
Abstract. The problem of copying a polyatomic system is ana-
lyzed from first principles quantum mechanically to show the
number of minima of the adiabatic electron term to be the factor
determining the storage capacity.

1. Introduction

Informational aspects of physical processes are nowadays
becoming a subject of basic research [1 ± 4]. Many of these are
based on ideal imaginary experiments with a single particle,
which may be a particle of an ideal gas, a Brownian particle,
etc. Naturally, condensed systems are equally interesting.

The practical side of this problem is associated with the
urgent necessity to develop the scientific basis of nanotech-
nology [5, 6], which would specifically make it possible to
obtain functional elements of microelectronics of nanometre
scale. In principle, investigation of the informational aspect of
the formation mechanism of nonequilibrium structures is a
logically unavoidable stage in the further development of
condensed matter physics.

The problem of copying acquires a special significance
because of the necessity to prepare numerous identical
nanostructures. Its essence consists in the development of
processes capable of yielding systems that would be exact
copies of the initial system [7]. The informational aspect of the
copying problem is closely related to the task of determining
the maximum large amount of information that could be
recorded and preserved over a long time interval tmax in a
system containing M atoms. One can easily become con-
vinced that the copying is a specific case of information
recording.

It may be argued a priori that ifM is finite the amount of
recorded information I is also finite. Furthermore, all other

conditions being equal, the numerical value of I increases
linearly with respect to M. The amount of information
increases in an analogous manner as the number of printed
characters in the text grows [1]. Therefore, the value of I is
enclosed in the interval

04 I4
Mb�tmax; n�

ln 2
; �1�

where b�tmax; n� is the specific informational capacity; the
components of the vector n are the relative concentrations of
atoms of each species which form the system under considera-
tion,

P
l nl � 1; the amount of information I and b�tmax; n� are

expressed in bytes and nats, respectively [1]; the transition
from one type of unit to another is done using the factor ln 2.

The magnitude I is taken to mean the amount of
memorized information which is also called macroinforma-
tion. It is this term that is meant in information science,
usually omitting the prefix `macro'. An alternative is micro-
information, which is the choice of one of the possible variants
which is in principle not memorized by the system. Appar-
ently, an ideal gas does not `remember' the choice of one of
the microstates because of the permanent chaotic motion of
its constituent particles.

The numerical values of I from interval (1) may be varied
using definite technical means. In contrast, the upper limit of
Mb�tmax; n�= ln 2 of this interval is independent of suchmeans
since the function b�tmax; n� is determined by fundamental
equations of quantum theory.

But by which equations and how? What is the precise
upper limit

L�I��tmax� � sup
n

b�tmax; n� �2�

of values of the function b�tmax; n� for condensed systems of
possible chemical compositions n? By howmuch will the time
tmax of information preservation be reduced upon action of
the external perturbation bW ?

Hereafter, bW is considered to mean the perturbation
operator used in conventional quantum mechanics [8]. It can
also be the `measurement' operator in the generalized
SchroÈ dinger equation that considers the informational con-
nection of the system with the outer world [1]. In the general
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case, the bW operator is random [1], and this should be borne
in mind when trying to answer the questions listed above.

The macroinformation I (1) memorized by the system is a
macroscopic concept. However, its maximum possible
amount proportional to b�tmax; n� is determined by micro-
scopic parameters. This is not surprising because a sufficiently
large number of microscopic states correspond to each
macroscopic state. They form a quasiclosed ensemble which
is given a mathematical definition in Section 5.

2. Exact copy

All elementary particles of the same kind (e.g., all electrons)
are indiscernible in view of the principle of identity of
microparticles [9]. The same may also be said about isotopes
of the same kind. It is not problematic to make protium
isotopes form hydrogen molecules which are exact copies of
each other 1.

The situation is radically changed as the number M of
atoms forming the system increases. As a rule, it is impossible
to get an exact copy of a macroscopic (M4 104 [10]) system
using conventional physical and chemical methods. Glasses
of the same chemical composition synthesized in absolutely
identical conditions of heating and nonequilibrium cooling of
the melt have virtually the same macroscopic properties but
they are not exact copies of each other. The point is that it is
rather difficult to repeat absolutely exactly the specific mutual
disposition of structural fluctuations fixed upon glass transi-
tion.

