
Abstract. The unity of mathematics and physics is emphasized
in a paper previously presented, in part, in 1998 at a meeting of
the FrenchMathematical Society, and at the Russian Academy
of Sciences (seminar at the Institute of Theoretical and Experi-
mental Physics and V L Ginzburg's seminar at the Physics
Institute).

I loved and continue to love mathematics for the

sake of itself as something that does not tolerate

hypocrisy and vagueness which are abominable

for me.

Stendhal 1

Let us put a � 0 though it does not make any

sense and is not quite correct from the viewpoint

of quantum mechanics.

E SchroÈ dinger ``Statistical Thermodynamics''

1. Introduction

The statement that mathematics is the part of theoretical
physics in which experiments are very cheap [1] immediately
invited numerous attacks from both sides, including even one
parody (written by A M Vershik) 2.

Permit me to start from terminology. The word `mathe-
matics' is foreign almost for all languages Ð it is an ancient
Greek loan-word meaning `exact knowledge'. Among mod-
ern countries only Netherlands seem to substitute foreign
word `mathematics' with native `knowledge' (wiskunde).
Probably, it happened due to Stevin who protested upon the
whole against cluttering up native language with interna-
tional terms. For everybody who speaks Russian `triangle' is
more clear than `rhombus'. Making our children suffer from

alien `files' or `bites', we automatically create a medium of
`bucks' and `killers' followed by preconditions of technologi-
cal backwardness which, probably, could be paidwith the fate
of Yugoslavia.

Stevin's striking success in creating science and culture in
the Netherlands tells till now Ð this country sharply stands
out though it is not very large. Not only Amsterdam which so
caught the fancy of Peter the Great, but Utrecht, Leiden,
Saardam and Groningen are among the greatest mathema-
tical centers of Europe.

Originally mathematics was created for solving real
practical problems (in the case of the Netherlands Ð first of
all hydraulic and hydrotechnical problems; there were plans
to flood the entire country under the threat of fascist invasion,
but it seems that the technology let it down).

I'll try to describe as many applications as I can of the
fundamental mathematics itself not bounding myself with
technical details. At first sight mathematics seems to be a set
of handicrafts. But I shall try to show that here the question is
always of the same art Ð the art of mathematical description
of the world.

The mathematical description of the world is based on a
subtle interaction between continuous (smooth) and discrete
(jump-like) phenomena. For example, a function, say, y � x2,
has the derivative dy=dx � 2x, describing the rate of smooth
change of y under smooth change of x, and a critical point
�x � 0�, where the function takes its minimal value.

In modern mathematics a vast theory of singularities is
created which generalizes the theory of critical points of a
function to the case when several functions of several
arguments are considered simultaneously. For the reader
who wants to feel the flavor of this science immediately it is
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1 In: L I Volpert Pushkin and Stendhal Ch.12 (Moscow, 1998).

2 Example of a mathematical problem. There are two volumes of Pushkin

on the bookshelf. Each volume is 2 cm thick without the cover; each cover

is 2mm thick. Awormgnawed through the books from the first page of the

first volume to the last page of the second volume normally to the pages.

Trough what distance did it gnaw?

Example of a physical problem. A boatman went against the current

along the Neva and lost his hat under the Kirovski|̄ bridge. Under the

Lite|̄ny|̄ bridge he realized and 30minutes later caught up with it under the

Dvortsovy|̄ bridge. Find the speed of the current of the Neva. (Physics

enters the ancient solution: the distance from the Kirovski|̄ bridge to the

Dvortsovy|̄ bridge is 1 mile.)



instructive to compare the mapping

y1 � x31 � x1x2 ; y2 � x2 �1�
of the plane with coordinates �x1; x2� onto the plane with
coordinates �y1; y2�, studied by American mathematician
HWhitney [2], with the mapping

y1 � x21 ÿ x22 ; y2 � 2x1x2 �2�
(Fig. 1).

A surprising phenomenon here is the following one: the
mapping (1) is stable (or structurally stable) in the sense that
any enough close mapping has (in the neighborhood of the
origin) singularities similar to those of the mapping (1).

For the mapping (2) it is not true as one can see from the
example of mapping

y1 � x21 ÿ x22 � ax1 ; y2 � 2x1x2 ÿ ax2 ; �3�
where a is very small (however in the example under
consideration it is not necessary).

For a function of one variable usually the point of
maximum or minimum (say, x � 0 for the function y � x2)
is structurally stable. Under small deformation one obtains
another function for which x � 0 is not the point of
minimum. But there is always a point of minimum (for
example, y � x2 � ax, where a is small) in the vicinity of the
origin.

On the contrary, the critical point x � 0 of the function
y � x3 is not structurally stable (for example in case of
y � x3 � ax the critical point divides into two 3 or disappears
depending on the sign of a) (Fig. 2).

The study of the case y � x 4 enables our readers to make
progress in the matter for themselves (there is no disappear-
ance, but bifurcations are possible).

It is also instructive to find the critical points x and critical
values y for the mapping (3). In this case the equation

qy1
qx1

qy1
qx2

qy2
qx1

qy2
qx2

��������
�������� � 0

of critical points is as follows:

2x1 � a ÿ2x2
2x2 2x1 ÿ a

���� ���� � 0 ; 4�x21 � x22� � a2 :

Consequently, the critical points form a circle
2x1 � a cosj, 2x2 � a sinj. For the critical values, we
obtain from Eqn (3)

y1 � 1

4
a2 cos 2j� 1

2
a2 cosj ;

y2 � 1

4
a2 sin 2jÿ 1

2
a2 sinj :

Thus, vector y is a sum of two uniformly rotating vectors, the
twice lesser vector rotating twice more rapidly. From this fact
one can easily derive the conclusion that the set of critical
values of the mapping (3) is a small (for small a) hypocycloid
with three cusps (Fig. 3).

It is worth mentioning that for a � 0 this mapping can be
considered as an analytic complex function w � z2

�z � x1 � ix2, w � y1 � iy2� with a simple critical point. If
the perturbations do not break the complex-analytical nature
of the mapping, then the character of the branching will
remain unchanged: there will be a single critical point and it
will be stable in respect to complex stirring.

If real stirrings are admissible [for example, such as (3)],
then, as we know, the structural stability will be lost and
around a given critical point a critical curve arises whose
image under the mapping has three cusps.

It turns out that this phenomenon is already stable Ð
under other stirrings of the general situation the same division
of a complex critical point (2) into three cusps of the line of
critical values which links them occurs.

The theory of singularities, in which all these facts are
proved, unifies the most abstract parts of mathematics
(number theory, Lie groups and algebras theory, the theory
of groups of Coxeter reflections, algebraic and symplectic
geometry and topology, calculus of variations and complex
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Figure 1.Whitney mapping.

