
Abstract. The problem of infrared and collinear divergences is
considered within the framework of perturbation theory and the
scattering operator redefinition method. IR divergent processes
in electrodynamics and gravitation (perturbation theory) are
described, and for the case of electrodynamics a scattering
operator free from IR divergences is constructed. For the mass-
less electrodynamics model, a recipe for constructing a scatter-
ing operator free from both IR and collinear divergences is
given. The meaning of experimental parameters entering the
final formulas is discussed, and it is shown that the S-matrix
factorization (i.e., the approximate independence of hard and
soft processes) makes the theorem on the cancellation of diver-
gences in observables trivial. A method for finding divergences
in theories with multiparticle vertices is presented.

1. Introduction

Of all the nontrivial divergences encountered in quantum
electrodynamics (QED), infrared ones, fully describable
mathematically and easy to interpret physically, are the
most harmless. Such divergences are not unique to electro-
dynamics, however, and are always due to the presence of
massless fields, in which case the long-wave amplitudesA0 (for
a process with the emission of a massless particle) and A (for
the main process) differ only by a factor,

A0 � A
g

2pq� i0
; �1:1�

where g is the coupling constant, p is the momentum of the
massive particle (p2 � m2), and q is that of the massless
particle (q2 � o2 ÿ q2 � 0; see Section 2 for more details).

From Eqn (1.1) it is seen that at low jqj the amplitude A0

is by no means small, and indeed it tends to infinity as
jqj ! 0. This means that the amplitude for the emission of
two or more long-wave massless particles is not smaller than
that for the emission of one particle, so that expanding in
powers of g is meaningless. But that is not all. The
calculation of the relevant cross sections requires the
integration of the squares of the amplitudes A0 � A=o
with the measure d3q=o � o do,�

d3q

o
jA0j2 ! jAj2

�
0

do
o

; �1:2�

yielding a logarithmic divergence at the lower integration
limit. It is here that one encounters a typical infrared
divergence. Similar divergences are also produced by integrat-
ing over the momenta of virtual particles (inner lines of
certain Feynman graphs). Although infrared divergences
were first described in Refs [1 ± 3], infinities due to the zero
photon mass actually date back to total cross section
calculations for Rutherford scattering in classical physics [4].

Expanding the denominator in Eqn (1.1),

pq � Epoÿ pq � ojpj�1ÿ cos y� � oDp ; �1:3�

where E2
p � m2 � p2, Dp � Ep ÿ jpj, pq � jpjjqj cos y, the

angle y being formed by the momenta of the massive particle
and the emitted massless one, we see that as m! 0, the
difference Dp ! 0, and as y! 0, the amplitude (1.1) grows
unboundedly. It follows then that if the momenta of the
emitting and emitted particles are in the same direction, the
corresponding amplitudes tend to infinity. In this case
perturbation theory breaks down. Cross section calculations
also give rise to logarithmic divergences since d3q � sin y dy,
1ÿ cos y � y2=2, and because the numerator of A0 is propor-
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tional to y (see Sections 4.2 and 6.3), we have�
d3q jA0j2 � jAj2

�
0

dy
y
: �1:4�

This is a typical collinear divergence. Letting the mass of the
emitting particle tend to zero after evaluating integral (1.4)
would yield a result proportional to lnm Ð the reason why
collinear divergences are sometimes called mass divergences.
These divergences first emerged in [5] where the radiation
correction to the muon decay process was calculated in the
me ! 0 limit (me being the electron mass) and where the
divergences were found to cancel for observable quantities.
The origin of collinear divergences is purely kinematic: a
massless particle may transform into two or more real
massless particles moving in the same direction. Whereas the
physical origin of collinear divergences is clear, their descrip-
tion is not as simple as for their infrared counterparts Ð a
consequence of the fact that the momenta of the emitted and
emitting particles are not necessarily small.

To account for infrared divergences is of practical
importance because radiation detectors always have a
sensitivity limit and therefore miss quanta with wavelengths
above a certain threshold value, i. e., with frequencieso4E0.
Such quanta are always emitted and never detected. However,
in high-energy physics this threshold may be fairly high (say,
hundreds of MeV [6, 7]), and including this radiation Ð e. g.,
photons Ð changes considerably the theoretical formulas to
be compared with experiment [8]. In collider experiments, up
to 10 ± 15% of the total energy may go with undetected
radiation.

The inclusion of collinear divergences is important
because, first, gluons in quantum chromodynamics (QCD)
are self-acting entities, i.e., behave as charged massless
particles, and, second, in Eqn (1.3) the difference
Dp � m2=2jpj ! 0 not only in the limit m! 0 but also for
jpj ! 1, implying that at superhigh energies massive
particles behave as massless ones (see also Ref. [9]). But
these are exactly the accelerator energies which are currently
available (Ep 4m), so while the term `mass divergence' is
good for decay processes, at superhigh energies (where
lnm! ln �m=jpj�, jpj ! 1) the mass is irrelevant Ð the
reason why the term `collinear divergences' should be
preferred in both cases.1

The recipe for accounting for infrared divergences was
rather an exotic one [11 ± 13]. Because the probability for the
emission of a finite number of photons of infinitesimal energy
is zero (the amplitudes of the corresponding processes tend to
infinity whereas the total probability is normalized to unity)
and because long-wave photons also generate infrared
divergences, the following procedure was recommended: (1)
to perform infrared regularization (e.g., by ascribing a mass
to the photon); (2) to calculate the cross section by including
the non-detected infrared photons; and (3) to remove the
regularization. The result, it was argued, is finite and
independent of the regularization parameter, and the diver-
gences due to the emission of real non-detected photons
cancel those due to virtual infrared photons.

Collinear divergences were to be treated in much the same
way, [5, 14 ± 16], by first calculating cross sections and then
summing up the contributions from all massless particles

emitted into a certain solid angle; all collinear divergences
canceled out in the final answer. Such a state of affairs did not
look entirely satisfactory though, because in a correct theory
all physical processes ought to be described in terms of
probability amplitudes.

Efforts at describing infrared divergences perturbation-
ally culminated in the work of Weinberg [17], whose concern
was in fact IR divergences in gravitation Ð the only classical
massless field theory apart from electrodynamics. The latter
being used as a model theory, both theories were developed in
parallel in Weinberg's study.

Preceding this work, however, was an unjustifiably
unnoticed advanced-level treatment by Murota [18], who
relied on the classical work of Bloch and Nordsieck [19] in
his approach to the physics of the problem. The clue was the
assertion by Bloch and Nordsieck that coupling the electro-
magnetic field and the classical current of charged particles
suffices for the quantum description of processes with
infrared photons. Murota found an asymptotic interaction
Lagrangian (i.e., one describing the effective interaction of
soft photons) and constructed an S-matrix free of infrared
divergences. Among other things, Murota [18] employed the
concept of the hierarchy of characteristic interaction times (a
fast hard process and a slow soft process) to develop an
innovative approach to the factorization of the S-matrix (i.e.,
to the separation of hard and soft processes in it; see Section
3.1.2 for more details). In the same work, a general formula
(other thanMagnus' [20]) was derived for disentangling the T
exponent.

Later, a whole series of papers [21 ± 28] (see also Ref. [29]
for a review) contributed to the detailed analysis of the
problem. As a major addendum to Murota's [18] results, the
specifics of theHilbert space of quantummechanics as used in
the context of the divergence problem was elucidated
(separable and nonseparable spaces [21, 25 ± 27]). Of major
importance was Dollard's [30] suggestion that the scattering
operator be redefined for slowly decreasing potentials (1=r
and slower): the influence of such potentials cannot be
ignored even at arbitrarily large distances. Note that an S-
matrix representation obtained inRef. [18] is equivalent to the
representation of Ref. [30] (Section 3.1.2); in particular, it
yields automatically the theorem [14 ± 16] on the cancellation
of divergences in averaged cross sections of the processes
involved.

Further work along these lines was stimulated by the
advent of QCD, which differs from QED in a variety of
important respects.

1. The non-Abelian gauge group causes matrices gmT
a (Ta

being group generators) to appear in diagram vertices, and
whereas in QED the matrix gm is replaced by the number 2pm
at low energies (see Section 2), the noncommutative nature of
Ta matrices considerably complicates the perturbation theory
analysis.

2. Since gluons have a charge, the problem of collinear
divergences is added to the difficulties indicated above.

3. Because of the confinement phenomenon, neither
perturbation theory nor the method of coherent states can
be applied to gluons in the long-wave limit.

Fortunately, at small distances (l0 < 10ÿ14 cm) the
running coupling constant is sufficiently small (as < 0:2) for
perturbation theory to be applied. Furthermore, the effect of
confinement is to effectively cut off low-energy quarks and
gluons, so that, for practical purposes, perturbation theory
and (for the structure functions) the GLAP evolution

1 If phonons had a mass l, then in the limit l! 0 the integral (1.2) would

also be proportional to ln l, therefore the terms `mass infrared' and `mass

collinear' divergences are sometimes employed [10]. The term `mass' will

not be used in this context in what follows.
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equations [31 ± 34] prove to be sufficient. Thus, it has been
shown by direct calculation [35] (see also Refs [36, 37]) that,
consistent with the divergence cancellation theorem [14 ± 16],
the properly averaged cross section of the process e�eÿ ! �qq
(or more precisely e�eÿ ! two jets) is finite and depends on
the experimental parameters, namely d, the spreading angle of
the quark-generated jets, and �1ÿ E�, the fraction of energy
carried away by the jets �d, E5 1�. The analysis of various
aspects of the problem continued in the 1980s. In particular,
generalized coherent states with nonlinear arguments of the
exponential were constructed [38] to describe the emission of
soft gluons by partons.

Although the situation seems satisfactory from the
practical standpoint (see Refs [10, 34, 39, 40] for review),
description of the non-Abelian infrared divergences and
especially the treatment of collinear divergences (even in
massless electrodynamics) has not yet reached the level
achieved in QED. The reason is simple: it is the assumption
that in either case the field dynamics at large times and large
space intervals are amenable todescription. Butwhereas in the
case of infrared divergences in QED the problem under study
could be reduced to an exactly solvable problem concerning
the interaction of an electromagnetic field with an external
field, the analogous non-Abelian problem is not solved
exactly. To fully describe processes with collinear divergences
requires an ability to solve a non-trivial field-theoretical
problem because emitted particles in this case are not
necessarily low in energy and the only restrictions posed are
those on the emission angle (see Section 4 for more details).

Section 2 of this paper describes the traditional (pertur-
bation theory) approach to infrared divergences in QED and
gravitation. In Section 3 the infrared problem is considered in
the framework of the S-matrix redefinition method in both
QED and QCD. Section 4, on collinear divergences, presents
a recipe for constructing a scattering operator free of infrared
and collinear divergences, using the massless spinor electro-
dynamics as an example.

Brief remarks on some problems related to the theme of
the paper are discussed in Section 5. In the appendices, useful
auxiliarymaterial can be found; it is established, in particular,
what types of massless particle interactions do not produce
infrared and collinear divergences.

Notation and normalization. The metric adopted through-
out is gmn � Zmn�� ÿ ÿÿ�; Greek indices run from 0 to 3.
Repeated indices of the same variance denote summation
with an appropriate metric tensor; for example,
qmxm � gmnqmxn � qmx

m � qx.
We use abbreviated notation for the differentiation

operator (qm � q=qxm) and functions (c�t� � ct etc.). The
T-matrix is defined by the relations Sp 0p � 1�
i�2p�4 d�4��p0 ÿ p�Tp 0p in quantum field theory and
Sp 0p � 1� i 2pd�E 0 ÿ E�Tp 0p for potential scattering. The
product of functions may imply integration either over
coordinates (JA � � dx Jm�x�Am�x�, where dx � d 4x) or
momenta. Throughout the paper, Heaviside's (rationa-
lized) system of units and the convention �h � c � 1 are
used; e is the electrical charge of the electron (e < 0). The
normalization of spinors and operators are given by the
following equations:

usa�p� �usb�p� �
1

2

��p̂�m��1� g5ŝ�
�
ab ;

vsa�p� �vsb�p� �
1

2

��p̂ÿm��1� g5ŝ�
�
ab

(no summation over polarizations s � �1=2), �gm; gn�� �
2Zmn, g

2
5 � 1, p̂ � pmgm (sm is the polarization vector, s2 � ÿ1,

sp � 0),

�âp;s; â�p0 ;s0 �� � ~d�p0; p� dss0 ; �ĉq;l; ĉ�q0;l0 �ÿ � ~d�q0; q� dll0 ;

where ~d�p0; p� � �2p�3 �2Ep d�p0 ÿ p�, Ep � �m2 � p2�1=2,
~d�p0; p� is an invariant delta function for the measure
dm�p� � d3p=��2p�3 �2Ep� (for the photon, Eq � jqj � oq).
Field operators are defined by the expansions

ĉ�x��
�
dm�p��âp;sus�p� exp�ÿipx�� b̂�p;sv

s�p� exp�ipx�� ;
�1:5�

Âm�x��
�
dm�q��ĉq;lelm�q� exp�ÿiqx�� ĉ�q;le

l�
m �q� exp�iqx�

�
;

�1:6�

where l � �1 is the photon polarization, eme�m � ÿ1,
�u � u�g0. The symbol (�) designates proportionality or an
asymptotic expansion.

2. Infrared divergences.
The perturbation theory approach

2.1 Quantum electrodynamics
Since the basic aspects of QED infrared divergences already
emerge in Coulomb scattering, where modern approaches to
such divergences also have their origins, a brief discussion of
quantum mechanics seems to be a good starting point here.

2.1.1 Quantum mechanics. Coulomb scattering. Let the
Hamiltonian of a particle be H � H0 � V�r�, where in the
nonrelativistic case H0 � p2=2m, with p the momentum and
m the mass of the particle, and V Ð the potential energy.
The evolution operator of the system,
Ût;t0 � exp

�ÿ iĤ�tÿ t 0��, translates the state vector of the
system ct 0 at time t 0 into the vector ct. The key objective of
scattering theory is to provide a recipe with which the state
of the system at t!1 might be calculated from its state at
t 0 ! ÿ1, and it would appear at first sight that the
operator bUt;t 0 will serve well to achieve this goal.