Indeed, as a result of each glass transition, which is a
nonequilibrium transition from the liquid to the vitreous
state, one of the structural modifications realized in the
liquid is frozen (memorized by the system). Let it be the i-th
modification (Fig. 1). Certainly, next time this will be
another, e.g. the k-th, modification but again the only one.

Despite the identity of their macroscopic properties
(internal energy, refractive index, density, etc.), these mod-
ifications are not exact copies of each other since, as seen from
Fig. 1, it is impossible tomake the coincident superimposition
of the disordered i-th atomic network on the k-th one. If one
bears in mind that a virtually infinite number of such
modifications exist, then each time the process of glass
transition will most probably result in structural modifica-
tions different from the preceding ones. Consequently, none-
quilibrium cooling of the melt cannot yield even two
macrosamples of glass which are exact copies of each other.

Thus, in order to perform copying it is not sufficient to
have the required elements of the Mendeleev periodic table.
This process also stands in need of the information which was
memorized by the initial system and is indispensable for the
purpose of copying. Such situations are considered in relation
to so-called chemical-informational synthesis [11].

When solving the problem of copying, it is necessary in the
first place to reproduce the required structure because the
information about individual features of a polyatomic system
is eventually stored in the mutual disposition of its atomic

nuclei. In the framework of classical physics each structural
modification (see Fig. 1) is set by the vector

R � �r1; r2; . . . ; ri; . . . ; rM� ; �3�

where ri are the radius vectors of all atomic nuclei of the
system. But the atomic nucleus is not a mathematical point
whose position is unambiguously determined by the vector ri.
The motion of microparticles is not characterized by the
trajectory ri�t� [8]. One can speak solely about the sites of
their localization. In the case of condensed systems the size of
the sites of atomic nucleus localization is much smaller than
the interatomic distances and is a tenth-hundredth of an
angstrom [12]. Therefore, one of the ways to make a brief [7]
quantum-mechanical description of the structure R consists
in setting the coordinates ri (3) of the centers of these sites.

As a rule, numerous quantum states forming a quasi-
closed ensemble correspond to each memorized macrostate
(to each structural modification of Rk; see Fig. 1). This raises
the question about the number G of different quasiclosed
ensembles. It is useful to know G not only in relation to the
copying problem. It is the magnitude of �lnG�= ln 2 that
determines the exact upper limit of possible values of the
amount of information I (1) since the recording of informa-
tion consists in its essence in realization of the memorized
choice of a single variant of the G possible ones.

In order to find the numerical value ofG, it is necessary to
consider primarily the problem of distribution of quantum
states over different quasiclosed ensembles. Some of these are
formed by the microstates corresponding to one of the free
energy minima. The latter holds only for stable and
metastable systems [13]. In the overwhelming majority of
cases we are dealing however the with nonequilibrium
systems, the thermodynamic potentials of which are far
from being extreme.

Thus structural modifications of the vitreous state (see
Fig. 1) are not characterized by the Gibbs energy minimum.
Each of them is described by its intrinsic quasiclosed
ensemble. Their macroscopic properties are invariable
because a quite definite structural modification corresponds
to each ensemble. It is for this reason that glasses are
kinetically frozen nonequilibrium systems, the properties of
which virtually do not change over the long time interval tmax

(1). The same may also be said about the overwhelming
majority of noncrystalline substances, many of which are
already widely used for recording information [15].

Thus, the class of various quasiclosed ensembles (different
macrostates memorized by the system with a fixed chemical

1 Evidently, exact copies are systems whose wave functions are identical.

However, the identity of wave functions is a very rigorous requirement.

Their collapse is induced even by aminor interaction [1]. For this reason, it

is advisable to take exact copies to mean systems whose dynamics,

including collapses, are described in the framework of the same quasi-

closed ensemble. In this case, two hydrogen molecules will be regarded as

exact copies even when, for example, their rotatory wave functions [8] are

different.

i-th modiécation k-th modiécation

Figure 1. Disordered atomic networks (structural modifications i and k)

which are not exact copies of each other. The sites of localization of atomic

nuclei of different species are denoted by � and �, respectively.
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composition) is extraordinarily broad. Their number is
substantially larger than the number ofGibbs energyminima.