3 This phenomenon of division is called bifurcation of the critical point.
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Figure 3. Critical points and critical values of the mapping (3).
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analysis) with such applied domains as tomography, optimal
control, stationary phase and saddle-point asymptotic meth-
ods, wave propagation, optics, classical, celestial and quan-
tum mechanics, quantum field theory and so on.

A detailed exposition of all this can be found in books (see,
for example, Refs [3 ± 6]).

2. Unifying power of mathematics

Here I shall show by examples how the same object [it can be
considered to be the line of critical values for the mapping (1)]
arises in quite different problems of the applications of
mathematics.

Wave fronts
Let us consider awave starting to propagate from a curve on a
plane with velocity equal to 1. After time t the wave front
becomes an equidistant of the initial curve. Let us focus our
attention, for example, on the case when the initial curve is an
ellipse, and the perturbation propagates inside the ellipse
(Fig. 4). After some experimenting, you can convince yourself
that though for small t the t-equidistant inside the ellipse is
smooth, for larger values of t semi-cubic type cusps can arise
[in the neighborhood of such a point the curve is given by
equation p2 � q3 in a corresponding system of smooth
coordinates �p; q� on a plane].

Explanation. Let us consider a cylinder C, which is the
product of the initial curve and the time axis t. The wave
propagation is described by a pair of mappings

R ÿT C ÿ!F R2,

the first of which maps the point �c; t� of the cylinder into the
instant t and the second one into the point of the plane which
is located at distance t from c in the direction of the normal to
the initial curve at the point c.

The curves T ÿ1�t� are isochrones on the cylinder. The
mapping F maps isochrones onto equidistants. The singula-
rities of the mapping F turn smooth isochrones into
equidistants with cusps.

To make certain of this, one should consider the case
F�p; q� � �p2; q�, T�p; q� � qÿ p3. Then the isochrone T � 1
turns into the planar curve �p2; 1� p3� with the semi-cubic
singularity p � 0.

One can check up that for generalF andT almost the same
folding of a smooth isochrone into an equidistant with a cusp
occurs.

The semi-cubic singularities on equidistants are not the
distinctive property of an ellipse. Substituting another curve
for the ellipse, we obtain similar singularities of the wave
front, as a rule, semi-cubic ones. But the number of
singularities is not necessary equal to four.

Caustics
Continuing the discussion of wave propagation from a curve,
let us consider a system of rays on a plane. The ray coming out
from the point c of initial curve is an image of the whole
straight line fc; tg, where c is fixed and t is arbitrary, under the
mappingF : C! R2 of our cylinder into the plane. It consists
of those points of the equidistants of the initial curve which
are located on the normals to the latter at the point c (of
course, in the simplest case of an Euclidean plane with metric
independent of time, all these normals just coincide; but if one
employs the little more cautious terminology introduced
above, then our deénition of rays remains valid in a far
more general situation, for example, in the relativistic or
Finslerian cases or in the control theory).

Draw rays perpendicular to an ellipse (directing them
inside). You will discover the envelope of this system of
straight lines (Fig. 5). This is called a caustic (from the word
`burning', because the energy of the propagating process
concentrates on it). If you draw accurately, them you will
notice that the caustic has four cusps (where it `burns' more
intensively).

The exact mathematical definition is as follows: a caustic
is a set of critical values of themappingF : C! R2 (evidently,
it is possible to consider more general cases of propagation of
perturbation from the source X to the screen Y given by the
mapping F : C�R! Y for arbitrary dimensions of the
manifolds X and Y; the caustic is located in Y and usually
has a dimension which is less by one than that of Y).

Explanation. For an ellipse the mapping F : S 1� R! R2

has four singularities of type (1). There are four semi-cubic
type cusps corresponding to them, connected with the star-
like curveÐ the image of the `circle' of critical point under the
mapping F.

Remark. The calculations (given below) show that a
caustic is an envelope of the system of normals to ellipse Ð an
astroid with four cusps.

An astroid can be defined as follows:
(1) an astroid is an image of a circle jzj � 1 under the

mapping z 7! z3 � 3�z (i.e. an astroid is a hypocycloid with four
cusps);

(2) an astroid is a curve projectively dual to an `anticircle',
i.e. the curve given by the equation

1
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Figure 4. Propagation of the wave front inside ellipse.
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Figure 5. System of rays normal to an ellipse.
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(3) an astroid is a curve, given in appropriate affine
coordinates by equation

x2=3 � y2=3 � 1 :

Simple calculations can serve as a check-up of the fact that
all these calculations lead (up to projective or affine
transformation) to one curve. For example, for z � exp�ij�
the point z3 � 3�z runs along a hypocycloid with four cusps
because its motion is the rolling of a circle of radius 1 inside a
fixed circle of radius 4. This motion is rolling because the
angular speed of the smaller circle is three times more than
that of the point of contact and for this reason there is no slip.

When z is multiplied by i, z3 � 3�z is multiplied byÿi. As a
result, the image has symmetry of order 4. It can be easily
calculated that a semicubic cusp on the curve z3 � 3�z,
z � exp�ij�, corresponds to the point z � 1 �j � 0�:

Re�z3 � 3�z� � cos 3j� 3 cosj � 4ÿ 6j2 �O�j4� ;
Im�z3 � 3�z� � sin 3jÿ 3 sinj � ÿ4j3 �O�j5� :
Therefore, the singularity is semicubic. It is worth

mentioning the following formulas [stemming from the
Moivre formula cos 3j� i sin 3j � �cosj� i sinj�3]:

cos 3j� 3 cosj � 4 cos3 j ;

sin 3jÿ 3 sinj � ÿ4 sin3 j : �4�
It can be seen from these relations as well that the singularity
is semicubic.

Property (3) of a hypocycloid with four cusps follows
from the derived formulas. Really, if z � p� iq, then
p2 � q2 � 1 on the circle z � exp�ij�, where p � cosj,
q � sinj.

Denoting z3 � 3�z as x� iy, we obtain from Eqn (4)

x � 4p3 ; y � ÿ4q3 ;
and the equation p2 � q2 � 1 of circle turns into the equation
of an astroid (3). Differentiating (3), we get (2).

Let us show that the caustic of an ellipse in fact is an
astroid (up to affine transformations).

According to the property (2) proved above this comes
from the following fact.

Lemma.A set of normals to an ellipse, considered as a curve
in dual plane, is affinely equivalent to anticircle.

Let us write ellipse equation as

x2

a2
� y2

b2
� 1 : �5�

The normal px� qy � 1 passes through the point �x0; y0�
of the ellipse and is parallel there to a gradient of quadratic
form (5):

px0 � qy0 � 1 ; q � lx0
a2

; ÿp � ly0
b2

;
px0
a2
� qy0

b2
� 0 :

From these equations we find that

x0 � A

p
; y0 � B

q
;

where

A � a2

a2 ÿ b2
; B � ÿ b2

a2 ÿ b2
:

Now the condition that the point �x0; y0� belongs to the ellipse
gives that �p; q� is on the standard curve antidual to the circle
(p and q should be rescaled appropriately).