It is known, however, that the limit lim Ût;ÿt, t!1 does
not exist (it suffices to take Ĥ in its own representation to
prove this). As a consequence, the physically-interesting
matrix elements of Û1;ÿ1 have an infinite phase which,
first, does not provide any physical information and,
second, is absent from the final probability expression.
Therefore a correctly defined and physically significant
operator is simply obtained by subtracting the correspond-
ing phase (because far from the scatterer particles move as if
they were free), i.e., by changing to the S-matrix,

bUt;t0 � exp�i bH0t� exp
�ÿ i bH�tÿ t 0�� exp�ÿi bH0t

0� ;bS � bU1;ÿ1 : �2:1�

The operator bS is written symbolically in T exponential
form as

bS � T exp

�
ÿ i

�1
ÿ1

dt bVI

�
r�t��� ; �2:2�
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where bVI�r�t�� is the potential energy operator in the
interaction representation (hence the subscript I). Since
r̂I�t� � p̂t=m� r̂ (i.e., rI satisfies �rI � 0; _r � qt r � p=m), the
integral in Eqn (2.2) converges for potentials decreasing faster
than 1=r for jrj � r!1. Formula (2.2) forms the basis of
perturbation theory and quantum field theory.

The standard approach sketched above breaks down for
potentials that decrease as 1=r or slower. For example, for the
Coulomb case a=r, the argument of the exponential in Eqn
(2.2) diverges at the upper (t) and lower (ÿt) limits, thus giving
rise to an infinite phase in the matrix elements of bS:
exp�ÿi�am=p��2 ln t� � exp�ÿi�am=p��2 ln r�, r, t!1. It is
here that the divergent `Coulomb' phase comes in (here and
for the duration of this section, p � jpj).

Fortunately, this problem is amenable to an exact
solution. The asymptotic behavior of the particle wave
function in a Coulomb potential is given by [41]

g�r; y� exp
�
ipz� iam

p
ln

�
2pr sin2

y
2

��
� f�y�

r
exp

�
iprÿ iam

p
ln�2pr�

�
; r!1 ; �2:3�

where

g�r; y� � 1ÿ ia2m2

2p3r sin2�y=2� ;

f�y� � ÿ am

2p2 sin2�y=2� exp
�
ÿ 2iam

p
ln sin

y
2
� 2is0�p�

�
;

�2:4�

s0�p� is the argument of the gamma function G �1� iam=p�
(the Coulomb s-wave phase shift [42]). It is clear that the
standard asymptotics [43] c � exp�ipz� � �f�y�=r� exp�ipr�,
with a plane monochromatic wave for the large-z motion of
the particle, is no longer valid.

The reason why standard perturbation results like (2.2)
break down is now easily understood from Eqn (2.3), which
shows that even at arbitrarily large distances the motion of a
particle cannot be considered free, i.e., the effect of the
potential may not be neglected. Hence the logarithmic
divergence occurring in Eqn (2.3). The same follows from
the asymptotics r�t� � pt=m� �amp=p3� ln t, t!1 of the
classical solution (instead of pt=m� r0); it does not obey the
free-motion equation �r � 0. According to Eqn (2.4), the
differential scattering cross section for the exact problem is
identical to the Born cross section

ds
dO
� ��f�y���2 � a2m2

4p4 sin4�y=2� �2:5�

(dO is the solid angle) and also to the classical Rutherford
result.

The Coulomb scattering problem has also been studied
for a modified potential, namely the Yukawa potential
exp�ÿlr�=r (which is tantamount, in a sense, to ascribing a
mass l to the photon). According to Dalitz [44], the second-
order perturbation of the scattering amplitude may be viewed
as the second term in the expansion of the exponential
expf�ÿ2iam=p� ln��2p=l� sin�y=2��g if the factor 2p=l under
the logarithm is identified with the divergent Coulomb phase
in the second term in Eqn (2.3) (as it may according to Ref.
[17]).

Thus, while the operator (2.2) is incorrectly defined for the
Coulomb potential, one can `regularize' it (changeover to the
Yukawa potential) to be able to obtain differential cross
sections independent of the auxiliary parameter. All this is
reminiscent of the situation with the evolution operator bUt;t 0 ,
where a physically irrelevant infinite phase was eliminated in
order to obtain a well-defined operator.

It is appropriate that the problem we consider here should
also be treated along these lines, i.e., by redefining the
scattering operator so as to make it mathematically mean-
ingful while retaining the physical information it carries.
Before we do this, however (see Section 3.1.1), the situation
in electrodynamics should be discussed.

2.1.2 QED. Real infrared photons. Coulomb potential scatter-
ing. Let us consider Coulomb potential scattering with the
emission of a single photon. For this purpose we modify the
Lagrangian Lint � ÿe�cgmcAm by the substitution Am ! Am�
Aext

m , where Aext
m �x� � ÿgm0Ze=4pjrj is the external classical

field, ÿZe is the scatterer charge. In the lowest-order
perturbation theory the T-amplitude is given by

T s 0s
p 0p � ÿe ~A

ext

m �pÿ p0� �u s0 �p0� gmus�p� � �u s0
a �p0�M abusb�p� ;

�2:6�
where ~A

ext

0 �k� � ÿZe=jkj2, and s indicates the electronic spin
state. Equation (2.6) defines the bMmatrix of the problem.

A transition to processes involving photon emission by an
incoming (outgoing) particle reduces to the multiplication ofbM on the right (left) with the matrices

i

p̂ÿq̂ÿm�i0
�ÿ ieê l��q��; �ÿ ieêl��q�� i

p̂0�q̂ÿm� i0
;

�2:7�

where ê � emgm, e
l
m denotes the photon polarization, ee� � ÿ1,

and qe�q� � 0. Since p2 � m2 and q2 � 0, in the limit q! 0
the matrices (2.7) are e�p̂�m�̂e�=�ÿ2pq� i0�,
eê��p̂0 �m�=�2p0q� i0�. From Eqn (2.6), noting that
�p̂�m� gm u�p� � 2pm u�p� and �u�p0� gm�p̂0 �m� � �u�p0� � 2p0m,
we find the factors ÿepel�=�pqÿ i0� and ep0el�=�p0q� i0�
corresponding to the emission of soft photons by the
incoming and outgoing particles, respectively. Thus, the
emission of a soft photon is described by the amplitude

T l;s 0s
p 0�q; p � Ts 0s

p 0p j e
l��q�; jm�q� �

ep0m
p0q� i0

� ÿepm
pqÿ i0

: �2:8�

Note that Eqn (2.8) is valid for charged fields with any spin
because the emission of soft photons depends only on the
charge of the emitter [45] as the electric current expression
jm � ief� q

$
0f and the commutative properties of spin

matrices [17] suggest for Bose fields and Fermi fields,
respectively. The identification of the sum in Eqn (2.8) with
current is not fortuitous. In classical physics the 4-vector of
the charged-particle current is j clm �x; p� � evm d�xÿ vt�,
vm � pm=Ep. Obviously,

j clm �x; p�� j clmp�x�� e

�1
ÿ1

dt um d
4�xÿ ut�; um� pm

m
: �2:9�

If u � u�t�, then Eqn (2.9) is the transition current; the
equation t � Ep�t�t=m is assumed to have only one real
solution, t � tm=Ep.
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In our case um�t� � um for t < 0 and um�t� � u0m for t > 0,
with�0

ÿ1
dt eum d�xÿ ut� �

�
d4q

�2p�4 exp�ÿiqx� ÿieum
quÿ i0

;

�1
0

dt eu0md�xÿ u0t� �
�

d4q

�2p�4 exp�ÿiqx� ieu0m
qu0 � i0

:

Therefore

j clmp�x� �
�

d4q

�2p�4 exp�ÿiqx� j clm �q�

�
�

d4q

�2p�4 exp�ÿiqx�
�

ieu0m
qu0 � i0

� ÿieum
quÿ i0

�
� i
�
j�m �x; p0� � jÿm �x; p�

�
; �2:10�

j�m �x; p�y��t� � 0; j clm �q� � i jm�q�;
i.e., j�m �x; p� � 0 for t < 0 and jÿm �x; p� � 0 for t > 0.Up to the
factor i, the current (2.8) is identical to the current j clm �q�, with
q2 � 0, of a classical charged particle moving with velocity v
at t < 0 and with v0 at t > 0.

Thus, in complete agreement with Bloch and Nordsieck
[19], the emission of soft photons is determined by the
classical current of the particle. But soft photons may be
emitted not only by free particles but also by virtual ones, i.e.,
photon lines may come not only from the external lines of
charged particles but also from their inner lines. The radiation
amplitudes for these latter, in contrast to Eqn (2.8), are finite
for q! 0 (the propagator of a virtual charged particle does
not have a 1=qp singularity), they produce no divergences [14,
17], and are ignored in the following analysis (the concept
`external line' is elaborated at the beginning of Section 2.1.3).

It is now straightforward to write down the probability of
emitting N photons (Fig. 1). The factor associated with the
emission of an infrared photon can be written in the form
eZpm=�pq� iZ0�, where Z � ÿ1��1� for the emission by an
incoming (outgoing) particle. For the emission of a succession
of two photons with momenta q1, q2 we have

eZpm
pq1 � iZ0

eZpn
p�q1 � q2� � iZ0

: �2:11�

Since photons may be emitted in the reverse order, the same
expression with the replacement q1 $ q2 should be added to
Eqn (2.11), giving

eZpm
pq1 � iZ0

eZpn
pq2 � iZ0

for the desired factor.
Now, using the elementary identityX 1

a1

1

a1 � a2
� � � 1

a1 � . . .� aN
� 1

a1a2 . . . aN
; �2:12�

where the summation runs over all permutations a1; . . . ; aN, it
follows that the emission of N photons with momenta
q1; . . . ; qN by the in or out particle gives rise to the factor

eZpm1
pq1 � iZ0

� � � eZpmN
pqN � iZ0

: �2:13�

The most important non-trivial point about the emission of
soft photons is the factorization of their contributions. Note
that this property is valid only for q! 0, because it is only in
this limit that we are safe to make the replacement gm ! 2pm,
i.e., neglect the noncommutative nature of the matrices gm.
Note also that a transition to non-Abelian theories (to
chromodynamics, for example) gives rise to noncommuta-
tive matrices bTa, which act as the generators of the
corresponding gauge group; the simple expression (2.13)
does not apply in this case.

Photons, however, are not necessarily emitted only by an
in or only by an out particle: eithermay emit a part of the total
number. For example, for N � 2, using the identity

1

a01a
0
2

� 1

a01a2
� 1

a02a1
� 1

a1a2
�
�

1

a01
� 1

a1

��
1

a02
� 1

a2

�
;

Eqn (2.8) becomes

T � T0 j1e�1 j2e
�
2;

jim �
ep0m

p0qi � i0
ÿ epm
pqi ÿ i0

�
X
a

eaZap
a
m

paqi � iZa0
; �2:14�

where T0 is the amplitude of the basic (hard) process. It is
readily shown that for an arbitrary N we have

T � T0 j1e�1 . . . jNe�N ; �2:15�

implying that photons are emitted independently.
Generalization to an arbitrary process. The formulas

obtained for Coulomb scattering may be readily generalized
to an arbitrary process. This can be seen by noting that Eqn
(2.8) is true for a process with an arbitrary number of charged
particles if the expression for the current is written using the
sign factor Z as in Eqn (2.14) and extending the sum to all
charged particles in both initial and finals states,

jm�q; p� �
X
a

eaZa p
a
m

paq� iZa0
�
X
a�out�

eap
0a
m

p0aq� i0

ÿ
X
a�in�

ea p
a
m

paqÿ i0
� j�m �q; p0� � jÿm �q; p� : �2:16�

This expression embraces not only scattering processes but
also pair creation and pair annihilation processes. Note that
the currents j�m in Eqn (2.16) now depend on the sets of
momenta fp0g; fpg. It is easy to see that the charge conserva-
tion law implies the conservation of current [17]:

jm�q; p� qm �
X
a

eaZa �
X
out

ea ÿ
X
in

ea � 0 : �2:17�

This suffices to justify replacing the current (2.14) by the
expression (2.16) in Eqn (2.15) (note only that T0 will now be
the amplitude of the process under study rather than the
function (2.6) as before). Thus, the amplitude of the emission
of N infrared photons can be factored in the general case.
Equation (2.15) suggests that such photons are emitted

p0

q1 qN

a
p

qN q1

b

Figure 1. Emission of infrared photons by a scattered (a) and an incident

(b) particle.
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independently both of the basic process and of one another,
i.e., their emission probability must be governed by the
Poisson formula Ð which the noncommutative nature of
generators bTa prevents in non-Abelian theories.

Emission probabilities for real infrared photons. According
to Eqn (2.8), in the approximation we use, the probability
density for a left- or a right-polarized photon is given by

dPq

dm�q� �
X
�
j je�j2 � ÿjm�q� j�m�q�

[see Eqn (6.1)].
Let us now evaluate the probability density for scattering

with a total energy loss
P

oi 4E due to the infrared
emission. Using

y�E;o� � 1

p

�1
ÿ1

dt
sinEt

t
exp�iot� ; E > 0; o > 0

[this is an even function of o and odd function of E; for
E > 0;o > 0, it is identical to y�Eÿ o�] the desired density is

PE � jT0j2
X1
N�0

1

N!

YN
i�1

�E
l

X
li

�
j�qi� eli�

��
el i j��qi�

�
� y
�
E;
X

oj

�
dm�qi�

� jT0j2 1

p

�1
ÿ1

dt
sinEt

t

� exp

�
ÿ
�E
l
jn�q� jn�q�� exp�ito� dm�q�

�
: �2:18�

The limits indicated here refer to the integrals over oi � jqij,
the integration over all oi up to the upper limit E is validated
by the y function, and the factor 1=N! accounts for the phase
space reduction due to photons being indistinguishable. In
deriving Eqn (2.18), the polarization summation formula
(6.1) and the current conservation law (2.17) (lm � qm=o)
have been used.