The magnitude of G cannot be evaluated without
application of quantum-mechanical methods. The point is
that the components ri of the vector R (3) can vary
continuously, i.e. there exists a continuum of various
structures (different vectors Rk), which cannot even be
numbered with the help of the index k, if it has solely integer
values. This hampers the determination of the number G of
different structural modifications. In a quantum-mechanical
description [8] of a structure the superfluous detailing is
useless altogether since according to quantum mechanics, a
system is usually localized not at one point Rk but in a certain
volume (cell Ok). The set of all cells Ok is countable. It is this
circumstance that allows one to speak about the numberG of
different structural modifications of the condensed system
with a fixed (M � const, n � const) chemical composition.

All atomic configurations Rk (3) of an ideal monatomic
gas are equiprobable. Condensed systems are characterized
by the totally opposite situation. Therefore, it is not
surprising that some of their structural modifications may
be frozen (memorized) for a long time interval tmax (1). Let us
illustrate what has been said above in the framework of the
adiabatic approximation.

3. Description in the framework
of the adiabatic approximation

The adiabatic approximation [16] is based on the considerable
differences in the masses of electrons and nuclei, which makes
it possible to describe their motions separately well. Being
light particles, the electrons `succeed' in adapting themselves
to the instantaneous configuration R (3) of the atomic nuclei,
the latter in turn `notice' only the averaged disposition of
electrons.

In the zero approximation the atomic nuclei are regarded
to be at rest [R � const (3)]. In this case, the wave function
Fj�R;X� of the j-th stationary quantum state of the electron
subsystem satisfies the equation [17]

bHFj�R;X� � U
�j�
M �R�Fj�R;X� ; �4�

where bH is the Hamiltonian of electrons at fixed nuclei, which
represents the sum of the total Coulomb energy of the
interaction of atomic nuclei and electrons, the operator of
the spin-orbital interaction of electrons and the operator of
the kinetic energy of electrons;X is the sum of spatial and spin
variables of all electrons of the system under consideration;
U
�j�
M �R� is the adiabatic electron term, which in the case of a

polyatomic system (M4 1) usually has a great number of
different physically non-equivalent minima Rk [7, 18]. The
Hamiltonian bH does not contain any operator of the kinetic
energy of atomic nuclei and, consequently, is the operator of
the energy of the system under consideration for the fixed
atomic configuration R.

When the motion of atomic nuclei does not induce any
transitions between different electronic states, the function
U
�j�
M �R� (4) may be interpreted as the potential energy of the

nuclei corresponding to the j-th electronic state. In this case
their motion takes place in the potential field of U

�j�
M �R�.

Therefore, the nuclear wave function wj�R;E� satisfies the
SchroÈ dinger equation [17]ÿ bT�U

�j�
M �R�

�
wj�R;E� � Ewj�R;E� ; �5�

in which in contrast to (4), there is no variable X correspond-
ing to the electron subsystem. Here, bT is the operator of the
kinetic energy of atomic nuclei; E is the energy of the
stationary quantum state.

The chemical composition determines unequivocally the
explicit form of equations (4) and (5). Their different
solutions describe various modifications of a substance with
a fixed composition. This can serve as the basis for
classification of these solutions. Thus in the case of selenium
some solutions may be attributed to the fluid state, others Ð
to definite crystalline modifications, to amorphous modifica-
tions, to the vitreous state, to films, etc. However, it is most
advisable to base the discussed classification of solutions of
equations (4) and (5) on the structure R (3) because, as noted
above, the information about individual peculiarities of a
polyatomic system is eventually stored in the mutual disposi-
tion of its atomic nuclei. Any structural modification (e.g., the
k-th modification, see Fig. 1), which is preserved at least over
the time interval tmax (1) is described by the wave functions
Fj�R;X� (4) and wj�R;E� localized near the point Rk. The
diversity of the latter actually determines all the states
belonging to the k-th quasi-ensemble.