Remark 1. It seems tome this striking algebraic lemma can
be linked with the known geometric property of an ellipse: the
bases of normals to the tangents of the ellipse, dropped from
the focal point, form a circle.

Remark 2. Although it was proved above that the caustic
of an ellipse is an astroid, the focal points in the problem of
wave propagation inside an ellipse (cusps of astroid) are not in
general foci of the ellipse.

The propagation of waves inside ellipse can easily be
observed if we let a drop fall near the center of a cup. After
reflection from the walls the waves gather in the opposite
point where even a splash can be observed.

The matter is that waves, coming from focal point of an
ellipse, gather in another focal point. A cup with a point near
the center can be considered as an ellipse with a focus because
the influence of the small eccentricity e of the ellipse on the
ratio of semiaxes is of second order of smallness
�b � a

�������������
1ÿ e2
p

� a�1ÿ e2=2� . . .��, so the nonellipticity of a
cup can be neglected.

The semicubic singularities on a caustic are not an
intrinsic property of an ellipse. Changing an ellipse for
another curve, we obtain similar singularities of caustic, as a
rule, again semicubic. But the number of singularities is not
necessary 4.

Remark. Aristpohanes in Clouds (circa 450 B.C.) men-
tions a practical (legal) application of a caustic 4, created by
lenses, which could be bought in drug stores (according to the
witness of Socrates). The application consisted in burning the
document in the hands of opponents during a trial session.
Two centuries later Archimedian caustics were coarser.

Groups of reflections
By reflection in Euclidean space one means an orthogonal
transformation such that the set of fixed points is a hyper-
plane.

A set of some hyperplanes determines a set of reflections.
A group generated by them is called an Euclidean group of
reflections, if it is finite.

For example, two straight lines on the plane determine the
group of reflections [denoted as I2�p�], iff the angle between
the straight lines is p=p, where p is an integer. This group I2�p�
is group of symmetries of regular p-gon on the plane.

All groups of reflections in Euclidean spaces are enumer-
ated, and this is one of the main achievements of modern
mathematics. It is surprising, but the answer turned out to be
connected with all kinds of other important mathematical
objects, for example, with simple and closely related (complex
and compact) Lie algebras like O�n�, SO�n�, U�n�, SU�n�,
Spin�n�, Sp�n� and so on.

Let us consider the simplest case of the symmetry group
I2�3� � A2 [corresponding to the Lie algebra SU�2�] of a
regular triangle (Fig. 6).

So, on a real Euclidean plane let three straight lines
pairwise intersect each other at the origin at angles 120�.
From the abstract viewpoint it is simply a permutation group
of three elements. (A good idea is to turn to a model of
reflection group Anÿ1 each time you have to deal with
permutations of n elements.)

4 The author is very obliged to Mrs. F Aicardi who found this.
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The orbits of reflection group I2�3� consist of either six
elements (not laying on the mirrors) or of three elements
(common points on the mirrors), and one orbit more is the
origin.

The manifold of the orbits was studied by the founder of
algebra F Viet. Let us consider the points of the Euclidean
plane to be complex numbers. We can introduce in the space
C 3 with coordinates �z1; z2; z3� reflections in the mirrors
zi � zj (which transpose coordinates zi and zj). As a result,
we get the action of I2�3� on C 3. The diagonal z1 � z2 � z3
remains fixed. Therefore, the Hermitian-orthogonal plane
z1 � z2 � z3 � 0 remains fixed as well.

We extended the action of I2�3� fromR2 toC 2 andwill use
complex coordinates zk.

Polynomials s2 � z1z2 � z2z3 � z3z1 and s3 � z1z2z3 are
invariant with respect to the action of the group as well as
s1 � 0. It follows from the main theorem on symmetric
functions that the manifold of the orbits of our action is the
plane C 2 with coordinates �s2; s3�. It can be identified with
the plane of polynomials l3 � s2lÿ s3.

The manifold of regular orbits (each of which consists of
six elements) can be identified with a domain inC 2 formed by
polynomials free of multiple roots. Singular orbits form the
curve l3 � s2lÿ s3 � �lÿ u�2�l� 2u� of polynomials with
multiple roots.

Along this curve s3 � ÿ2u3, s2 � ÿ3u2, therefore the
manifold of singular orbits of group I2�3� is a semicubic
parabola (Fig. 7)

It turns out that interrelations between the group of
reflections, caustics and wave fronts is not exhausted by the

semicubic singularity A2 � I2�3�. This fact allows us to
employ powerful algebraic methods of the theory of reflec-
tion groups for the study of caustics and wave fronts in
multidimensional spaces (see, for example, Ref. [6]).

Oscillating integrals
In talking with me, N N Bogolyubov insisted that mathema-
ticians should work in quantum physics. ``A good article will
be read by 1000 readers whether you publish it as mathema-
tical or physical one, Ð he said. Ð But those readers who are
mathematicians, will read it for a whole century, but
physicists will forget it after 100 days, even if they constantly
use it.''

The theory of oscillating integrals is a quantum counter-
part of caustics and wave fronts, but it arose (together with
the `method of stationary phase' and `quasiclassical asympto-
tics') in the works of Carlucci and Jacobi dating back to the
beginning of the XIX century. These works are devoted to the
asymptotics of integrals which are necessary for the calcula-
tions of perturbations in celestial mechanics 5.

Definition. Oscillating integral with phase S, amplitude a
and wave length h is defined as

I�h� �
�1
ÿ1

exp

�
iS�x�
h

�
a�x� dx :

Often one considers the case when the phase, amplitude and
integral depend on parameters and the argument x is multi-
dimensional (x 2 Rn) (Fig. 8).

Example 1. Fresnel integral

I�h� �
�1
ÿ1

cos

�
x2

h

�
dx � Chn=2 :

If the phase does not have critical points, then the integral
decreases (for h! 0) faster than any power of h due to the
interference of the contributions from close points x. Around
the usual (non-degenerated) critical point there arises a
`domain of stationary phase', of radius of order

���
h
p

, where S
changes little and the interference is weakened. In the n-
dimensional case this leads to an integral of order hn=2. This
can be strictly proved by reduction to the sum (or difference)
of quadrates using the substitution of variables x (the so-
calledMorse lemma).

Example 2. Airy integral. If the phase depends on a
parameter, then for some values of the parameter the critical
point of the phase of S may be degenerate, and the Morse
lemma then becomes not valid. The simplest case of this kind
is the phase S�x� � x3 � lx depending on parameter l. When
l passes through 0, two simple critical points merge.