Let us write the argument of the exponential in Eqn (2.18)
in the form

�. . .� � Nt�E; l� � A

�E
l

do
o

exp�iot�

� A

�
ln
E

l
�
�E
l
do

exp�iot� ÿ 1

o

�
� N0�E; l� �N 0t�E; l� ; �2:19�

where

A � ÿ
X
ab

eaZaebZb�papb�
2�2p�3EaEb

�
dn

1

�1ÿ van��1ÿ vbn�

� ÿ
X
ab

eaZaebZbF�vab�;

F�vab� � 1

8p2
1

vab
ln

1� vab
1ÿ vab ; v2ab � 1ÿ m2

a m
2
b

�papb�2
: �2:20�

In the rest frame of one of the particles the integration in Eqn
(2.20) is elementary, and the invariant parameter vab in this
case is the velocity of the second particle. From Eqns (2.18) ±
(2.20) (with t � 0) it is easy to see that for two or more
particles A > 0; therefore PE !1 as l! 0. The notation
Nt�E; l� appears in Eqn (2.19) for the following reason.

Dropping the y function from the first of Eqns (2.18) and
introducing the definitions

N0�E; l� �
X
�

�E
l
jje�j2 dm�q� � �N�E; l� ;

it follows that the sum in this equation contains terms of the
form �NN=N!, i.e., the probability of emission of N soft
photons with energies l < o < E is given by Poisson's
formula

PN �
�NN

N!
exp�ÿ �N� ; �2:21�

where �N is the average number of emitted photons
( �N �PNPN).

That there is no normalization factor exp �ÿ �N� in Eqn
(2.18) is due to the fact that we have considered only a part of
the perturbation theory diagrams: the contribution of virtual
photons was left out of the calculation. Before calculating it,
note that Eqns (2.19) and (2.20) reveal the main physical
features of soft photon emission, namely 1) that the average
number of emitted photons �N�E; l� diverges logarithmically
as l! 0; and 2) that the average emitted energy

�E �
�E
l
o

dN

do
do � A

�E
l
o

do
o
�
�E
l

dE

do
do

is finite, i.e., dE= do � const for o! 0.
The fact that the total energy of emitted soft photons is

finite while their average number is not indicates that
perturbation theory does not describe this process correctly.
Obviously, to describe the electromagnetic field requires a
transition to collective variables, i.e., to states with an
indefinite number of photons. From Eqn (2.21), the prob-
ability of emission of a finite number of infrared photons is
zero because N0�E; l� ! 1 as l! 0. The distribution (2.21)
is meaningful only if E5Ep (i.e., the emitting particle has an
unlimited energy reservoir).

The following point should be noted here. While the total
energy of the undetected emissionE in Eqn (2.18)may seem to
be identical to the sensitivity limit E0 of the photon detector,
these are in fact different parameters. An experimenter not
concerned with detecting soft photons may observe a loss of
energy due to their emission. Obviously, the parameter E
should have such a value as to make Eqns (2.8) and (2.15)
valid.

2.1.3 QED. Virtual infrared photons. Infrared divergences are
also encountered in calculating looped diagrams, i.e., in
integrating over the momenta of virtual photons. However,
not every virtual photon but only those linking `outer lines'
generate divergences. It is necessary to be clear about
terminology at this point. We will regard as infrared photons
ones with energies o4L, where L is a certain parameter
securing the validity of Eqns (2.8) and (2.15) (its physical
meaning will be discussed later). We will call external lines
those associated with particles on the mass surface and with
those that have emitted real or virtual infrared photons. To
make the equations mathematically meaningful one performs
an infrared regularization, whether by introducing a photon
mass l or by cutting off small photon-momenta in the
integrals involved. We prefer here the latter approach.
Clearly, l5L.
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To calculate the contribution from N virtual infrared
photons, the amplitude of the main process T0 should be
multiplied by the factor

1

N!2N

�L
l

d4qi

�2p�4
YN
i�1

jm�qi� ÿigmn
q2i � i0

jn�ÿqi�

� 1

N!

�
1

2

�L
l
d4qA�q�

�N
; �2:22�

with

A�q� � ÿi
�2p�4

jm�q� jm�ÿq�
q2 � i0

: �2:23�

A word now about the coefficient in front of the integrals
in Eqn (2.22). By first replacing qN�i ! ÿqi in the amplitude
for the emission of 2N real infrared photons and then
multiplying the result by the product of N photon propaga-
tors we obtain the integrand of (2.22). The initial amplitude
(2.15) was obtained by summing over the permutations of all
2N photons. Following the identification qN�i � ÿqi, it is
clear that the permutation qN�i $ qi is equivalent to the
replacement qi ! ÿqi for the momentum of a virtual photon
under the integral and that this permutation does not produce
a new state Ð hence the factor 2ÿN. The factor 1=N! accounts
for the fact that photons are indistinguishable. The limits of
integration indicated in (2.22) are those for jqj; extending the
q0 integration over the entire axis introduces an error which is
within the accuracy of the calculationO�L=m� and at any rate
does not affect the probability values.

Summing over N yields the final results:

eT0 � T0 exp

�
1

2

�L
l
d4qA�q�

�
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j eT0j2
jT0j2

� exp

�
Re

�L
l
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�
ÿ
�L
l

d4q

�2p�3
d�q2�
2

jm�q� jm�ÿq�
�

� exp

� �L
l
dm�q� jn�q� j �n �q�

�
; �2:24�

where the amplitude eT0 of the main (hard) process contains
radiation corrections due to virtual infrared photons. Equa-
tion (2.24) takes into account that

jm�ÿq� � ÿj�m�q� �2:25�

[this equality makes the calculation of ReA�q� trivial]. We see
that the argument of the exponential in Eqn (2.24) contains
ÿN0�L; l� � ÿ �N�L; l� [see Eqn (2.19), N00 � 0].

Substituting j eT0j2 for jT0j2 in Eqn (2.18) yields [17] the
probability density for the hard process with radiation energy
loss E [l � 0, A is given by Eqn (2.20)]:

ePE � jT0j2 b�A� exp
� �E

L
dm�q� jn�q� jn�ÿq�

�

� jT0j2 b�A�
�
E

L

�A

; �2:26�

where

b�A� � 1

p

�1
ÿ1

dt
sin t
t

exp

�
A

�1
0

do
exp�iot� ÿ 1

o

�
� 1ÿ p2

12
A2 � . . .

�2:27�
is a standard function [11, 17]. Equation (2.26) reproduces the
Sudakov formfactor [46]; for example, for the e�eÿ scattering
we have ds � ds0 exp��2a=p� ln�s=m2� ln�E=L��. From Eqn
(2.26), it is seen that the probability of the process T0 with the
emission of energy

P
oi 4E is finite and independent of the

non-physical cutoff parameter l. However a new parameterL
has appeared. In Ref. [11] this parameter was taken to be
equal to E, and in Ref. [17] it is recommended that it be the
characteristic mass of the process.

The meaning of the parameter L is actually simple.
Equation (2.26) in fact says that photons with energies
o < L are not emitted and that divergences due to the
emission of real soft photons exactly cancel those due to
virtual infrared ones. For what values of L is this true? Recall
that in reality every experiment is bounded in time, i.e., lasts a
certain period T. According to the Uncertainty Principle,
photons with energies o < 1=T are neither real nor virtual
infrared photons, and their fate will only be determined after
a time t > oÿ1 > T. Hence they cannot affect at all the result
of the experiment. Thus,

L � Tÿ1 : �2:28�

For short-range forces one would reasonably assume that
Tÿ1 � m, in consistence with the recommendation of Ref.
[17]. In electrodynamics, however, one would expect that
L < m. It should be remembered, though, that the
dependence on these parameters is logarithmic, i.e., a
weak one.

Another important point is that the correction factor in
Eqn (2.26) is an infinite power series in a, and henceT0 in Eqn
(2.26) should be calculated to the same accuracy. But then T0

should be replaced by the amplitude T0L corrected for the
virtual photons with energies o > L. In principle, we can
factor out from T0L the photon contribution for energies
E0 > o > L (or E > o > L) provided that expressions like
(2.15) are still valid. This will result in the replacements
L! E0, and T0 ! T0E0

(or L! E, T0 ! T0E) in Eqn (2.26).
Thus, of the four parameters l,L,E0,E discussed above, l

is an auxiliary parameter absent from the final expression; L
characterizes the experimental apparatus (photons with
frequencies o4L are not emitted); E0 4L determines the
resolution of the experiment (photons with energies o4E0

are not detected); andE in Eqns (2.18) and (2.26) is the energy
carried away by the non-detected radiation.

2.2 Gravitation
2.2.1. The interaction Lagrangian and the graviton propagator.
Although the general relativity (GR) is a rather complicated
theory and although the gravitational Hamiltonian differs
fundamentally from its electromagnetic counterpart, the
above analysis carries over almost unchanged to the theory
of gravitation. The only necessary changes are purely
kinematic ones and due to the fact that the spin of the
graviton is 2, i.e., the vertex functions and propagators of
GR diagrams must be given a different form than in QED
[17]. To arrive at this conclusion, however, a certain amount
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of work needs to be done. In what follows, only the most
important points will be discussed.

The Lagrangian of the spinor and gravitational fields is
written in the form

L � �������ÿgp �
�c
�
igm�x�Dm ÿm

�
c

� 1

K2
g mn�Gr

mnG
s
rs ÿ Gr

msG
s
rn�
�
� Lm � Lgr ; �2:29�

where Dm � qm ÿ �1=4�Gr
ml g

lsgrgs,
�
gm�x�; gn�x�

�
� � 2gmn�x�,

gm�x� � ga e
a
m�x�, �ga; gb�� � 2Zab, Zab e

a
m�x� ebn �x� � 2gmn�x�

[i.e., eam�x� is the tetrade, and Zab is the metric of Minkowski
space], Gr

mn � �1=2� grs�qm gns � qn gms ÿ qs gmn� are the Chris-
toffel symbols. The graviton field hmn is defined by
gmn�x� � Zmn � Khmn�x�, K2 � 8pG, G is Newton's constant
(V � Gm1m2=r). Dirac's equation for the gravitational field
dates back to Fock and Weyl [47, 48].

It is readily seen that in the standard gauge fixed by
LF � �1=2��qn� �������ÿgp

gmn��2 [which is analogous to Feynman's
gauge; the condition qn� �������ÿgp

gmn� � 0 specifying harmonic
coordinates] the expansion of L in powers of Kh takes the
form

L � �c
�
igmqm ÿ iKhmngmqn ÿm�O�h2��c

� 1

8
�qlhmnqlhrs gmnrs � . . .� � Lgh : �2:30�

Here the indices of the same variance are convolved using the
tensor Zmn, gmnrs � ZmsZnr � ZmrZns ÿ ZmnZsr, and Lgh is the
Lagrangian of ghost fields. From Eqn (2.30), the expressions
for the three-particle vertex and the graviton propagator are

Kgmpn ;
1

2

igmnrs
q2 � i0

�2:31�

[instead of egm and ÿigmn=�q2 � i0� as in QED]. The main
points to note about the Lagrangian (2.30) are, first, the
vertices of the form �cg qc�Kh�n, n5 2, and, second, the
vertices �qh�2�Kh�n, n5 1 for the self-interaction of spin-2
particles. In other words, the theory becomes inconceivably
complicated.

It turns out, however, that the termswe havewritten down
above suffice to describe processes with soft gravitons.
Fictitious Bose fields with anomalous statistics do not lead
to infrared divergences [49] because they appear only in loops
(divergences are only caused by emission from outer lines, i.e.,
the emission of free particles). Moreover, the more gravitons
there are in a vertex, the faster the decrease of the correspond-
ing term in the interaction Hamiltonian: the theory of
asymptotic expansions shows [50] that, other things being
equal, the higher is the multiplicity of the Fourier integral the
faster it decreases. Therefore, vertices with more than one
graviton may be neglected (see also Section 6.3).

Finally, the interaction of gravitons with massless fields
(and hence the self-action of gravitons) does not lead to
additional collinear divergences [17], and in the present
context only triple vertices need to be considered. But since
in the long-wave limit these latter have a universal form
independent of the spin of the `matter field', their analysis
reduces to the study of the main process with vertices (2.31) in
the limit m! 0.

2.2.2. Infrared divergences in gravitation. Massive particles.
From what has been said in Section 2.2.1, it is clear that a
transition from QED to gravitation in the theory of long-

wave radiation involves two replacements, one for the
current

jm�q; p� ! jmn�q; p� � K
X
a

Zap
a
mp

a
n

paq� iZa0
�2:32�

and the other for the polarization vector, elm�q� ! ehmn�q�,
h � �2. The soft graviton emission amplitude therefore
follows from Eqn (2.8) upon replacement (2.32) to give

T 0 � Tjmn e�mn�q� : �2:33�

The amplitude of emission ofN gravitons can bewritten in
an analogous fashion to Eqn (2.15). The expression for the
contribution from N virtual gravitons is similar to Eqn (2.22)
as written with the above modifications, i.e., with the
replacement A�q� ! B�q�,

B�q� � i

2�2p�4
jmn�q�gmnrs jrs�ÿq�

q2 � i0

� iK2

�2p�4
X
ab

ZaZb
��papb�2ÿm2

am
2
b=2
�

�paq� iZa0��pbq� iZb0��q2� i0� : �2:34�

The real part of the integral
�
dqB and that of

�
dqA differ

only in the coefficients of the standard function F�vab�, Eqn
(2.20), and in Eqn (2.26) the quantity A, Eqn (2.20), is
replaced by

B � ÿK2
X
ab

ZaZb
��papb�2 ÿm2

am
2
b=2
�

papb
F�vab�

� ÿ K2

2

X
ab

ZaZbmamb
1� v2ab
�1ÿ v2ab�1=2

F�vab� : �2:35�

Thus, the infrared problem in the theory of gravitation is
entirely similar to that in QED: the summation over the initial
and final states of infrared gravitons leads to infrared-regular
expressions for the probabilities and cross sections of the
processes involved.