Usually one or a series of potentialRk minima correspond
to the points U

�j�
M �R�, near which the motion of one or other

structural modification takes place. In order to estimate the
number of such points (the numberG of different quasiclosed
ensembles), it is, as a rule, sufficient to consider only the
minima of the adiabatic electron termU

�0�
M �R� corresponding

to the ground (j � 0) state of the electron subsystem 2.
The point is that the lifetimes te of most excited states of

the electron subsystem are relatively short (te 5 tmax). There-
fore, these states alone cannot form a quasiclosed ensemble,
in the framework of which the k-th structural modification
can be described over a long time interval tmax (see Fig. 1). Its
preservation is favored by the potential barriers surrounding
the minimum Rk of the adiabatic electron term U

�0�
M �R�

(Fig. 2). If they are sufficiently high, then even the low-
energy quasi-steady [8] states localized in the potential well
Rk under consideration have larger [compared to tmax (1)]
lifetimes tl which satisfy the inequalities

tr 5 tmax 5 tl : �6�
where tr is the relaxation time of the phonon subsystem,
which is usually appreciably shorter than the time tmax

required for the preservation of information.
Consequently, quasiclosed ensembles may be formed by

the stationary and quasi-steady [8] states with large lifetimes
tl (6). Usually these are low-energy states, which describe
vibrational motion of atomic nuclei near one of theminima of
the adiabatic electron term U

�0�
M �R� (see Fig. 2). Transitions

2 Each minimum of the function U
�0�
M �R� sets one of the equilibrium

configurations Rk. Crystals correspond to the deepest minima (potential

wells). Most minima correspond to different noncrystalline structures.

Transition from one potential well to another (Ri ! Rk) means in the

general case the rearrangement of all of theM atomic nuclei of the system

since the components of the vector R � �r1; r2; . . . ; rj; . . . ; rM� are radius

vectors rj of these nuclei (3). Each point in Fig. 2 sets the internal energy E

of the system and the coordinates of all its nuclei. In the framework of

classical physics the translocation of this point can characterize various

processes occurring in the system. The adiabatic electron term U
�0�
M �R�

does not depend either on temperature or on the thermal prehistory, etc.

According to (4), it is unequivocally determined only by the chemical

composition. Various scenarios of the system behavior consist in the

sequence of passage over potential wells [the minima of the function

U
�0�
M �R�].
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between these states are not accompanied by any substantial
changes in the Rk structure. The k-th structural modification
is preserved when only such transitions take place (see Fig. 1).

The same may also be said about the macroinformation I
(1) which is the choice of a quasiclosed ensemble memorized
by the system. This information is preserved as long as all
changes occurring spontaneously or owing to the action of the
external perturbation bW are described in the framework of
the same quasiclosed ensemble. This means that with the
probability P�t� close to unity

P�t� > 1ÿ e at 04 t4 tmax and 0 < e5 1 ; �7�

the system `stays' in this quasiclosed ensemble during the long
time interval tmax and, consequently, the transition from the
ensemble under consideration to other ensembles may be
disregarded. Relations (7) are in full agreement with the
definition of a quasiclosed ensemble given below.

The same ensemble of quantum states may be quasiclosed
relative to a single quite definite operator bW or a group of
operators and, generally speaking, not be quasiclosed relative
to other operators. The latter include the recording operatorbW �mk� which brings about the transition to the preset k-th
quasiclosed ensemble. Therefore, the ensembles under con-
sideration are usually `closed' only during the storage and
reading of information. It is this circumstance that determines
the choice of the term quasiclosed.

Measurement is performed in the course of information
reading. It is known [1] that any measurement is an
irreversible process fixing one of the possible states. The
measurement process proper, which in principle permits an
extremely small energy exchange between the system and the
measuring instrument, exerts nonetheless a substantial effect
on the dynamics of the quantum system. The initial state of
the system ``is broken, i.e. it is transformed into something
that cannot be regarded as a pure state or into another pure
state which differs explicitly from the initial one'' [1, p. 472].
To preserve the information recorded previously, it is
necessary that during the reading this `something' does not
go beyond the frames of the initial quasiclosed ensemble. This
condition is met in many cases.

