; thus, this hyperbola has very a large eccentricity and
differs very little from a straight line.

For the asymptotes of this hyperbola r � 1 and r � 0;
therefore, j can be determined from the condition

1ÿ e2 ÿ e1
e2 � e1

sin

�
jÿ j0 �

a
2

������������ÿe1e2p �
� 0 :

Let us substitute here the values of e1 and e2 and choose the
arbitrary constant j0 � �a=2�

������������ÿe1e2p
; the angle j, which is

measured from this arbitrary direction, will be determined
from the condition

sinj � sin�pÿ j� � e2 � e1
e2 ÿ e1

� a
2B

:

Consequently, the angles which the asymptotes makewith
the direction j0, are very small and equal to

j � � a
2B

;
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the angle between them being

C � a
B
:

If a ray of light propagates along such a hyperbola, then
the Sun will be located at its focus. For parts of the curve
sufficiently distant from the Sun, the motion along the
hyperbola can be identified with the motion along the
asymptote. Thus, we come to conclusion that a ray of light
passing near the Sun is deflected through an angle

C � a
B
� kM

c 2B
;

where B is the shortest distance of the ray from the Sun.
Einstein evaluated this angle for a ray touching the surface of
the Sun and found that C � 1:7 00; the observations carried
out in 1919 by an English expedition to Brazil, brilliantly
supported this result predicted by Einstein in advance.

The study of equation (10) determining themotion of light
presents much of interest; due to lack of space we cannot
describe it here; let us indicate only some peculiar cases. If a
ray of light comes close enough to the surface r � 3a=2, then it
winds around it and cannot deviate from it any more . No ray
can penetrate through the surface r � a. If the ray goes along
a straight line in the direction to the center of the Sun, then its
speed is determined by

dr

dt
� cr � 1ÿ a

r
17 ;

its acceleration is always negative, and it approaches the
surface r � a for an infinitely long time with speed cr � 0.

The planets orbiting the Sun in the circles have a higher
speed the closer they are to the Sun; a planet orbiting in a
circle of radius r � 3a=2 has the speed of light, but this speed
of light is not c, but c=

���
3
p

; inside a circle of radius r � 3a=2
circular motion is impossible.

We can see that for the Sun a � 1:5� 105 cm; in
comparison with the radius of the Sun it is a small magnitude
and for this reason the peculiar properties of the surfaces
r � a and r � 3a=2 do not have practical significance. For a
hydrogen molecule a � 10ÿ49 approximately.

The 5th example. The special principle of relativity taught
us that the time measured by a moving observer and an
observer at rest do not coincide. Let x1, y1, z1 be three
functions of time t giving us the motion of some point. The
element of time, measured by an observer at rest, is dt,
meanwhile the element of time dt, measured by observer
moving together with point, is determined from the relation

dt2 � dt 2 ÿ dx2 ÿ dy2 ÿ dz2 ;

where t is the so-called `proper' time of the point. In general
relativity we also have to distinct between the increment of the
fourth coordinate dt and the `proper' time dt of some point.
The difference between `general' and `special' relativity is only
that in special relativity for a point at rest dt � dt, i.e. `proper'
time coincides with the increment of the fourth coordinate Ð
time, which is not the case for general relativity. Let us take,
for example, the gravitational field discussed in the 3rd
example. If a point is at rest, then dx, dy, dz are equal to
zero (or in spherical coordinates dr, dj, d# are equal to zero),

and the `proper' time is determined for every point at rest as

dt2 �
�
1ÿ a

r

�
dt 2 ;

that is, in other words, the increment of the fourth coordinate
Ð time Ð is not equal to the increment of the `proper' time,
but depends on r and a, i.e. on the distance from the Sun and
mass.

Let us consider some periodical molecular process, say,
the radiation process. It is natural to suppose that for a
molecule or a particle vibrating in a molecule the period of
radiation characteristic for a given molecule and stemming
from its intrinsic properties is a period which is determined
from its `proper' time and does not depend on an arbitrarily
superimposed coordinate system x, y, z, t and, therefore, on
an arbitrarily superimposed coordinateÐ time t; thus, for the
molecule itself the period is the same everywhere; let us
suppose that this period is so small that it can be denoted dt,
and the rate of vibrations is so small that in the relation for dt
we can put dr � dj � d# � 0. But our observations are made
in a coordinate system chosen by us; the period we measure is
not dt, but dt; now we write the condition that dt is
everywhere the same, taking dt once on the surface of the
Sun, i.e. putting r � d (radius of the Sun), and another time
putting r � D (semidiameter of the terrestrial orbit). It is
obvious that

dt2 �
�
1ÿ a

d

�
dt 2d �

�
1ÿ a

D

�
dt 2D ;

where dtd and dtD are the periods measured, correspondingly,
at the Sun and at the Earth. But a=D is a quantity very small in
comparison with a=d and can be neglected. On the other
hand, if dtd and dtD are the periods whose inverse quantities
are frequencies nd and nD, then our condition can be written as

nd � nD

�
1ÿ a

d

�
1

2
� nD

�
1ÿ a

2d

�
:

Let us denote nD just by n, and nd ÿ nD by dn; it is evident
that

dn � ÿ a
2d

n or; for n � 1

l
;

dl � � a
2d

l :

The light emission by some luminous gas has the character
of the periodical motion we discussed. We see that the
gravitational potential of the Sun aa=2d should shift the lines
emitted by a gas in the `red ' direction �dl > 0�. A Einstein
evaluated this shift, and experiments, in all appearance, have
confirmed the result predicted by the theory.

P.S. The article is based on a series of reports made at
colloquia headed by Academician P P Lazarev (first Director
of the Physics Institute and the first Editor-in-Chief of
Uspekhi Fizicheskikh Nauk journal) at the Physics Institute
of Moscow Science Institute, the first of which took place on
22 October 1918. (Note by the Editor.)17One should substitute A � 0 in Eqn (7 0).
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