The critical point of the phase S�x� � x3 arising at critical
value of parameter l � 0 is called double and denoted A2

(usual non-degenerate critical point is denoted A1).
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Figure 6.Mirrors of the reflection group A2.
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Figure 7.Manifold of the orbits of the reflection group A2.
5 The author is very obliged to Mr. S Graffi who indicated these works.
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The corresponding integral

Ia;b�h� �
�1
ÿ1

exp

�
i�x3 � ax� b�

h

�
dx

is called the Airy integral.
It describes the behavior of light near a caustic (A1

corresponds to the light in usual point).
More exactly, let us consider a source of light Y and a

screen X. Let S�x; y� be the optical length of the path from
point y of the source to the point x of the screen. The source
and the screen can be considered at the beginning as
submanifolds in Euclidean space. In the case under considera-
tion S�x; y� is just the Euclidean distance from x to y.

The influence of the light from the source y at the point x
of the observation is proportional to exp�iS=h�; the propor-
tionality coefficient depends on the intensity of the source at
the point y and on the weakening of the propagating light due
to the divergence of rays. This leads to the amplitude factor
a�x; y�.

The analysis of the Airy integral leads to the conclusion
that in the case of an n-dimensional source I0; b�h� � hn=2ÿ1=6,
i.e. when approaching the caustic �a � 0� the intensity of light
is substantially (hÿ1=6 times) higher than usual.

The exponent 1=6 is called the exponent of singularity
(e.s.). At the points near the caustic the integral is all the same
evaluated by magnitude Chn=2ÿ1=6, where the coefficient C is
uniformly bound in the neighborhood of a point of a caustic
of type A2.

Similar evaluations can be obtained for all general one-
parametric families of the phase functions. The matter is that
they can be brought to the form x3 � ax by change of
coordinate x. If the number of parameters k > 1, then more
complex singularities of caustics are possible, where the
intensity of light is even higher:

k � 2 ; A3 S � x4 � ax2 � bx; e:s: � 1=4 ;

k � 3 ; A4 S � x5� ax3 � bx2 � gx; e:s: � 3=10 ;

k � 3 ; D�4 S � x21x2 � x32� ax22 � bx1� gx2; e:s: � 1=3 ;

k � 3 ; Dÿ4 S � x21x2 ÿ x32� ax22 � bx1� gx2; e:s: � 1=3 :

It is evident that the value of the integral itself has
asymptote Chn=2ÿ�e:s:� depending on the dimension n of the
source; for example, for n � 3 the true normal form of A3 is

S � x41 � x22 � x23 � ax21 � bx1 :

The exponent of singularity takes into account only howmany
times [in hÿ�e:s:�] the asymptotes increase approaching the
caustic and its singular points.

For the 3-dimensional manifold of observation �k � 3�
for the general typical family of rays from an n-dimensional
source there are no other singularities besides those which are
listed above (we shall describe now how the form of the
function S affects the form of the caustic).

Therefore, the exponent of singularity in this case never
exceeds 1=3. As will be shown now, the exponent takes the
values 1=3 and 3=10 only at single points (D4 and A4) and the
value 1=4 on the line A3 (line of singularities of the caustic).

This result, achieved in the note [7], became the basis of
the modern theory of caustics and wave fronts in their
connection with reflection groups.

In this note some models of heating of electronic circuits
were studied. To know the highest peak of heating localized at

a point is very important in this problem, and that is why this
question was proposed to me by V P Maslov from the
Moscow Institute of Electronic Machine-Building in the
framework of a commercial agreement.

Success was achieved when I noticed a sudden link of the
mysterious exponents of singularity of typical singular points
with the `Coxeter numbers' of the reflection groups (whose
definition will be given later).

Singularities of caustics
Let us consider a light system given by the optical length of the
path S�x; y� from a point �x� of the source to a point �y� of the
manifold of observation. The greatest contribution in the
illumination in the point y is given by stationary points of the
phase considered as a function of x, where qS=qx � 0.

A caustic consists of those points y, where at least one of
the stationary points is degenerate, i.e. the Hessian
det q2S=qx2
ÿ �

at this point is equal to zero:

C �
�
y : 9x :

qS
qx
� 0 ; det

�
q2S
qx2

�
� 0

�
:

In other words, it is necessary to consider the `critical
surface' (whose dimension is equal to the dimension of the
manifold Y of observation) in the direct product X� Y
consisting of the critical points of the function S��; y�, i.e.
given by the equation qS=qx � 0, and then to project it on Y
along X. A set of critical values of this mapping of one k-
dimensional manifold on another is called the caustic of a
given system of waves (or rays).

Case A2. S � x31 � x1y1 � x22 � . . .� x2k. Critical surface:
3x21 � y1 � 0, x2 � . . . � xk � 0, q2S=qx21 � 6x1 � 0. Caus-
tic: y1 � 0 [for n > 1 this is �nÿ 1�-dimensional surface]. In
the Fresnel case �n � 1� the caustic is a single point on a
straight line.

Case A3. S � x41 � x21y1 � x1y2. Critical surface:
4x31 � 2x1y1 � y2 � 0. Caustic [compare with the case (1) in
the introduction]: y1 � ÿ6x21, y2 � 8x31 Ð semicubic parabola
y31 � const y22.

In the case n � 2 there are no other singularities except for
the regression point A3. For example, the singularity A3 is
given by the system of normals to ellipse.

In the case n > 3 the singularity A3 is observed on the
`edge of regression' of co-dimension 2 (curve of regression for
a caustic in 3-dimensional space for n � 3) (Fig. 9).

This edge of regression is semicubic in the sense that the
plane transverse to it intersects the caustic along a curve with
a semicubic singularity.

CaseD4. k � 2, n � 3. In these two cases,D�4 andDÿ4 , the
calculations are similar to those given above, but become
more cumbersome, and it is better to carry them out using the
reflection group in the way I shall explain later.

A2

A3

Cau st i c

Figure 9. Singularity A3 as the edge of regression of a caustic.
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The answers are topologically simple enough: in the case
Dÿ4 (pyramid) the caustic is topologically arranged as a two-
sided 3-hedral pyramid whose edges Ð three smooth
parabolas tangent in the vertex Ð are semicubic edges of
regression directed outwards (Fig. 10).

In the case D�4 the caustic in the complex domain is the
same, but in the real domain is quite another (a `purse')
(Fig. 11). Topologically this purse is similar to a pair of
smooth surfaces z � �xy, but actually each of the surfaces is
not quite smooth: one surface has a semicubic edge of
regression over the diagonal x � y > 0, and the second
surface Ð for x � y < 0. In both cases the edges are directed
to the second part of the surface.

It is worth mentioning that the holomorphically identical
surfaces of the pyramid and the purse have very different
groups of real symmetries.

Remark. It is interesting (even from the viewpoint of the
number theory where the asymptotics of oscillating integrals
are also applied Ð I M Vinogradov became famous due to
this discovery) to obtain as exact an evaluation as possible of
the behavior of the oscillating integral in the neighborhood of
a caustic.