Indeed, let us assume that the nuclear wave function
w0�R;E1� describes the low-energy vibrational motion of

atomic nuclei in the potential well Rk (see Fig. 2). Reading
(measurement) is done by the collapse w0�R;E1� ! w0�R;E2�.
If the energy variation (jE1 ÿ E2j) is much smaller than
the magnitudes of most potential barriers separating the
Rk minimum from other minima of the potential U

�0�
M �R�,

there is overwhelming probability of localization of the
wave w0�R;E2� of the final state in the initial potential
well Rk. This can be easily seen since in this case, when
applying the theory of perturbations [8, 9], it is sufficient
to take into consideration only the matrix elements
hw0�R;E1�j bW �r�jw0�R;Es�i of the reading operator 3 bW �r� for
the wave functions w0�R;Es� localized in the same potential
well 4 Rk.

Thus, in order to preserve a polyatomic system, an exact
copy and also the recorded information, it is sufficient that all
changes occurring in the system do not extend outside the
limits of one and the same quasiclosed ensemble. It is this
ensemble that characterizes the properties of the system
displayed during informational interaction. In fact, the
behavior of a quantum system can be interpreted in classical
terms with an accuracy up to its belonging to a definite
quasiclosed ensemble. It is for this reason that I (1) is
regarded as macroinformation.

The amount of information I �s� indicating that the state of
the system belongs to a given quasiclosed ensemble is equal to

I �s� � lnG

ln 2
; �8�

where G is the number of quasiclosed ensembles. Naturally,
the magnitude of G�tmax; e; bW; n;M� is a function of many
arguments. Its explicit form is unknown and this impedes the
direct application of equation (8) for calculating the numer-
ical value of I �s�.

The magnitude of G�tmax; e; bW; n;M� can be estimated
proceeding from the number J�n;M� of different minima of
the potential U

�0�
M �R�. This approach allows a relatively

simple derivation of numerical estimates as the function
J�n;M� depends on only two arguments and, in addition, its
determination is actually based on equation (4) when j � 0.
This unambiguous mathematical definition is useful not only
for the problem of information copying and recording but
also for considering a wide range of other issues [7].

4. Estimation of the number of different
quasiclosed ensembles

For the number J�n;M� of different physically non-equiva-
lent local minima of the adiabatic electron term U

�0�
M �R�,

which corresponds to the ground electronic state of the
electroneutral system consisting of M atoms, the following
asymptotic formula [7] is valid asM!1

1

M
ln J�n;M� � an ; �9�

A

B1 Bi Ci

D1 Di

R1 R2 Rk

U
�0�
M �R�

Figure 2.Adiabatic electron term U
�0�
M �R�. The rectangles A, Bi, Ci andDi

indicate the potential wells corresponding to the Rk structures (quasi-

closed ensembles) of liquid, glass, amorphous substance and crystal. The

segments of horizontal straight lines set the values of energies of quantum

states. This figure is rather conditional because for polyatomic systems

(M4 1) the function U
�0�
M �R� is set, in conformity with (3), in the

multidimensional space.

3 Strictly speaking, the reduction (collapse) is not described by the

SchroÈ dinger equation [4]. Nonetheless, approaches are known which

allow a highly accurate interpretation of the measurement in terms of

quantum-mechanical interaction of the system with an instrument

(environment) [19]. This makes it possible to introduce the operator of

interaction of the two subsystems bW �r� and then to use the SchroÈ dinger

equation.
4 Since the wave functions localized in different potential wells virtually do

not overlap, all other matrix elements may be neglected.
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where an is the positive parameter dependent solely on the
chemical composition n (1). It follows from (9) that

J�n;M� � exp
ÿ
anM� o�M�� ; �10�

the function o�M� satisfying the condition
limM!1 o�M�=M � 0. In other words, the number J�n;M�
of different physically nonequivalent minima of the U

�0�
M �R�

potential exhibits a rapid exponential growth with the
increasing number M of atoms forming the system with a
fixed (n � const) chemical composition.