Massless particles. From Eqn (2.35) one readily obtains
the result [17], alreadymentioned in Section 2.2.1, that, unlike
QED, letting the mass of hard particles tend to zero does not
lead to additional collinear divergences. To see this, let
ma �Max

ra , where Ma are certain masses, x is a parameter,
and ra 5 0. For x! 0, masses ma tend to zero differently:
taking ra � 0, for example, leaves the mass ma finite.

In Eqn (2.35), with x! 0, the following two partial sums
may be isolated:

1� a 6� b ; vab ! 1 ;
1

vab
ln

1� vab
1ÿ vab ! ln

4�papb�2
m2

am
2
b

;

2� a � b ; vaa � 0 ;
1

vaa
ln
1� vaa
1ÿ vaa ! 2 ;

with vab � �1ÿm2
am

2
b=�papb�2�1=2.

Noting that ln �4�papa�2=m4
a� � ln 4, we have

Bjma!0�ÿ
K2

8p2
X
ab

ZaZb�papb�
�
ln
4�papb�2
m2

am
2
b

� dab�2ÿ ln 4�
�
:

�2:36�

1106 L V Prokhorov Physics ±Uspekhi 42 (11)



For ra > 0, the second term in square brackets contributes
nothing, giving

B
x!0
ÿ! ÿ K2

8p2
X
ab

ZaZb�papb�
�
ln
4�papb�2
M2

aM
2
b

ÿ ln x2�ra�rb�
�
;

�2:37�

and the term which diverges logarithmically for x! 0
vanishes because of the conservation of the 4-momentumP

Zapa � 0. [This trick fails in QED and QCD: here K2p2

plays the role of e2 and g2].
Thus, letting some or all of the masses of gravitating

fields to zero does not generate collinear divergences (in
agreement with the results of Section 6.3). If all quanta are
soft, however, then, neglecting the self-action of `matter
fields,' it follows that the long-wave theory of massless
gravitating fields is free from both infrared and collinear
divergences: making the replacement p! xp in Eqn (2.37)
we find that B! 0 as x! 0. The former divergences are
absent because their effective interaction with gravitons
disappears (the coupling constant is proportional to
Ep ! 0 in this limit), and the latter, because the graviton
emission amplitudes are proportional to y2, y being the
emission angle (see Section 6.3).

3. Infrared divergences.
Redefinition of the scattering operator

The extremely simple soft-photon emission mechanism
revealed in the analysis in Section 2.1 suggests that a
formalism of a simpler and more general nature than
perturbation theory must exist which can be employed in the
long-wave region of QED. The main result of this analysis is
that all one needs to describe processes with infrared photons
is to include the coupling of the electromagnetic field with a
classical current [19]. But QED with a classical current is an
exactly solvable model (see, for example, Ref. [51]). Given the
specific nature of the Coulomb potential scatteringÐ the fact
that the Coulomb potential should be taken into account at
arbitrarily large distances (see Section 2.1.1) Ð an analogous
situation is expected to persist in quantum field theory. In the
present section this program is carried out for QED and
QCD.

3.1 Quantum electrodynamics
3.1.1 Quantum mechanics. Coulomb scattering. According to
Eqn (2.2), the S-matrix is not defined for slowly decreasing
potentials (because of the phases tending to infinity as
tÿ t0 ! 1). The natural way to get round this difficulty is
by redefining the scattering operator [18, 30]. In a way similar
to that employed in transition from the evolution operatorbUt;t 0 to the scattering operator bUt;t0 , Eqn (2.1), we first redefine
the free Hamiltonian

bH � bH0 � bV � eH0 � eV ; �3:1�

by adding to it the leading order term of the asymptotics of
the potential for r!1 (we drop the hat in tilded quantities).

For example, in the interaction representation we have

VI

�
r�t�� � a

jp̂t=m� r̂j �t!1
am
jtjjp̂j �

am

jtj�ÿD�1=2
; �3:2�

where D is the Laplace operator; we therefore postulate that

eH0 � H0 � am

jtj�ÿD�1=2
; eV�r; t� � a

jrj ÿ
am

jtj�ÿD�1=2
: �3:3�

We next change the interaction representation (I! eI):
r̂~I � exp

�
i

�t
0

dt eH0

�
r̂ exp

�
ÿ i

�t
0

dt eH0

�
� r̂I ÿ amp

jp̂j3 E�t� ln jtj ; p̂ ~I � p̂I �3:4�

[E�t� being the sign function] and replace the scattering
operator (2.1) by the operator

eUt;t0 � exp�i eH0t� exp
�ÿ i bH�tÿ t0�� exp�ÿi eH0t

0� ;

eS � eU1;ÿ1 : �3:5�

Paper [30] demonstrates the existence of the strong limitseU0;t0 ; t0 !ÿ1, eUt;0; t!1, thus proving the existence of
the S-matrix

eS � T exp

�
ÿ i

�1
ÿ1

dt eV~I

�
r�t��� : �3:6�

The new potential decreases faster than 1=t:

eV~I �
a
ĵr~Ij
ÿ am
jtjjp̂j � O

�
ln jtj
t2

�
: �3:7�

Equation (3.7) shows that the integral in Eqn (3.6) converges.
By redefining the scattering operator we have disposed of

a nonsignificant, logarithmically divergent phase, thus paving
the way to a mathematically correct scattering theory. It has
been shown in Ref. [52] that the method described above also
applies to more slowly decreasing potentials (such as rÿm,
m5 3=4). The same paper shows that the new operator eS is
defined up to a certain unitary operator (because we actually
subtracted one infinity from another).

This last circumstance is important for the interpretation
of Eqns (3.4) ± (3.7) because the corresponding integrals
should be defined at zero Ð for example, by integrating over
�t0; t�; t0 > 0. As a result, the logarithm in Eqn (3.4) will be
replaced by ln jtj=t0. It is here that the ambiguity discussed
above manifests itself. It does not affect the physical picture,
though. Note that the idea we have outlined is also workable
in quantum field theory [18, 26].

3.1.2 QED. Arbitrary process. Effective interaction Hamilto-
nian. Following the discussion of Section 3.1.1, the asympto-
tic form of the interaction Hamiltonian for jtj ! 1 [18] is
determined by substituting the Fermi operators
c � c��� � c�ÿ�, �c � �c��� � �c�ÿ�, where c��� (�c���) con-
tains the electron (positron) annihilation operator, giving

Hint�t� � e

�
d3x �cgmcAm � e

�
d3x
�
�c���gmc

���

� �c�ÿ�gmc
�ÿ� � �c���gmc

�ÿ� � �c�ÿ�gmc
����Am : �3:8�

We will denote the integrals of the corresponding terms in
Eqn (3.8) byH��int .

It suffices to examine the asymptotic forms of H��int and
H�ÿint to elucidate the essence of the problem. Substituting the
expansions (1.5) and (1.6) into these operators and integrat-
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ing over coordinates we find

H��int � �2p�3e
�
dm�p0; p; q� bs0 �p0� as�p� �vs

0 �p0� gmus�p�

� � exp �ÿ i�Ep 0 � Ep � o�t� d�p0 � p� q� cm�q�
� exp

�ÿ i�Ep 0 � Ep ÿ o�t� d�p0 � pÿ q�c�m �q�
	
; �3:9�

H�ÿint � �2p�3e
�
dm�p0; p; q� bs0 �p0� b�s �p� �vs

0 �p0� gmvs�p�

� � exp �ÿ i�Ep 0 ÿ Ep � o�t� d�p0 ÿ p� q�cm�q�
� exp

�ÿ i�Ep 0 ÿ Ep ÿ o�t� d�p0 ÿ pÿ q�c�m �q�
	
; �3:10�

where cm � clelm, dm�p0; p; q� is the product of the correspond-
ing one-particle measures, and o � jqj. The asymptotic form
of such expressions for jtj ! 1 is determined by the singular
points of the integrands and stationary points of the
arguments of the exponentials [50]. Integrating Eqns (3.9)
and (3.10) over p0 yields the momentum functions for the
exponentials,

f�� � Ep�q � Ep � o; f�ÿ � Ep�q ÿ Ep � o �3:11�

(with Ep � Ep).
Let us now find the asymptotics of the integrals over p for

jtj ! 1. The stationary points of functions (3.11) are defined
by the equations

Hp f�� � p� q

Ep�q
� p

Ep
� 0 ; Hp f�ÿ � p� q

Ep�q
ÿ p

Ep
� 0 :

�3:12�

For m 6� 0, the first of these is satisfied by q � �2p, and the
second by any p for q � 0. According to Eqn (3.11), for
jtj ! 1 the first equation yields a rapidly oscillating
exponential, implying that the asymptotics of the term (3.10)
dominates in this case.

Thus, of the two terms (H��int and H�ÿint ) describing
massive electrodynamics, the main contribution to the
asymptotics of Hint, Eqn (3.8), comes from the term (3.10).
This is due to the fact that the exponentials in H�ÿ contain
the differenceEp 0 ÿ Ep, i.e., Eqn (3.10) describes the processes
of emission and absorption of photons by positrons. The term
(3.9), on the contrary, contains in its exponents the sum
Ep 0 � Ep, which corresponds to the annihilation of electron-
positron pairs. Obviously, the photon energy in this case
cannot be less than 2m. It is clear that of the remaining two
terms,Hÿÿ andHÿ�, the main contribution to the asympto-
tics comes from the latter one, which accounts for the
emission and absorption of photons by electrons,

Hÿ�int � �2p�3e
�
dm�p0; p; q� a�s0 �p0� as�p� �us

0 �p0� gmus�p�

� � exp �i�Ep 0 ÿ Ep ÿ o�t�; d�p0 ÿ pÿ q� cm�q�
� exp

�
i�Ep 0 ÿ Ep � o�t� d�p0 ÿ p� q� c�m �q�

	
:�3:13�

Thus, Hint � H�ÿint �Hÿ�int for jtj ! 1. Close to critical
regime (q! 0) we have

Ep�q ÿ Ep � o � Ep

�
1� pq

E2
p

�
ÿ Ep � o � � pq

Ep
: �3:14�

In Eqns (3.10) and (3.13), after the integration over p0, the
following operations should be carried out:

1) in the coefficients before the brackets we set q � 0 (the
integrand is set to its critical value [50]);

2) using the Gordon identities Pm � �2mgm ÿ ismnqn�
�p̂ 0 �m� gm� gm�p̂�m� (where P� p0 � p, q � p0ÿ p,
smn � �i=2��gm; gn�ÿ) and the orthogonality conditions
�u s 0 �p�us�p� � 2mds

0s, �v s 0 �p�vs�p� � ÿ2mds
0s, we make the

replacements �u s 0 �p0� gmus�p� ! ds
0s �2pm, �vs

0 �p0�gmv s�p� !
ds
0s �2pm;
3) the integration over q is reduced to the region jqj < Q

by substituting the function y�Qÿ jqj� into Eqns (3.10) and
(3.13) (with Q4E0 we separate the infrared photons).

As a result we obtain the following representation for
H 0int � H�ÿint �Hÿ�int :

H 0int �
�
dm�p� pm

Ep
r̂�p�

�
jqj<Q

dm�q�
�
cm�q� exp

�
ÿ itpq

Ep

�

� c�m �q� exp
�
itpq

Ep

��

�
�
d3x

�
dm�p� pm

Ep
r̂�p�d

�
xÿ p

Ep
t

��
jqj<Q

dm�q�

� �cm�q� exp�ÿiqx� � c�m �q� exp�iqx�
�
; �3:15�

r̂�p� � e
�
a�s �p�as�p� ÿ b�s �p�bs�p�

�
(qx � otÿ qx). Recalling expressions (2.9) and (2.10) for the
current of a pointlike particle and introducing the notation

bJm�x; t��� dm�p� pm
Ep

r̂�p�d�xÿ vt��
�
dm�p�N̂�p�jm�x; p� ;

�3:16�

where jm�x; p� � e�pm=Ep�d�xÿ vt�, e bN�p� � r̂�p�, and

bAQ

m �x� �
�
jqj<Q

dm�q��ĉm�q� exp�ÿiqx� � ĉ�m �q� exp�iqx�
�
;

�3:17�

Eqn (3.15) finally becomes

H 0int �
�
d3xbJm�x� bAQ

m �x� : �3:18�

The Hamiltonian (3.18) has a clear meaning: the
emission of low-energy photons is described by the interac-
tion with the `classical current operator' bJm�x�. The
corresponding action is gauge invariant: since the currentbJm�x� is conserved (qmJm � 0), the action

�
d4x JmA

Q
m remains

unaffected by the replacement AQ
m ! AQ

m � qmw. States with
a definite number of charged particles form the eigenvector
of the operator bJm:bJm�x�jpi �X

a

j �a�mp �x�jpi;

j�a�mp �x� � ea
pam
Ea
p

d�xÿ vat� � j clm �x; pa� : �3:19�

Here the summation runs over all particles that form the state
jpi. Noting that pm=Ep � dxm= dt, the one-particle action
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corresponding to Eqn (3.18) can be written as

e

�
dt

�
d3x bAQ

m �x�
dxm
dt

d�xÿ vt� � e

� bAQ

m �x� dxm

� e

� bAQ

m �x�0� � ut�um dt ; �3:20�

where the one-dimensional integrals are along the straight
line defined by pm, um � pm=m and t is the invariant time. The
Hamiltonian (3.18) for the effective interaction of soft
photons fails to satisfy momentum conservation Ð a
situation which also occurs in potential scattering problems
or in processes involving massive particles.

Redefinition of the scattering operator. We next represent
the QED interaction Hamiltonian in the form (we drop hats
on operators in obvious cases)

Hint�t� � H 0int �
�
d3x
�
e�cgmcAm ÿ JmA

Q
m

� � H 0int � eHint ;

�3:21�
and, in accord with the general ideology, change to a new
scattering operator [see Eqns (3.1) and (3.5)] and the new S-
matrix

eS � T exp

�
ÿ i

�1
ÿ1

dt eH ~I

int

�
; �3:22�

where superscript eI indicates that all the operators are taken
in the new interaction representation (in what follows, this
superscript will not be carried along unless necessary). These
operators are expressed explicitly in terms of the initial ones,
and their time dependence is now determined by the operatoreH0 � H0 �H 0int. Clearly the operator eS is free from infrared
divergences because the matrix elements of eHint vanish in the
infrared limit. This result can also be obtained by direct
calculation.