Outside the caustic the asymptotics are of the form of a
sum of Fresnelian contributions of stationary points, with the
amplitude coefficients depending on the transformation of
variables bringing the phase to the sum of quadrates:

I�y� � S�Csh�n=2 ; Cs � 1

dets

�
q2S
qx2

�
: �6�

Approaching the caustic, one dets goes to zero, so that the
evaluation is no more of the form Chn=2. However Colin de
Verdier put forward a hypothesis that expression (6) remains
nevertheless a uniform evaluation outside the caustic even near
the bad points of the latter. He proved this for points A2, A3,
A4, D4 and, in general, for all singularities of the phase
function S of general position depending on not more than 7
parameters y (as will be shown later, it is this condition that

guarantees the so-called simplicity of the singularities as well
as their link with simple Lie algebra).

The Ukrainian vagrant and philosopher G Skovoroda
long ago thanked the Creator who made everything that is
necessary simple and everything that is complex unnecessary.
Here Skovoroda made use of logic irreproachable from
mathematical a viewpoint, which seems to be inaccessible to
some physicists (JETP once rejected an interesting paper on
adiabatic invariants because ``the author asserted that A
implies B, though in the words of the vice-editor-in-chief of
JETP every physicist knows that B does not imply A!'').

Caustics and reflection groups
In the foregoing we related a reflection group to the manifold
of orbits and submanifold (with singularities) of nonregular
orbits in it. The manifold of the orbits of the reflection group
by itself is always smooth. This is a generalization of the
theorem on symmetric functions of the corresponding
symmetry group Ak of a k-dimensional simplex.

I give here the classification of the groups of Euclidean
reflections. It is clear that the direct product of a reflection
group inRm by a reflection group inRn is a reflection group in
Rm�n. The action of a reflection group in Euclidean space is
called irreducible, if there is no nontrivial subspace invariant
with respect to the whole group.

Any group of Euclidean reflections is a product of
irreducible reflection groups which are the only ones to be
described.

Irreducible reflection groups can be divided into two
classes: crystallographic groups in RN, keeping unchanged
some lattice ZN of linear integer combinations of N linearly
independent vectors, and non-crystallographic groups.

The crystallographic groups make four infinite series

and five exceptional groups:

Here the diagrams indicate the location of generatingmirrors.
A circle on a diagram means the basis vector orthogonal to a
mirror. The line between two circles means an angle of 120�,
and the absence of the line Ð an angle of 90�, two lines Ð an
angle of 135�, three lines Ð an angle of 150�.

The sign > indicates the length of basis vectors: on one
side from it they are

���
2
p

times longer then on the other. The
index k is a dimension of space (and number of circles in the
diagram).

Ak: ...

k5 1

Bk: ...

k5 2

Ck: ...

k5 3

Dk: ...

k5 4

E6:

E7:

E8:

F4:

G2:

A3

Dÿ4

A3

A3

A3

A3

Figure 10. Pyramid Dÿ4 .

A2

A3

A3

A2

D�4

Figure 11. Purse D�4 .
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Diagrams of this kind were certainly used by Coxeter and
Witt, that is why they are usually called Dynkin diagrams.

Example. B2 and C2 are symmetry groups of a quadrate,
B3 and C3 are those of a cube. The difference between Bk and
Ck is only in lattices generated by basis vectors: the mirrors by
themselves (and, therefore, groups) are the same.

Noncrystallographic groups of Euclidean reflections are
the following:

I2�p� is the symmetry group of a regular p-gon on a plane,
p 6� 2; 3; 4; 6;

H3 is the symmetry group of a regular icosahedron in R3;
H4 is the symmetry group of a regular hypericosahedron

in R4.
An icosahedron has 20 faces, 12 vertices, a group of

motion consisting of 60 elements from SO�3�, a symmetry
group consisting of 120 elements from O�3�.

A hypericosahedron has 120 vertices and 600 faces
(tetrahedron). To construct it, let us consider a two-sheet
spin covering:

R4 � S 3 � SU�2� � Spin�3� ! SO�3� :

The inverse image of the group of 60 rotations of an
icosahedron consists of 120 points in S 3. They are vertices
of the hypericosahedron.

Remark. It is proved that the manifolds of orbits of all
these and only these groups are smooth 6.

Example. For Ak let us start from R k�1 with basis
a0; . . . ; ak. The vectors e1 � a0 ÿ a1, e2 � a1 ÿ a2; . . . ; ek �
akÿ1 ÿ ak make a frame in Rk (orthogonal to diagonal) with
scalar products given by the diagram Ak. The mirror,
orthogonal to ej, determines the same reflection as the
transposition of the coordinates ajÿ1 and aj. That is why the
reflection group Ak acts in Rk as a symmetric group S�k� 1�
of the coordinate permutations in Rk�1.

The basic invariants s2 � a1a2 � . . .� akÿ1ak; . . . ; sk �
a1a2 . . . ak serve as coordinates on the manifold of orbits. By
the fundamental theorem on symmetric functions, all poly-
nomials in Rk, invariant in respect to the action of S�k� 1�,
are polynomials of s1; . . . sk. It follows from this that
C k=S�k� 1� � C k in the sense of algebraic geometry.
Actually this theorem is valid even for smooth functions,
and the smooth R-manifold C k=S�k� 1� is diffeomorphic to
R2k.

The manifold of nonregular orbits of the reflection group
is called its discriminant. In the complexmanifold of the orbits
this hypersurface (in general, complex) usually has singula-
rities.

Example. ForA2 the discriminant is a semicubic parabola
s32 � Cs23 in C 2 with a singularity in 0.

Discriminants of the reflection groups immediately give
the singularities of the wave fronts of typical wave families.
But it turns out caustics also have a natural algebraic
description in these terms (found in Ref. [8]).

Example. For A3 the discriminant is a surface inC 3 called
a swallow tail and made in the space of polynomials
z4 � az2 � bz� c (with coordinates a; b; c) by polynomials
having multiple roots (Fig. 12).

Really, the orbit of the point �z0; z1; z2; z3� under the
action of the permutation of coordinates consists of 24 points

and, therefore, is regular, if and only if all four roots zj are
different.

We obtain convenient formulas parametrizing the dis-
criminant: there

x4 � ax2 � bx� c � �xÿ u�2�x2 � 2ux� v�

(we used the fact that s1 � 0). Thus,

a � vÿ 3u2 ; b � 2u3 ÿ 2uv ; c � u2v :

To study this surface, it is convenient to intersect it with the
plane a � const. The intersection is the curve

b � ÿ4u3 ÿ 2au ; c � au2 � 3u 4 :

For a � 0 it is a parabola of power 3=4. The singular points of
the curve are given by the equation 6u2 ÿ a � 0.