This fact is not surprising because the magnitude J�n;M�
(10) takes into account all potentially possible structural
modifications Rk (3) of a polyatomic system. These are
structures of liquid, glass, perfect crystal, crystals with
different concentrations of particular defects, polycrystals,
amorphous substances, amorphous and vitreous films, glass-
ceramics and many others, including the structures of
microheterogeneous materials storing the recorded informa-
tion. The diversity of minima of the functionU

�0�
M �R�makes it

possible to explain the possibility to vary properties of a
material of the same chemical composition through prepara-
tion of its various modifications described by different
quasiclosed ensembles. Thus glass fits not one but many
physically nonequivalent quasiclosed ensembles
B1;B2; . . . ;Bi; . . . (see Fig. 2). Therefore, the properties of
glasses vary depending on the cooling rate of the glass-
forming melt [7].

In practice, technical limitations allow, as a rule, the use of
only some quasiclosed ensembles. For this reason, the
amount of recorded information I (1) is usually smaller than
the maximum possible I �s� value (8):

I4
lnG�tmax; e; bW; n;M�

ln 2
: �11�

The right side of inequality (11) is simple to estimate, if one
takes into account only the quasiclosed ensembles which fit
the ground state of the electron subsystem. Indeed, when
there are G �0� of them the following relations are satisfied:

lnG �0��tmax; e; bW; n;M�4 ln J�n;M�
� ÿanM� o�M��4 ÿ

BM� o�M�� ; �12�

where constant B is determined by the identity

B � sup
n

an : �13�

Let us demonstrate the validity of transformations (12).
At low temperatures the motion of atomic nuclei takes place
in the proximity of one or a series of minima (potential
wells) of the adiabatic electron term U

�0�
M �R� (see Fig. 2). If

all low-energy states F0�R;X� w0�R;Es� localized in each
potential well are stationary or quasi-steady and have long
lifetimes tl satisfying inequality (6), then such states seem to
form one of the quasiclosed ensembles. In this case, their
number is equal to the number J�n;M� (10) of potential
wells. In all other cases when a part of the quasiclosed
ensembles describe the motion of atomic nuclei near a series
of potential U

�0�
M �R� minima, the strict inequality

G �0� < J�n;M� is satisfied. We have thereby demonstrated
the validity of the inequality G �0�4 J�n;M� which in
combination with (10) and (13) directly yields relations

(12) which allow the estimation of G�0� from above, if one
proceeds from the numerical values of an or B.

It would not be particularly difficult to find the exact
value of constantB (13) if the solutions of equation (4) at j � 0
were known for the systems of various chemical composi-
tions. Since this is not the case, one has to use model
approaches [7]. In their frameworks it is possible to calculate
numerical values of the parameter an (9), (13) for specific
systems. The results of such computations [7, 18] support the
following estimate:

B � 3 : �14�
The constant B is also useful for the estimation of the

upper limit of the specific information capacity b�tmax; n� (1),
(2):

04b�tmax; n�4 sup
tr 5 tmax

L�I��tmax� � B�I� � B : �15�

Indeed, in contrast to B (13), the calculation of B�I� (15)
requires consideration not only of theminima of the adiabatic
electron term U

�0�
M �R� corresponding to the ground state of

the electron subsystem but also, generally speaking, of the
minima of all other potentials U

�j�
M �R� (4). However, as noted

above, the lifetimes te of most excited states of the electron
subsystem are relatively short (te 5 tmax). States of this kind
are unsuitable for information storage. The potentials
corresponding to them may be neglected. Then the estimate
(15) is derived directly from (10) ± (13).

Until now no strict definition of the notion `quasiclosed
ensemble' has been given. It was believed that each structural
modification (see Fig. 1) of the system with a fixed chemical
composition has an intrinsic set of microscopic states, which
form one of the quasiclosed ensembles. This is an illustrative,
though somewhat simplified interpretation. It is possible to
carry out a more strict consideration based on the definition
of a quasiclosed ensemble outside the framework of the
adiabatic approximation. This approach requires considera-
tion of many important nuances which were not discussed
here. For this reason, it appears advisable to give a definition
of a quasiclosed ensemble.