The equations of motion (we omit polarization indices on
the operators â; b̂) 2

_a�~I �p; t� � � i
�
Ep � A~I�p; t�

�
a�~I �p; t� ;

_b
�
~I �p; t� � � i

�
Ep ÿ A~I�p; t�

�
b�~I �p; t� ; �3:23�

_c�m~I
�q; t� � � i

�
oc�m~I
�q; t�

ÿ
�
d3x Jm~I�x; t� exp��iqx�y

ÿ
Qÿ jqj�� ; �3:24�

where

A�p; t� �
�
d3xAQ

m �x� jmp�x� ; �3:25�

go over to the equations of motion of free fields as e! 0 and
can be integrated in an elementary fashion. Recognizing that
at t � 0 all the representations are identical, we have (T
symbolizes time ordering)

a�~I �p; t� � T exp

�
� i

�
Ept�

�t
0

A~I�p; t� dt
��

a��p� ;

b�~I �p; t��T exp

�
� i

�
Eptÿ

�t
0

A~I�p; t� dt
��

b��p� ; �3:26�

c�m~I
�q; t� � exp��iot�

�
c�m �q� � i

�t
0

dt

�
d3x bJm�x; t�

� exp��iqx� yÿQÿ jqj�� : �3:27�

The equations and solutions (3.24) and (3.27) are written
only for fields AQ

m . Those for fields with jqj > Q are identical
to expressions for the standard interaction representation. In
obtaining Eqn (3.27) we havemade use of the equality bJ ~I

m � bJm
which follows from Eqns (3.15), (3.16), and (3.23).

Let us discuss the results obtained. From the representa-
tion (3.20) and Eqns (3.25) ± (3.27) we obtain the following
expression for the Fermi field:

c~I�x� �
�
dm�p�T exp

�
ÿ ie

�x
A

Q

m~I
�y� dym

�
� �âp;s us�p� exp�ÿipx� � b̂�p;sv

s�p� exp�ipx�� ;
ym � umt ; dym � um dt :

Similar to the selection of a gauge [53], the appearance of the
phase e

�
A

Q

m~I
dym in charged fields (`exponentiation') has a

simple meaning: the corresponding degrees of freedom of the
field Am are withdrawn from dynamics. According to the
analysis at the end of this section, quanta with energieso < L
are not actually emitted in the course of an experiment and do
not affect its results [see Eqn (2.26)] but it is these photons
which give rise to the infrared problem. The time evolution of
such concomitant quanta is completely determined by equa-
tions of motion for charged fields (particles). For a particle
moving in the direction n, in the gauge A0 � 0 the field AQ is
concentrated outside a cylinder with an axis n and radiusQÿ1,
Q � L (see the discussion at the end of this section).

The creation and annihilation operators in the new
representation have the same commutation relations as in
the old. It is these operators which produce in and out states in
the new scattering theory. As compared to the previous
interaction representation, charged particles acquire phases

wout �
�1
0

dt

�
d3xAQ

m �x� j ���m �x; p� ;

win �
�0
ÿ1

dt

�
d3xAQ

m �x� j �ÿ�m �x; p� ; �3:28�

where j ���m � i j�m and the currents are defined by Eqn (2.10).
Using the properties of these currents the time integration in
Eqn (3.28) will be extended over the entire axis.

Expanding the exponentials in power series in currents we
see that they describe the processes of emission of infrared
photons by in and out particles [cf. Eqns (2.8) and (2.15)] Ð a
consequence of the fact that in the eI representation charged
particles are considered together with the concomitant
infrared photons. Further, j

���
mp �x� are classical real currents,

so that the transition from a�; b� to ~a�; ~b� is performed via a
unitary operator (hence the same commutation relations).
Note, however, that we obtain zero when calculating the
projection of the old one-particle state onto the new one.

Now let w��� contain photon creation (+) or annihilation
(±) operators, i.e., w � w��� � w�ÿ� (for win and wout). Then for
Uw � T exp �iw� we have

Uw � exp
�
iw���

�
exp

�
iw�ÿ�

�
exp

�
ÿ 1

2

�
dt1 dt2

�
�
d3x1 d

3x2 j
���
m �x1; p� �ÿgmn�DQ

c �x1 ÿ x2� j ���n �x2; p�
�
:

�3:29�2 It is sometimes convenient to attach the `±' sign to operators a, b, and c:

âÿ�p� etc.
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Here ÿgmnDQ
c is the propagator of the field AQ

m and we have
made use of Hori's [54] formula for disentangling the T
exponent

T exp�i jj� � exp

�
ÿ 1

2
jDc j

�
: exp�i jj� : ; �3:30�

whereDc is the causal propagator of the free scalar fieldj and
where the contracted notation jj � � dx j�x�j�x�,
dx � d4x, etc., has been introduced. From the definitions
(2.8) and (2.10) we obtain the argument of the last exponential
in Eqn (3.29):

ÿ 1

2

�
Q

dq

�2p�4 j ���m �ÿq�
ÿi

q2 � i0
j ���m �q��ÿ

1

2

�
Q

d4qA ����q�

�3:31�

[see Eqn (2.23)], where the domain of integration is jqj < Q.
Twice the real part of Eqn (3.31), with (�) omitted, is

identical to the argument of the exponential in Eqn (2.24). It is
readily seen that it is negative and divergent [see Eqns (2.19)
and (2.20)]:

i

2

�
Q

dq

�2p�4 j ���m �ÿq� �ÿi � 2p�
d�q2�
2

j ���m �q�

� ÿ 1

2

X
a;b

eaeb

�
Q

dm�q� papb

�paq� �pbq�

� ÿ ln
Q

l

X
a;b

eaeb
2

F�vab� : �3:32�

For one particle (vaa � 0; F�0� � 1=4p2) we have
ÿ�a=2p� ln�Q=l� ! ÿ1; l! 0. Hence, dropping the
polarization indices,�

dm�p1; p2�c�1�p1�c2�p2�


0
��a�p1�~a��p2���0�

�
�
dm�p�c�1�p�c2�p�

�
l
Q

�a=2p

! 0 ; l! 0 �3:33�

i.e., the states of charged particles in the ~I representation are
orthogonal to those in the conventional interaction represen-
tation.

The meaning of this result is straightforward. As is known
[55], the Hilbert space of quantum field theory is nonsepar-
able (i.e., the set of basis vectors is uncountable). The space of
standard perturbation theory is a separable Hilbert space
(Fock space). When applied to a Fock space vector, the
operator Uw, generating the cloud of soft photons, removes
the vector from this space Ð hence the orthogonality
property (3.33). This seems to contradict the formal unitary
property of the operator Uw: U

�
w Uw � 1. The explanation is,

however, that Uw is unitary in a nonseparable Hilbert space
(von Neumann space) of which the Fock space is a subspace
[21, 26, 56, 57]. This example illustrates von Neumann's
theorem [58] concerning the possibility of unitary non-
equivalent representations of canonical commutation rela-
tions (commutators of the operators a and ~a are identical) in
quantum field theory.

At the same time, the meaning of the cancellation of
infrared divergences in perturbation theory becomes clear:
including the contribution of virtual infrared photons gives
rise to a factor which cancels out the corresponding infinite
factor resulting from the summation over the states of real

infrared photons Ð much in the way such factors cancel out
when the norm of the stateUwj0i [cf. Eqns (3.32) and (2.24)] is
calculated. Also the meaning of the S-matrix is cleared up:
infrared photons are withdrawn from the dynamics in this
case.

Factorization of the S-matrix. With the time hierarchy
concept of Ref. [18] (see Section 1), one easily obtains a
theorem on the factorization of theS-matrix. Since the time of
a hard collision is much less than that of the emission of a
long-wave quantum, the S-matrix is obtained by sandwiching
an infrared-regular matrix Sh (for hard processes) by
operators for the motion of charged particles before and
after such a collision, i.e., for scattering in which soft photons
take place [18]:

SM � U1;0 ShU0;ÿ1 : �3:34�
To see this, note that by definition,

S � T exp

�
ÿ i

�1
ÿ1
�H 0int � eHint� dt

�
�3:35�

[see Eqns (3.18) and (3.21)]. The term H 0int accounts for soft
quantum processes, in which only small energy changes occur
in the course of the interaction. Hence, the exponential in Eqn
(3.35) is dominated by the integral of H 0int over a large time
interval; small changes in the range of integration have little
effect on the result. eHint, on the contrary, describes hard
processes with a large energy (momentum) transfer, i.e., the
integration of eHint over time in Eqn (3.35) may be performed
over a finite interval. Integrating over the entire time axis
introduces no appreciable error because at large times
particles are so far apart that their interaction may be
neglected (the slowly decreasing part of eHint being removed).

It follows from the above argument that the operator
(3.35) for finite time may be represented in the form

SM
TT 0 � UTt S

h
tt 0Ut 0T 0 ; T4 t ; jT 0j4 jt0j ; �3:36�

Sh
tt 0 �T exp

�
ÿ i

�t
t 0
eHint dt

�
;

UTt�T exp

�
ÿ i

�T
t

H0int dt
�
; �3:37�

where the operators are taken in the standard interaction (I)
representation. We now may, as shown above, take the
double limit t!1; t 0 ! ÿ1 in the first exponential in
Eqn (3.37) and T!1; t! 0 (i.e., T 0 ! ÿ1, t0 ! 0 in
Ut 0T 0 ) in the second, thus arriving at representation (3.34).

It is readily seen that representation (3.36) is equivalent to
the corresponding expression for the S-matrix free of infrared
divergence in the approach of Ref. [30]. This is seen by writing
down the operators

Sh
tt0 � exp�iH0t� exp

�ÿ i�H0 � eHint��tÿ t 0�� exp�ÿiH0t
0� ;

�3:38�

UTt� exp�iH0T� exp
�ÿ i�H0 �H 0int��Tÿ t�� exp�ÿiH0t� ;

�3:39�

which when substituted into Eqn (3.36) together with a
similar representation for Ut 0T 0 yield

SM
TT 0 � exp�iH0T� exp�ÿi eH0T� eStt 0 exp�i eH0T

0�
� exp�ÿiH0T

0� � UT
eStt 0U

�
T 0 ; �3:40�
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where eStt 0 is the scattering operator in the eI representation [see
Eqn (3.22)]. The operator UT relates the I and eI representa-
tions,AI � UT A~I U

�
T . In Eqn (3.38) we may, as we did in Eqn

(3.36), change to infinite times for eStt 0 , i.e., go over to the eS-
matrix (3.22).

Kinoshita ±Lee ±Nauenberg theorem [15, 16]. Representa-
tion (3.34) clearly demonstrates that infrared divergences
cancel after averaging over the ensemble of photons in the
initial and final states [16] (in view ofUU� � 1); and that the
S-matrix (3.22) or the matrix Sh (3.34), (3.37) are infrared
regular. This is seen by noting that infrared fields are in fact
removed from the interaction operator eHint (3.21) and that
the photon emission amplitude tends to zero if the photon
momentum q! 0.

Note here that the magnitude of the parameter Q in the
definition ofH 0int determines themeaning of the eS-matrix. For
Q � E (see at the end of Section 2.1.3), eS can be identified
with Sh, i.e., with the scattering operator for hard processes.
If Q�L, eS is again free from infrared divergences but also
describes processes in which infrared photons are involved
(o > L).

3.2 Quantum chromodynamics. Effective Hamiltonian
For the purpose of definiteness, the discussion in this section
is limited to quantum chromodynamics, i.e., to the gauge
theory of group SU(3); all formulas are generalized auto-
matically to any semi-simple group. As mentioned in the
introduction, a transition to non-Abelian gauge theories gives
rise to awhole series of problems. Themost obvious of these is
due to the noncommutative nature of the generators of group
Ta, i.e., the absence of factorization (2.15) in the infrared limit
(gluons possess color and cannot therefore be emitted
independently). The most challenging problem is due to the
appearance of charged massless fields (gluons) because
difficulties arising from the noncommutative nature of Ta

matrices are compounded by the appearance of collinear
divergences. Finally, the phenomenon of confinement makes
the situation apparently hopeless because the problem of the
dynamics at large distances (confinement problem) is not
solved yet [59 ± 61].

In a sense, however, the above difficulties actually
simplify the problem. First, confinement leads to an effective
small-momentum cutoff for quarks and gluons: jpj > rÿ1h

(where rh is the hadron size), i.e., collinear divergences
appear only for jpj ! 1 (see Section 1), when all particles
behave as massless. But then Ð and this is a second point Ð
the asymptotic freedom of QCD enables perturbation theory
to be applied. Because present day experiments are mostly
high-energy (aimed, in particular, at the study of inclusive
processes), this circumstance actually dictates what lines of
research are to be pursued in the field, emphasizing such
things as the asymptotic behavior of hard process amplitudes
(e.g., the pion formfactor [40, 62]) and of the kernels ofGLAP
evolution equations (see Refs [10, 40, 63] and references
therein). In this section the S-matrix redefinition method
outlined above is applied to QCD. We will start with
analyzing the noncommutative nature of group generators
in order to introduce the reader into the specifics of the
problem.

At first sight, generalizing the method of Section 3.1 to
QCD seems absurd because free quarks do not exist and so
there is no point in considering their interaction with low-
energy gluons (there are no excitations for fields with
wavelengths longer than the confinement radius). The

problem does make sense, however, when viewed from the
standpoint of the hierarchy of characteristic interaction
times. In this approach, only relative space-time scales of the
processes of interest are important. In QED, such scales were
determined by the size of the laboratory (L � T) and the
characteristic time of the hard process [1=Qh, where Qh is the
momentum transfer, L4 1=Qh]. In QCD, the correspon-
dence of L$ rh (with rh the hadron size, of order 10ÿ13 cm)
is admissible, i.e., the scattering problems within hadrons are
studied. For energies currently available (of order 1 TeV) we
haveQhrh � 103ÿ104, so that the problem of scattering seems
quite reasonable to address. The gauge invariance of the S-
matrix for quarks and gluons secures this property of the
states in the collision, so that the analysis of Section 3.1 may
be applied quite meaningfully to QCD problems. Note that in
this context it is gluons with energies o � rÿ1h which are
considered soft.