If a < 0, then there are no real singularities and in the real
plane the curve is smooth.When a increases to 0, at the point 0
arises a singularity of the power 3=4 which later, for a > 0,
decays into two semicubic singularities. In this case the planar
curve transforms like a system of ellipse equidistants when the
first singularity arises in the focal point of the caustic.

It can be shown that these phenomena are not only similar
but diffeomorphic as well: the propagating waves sweep
through space-time a surface with a `swallow tail' singularity
when the front passes through the cusp.

The analysis of this example leads to the following general
construction which turns out to be admissible in the case of
general reflection groups as well.

Let us consider the discriminant of a reflection group (as a
complex hypersurface in C n) with the leading singularity at
the point s � 0. Let us suppose that the manifold of orbitsC n

is a fibre bundle over C nÿ1, i.e. that it is given a smooth
mapping C n ! C nÿ1 of rank nÿ 1 at the point s � 0.

It turns out that:
(1) all such mappings in a general position are locally

equivalent (can be transformed into each other by local
holomorphic diffeomorphism of C n in the vicinity of 0
which maps the discriminant into itself and the fibres of the
mapping into the fibres);

(2) the projection of the edge of the discriminant
regression is the caustic of the corresponding singularity.

Example. Projecting the swallow tail (discriminant of A3)
is equivalent to forgetting the coordinate c. The edge of
regression is projected into a semicubic parabola which is

6 It would be interesting to study Lie groups with such a property of the

manifolds of orbits: the Maxwell theorem on spherical functions gives

interesting examples [9].

A2

2A1

A1

A1

A3

A2

Figure 12. Swallow tail Ð discriminant for A3 and the caustic on it for A4.
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the caustic of the singularityA3. On the edge of the regression
a � vÿ 3u2, b � 2u3 ÿ 2uv, a � 6u2, so on its projection
a � 6u2, b � ÿ16u3 (Fig. 13).

Remark. Besides the edge of regression the swallow tail
has a line of self-intersection �b � c � 0�. The projection of
this line onto a plane is a smooth line. If projecting C 3 ! C 2

is considered as differentiating the polynomial z4 � az2�
bz� c, then the line of self-intersection consists of a set of
polynomials with two double roots. It is projected into the
`Maxwell stratum' consisting of cubic polynomials with zero
integral between critical points.

Under such interpretation the caustic consists of cubic
polynomials with multiple critical points. All this can be
understood especially easy, if one takes into account that the
value of the coordinate c (differentiating of polynomials is
equivalent to projecting along this axis) on the discriminant is
simply the critical value (takenwithminus) of the correspond-
ing polynomial x4 � ax2 � bx.

Rearranging of propagating waves
A system of propagating waves can be described using a set of
momentary wave fronts Ft in `physical' space, but instead of
them one can consider unified `big front' F in space-time
whose intersections with isochrones t � const give the
momentary fronts [10].

It turns out that large fronts propagating in n-dimensional
space have the same singularities as the momentary fronts in
�n� 1�-dimensional space.

Example.Momentary fronts in the plane are curves. Their
propagation can be described by a big front in 3-dimensional
space-time. In a typical situation such front has singularities
nomore complicated than the swallow tail. Therefore, typical
rearrangements of the wave fronts propagating in a plane are
typical rearrangements of the cross-sections of swallow tail
with surfaces t � const, where t is a function of general
position defined on a 3-dimensional space which contains
the swallow tail (Fig. 14).

These rearrangements are exhausted with the following
variants:

(1) the birth or death of two semicubic cusps of the front
when the swallow tail of big front passes;

(2) the birth or death, or rebuilding of two semicubic
points of regression of the front when isochrone touches the
line of regression of big front;

(3) the birth or death, or rebuilding of two branches of the
front when isochrone touches the smooth part of front;

(4) other points of contact of the isochrone line of self-
intersection with the front.

The rebuildings A4 and D4 are interesting examples of
front rebuildings in R 3. Under rebuilding A4 two swallow
tails of the momentary front merge while the isochrone
touches the line of regression of the big front.

Different phenomena can happen, depending on sign,
under rearrangement D4. Maybe the most interesting thing
is connected with turning inside out the trifoliate knot in R3,
during which its vertices slide along the edges of regression of
a caustic pyramid. The corresponding pictures are shown in
Refs [3, 4, 6].

The theories constructed above have found use in the
study of shock waves and cosmological bifurcations of the
motion of dust-like media (see Refs [4, 6]).

Versal deformations
The analysis given above of the singularities of caustics, wave
fronts and their rearrangements was founded on the formulas
for the phase function from the section `Oscillating integrals'.
Now I proceed to the description of algebraic technique
giving these formula.

The singularity of the oscillating integral is given by itself
by the phase function F�x� [for the Airy integral F�x� � x3].
To calculate the multiplicity of a critical point (which we shall
consider to be the origin) one has to consider the orbit F under
the action of the group of diffeomorphisms. It turns out that
the infinite-dimensional space of functions in the neighbor-
hood of a critical point of finite multiplicity k can be
represented as the direct product of a k-dimensional space
transversal to the orbit and an infinite-dimensional space
along which the type of singularity does not change. In the
Airy case the finite-dimensional space consists of the
functions x3 � ax� b and the infinite-dimensional space
consists of the functions X 3, where X � h�x� is a change of
variables.

In general the multiplicity is determined by the following
algebraic construction. At first we take the space E of all
functions of x (here it is admissible to take functions of
different degree of smoothness; in the case under considera-
tion one can take even formal Taylor series f�x� � f0 � f1x�
f2x

2 � . . . making the ring E � C��x��).

A3

2A1

A1

A2

A3

A2

A1

A2

2A1

Maxwell's

stratum

Di sc r im
inant

C
au
s t

i c

Figure 13. Typical projection of the swallow-tail onto the plane.

Isochrone t5 0

t > 0

t � 0t � 0

t > 0
t < 0

4/3

3/2 3/2

Figure 14. Rebuilding of the cross-sections of the swallow tail.
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In the ring E of functions we consider the gradient ideal
spanned by partial derivatives of the initial function F under
consideration:

IF �
�
h1

qF
qx1
� . . .� hn

qF
qxn

�
(here hs 2 E are any functions from E). This space IF actually
is the tangent space to the orbit F under the action of the
diffeomorphism group because

F�x1 � eh1; . . . ; xn � ehn�

� F�x1; . . . ; xn� � e
�
h1

qF
qx1
� . . .� hn

qF
qxn

�
� o�e� :

Example. For F � x3 one finds

IF � fhx2g � fh2x2 � h3x
3 � . . .g :

This ideal is a subspace of co-dimension 2 in the space
fh0 � h1x� h2x

2 � . . .g of all power series of x.
Definition. The co-dimension

m � dimC
C��x1; . . . ; xn��
fP hs qF=qxsg

of the gradient ideal is called the multiplicity of the critical
point 0 of the function F.