5. Definition of a quasiclosed ensemble

Any state of a system is described by the corresponding
statistical operator (density matrix [8]) r̂�t� in the Hilbert
space GI. A quasiclosed ensemble is perceived as a non-empty
set of system states meeting the two following conditions.

1. It is possible to establish a one-to-one correspondence
between the elements of this set and various statistical
operators r̂�NI � for a certain subspace NI of the Hilbert space
GI. Each state of the quasiclosed ensemble is set by a single
operator r̂�NI � and, conversely, each operator r̂�NI � of the
subspace NI sets a single state from this ensemble.

2. Any state of r̂�t� of the system, which belongs initially
(t � 0) to the quasiclosed ensemble [r̂�0� � r̂�NI �], is described
in the e-approximation in the subspace NI even in the presence
of the external perturbation bW. This means that the inequal-
ities 04 t4 tmax are satisfied���Sp ÿr̂�t� f̂l�ÿ Sp�NI �

ÿ
r̂�t� f̂l

���� < Cl e ; l � 1; 2; . . . �16�

where f̂l are the operators of physical quantities; Sp�NI �
ÿ
r̂�t� f̂l

�
is the sum of the diagonal matrix elements of the operator
r̂�t� f̂l in an arbitrary orthonormal basis of the subspace NI ;
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Sp
ÿ
r̂�t� f̂l

�
is an analogous sum for the Hilbert space GI; Cl are

constants. In addition, it is assumed that at t > tmax at least
one of the inequalities (16) is not respected.

It is known that these definitions are not proven. Let us
give a number of arguments in favor of the quasiclosed
ensemble definition formulated above. The advisability of
setting a given ensemble in the corresponding subspace NI of
the Hilbert space GI follows from the superposition principle
[8]. In full agreement with this principle, all the solutions of
the SchroÈ dinger equation form a linear manifold with time
[8]. If we are interested in only some of these solutions, then
again bearing in mind the superimposition principle, it is
convenient that these represent a closed linear manifold. The
latter is called a subspace [20].

The satisfaction of inequalities (16) means that in order to
calculate (with the arbitrarily small errorCl e) themean values

�fl�t� � Sp
ÿ
r̂�t� f̂l

�
; l � 1; 2; . . . ; �17�

of physical quantities f̂l that are of interest to us, it is sufficient
to know the corresponding matrix elements only for the
subspace NI . This is not surprising because the probability
P�t� of the system staying in any state of the quasiclosed
ensemble is close to unity, or more precisely

P�t� > 1ÿ e at 04 t4 tmax : �18�
Inequality (18) follows directly from relations (16) and (17), if
we assume in the latter that f̂1 � C1 � 1 and take also into
account that P�t� � Sp�NI �

ÿ
r̂�t��. Relations (18) virtually

coincide with inequalities (7), which were used for substan-
tiating the advisability of introducing the concept of a
`quasiclosed ensemble'.

6. Conclusion

Of course, the investigation of the informational aspect of the
behavior of condensed systems is still in its infancy. The
development of the macroscopic theory of information
copying and recording is restricted by many factors. These
are primarily a number of unsolved problems in natural
sciences. Let us list some of them. Until now ``the problem
of the relationship between the quantum and classical
descriptions of physical processes'' remains open to debate
[19, p. 1018]. There is no consensus regarding fundamental
concepts, such as the wave function, reduction (collapse), etc.
[21]. Finally, the subject of discussions continues to be ``the
question about irreversibility at the boundary between
classical and quantum systems, in particular when measuring
quantum systems'' [2, p. 973]. The latter circumstance is of
prime importance for dissipative and temporally irreversible
processes, such as information recording and reading.

If the above-listed problems remain unsolved, it would
hardly be possible to answer exhaustively all of the questions
formulated in this work. It centered attention on the
estimation of the number of different quasiclosed ensembles
[various structural modifications (see Fig. 1) preserved over
the long time interval tmax (1)]. As long as their dynamics,
including collapses, is described by different quasiclosed
ensembles, these modifications do not pass one into another
even under the action of the unfavorable external perturba-
tion bW. Therefore, there is the potential to use them for the
recording and storage of information.