The analysis, which parallels almost completely that
presented in Section 3.1, starts from the standard QCD
Lagrangian

L � ÿ 1

4
�Fa

mn�2 �
X
f

�cf �i bDÿmf�cf �3:41�

in which we keep only one flavor f in the second term. In Eqn
(3.41) Fmn � i�Dm;Dn�=g, Dm � qm ÿ ig bAm, bD � Dmgm,bAm � Aa

mTa, Ta � �1=2�la are SU(3) group generators and la
are the Gell-Mann matrices3. The arguments leading to Eqn
(2.8) remain unchanged except for the current and polariza-
tion vector expressions, which become

jm�q� ! j cm�q�� jm�q�Tc; el�q� ! ecl�q��el�q�wc ; �3:42�

where wc denotes the gluon color state, c � 1; . . . ; 8.
Due to the noncommutative nature of the Tc operators,

Eqn (2.14) is incorrect (it is necessary that the currents be
ordered).While the analysis in Section 2.1.2 could in principle
be extended to QCD, the method of Section 3.1 is simpler to
apply. Because all the essential features of Eqns (3.8) ± (3.15)
are retained in QCD, the required Hamiltonian [the analogue
of Eqns (3.15) ± (3.18)] is immediately written as

H 0int �
�
dm�p� pm

Ep
r̂a�p�

�
Q

dm�q�
�
cam�q� exp

�
ÿ itpq

Ep

�
� ca�m �q� exp

�
itpq

Ep

��
�
�
d3x bJam�x� bAaQ

m �x� ; �3:43�

r̂a � ÿg�a�s �p�Taas�p� ÿ b�s �p�Tabs�p�
�
;

bJa
m �x��

�
dm�p� pm

Ep
r̂a�p�d�xÿ vt� �

�
dm�p� bNa�p� jm�x; p� :

�3:44�

Note that all the equations of Section 3.1 Ð i.e., Eqns (3.26),
(3.36), and (3.37) Ð retain their form after an obvious
modification (the inclusion of the Ta matrices and their
ordering in the T exponentials).

Since the gluon sector requires accounting for collinear
divergences, we present here the effective Hamiltonian for the

3 The hat is for the convolution with the gm and la matrices, either

separately or in concert. This does not introduce any confusion provided a

non-convoluted index is used.
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interaction of hard (jpj4Q) and soft (jqj < Q) gluons only
[64]. The three-gluon interaction operator H

0�3�
int follows from

Eqns (3.43) and (3.44) by making the replacement

bJ c
m ! ÿig

�
jpj>L

dm�p� pm
Ep

d�xÿ vt� f abc ĉ a�s �p�ĉ bs �p� ;

L4Q ; �3:45�

and the biquadratic operator H
0�4�
int is

H
0�4�
int �

g2

2

�
jpj>L

d3x dm�p�
Ep

d�xÿ vt� f abc f ade

� �ĉ b�p; m ĉ cp;n bAdQ
x; m
bAeQ
x;n � �e$ c� � ĉ b�p;m ĉ

d
p;m
bAcQ
x;n
bAeQ
x;n

�
;

�3:46�

where f abc are the structural constants of the group.
Equations (3.45) and (3.46) enable the equations of motion
for hard gluons to be constructed and their asymptotic states
to be obtained in symbolic form. The present method is also
applicable to gravitation theory.

4. Collinear divergences

4.1 QCD. Perturbation theory
Sterman ±Weinberg formula. The theory of collinear diver-
gences has not been developed as well as the theory of infrared
divergences, and there are serious reasons for that. First, this
problem has not been that topical. Such divergences may
occur in theories with massless charged particles such as the
gravitational or gluon fields. As regards the former, theore-
tical efforts have mostly concentrated on the renormalization
problem because at the energies currently available graviton
interaction studies are beyond the reach of present-day
experimentation. The gluon field is not observed free
(confinement!) and it is only at energies much above the
inverse hadron radius that its behavior in a closed volume is
one of amassless field. It is from the study of the unreal case of
a zero-mass electron [5] that the problem arose.

Second, collinear divergences are far more difficult to
treat than infrared ones. While the latter problem does not
take any more than a correct treatment of the field and a
classical source coupling, in the former an exact solution of a
two-dimensional field model is needed. The problem became
particularly topical in the transition to superhigh energies,
where leptons and quarks behave as massless particles. A
practical way out of this was found in the framework of
standard perturbation theory, in which the asymptotic free-
dom of QCD provides a small coupling constant and where
theKinoshita ± Lee ±Nauenberg theorem [15, 16] secures that
divergences cancel out to any order of approximation.

The analysis of the processes e�eÿ ! �qq, �qqg (q; g
designating the quark and the gluon, respectively) to lowest
nontrivial order of perturbation theory has confirmed the
general conclusions of Refs [14 ± 16]. In Ref. [35] the partial
cross section of the process e�eÿ ! two jets has been
calculated. The particular cross sections computed include:
sa�e�eÿ ! �q�qg�; ��qg�q�, where a hard gluon together with a
quark q (or �q) form one of the jets (the quark and the gluon
being collinear); sb�e�eÿ ! �qqg�, where an infrared gluon
may or may not belong to one of the jets; sc�e�eÿ ! �qq�,
where, unlike the first two cases, the one-loop diagram is
included in addition to the tree diagram. The term jet is here

understood to mean a quark (antiquark) or alternatively a
quark (antiquark) plus a gluon emitted into a cone of angle
d5 1 (the cone cuts a circumference of radius d on the unit
sphere). It is assumed that the two jets take essentially all of
the energy E of the system e�eÿ, i.e., �1ÿ E�E, where
E5 1; E!1.

It turns out that all three cross sections diverge logarith-
mically upon removal of the infrared regularization (i.e., for
l! 0, where l is the gluon mass). The sum s, however, is
finite (see a note in Section 6.5):

s � sa � sb � sc

�
�

ds
dO

�
0

O
�
1ÿ g2E

3p2

�
3 ln d� 4 ln d ln 2E� p2

3
ÿ 5

2

��
�4:1�

(Sterman ±Weinberg formula [35]), where�
ds
dO

�
0

� a2

4E2
�1� cos2 #�

X
3

�
eq
e

�2

�4:2�

is the lowest-order differential cross section of the e�eÿ ! �qq
process (a � e2=4p, eq are the electric charges of the quarks,
gE is the running coupling constant, # is the angle between the
jet and electron-beam directions; and the summation runs
over the quark aromas). Note the parameter O in Eqn (4.1).
The role of the parameters d and O here is much the same as
that ofL and E � E0 in Eqn (2.26); the small value of the first
parameter in the pair secures the validity of the expressions
used, whereas the second parameter (pd2 5O5 1) charac-
terizes the angular resolution of the experiment (the accuracy
of the jet direction determination). Clearly, the method is
applicable to any process to any order of perturbation theory.

The cancellation of the divergences in Eqn (4.1) suggests
the existence of a common approach to such processes. It
turns out that time hierarchy (see the end of Section 3.1.2) and
S-matrix factorization also take place in the collinear case,
although the corresponding transitions are not necessarily
associated with small energy changes in this case. Formally,
the reason is that propagator poles always determine the time-
asymptotic behavior, and physically, that forward scattering
(at small angles y5 1) implies the formation of a state with a
small transverse momentum k? (k?=k � y), i.e., with a
transverse dimension of order kÿ1? Ð a process which takes a
time of order kÿ1? � tcol to occur. If the characteristic hard-
process time is th � 1=k, then th=tcol � y5 1. Hence we may
expect a factorization of the type (3.34), with new bordering
matrices U now describing small-transverse-momentum
processes.

Since the general picture of infrared and collinear
divergences is mainly determined by classifying processes
into fast and slow ones Ð something which does not depend
on the internal quantum numbers of the particles Ð it
remains unchanged when we ascribe quantum numbers to
photons (i.e., go over to non-Abelian theories). The main
difference here is that it is impossible to disentangle the T
exponents corresponding to divergence- generating processes.
While in the case of infrared QCD divergences operators U
were rather simple to construct, the construction of Ucol

actually requires a knowledge of the exact solution of the
corresponding two-dimensional field theory (a problem
which has not yet been addressed in a general form). The
factorization of the S-matrix leads to the Kinoshita ±Lee ±
Nauenberg theorem, which ensures that probabilities of
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interest are finite following the ensemble summation over the
initial and final states of massless particles. In the next section
a method of constructing a scattering operator free of
collinear divergences is described using massless electrody-
namics as an example.

4.2 Massless electrodynamics. Scattering operator
redefinition
Effective Hamiltonian. Thus, the general strategy for dealing
with collinear divergences is identical to that developed for
the infrared case (Section 3): first to find the effective
interaction Hamiltonian accounting for collinear diver-
gences and then to subtract it from the interaction Hamilto-
nian [as in Eqn (3.21)]. The scattering operator with the new
interaction is free of collinear divergences.

Before calculating the effective interaction, we first trans-
form the Hamiltonian (3.8). Substituting the expansions (1.5)
and (1.6) formassless fields and integrating over x, we see that
there are only two types of time dependent exponentials: in
two cases, particle energies in the argument of the exponential
have the same sign [these are the coefficients of the operators
â�b̂�ĉ� and âb̂ĉ as exemplified by the first term in Eqn (3.9)];
in the remaining six cases, two terms in the exponentials
always have the same sign [e.g., the second term in Eqn (3.9)
and both terms in Eqn (3.10)]. Terms of the former type
contain oscillating exponentials (the trivial case
p0 � p � q � 0 describes vacuum transitions) and cannot
describe the asymptotic dynamics of massless particles.

The remaining six terms will be transformed as follows.
Momenta p0, q are usually associated with fields c;Am. Let us
redefine the integration variables p0, p, q such that the
momentum p0 is associated with the field which differs in the
sign of the energy in the exponential from the other two. In
Eqn (3.9) we interchange q and p0 in the second term, and in
Eqn (3.10) we interchange p and p0 in the first term while
leaving the notation in the second term unchanged. Then after
the integration over p0 all the exponential arguments have the
same form � i f�p; q� t, where

f�p; q� � Ep�q ÿ Ep ÿ Eq � jp� qj ÿ jpj ÿ jqj: �4:3�
Since the integration is over p and q only, the critical points of
the function f�p; q� are found from the equations Hp f � 0,
Hq f � 0. By the symmetry of f with respect to the interchange
p$ q, it suffices to employ only one of them,

Hq f�p; q� � p� q

jp� qj ÿ
q

jqj � 0 : �4:4�

This is satisfied by q � ap, where a obeys
�1� a�=j1� aj � a=jaj, i.e., a > 0 or a < ÿ1.

Substituting the obtained solution into f , it is found that
f�p; q� � Ep j�a�, where j�a� � j1� aj ÿ 1ÿ jaj � f0 for
a > 0; 2a for ÿ14 a4 0; ÿ2 for a < ÿ1g. It is clear that an
oscillating exponential will not appear for a > 0, i.e., the set of
critical points is defined by the condition q � ap, a5 0. In the
neighborhood of a critical point we have

f�p; q� �
�����������������������������������
�Ep � Eq�2 ÿ 2pq

q
ÿ Ep ÿ Eq

� ÿpq
Ep � Eq

� ÿ�p� q�q
Ep � Eq

; pq! 0 : �4:5�

Next, the functions f�p; q� in the exponentials should be
replaced by an approximate expression (4.5) and the pre-

factors be set to their critical values. Actually the prefactors
vanish at these points (see Section 6.4), so that one should add
small transverse terms to the momenta [e.g., q � ap� q?,
q? � �0; q?; 0�; see Eqn (6.22)], in which only terms linear in
jq?jmust be kept when taking the limit q? ! 0.

The resulting asymptotic Hamiltonian

H 0int �
e

2

�
dm�p; q�
Ep � Eq

n�
â�s 0 �p� q� âs�p� �us

0�p� q� gmus�p�

� b̂s 0 �p� b̂�s �p� q� �vs
0�p� gmv s�p� q��ĉl�q� elm�q�

� b̂s 0 �q� âs�p� �v s 0 �q� gmus�p� ĉ�l �p� q� el�m �p� q�
o
q?! 0

� exp

� ÿitpq
Ep � Eq

�
�H: c: �4:6�

is further transformed as follows.
1. We define the vicinity K� of the critical points

q! ap� q?, p! pÿ q? to be the set

fq 2 K� : jq?j4K ; a5 0g ; �4:7�

where K is a certain positive constant (K5E if E is the
characteristic energy of the process). In Eqn (4.6), an
integration over the region K�,�

K�
dm�q� �

�1
0

da

4pa

�
jq?j4K

d2q?
4p2

; �4:8�

is performed and in some of the terms the substitution
q? ! ÿq? is made to uniform the expressions.

2. In view of the vanishing of the prefactors at q? ! 0, the
approximation

�u s 0 �p� q� gmus�pÿ q?� elm�q� q?�

� �u s 0 �p� q� gmus�p� elm�q� q?�

� �u s 0�p� q� gmus�pÿ q?� elm�q� �4:9�

is used in the first term in Eqn (4.6) and similar relations in the
remaining terms. The terms O�q2?� are neglected in the
prefactors.

3. By the symmetry of the integrand in Eqn (4.6) with
respect to the interchange p$ q, all functions containing q?
are considered to be dependent on q. For example, the second
term in Eqn (4.9) is rewritten as �u�p� q� gmu�qÿ q?� em�p�,
after which we set q � ap, a5 0 everywhere.