Example. For F � x3 we find that

m � dimC
fh0 � h1x� . . .g
fh2x2 � . . .g � dimC fax� bg � 2 :

Let us suppose that the critical point 0 of the function F is
of finite multiplicity and that the factor-space E=IF is
generated over C by functions g1; . . . ; gm.

Then the m-parametric space

fF� l1g1 � . . .� lmgmg ; ls 2 C

can be taken as a transversal to the orbit of the function F.
Example. For F � x3 one obtains the transversal

fx3 � ax� bg.
Definition. The function S�x; y� is called the deformation

of the function F�x�, if S�x; 0� � F�x�. The transversal to the
orbit constructed above is a two-parameter deformation of
the function x3 with parameters y1 � a and y2 � b.

Definition. Initial rates of deformation S are called
functions gs�x� � qS=qys

��
y�0. In our example these are

g1 � x and g2 � 1.
The rule for writing down a transversal to the orbit (which

is also called versal deformation of function F) is established
by the fact that the deformation is versal each time its initial
rates generate a basis of the factor-space E=IF.

The phase functions, used in the section `Oscillating
integrals' for construction of a swallow tail, purse and
pyramid, are versal deformations S of the functions
F � x41 � x22 and F � x21x2 � x32.

To study the structure of the orbits of the diffeomorphism
group in the vicinity of F, it is sufficient to study only the
finite-parametrical family Ð versal deformation. In the
infinite-dimensional space the situation is the same, only
everything is multiplied by a smooth infinite-dimensional
manifold, so that every orbit has the form of a cylinder with
the infinite-dimensional smooth generator, and the genetrix is
a manifold of functions from an appropriate class in versal
deformation.

Example. Singularity A2 (orbit of the function x3) makes
the edge of regression in the manifold of functions with
critical value 0.

Remark. The algebraic results given above are valid for
formal as well as for analytic and even smooth functions, with
natural reservations: not all m bifurcating critical points can
be real (for example, there are no real critical points for
x3 � ax when a > 0 though the multiplicity m is equal to 2).

The intersection line of the swallow tail corresponds both
to real and complex points with multiple critical values. In the
real case only half of this line is a genuine line of self-
intersection of a real swallow tail, and the second half is its
analytical continuation.

Coxeter numbers
The exponents of singularity for the asymptotics of oscillating
integrals can be algebraically described as follows. Let us
consider mirrors of corresponding group of Euclidean
reflections in real space R m. They divide the space into parts
called Weyl cells. Each cell is a cone with a simplicial base.
The continuated walls of a cell (there are m of them) divide the
space into 2m parts called Springer cones. Each Springer cone
consists of several Weyl cells. The geometry of Weyl cells and
Springer cones made of them decisively influences the
geometry of wave fronts and caustics.

Definition. The product of reflections in walls of oneWeyl
cell is called a Coxeter transformation.

Example. Three mirrors A2 divide the plane into six Weyl
cells Ð angles of 60�. Each Coxeter transformation is a
rotation of 120�.

The eigenvalues of a Coxeter transformation are roots of
different powersm of 1. The order of the Coxeter transforma-
tion is called the Coxeter number of a reflection group.

Example. Coxeter numbers m of some crystallographic
reflection groups in R n are given in the following table:

An Bn;Cn Dn E6 E7 E8

m � n� 1 2n 2nÿ 2 12 18 30

It turns out that these numbers are closely connected with
the asymptotics of the corresponding oscillating integrals.

Example. For Dn on the plane x; y

Ih �
��

exp

�
i�x2y� ynÿ1�

h

�
dx dy :

Let us make a change of coordinates x � h aX, y � h bY
destroying division by h:

Ih �
��

exp
�
i�X 2Y� Ynÿ1��h a�b dX dY ;

2a� b � �nÿ 1�b � 1 :

We get b � 1=�nÿ 1�, a � �nÿ 2�=�2nÿ 2�, a� b �
n=�2nÿ 2�. Therefore the integral Ih decreases as hn=�2nÿ2� at
the points Dn instead of usual rate of decrease h 2=2. For
example, at the points D4 we obtain h 2=3 instead of h, i.e. the
rate becomes hÿ1=3 times worse.

Such calculations give the exponents of singularity of the
rest singularities in the list Ð obviously they repeat the list of
Coxeter numbers:

An Dn E6 E7 E8

nÿ 1

2n� 2

nÿ 2

2nÿ 2

5

12

8

18

14

30
:
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An analogous theory has already been constructed for
singularities B, C, F, G and should be constructed for I2�p�,
H3,H4.

Example. At the usual point A1 the exponent of the
singularity is 0, i.e. the power multiplier for a 2-dimensional
oscillating integral is proportional to h. At the double point
A2 (the usual point of the caustic) the exponent of the
singularity is 1=6, i.e. the power multiplier is h 1ÿ1=6. At a 3-
fold point (the cusp of caustic) the light is even brighter, the
exponent of singularity forA3 is 1=4, and the powermultiplier
is h 1ÿ1=4.

At singular points D4 (corresponding to pyramids and
purses of the caustic) the exponent of singularity is 1=3, the
powermultiplier is h 1ÿ1=3. But these points in a 2-dimensional
system of general position appear only for distinct values of
the parameters (for example, time, if the question is not the
light but the noise of a plane flying by).

Springer cones and Bernoulli numbers

Opera has become the realm of boredom

because there is too much music in it.

Bomarche, Foreword to ``Tarar''

Let us consider the reflection group in R n generated by
reflections in n walls of a Weyl cell. The continuations of
these walls, like coordinate planes, divide the space into 2 n

parts Ð Springer cones each of which consists of several
(maybe one) Weyl cells. One of these cones consists of the
maximal number of cells Ð let us call it the chief Springer
cone.

Example. Group A2 of the plane reflections in three
mirrors making angles 120� in 0, has chief Springer cones
consisting of two Weyl cells.

Definition. The number of Weyl cells in the chief Springer
cone of the reflection group is called its Springer number.

Example. The springer number of the group A2 is a2 � 2,
aswe sawbefore. To calculate the following Springer numbers
am of the groupsAm is already not so easy (this is the so-called
theory of unknown consequences). The first of them are as
follows: am � 2; 5; 16; 61; 272; 1385; . . . �m � 2; 3; . . .�.

The appearance of Euler number 61 suggest that this
consequence is connected with Euler and Bernoulli numbers.

Let us write the exponential generating function

P�t� �
X
k�0

akt
k

k!
:

It turns out (the theorem of the FrenchmathematicianAndre)
that

P�t� � tan t� sec t :

Moreover, the coefficients ak can be easily calculated using a
Pascal type triangle:

1
1 0

0 1 1
2 2 1 0

0 2 4 5 5
: : : : : : : : :

Each element in each row is equal to the sum of numbers
of the preceding row standing to the right or to the left from a

given element (depending on the parity of the number of the
row).