Indeed, there are no basic restrictions as to the practical
realization of any state described by fundamental equations

of quantum mechanics 5. The same may be argued in respect
of various structural modifications (see Fig. 1) of the system
with a fixed chemical composition 6. They can be distin-
guished using a macroscopic instrument 7. Naturally, in the
course of information measuring (reading) the initial state of
the system is obligatorily changed, whereas the structural
modification (a quasiclosed ensemble) remains, generally
speaking, invariable. The latter circumstance is important
for the preservation of the information recorded earlier
during its reading because it represents the choice of one of
the possible quasi-ensembles memorized by the system.

The development of a microscopic theory of information
copying and recording stands in need of various model
systems. To this end, an ideal glass may prove to be useful
[7]. It has already been used as a model in the analysis of
peculiarities of the operation of neuronal networks [23] and in
the description of cosmic objects known as black holes [24].

Naturally, an ideal glass is not yet used in theoretical
studies as widely as the concept of an ideal gas. The main
reason consists in that the development of theory of
disordered systems, to which glasses are referred, is still far
from completion [14]. Further progress in this field appears to
be impossible without radically new approaches, in particular
without using the methods of information theory [1 ± 4, 25].

Indeed, the glass transition involves the internal measure-
ment (self-measurement) and realization of one structural
modification memorized by the system (see Fig. 1) of the G
possible modifications. As noted above, it is this that is meant
when the macroinformation I is discussed (1). It is essential
that the memorized choice cannot be realized using an ideal
gas or liquid because of their lability. Furthermore, a glass
transition is a nonequilibrium process, while information
``plays an important role in physical nonequilibrium pro-
cesses'' [1, p. 451].

It appears that the ideology of the vitreous state will
henceforward serve as the base for constructing various
models for the investigation of the informational aspect of
the behavior of polyatomic systems. Liquid is ``a stochastised
system with zero information and maximum entropy, i.e. the
system of the C type'' [1, p. 474]. Glass is precisely its
antipode. Each glass macrosample memorizes the informa-
tion indispensable for copying, it whereas the entropy of glass
is substantially smaller than that of liquid [26, 27]. Liquids are
not used for recording information. On the contrary, glasses,
incidentally like many other disordered systems, are well-
suited for this purpose [15].

The microscopic mechanism of information copying and
recording is determined by elementary processes occurring in
small-size fragments. These may be elementary structural
transformations, elementary chemical transformations, etc.
In their description, it is necessary to take into consideration
primarily the potential barriers surrounding each minimum

5 Quantum mechanics [8] admits even the possibility of realization of a

coherent superposition of any two states. Naturally, this is also valid for

any two structural modifications (Fig. 1). However, due to the ever-

occurring weak interaction with the environment their superimposition is

rapidly transformed into one of the stable structural modifications. States

of this kind are called incoherent [19].
6 In its practical aspect, the task of obtaining a preset structural

modification is considered in the framework of so-called chemical-

information synthesis [11].
7 This is also evidenced by the impressive progress, e.g., in the development

of diffraction methods for studying disordered structures, made over the

last 70 years [22].
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of the adiabatic electron term U
�0�
M �R� (see Fig. 2), or more

precisely, the coefficients of passage through these barriers
[28].

Most elementary processes occur in the nanometre-range
fragments containing tens to hundreds of atoms [29]. There-
fore, these processes are in particular responsible for the
formation of condensed media-based nanostructures, the
diversity of which virtually determines the level of specific
information capacity b�tmax; n� (1), (15).

The task of the targeted synthesis of individual nanos-
tructures [1] dictates the need for developing the microscopic
theory of information copying and recording. The solution of
this particular problem is impossible without such a funda-
mental characteristic of any material object as information,
without which it is in turn impossible to get an exact copy. In
this field, studies of an applied character are moving ahead of
basic research and stimulating its progress. We witnessed
something similar in the middle of this century when
information theory was taking shape [30].
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