4. As in Eqn (3.15), we rewrite the exponential in the form

exp

�ÿit�p� q�q
Ep � Eq

�
�
�
d3x d�xÿ vp�qt� exp�ÿiqx� ;

v mp�q �
pm � qm

Ep � Eq
�4:10�

(q2 � 0). For q � ap, it is obvious that v mp�q � vmp .
5. Finally, infrared divergences should be taken care of

because the collinear regular region f �K� : q �2K�g compli-
mentary toK� contains points that produce such divergences.
This region is one of small jq?j and small jaj, i.e., it is defined
by q2 4Q2, including qp=Ep < 0. The corresponding term
should also be present in the asymptotic form of the
Hamiltonian, which is achieved by modifying the region of
integration in Eqn (4.8) by the replacementK� ! K�Q (Fig. 2),
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where�
q 2 K�Q : jq?j4K ; a5 0 ; jqj4Q ; a < 0

	
; Q < K ;

�4:11��
q 2 K�Q : jq?j4K ; aEp 5Q; jqj4Q; aEp< Q

	
; Q > K :

�4:12�

As a result, the following representation of the effective
Hamiltonian is obtained (Fig. 3; we omit hats on current and
field operators Am; �c;c; b � 1� a):

H 0int�t��
�
d3x
�
J���m A���Km � �c���K J ���� �J ��� c���K �H:c:

�
;

�4:13�

where, for example,

J���m A���Km �
�1
ÿE1

da

4pa

�
dm�p�J���m �x; p; a�A���Km �x; p; a� ;

E1Ep � Q ; �4:14�

A���Km �x; p; a� �
�
jq?j4K

d2q?
4p2

ĉl�ap� q?�

� elm�ap� q?� exp�ÿiqx� ; �4:15�

J���m �x; p; a� � eV s 0s
m �p; a� d�xÿ vpt�

� �â�s0 �bp� âs�p� ÿ b̂�s �bp�b̂s0 �p�
�
; �4:16�

V s 0s
m �p; a� �

�us
0 �p� q�gmus�p�
2Ep�2Eq

� �vs
0 �p�gmus�p� q�
2Ep � 2Eq

; q � ap :

Using (6.27), the current Vm takes a simpler form V s 0s
m �

pmd
s0s. The remaining two terms in (4.13) are also given by

integrals of the type (4.14), with fields and currents

c���K�x; p; a� �
�
jq?j4K

d2q?
4p2

âs�ap� q?� us�ap� q?�

� exp�ÿiqx� ; �4:17�

�J ����x; p; a� � ed�xÿ vpt�
2�Ep � Eg�

�
�us0 �bp� êl�p� â�s 0 �bp� ĉl�p�

� �v s 0 �p� êl��bp� b̂s 0 �p� ĉ�l �bp�
� �4:18�

for �J ���c���K and similarly for �c���KJ ���, with obvious
alterations. Specifically, �c���K is obtained from Eqn (4.17)
by making the replacements â! b̂, u! �v, and J ��� follows
from Eqn (4.18) upon the replacements â� ! b̂�, b̂! â,
�u! v, �v! u with appropriate permutations. The current
(4.16) is conserved, and the Hamiltonian (4.13) is invariant
with respect to the gauge transformations em�q� ! em�q��
qm L�q�. Incidentally, Eqn (4.13) implies that, as in the
infrared case, collinear divergences are generated only by
free particles. Note that representation (4.14) allows one to
interpret Eqn (4.13) as a set of one-dimensional theories
dependent on the parameter p.

Redefinition of the scattering operator. An S-matrix free of
infrared and collinear divergences is constructed in a standard
way (see Section 3). In accord with Eqns (3.1) and (3.21), we
define the new interaction operator eHint � Hint ÿH 0int, where
H0int is specified by Eqn (4.13). The desired eS-matrix is given
by Eqn (3.22), in which the interaction representation eI is
determined by the `free' Hamiltonian eH0 � H0 �H 0int [similar
to Eqn (3.4)]. That the eS-matrix is free from infrared and
collinear divergences follows from the way it is constructed
and can also be verified directly. For this it suffices to show
that the operators

� 0
ÿ1H 0int dt and

�1
0 H 0int dt reproduce the

amplitudes for the emission of infrared and collinear quanta
by in and out particles, respectively.

To this end we set m � 0 in Eqns (2.7), giving

p̂ÿ q̂

ÿ2pq� i0
eê��q� ; eê��q� p̂ 0 � q̂

2p0q� i0
; p2 � q2 � p 02 � 0 :

�4:19�

Matrices (4.19) multiply the spinors u�p� and �u�p0� on the left
and on the right, respectively. Noting that p̂u�p� �
�u�p0�p̂ 0 �qe�q��0, we find that for q�ap, q�ap0, a > 0 the
numerators in Eqn (4.19) vanish. To separate out the leading
terms of the expansions we employ the representation (6.22)
and similar expressions for p0. For q? � 0, themomenta p and
q are collinear. Since pq � q2? [see Eqn (6.23)], it is necessary
to keep the termsO�jq?j� in the numerators of the amplitudes
(4.19). Using the representation q � q? � �q~p�p=p~p�O�q2?�,
the desired amplitudes are found to be

e
ÿ2�p~p=q~p� q?e��q� � ê��q� q̂?

ÿ2pq� i0
u�p�;

�u�p0� ÿ2�p
0~p 0=q~p 0�q?e��q� ÿ q̂?ê��q�

2p0q� i0
e : �4:20�

(where the replacement e�q� ! e�p� can be made).
At this point, expressions analogous to (4.19) can be

written down for the pair creation amplitudes in the initial
(virtual positron) and final states. For typical processes (with

QK q1

aEp a

Q K q1

aEp b

Figure 2. Domains of integration K�Q: Q > K (a), Q < K (b); Ep � jpj,
q? � �q1; q2�. The sections q2 � 0 of the corresponding regions are shown.

p� q q

p

p� q p

q

p� qq

p

Figure 3. Diagrams associated with certain characteristic terms in the

Hamiltonian (4.13). Added to these must be diagrams with reversed

arrows and another six similar diagrams with photons in final states.

1114 L V Prokhorov Physics ±Uspekhi 42 (11)



the replacement p0 ! q) we have instead of Eqn (4.19)

e�u�q�̂e�p� 1

p̂ÿ q̂� i0
; e�u�p� gmv�q�

ÿgmn
�p� q�2 � i0

: �4:21�

Using the momentum representation (6.22), (6.23), the
amplitudes (4.21) are calculated to be

e�u�q� �p~p=q~p� q̂?ê�p� ÿ 2q?e�p�
ÿ2pq� i0

; ÿe �u�p� gnv�q� q?�
2pq� i0

�4:22�

in the limit q? ! 0.
The amplitudes (4.20), (4.22) must be reproduced by the

asymptotic interaction Hamiltonian. We omit the detailed
proof of this and note only that the integration over t from
�ÿ1; 0� to �0;1� yields correct denominators in Eqns (4.20)
and (4.22) and that the matrix elements of Hint and H 0int
between the states in the critical region are identical to terms
O�q2?� by construction. Note that, for example, the term
(4.14) reproduces the first term in the numerator of the first
fraction in Eqn (4.20), whereas the term ��c���KJ �����
reproduces the second term of the numerator [see Eqn
(6.26)]. The Hamiltonian eH0 � H0 �H 0int reproduces cor-
rectly the emission probabilities for quanta in the critical
region because the auxiliary vector h in Eqns (6.26) and (6.27)
determines only the phases of transition currents. The
spreading angle of the cone (jet) is clearly determined by the
parameter K (d � K=Ep), and the energy E carried away by
the undetected emission may be related to the parameter
E � E=Ep [similar to Eqn (4.14)]. The role of the parameter Q
in Eqns (4.11) and (4.12) is similar to that of L (see the end of
Section 2.1.3).

5. Conclusions

In conclusion, some problems related to the subject of this
paper will be discussed in brief.

1. Eikonal. The approximation used in Section 2 is
identical to the so-called eikonal approximation of quantum
field theory [65, 66], which essentially represents the following
modification of high-energy particle propagators:
�2pk� k2�ÿ1 ! �2pk�ÿ1 (jpj ! 1, k being the momentum
or the sum of the momenta of virtual quanta). The fact that it
is equivalent to the approximation (2.11), (2.13) is obvious.
The differences between the two theories (in their traditional
interpretation) are as follows:

(1) Whereas the eikonal approach always treats soft
quanta as virtual, in infrared theory their emission is also
considered.

(2) Infrared theory always involves a process which fixes a
`point' (zero) on the time axis (and which takes much less time
than the emission of soft quanta); this is why it is sensible to
speak of the long-wave emission of in and out particles. This
feature is absent from eikonal theories, in which all emission
(exchange) processes stand on an equal footing and in which
incident and scattered particles neither emit nor absorb
virtual quanta.

We now consider Coulomb scattering to illustrate the
argument above. Referring to the hard process with the
emission of N soft photons (see Section 2), suppose we wish
to find the amplitude of small-angle particle scattering. To
this end one must modify the amplitude (2.15) by replacing
e�m�qi� by the amplitude eA ext

m �qi� of exchange by a photon with

an external current. Since all the photons are then virtual and
themain process is as good as any other (p0 ÿ p � qi), what we
must do next is to integrate over the photon momenta qi
(i �1; . . .;N), to take into account the fact that photons are
indistinguishable [factor 1=�N� 1�!], and to sum over all N.
Then from Eqns (2.6), (2.15)

T s 0s
p 0p �

X1
N� 0

1

�N� 1�!
�ÿ e�u s 0 �p0� gm eA ext

m �pÿ p0�us�p��
�
�YN

i�1

d4qi

�2p�4 jm�qi; p� eA ext
m �qi�

� ÿe
�
d3x exp

�
i�pÿ p0�x��u s 0 �p0�

� gmA
ext
m �x�us�p�

exp�ÿi j cl eA ext� ÿ 1

ÿi j cl eA ext
; �5:1�

where eA ext
m �q� � 2pd�q0� eA ext

m �q� and j clm �q; p� � i jm�q; p� [see
Eqn (2.10)].

In the standard eikonal formulation [65] one needs to
evaluate the sum of the form

ÿe
X1
N�0

1

N� 1

XN
k�0

1

k!�Nÿ k�! �joutA�
kA�jinA�Nÿk �5:2�

which follows from Eqn (5.1) by using the binomial formula
�jA�N � �jinA� joutA�N [note that the incoming (outgoing)
currents were labeled by the + (ÿ) signs in Eqn (2.10)].
Following the ideology of Sections 2 and 3, the integration in
Eqn (5.1) should be performed over the region jqj < Q [as,
e.g., in Eqn (3.15)]. In eikonal theories, however, it is
customary to integrate over all the momenta of virtual
particles without estimating the error so introduced.

2. Bloch ±Nordsieck model and the continuum integration
method. As discussed in Sections 2 and 3, the dynamics of
long-wave photons are described by the exactly solvable
Bloch ±Nordsieck model [19]. An especially elegant formula-
tion of this problem (and many others, in fact) has been
obtained using the method of continuum integration [66 ± 68]
(see Section 6.5). The Bloch ±Nordsieck model with propa-
gator 1=pq and a modified vertex (gm ! vm) has recently been
applied to the problem of infrared divergences at finite
temperatures [69 ± 71].

3. Unitarity. This property imposes nontrivial restrictions
on the interaction ofmassless fields: in the local limit, effective
interactions of the renormalizable type must have complex
coupling constants [72]. In a recent paper [73], the amplitudes
of the `decays' of massless particles were studied.

4. Some time ago, the gravitational scattering of a trial
particle with Planck energies E (GE 2 � 1) came under study
[74 ± 78]. In Ref. [74], the amplitude of particle scattering by
the background metric of the scatterer was calculated. The
authors of Ref. [75] obtained an equivalent result by using the
eikonal approximation for a Reggised graviton, whereas in
the string approach of Refs [76, 77] an expansion in the
number of loops at high energies was resummed. In the
decomposition of the metric tensor into 2D longitudinal
components and 2D transverse (relative to the incident
momentum) components in Ref. [78], the 2D theory of
longitudinal high-energy processes is treated exactly and the
exchange by transverse quanta perturbationally. Note that
for currently available energies the effects of the long-wave
gravitational emission are negligibly small [45] and that at
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Planck energies significant changes in our views on space and
time are to be expected.

5. A highly topical problem is one of high-energy
scattering in the QCD framework. The current state of this
field is summarized by Lipatov [79], who uses a theory with an
exactly solvable Hamiltonian to treat processes with a small
momentum transfer.

6. Summary. The phenomenon of infrared and collinear
divergences consists essentially in the unbounded growth of
the emission amplitudes of massless particles when either
their energy or the emission angle tend to zero. This also
results in the divergent cross sections and other physical
quantities when these latter are evaluated by perturbation
theory. Success in describing such processes depends on the
concept of interaction time hierarchy: hard processes (large
momentum-transfer) are rapid and occur in small volumes,
whereas soft ones (small momentum- or transverse-momen-
tum-transfer) are slow. A consequence of the time hierarchy is
the factorization of the S-matrix [see Eqns (3.34) and (3.40)];
the operators that describe soft processes and generate
divergences appear as sandwiching operators for the hard
scattering operator. This immediately yields the theorem that
the divergences in observable quantities cancel out, the reason
being the isometry property of the sandwiching operators
which manifests itself when the magnitudes of the amplitudes
are squared and quantum states in the critical region (for
example, the states of undetected soft photons) summed over.
The matrix elements of the products of such operators by
their conjugates do not any longer produce divergences,
which is precisely the reason why theoretical formulas
contain only experiment-specific parameters Ð the duration
of the experiment and the sensitivity of the detectors used.

6. Appendices

6.1 Polarization summation formulas
If particle spins are not detected, they are summed over in the
final state and averaged over in the initial one. The relevant
formulas are as follows.