Along the left side of the triangle run (starting from a1) the
coefficients of a Taylor series for a tangent divided by k!, and
along the right side Ð for a secant.

There is similar theory for the other reflection groups (see
Ref. [11]).

As for the geometry of the Springer cone subdivision into
Weyl cells, it is convenient to start from the case A3 in R3. In
this case the cone is a triangular pyramid divided into 5 cells
(Fig. 15). This division (by symmetry planes of the tetrahe-
dron) is conveniently depicted as a division of the triangle
PQR of the pyramid base into 5 triangles Ð bases of Weyl
cells. Let us choose points S and T on the sides RQ and RP
and draw the intervals PS and QT intersecting each other in
U. The bases of Weyl cells are triangles PQU, QUS, UST,
TSR, and PUT.

Let us consider now swallow tail as a caustic of the family
of functions of x of the following form:

x5 � ax3 � bx2 � cx :

Points a, b, c, corresponding to the functions with four
real critical points, make a `pyramid' between the edge of
regression and the line of self-intersection of the swallow tail.

The Maxwell stratum divides this pyramid into domains
inside each of which functions are topologically equivalent
(i.e. the orders of critical values on the axis of values are the
same). It turns out that there are five such domains, they are
bound by algebraic surfaces and all division topologically is
the same as the division of Springer cone into cells described
above.

This topological equivalence is given by algebraic home-
omorphism which even provides diffeomorphism of the
interior of pyramid on the interior of the Springer cone (as
well as the interior of each face on the interior of the
corresponding face of the cone).

All these results apply to other reflection groups.
The diffeomorphism, which is under discussion here, is a

real form of the remarkable Lyashko ±Looijenga mapping
(see Refs [12, 13]) putting the polynomial

a�z� � zk�1 � a1z
kÿ1 � . . .� ak ; as 2 C

in correspondence with polynomial

b�w� �
Y
�wÿ cs� � wk � b1w

kÿ1 � . . .� bk ; bs 2 C ;

whose roots cs are critical values of polynomial a.

P Q

S

U

T
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Figure 15. Subdivision of the base of Springer cone of the group A3 into

Weyl cells.
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3. The frontier between mathematics and physics

The problem of relations between these two sciences has been
widely discussed. For example, Hilbert explicitly announced
that geometry is a part of physics because both the geometer
and the physicist obtain their achievements in quite the same
way.

True, I am afraid that Hilbert just did not consider
geometry as a part of mathematics because he said that for
mathematics it is the same whether its `points' are glasses of
beer and all `straight lines' are benches. This statement is not
quite senseless, for example, in Lobachevsky geometry (in
PoincareeÂ model) circles are considered as straight lines, and
this is useful.

It is pity that his followers, like Bourbaki, applied these
`harmless' ideas in the teaching of school mathematics
substituting juggling of logic symbols for the content rich
science of the structure of the world. The hatred of
mathematics spread itself all over the world, and we,
Russians, are even behind.

Recently one such follower sent me a letter criticising my
statement that mathematics is a part of physics, insisting that
there is nothing in common between these sciences. It is worth
of mentioning that the same outstanding Bourbakist refused
to take part in writing a review book for 2000 pleading his
non-participation by mentioning that `mathematical joint
ventures are always a failure'. I do not know whether the
Bourbaki venture is really finished.

It would take too much time to cite all the remarkable
statements (of Pascal, Descartes, Newton, Huygens, Leibniz)
on this matter but I can not resist the temptation to mention
Dirac, who said that a physicist should never lean on physical
intuition which most often is a name for prejudiced judge-
ments. According toDirac's opinion, the right way consists of
taking mathematical theory and consequently developing it
considering at the same time its applications to as many
important models as possible.

For example, the right electromagnetic theory follows
from the Maxwell equations and not from more precise
specifications of breeds of cat and types of amber. A question
about the color of a meridian is an abuse of `intuition' of
prejudiced opinions.

I hope that I have shown above to what results one can
come following Dirac's advice.

Descartes' discussion of the barometric ideas of Pascal are
given as an example of the inadmissible influence of
prejudiced ideas in the case when one should invent
mathematical theory rich in content. Pascal took as his initial
point the Torricelli experiment with a mercury column and
constructed a corresponding device substituting water and
French wine for Italian mercury (it was difficult because the
keg should be very strong to resist the pressure of a ten-meter
high column of wine or water). But Pascal managed to do
everythingÐ first on the St. Jacob tower in Paris and later on
the mountain Pui de Dome in Auvergne Ð and constructed
the first water barometers (with vacuum above the water
column). He come to Descartes, the greatest scientist of the
time (Pascal was very young), and told him about the theory
Ð the Pascal law and so on. Descartes, the forerunner of
Bourbaki, the man who banished drawings from geometry,
considered all that to be idle theory and wrote to Huygens:
``As for meÐ I do not see vacuum anywhere, besides, maybe,
in Pascal's head''. Several months later Descartes already
asserted that it was he who taught Pascal everything. The

axiom of the `horror of vacuum' was more dear for Descartes
than Pascal's theory (later Descartes became dissatisfied with
Newton's long-range action, considering planets to be moved
by ether vortices).

Besides the vacuum in Pascal's head Descartes discovered
much of interest, for example, in the theory of caustics he
found the explanation of the rainbow and derived its spread
(43�) from the refractive index of water.

Recently a general tendency, observed all over the world,
is the offensive on science and education on the part of
bureaucrats and managers. Mathematics and physics are
endangered among the first. For example, I can mention
recent `Californian wars': the state of California under the
guidance of G Seaborg accepted new school requirements
disapproved at federal level as contradicting all-American
standards. The senate raised an objection.

Here are two examples. A new program provided the
addition of common fractions for ten year old school children
in the course of mathematics and theory on the three phase
states of water in the course of physics. In the federal
programme water has only two phase states (changing into
one another in the fridge), steam being considered inacces-
sible and rather abstract for the deprived schoolchildren.
Questioning of teachers revealed that, as a rule, they cannot
manage even the basics Ð to divide 111 by 3 requires a
computer. Attempts to abolish mathematics (especially
proofs) are seen by our educators too as `humanitisation'.

I underline that proofs inmathematics have always played
only a subservient role, somewhat like orthography or
calligraphy in poetry. Mathematics as well as physics is an
experimental science, and conscious addition of common
fractions 1=2 and 1=3 is a standard element common to all
mankind culture. The attempts to break the habit of time and
to stop any kind of progress is a natural, but very dangerous
consequence of the universal bureaucratization and world
struggle with culture.

Romans tried to retain from Greek science only the part
`of practical use', and the result was the gloomy obscurantism
of the Medieval epoch.

This work is carried out under partial financial support of
the Russian Foundation for Basic Research (project 99-01-
01109) and the Institute Universitaire de France.
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