Photons, Gluons (J � 1). If we choose a basis of the form
e�m �q� � �0; 1;� i; 0�= ���

2
p

, lm � �1; 0; 0; 1�, ~lm � �1; 0; 0;ÿ1�,
then qm � olm is a standard vector. In Euclidean space, a
basis with the isotropic unit vectors l2 � ~l2 � 0 is not
orthogonal, l~l � 2. For the orthogonal basis e�m ,
e3m � �lm ÿ ~lm�=2; e0m � �lm � ~lm�=2, we have the complete-
ness conditionX

�
e�m e
��
n � e3me

3�
n ÿ e0me

0�
n � ÿgmn ;

which yields the spin summation formulaX
�

e�m �q� e��n �q� � ÿgmn �
1

2
�lm~ln � ~lmln� � Pmn : �6:1�

Gravitons (J � 2). The polarization tensor for gravitons
must possess the properties emn � enm, emm � 0, qmemn�q� � 0. In
addition, one must secure the normalization condition
e�mn e

��
mn � 1, and the S-matrix should be invariant with respect

to the transformation e�mn�q� ! e�mn�q�� qm fn�q� � qn fm�q�,
qm fm � 0. The above requirements are satisfied by the tensor
[45]

e�mn�q� � e�m �q� e�n �q� : �6:2�

By Eqn (6.2), the required sum over polarizations is expressed
as follows in terms of the tensor Pmn defined by Eqn (6.1):

Pmnrs�q� �
X
�

e�mn�q� e��rs �q�

� aPmnPrs � b�PmrPns �PmsPnr� : �6:3�
From the fact that emm � 0 and using the equalitiesPmm � ÿ2,
PmrPms � ÿPrs we have Pmmrs � ÿ2�a� b�Prs � 0, i.e.,
a � ÿb. Further, since the graviton has only two polariza-
tion states, the normalization factor b is found to be given byP

mn Pmnmn � 4b � 2. Thus, the tensor (6.3) in the numerator
of the graviton propagator is [45]

Pmnrs � 1

2
�PmrPns �PmsPnr ÿPmnPrs� : �6:4�

Note that e��m � e�m when checking Eqn (6.4) directly.

6.2 Classical emission
The amplitude of the emission of a long-wave photon,
Eqn (2.8), is related directly to the emission of a classical
charged particle. If the retarded solution of the field
equations,

Am�x; t� �ÿ
�
d4yDret�xÿ y� j clm �q�

� 1

4p

�
d3y

j clm �y; tÿ R�
jxÿ yj ; R � jRj � jxÿ yj ; �6:5�

where Dret�x� � ÿy�t�
�
d�tÿ r� ÿ d�t� r��=4pr, is rewritten

in Fourier component form, we have

Am�x;o� � 1

4p

�
d3y

jxÿ yj
�

d3q

�2p�3 exp�ioR� iqy� j clm �q;o� :

�6:6�
Assume now that the charges are distributed in a bounded

region in space. Since max jyj=r! 0 for jxj � r!1 and
since R � rÿ yn (n � x=r), the asymptotic behavior is then

Am�x;o� � 1

4pr
exp�ior� j clm �on;o� ; q � on : �6:7�

Since the Poynting vector S � n �E2 �H2�=2, the energy
dE emitted in the frequency range do during a collision is
given by dE � 2

�
dSH2 do=2p, where H � rotAo, dS is

an area element of a sphere of radius r, the factor 2 in front
of the integral accounts for the system's negative time
emission, and the integration region is assumed to be
o > 0. Thus,

dE
do
� 1

p
1

�4p�2
�
dn jq� j clj2 � o2

16p3

�
dn
ÿjjj2 ÿ jnjj2� ;

j clm � i jm : �6:8�

From current conservation [qm jm�q� � 0], the expression
in brackets in Eqn (6.8) is ÿjm�q� j�m�q�=o2, so that

dE �
�
dn

�
�ÿjm j�m�o

dm�q�
dn

�
�6:9�

(which agrees with the formula for the photon emission
probability density; see Section 2.1.2). In the non-relativistic
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limit the transition current of a point-like particle is

jm�q; p� � e

�
p0m
p0q
ÿ pm
pq

�
� e

v 0m ÿ vm
o

; vm � pm
Ep

; �6:10�

and hence [80]

dE
do
� e2

16p3
8p
3
�v0 ÿ v�2 � 2a

3p
�v0 ÿ v�2 : �6:11�

The difference e�v0 ÿ v�=2p � �do is the second time derivative
of the Fourier component of the system's dipole moment d for
o! 0. The expression so obtained is the spectral emission
density of a pointlike particle for o! 0.

Clearly, expression (6.7) can also be obtained from the
asymptotic behavior of the Lenard ±Wiechert potential for
r!1

Am � e

4p
1

Rÿ vR

pm
Ep
� e

4pr
pm

Ep ÿ pn
� eo

4pr
pm
pq

; v � p

Ep
;

�6:12�

assuming that Am�x;o� is calculated in the limit o! 0 and
that pm�t� � pm �p0m� as t! ÿ1 �1�.

6.3 Divergences in multi-vertex theories
If a charged particle can emit two or more massless particles
locally, the situation with infrared and collinear divergences is
different. In this case divergences are produced by the
amplitudes of the form An � TRn [cf. Eqns (2.7) and (2.8)]
with

R�n �
1

�p�P qi�2 ÿm2
� 1

�2pP qi � �
P

qi�2
: �6:13�

Let us now consider the following possibilities: 1) infrared
divergences (m 6� 0, oi � jqij ! 0); 2) infrared and collinear
divergences (m � 0, oi ! 0, Ep � jpj4oi); 3) collinear
divergences (m � 0; q and p are arbitrary). Case 2) is added
for methodological reasons.

1) The probability for the emission of n photons with
energies 0 < oi < L is

Pn /
�L
0

jRnj2
Yn
i

dm�qi� /
�L
0

Q
oi doi dni

jEp

P
oi ÿ p

P
qij2

/
�L
0

Q
oi doi

jPoij2
� In

�6:14�

[we omit the obviously convergent integrals and terms of
O�o2�, ni � qi=oi]. That the integral in Eqn (6.14) converges
for n > 1 can be seen by recalling the well-known inequality
[81]�P

pi oiP
pi

�P pi

5
Y

o pi
i ; oi 5 0 ; pi > 0 ; �6:15�

and setting pi � 1 in Eqn (6.15), i.e., using the inequalityP
oi=n5

Q
o1=n

i . This gives

In 4
�L
0

Q
oi doi

n2
Q

o2=n
i

<1 ; n > 1 : �6:16�

2) The second case, in addition to infrared divergences,
also includes collinear (m � 0) ones, provided one may
neglect the second term in the denominator of the second
fraction in Eqn (6.13). The answer depends on the spin of the
particles. If the emitted particle has a spin J � 0; 1; 2; . . ., then
an additional factor

ÿ
pe�qi�

�J
usually appears in the ampli-

tude. The vectors e��q� lie in a plane orthogonal to the vector
q (see Section 6.1). If y is the angle between the vectors p and q,
the angle formed by p and e��q� lies in the interval �p=2� y,
p=2ÿ y�, giving��pe�qi���J 4 jEp sin yijJ :

Using the equalities p
P

qi � Ep

ÿP
oi ÿ

P
nni oi

�
and

dni � sin yi dyi dji, where n � p=Ep, n
2 � 1, nni � cos yi, we

find

Pn /
�L
0

Q
oi doi

��pe�qi���2J dni���Poi ÿ
P

oi cos yi�
���2

/
�L
0

Q
oi doi y

2J�1
i dyi���Poiy
2
i

���2 � Kn �6:17�

for which, again using Eqn (6.15), we find the estimate

Kn 4
1

n2

�L
0

Y
o1ÿ2=n

i y2J�1ÿ4=ni doi dyi ; �6:18�

implying that the integral (6.17) converges if the inequalities

n > 1 ; n >
2

J� 1
�6:19�

are satisfied.
If the first (second) of these does not hold, infrared

(collinear) divergences appear. Thus, according to Eqn
(6.19), in the n � 1, J � 0; 1 case we have infrared and
collinear divergences, whereas in the n � 2, J � 0 case
collinear divergences occur. For n5 3, both types are
absent. For J � 2 collinear divergences are absent in theories
with the factor �pe�qi��2 in emission amplitudes, as they are in
gravitation.

3) In the general case in which m � 0 and Ep and oi are
arbitrary, we take advantage of the fact that in the vicinity of
the singularity (6.13), i.e. for

P
y2ij > 0, when cos yij � �ninj�,

we have the inequality

d � p
X

qi �
�X

qi

�2
> 0 ; �6:20�

because in this case one can always choose a reference frame
in which

P
qi � 0 and d � Ep

P
oi � �

P
oi�2 > 0 if the

inequality Ep >
P

oi holds (the lower sign is for the emission
of an incident particle). Thus,

jRnj � 1

jpP qi � dj 4
2

Ep

P
oiy

2
i

; �6:21�

i.e., we arrive at integrals of the type (6.17) and inequalities
(6.19). For J > 0, the additional integration over p in Eqn
(6.14) does not lead to new divergences.

Thus, divergences appear in the following theories with
n� 2 particles in vertices and a factor �pe�J in amplitudes:

November, 1999 Infrared and collinear divergences in gauge theories 1117



1) Infrared Divergences (ID): J � 0, 1, 2, . . . for n � 1;
2) Collinear Divergences (CD): J � 0, 1 for n � 1 and

J � 0 for n � 2.
In D� 1 space-time instead of the inequalities (6.19) we

have

n >
2

Dÿ 1
; n >

4

2J�Dÿ 1
;

from which it follows that atD � 2 divergences appear in the
following cases:

1) ID : J � 0, 1, 2, . . . for n � 1, 2;
2) CD: J � 0 for n � 1, 2, 3, 4 and J � 1 for n � 1.
For D � 4, only collinear divergences with J � 0 exist.

The above formulas fail for D � 1. If the factor �pe�J is
absent, then the theory is equivalent to one with J � 0 [as,
e.g., in the case Lint � �A2

m�2]. The obtained estimates are
useful in the study of emission by virtual particles, and in
particular in dealing with effective Lagrangians.

6.4 Kinematics of collinear processes
Vectors. In massless QED, the first of the three isotropic
collinear vectors p0; p; q is expressed in terms of the other two
in view of the conservation of the 4-momentum in the vertex,
and Eqn (4.4) gives q � ap, a > 0. In prefactors (4.6), it is
necessary to take account of `weakly non-collinear processes',
i.e., to include terms O�jq?j�, where q?p � 0. We therefore
use the following standard representation for the vectors:

p � Ep�1; 0; 0; 1� ; ~p � Ep�1; 0; 0;ÿ1� ;
q � �o; q?; jqkj� ; o2 � q2k � q2? : �6:22�

The vector q? � �0; q?; 0� is expressed in terms of p, ~p and q as
follows: q? � qÿ �q � ~p p� q � p ~p�=�p � ~p� � qÿ qk. Here
and hereafter we use the dot notation for the scalar product
of 4-vectors. We have (q? ! 0)

q? � p � q? � ~p � 0 ; p � ~p � 2E 2
p ;

q � p � Ep�oÿ jqkj� � Ep
q2?
2o

; q � ~p � 2Epo : �6:23�

Polarization. Since q � el�q� � 0 for the photon, expres-
sions of the type

p � e�a�p� q?� � ÿq? � e�a�p� q?�
a

�ÿq? � e�ap�
a
�O�q2?� ; e�aq� � e�q� ; a > 0 �6:24�

in Eqns (4.6) and (4.9) are O�jq?j�. In Eqn (6.24) �p is the
vector with the components �E�p; p� and E 2

�p � p2 � q2?=a
2

since �a�p� q?�2 � 0.
Similar formulas for fermions are not so simple. A typical

expression for Eqn (4.6) is �u�p�gmu�a�p� q?� em�ap�, whose
proportionality to jq?j is demonstrated using the relations
(see a very useful discussion in Ref. [82])

u��p0� � Cp̂ 0ĥu��p� ; Cÿ2 � 4p0 � hp � hÿ 2p0 � ph2 ;
u�=ÿ � uL=R ; u� � 1� g5

2
u : �6:25�

Here h is a certain 4-vector and p0 � h, p � h 6� 0. Setting
h � q? � 0 shows that

u�a�p� q?� � C�ap̂� q̂?� ĥu�ap� �O�q2?�;
Cÿ1 � 2

���
a
p

p � h�O�q2?� ;

i.e., to terms O�q2?� we have

�u�p�̂el�ap�u�a�p� q?�� 1

2
���
a
p

p � h

� ��u�p�gm�2ap � h� q̂?ĥ � u�ap�
�
elm�p�

� 1

2
���
a
p

p � h �u�p� êl�ap�q̂?ĥu�ap� ; �6:26�

since �u�p� gmu�ap� � pm and p � e�p� � 0. This is seen by noting
that, according to Ref. [82]

�u��p0� gmu��p��
2�p0m p �h�pm p0 � hÿ hm p

0 � p� iemnrsp0n prhs�
�4p0 � h p � hÿ 2p0 �p h2�1=2

;

�6:27�

where e0123 � 1, and the proportionality of �u�p� gmu�ap� to the
vector pm follows from Eqn (6.27) and the expansion
�ugmu � �u�gmu� � �uÿgmuÿ. From Eqns (6.26) and (6.27) it
follows that the prefactors in Eqn (4.6) vanish as q? ! 0.
The vector h is absent from the current products j�m jn [82] and
hence from the probabilities of interest.

6.5 The path integral method
Widely used in modern quantum field theory, path integra-
tion also offers a good method for treating processes with
infrared divergences [67; 68, p. 368] or performing eikonal
calculations [66]. Note, however, that whereas in full-scale
quantum field theory this method leads to a fundamentally
new calculational scheme, i.e., the quasiclassical approxima-
tion, eikonal theory and the treatment of long-wave quanta
depend on the simplification of the physical picture for their
success. Thus, the Bloch ±Nordsieck model [19] replaces
Dirac's g matrices by c numbers, and the more comprehen-
sive model of Section 3 replaces current by the `classical
current operator,' Eqn (3.16), to make the problem exactly
solvable. Nevertheless, the path integral method may be
useful in these cases as well.

Let us first find a continuum integral representation for
the S-matrix. The scattering operator is defined by the T
exponent (2.2) [or (3.22)], and the main technical challenge
here is to change over to a normally ordered operator. The
starting point is Hori's formula (3.30) which allows any
causally ordered operator TF �ĵ� to be disentangled Ð i.e.,
normally ordered. To this end we use the functional Fourier
transform [68, Ch. 8]

F �j� �
�
d�w� exp�iwj�eF �w� �6:28�

[in the notation of Eqn (3.30)]; the necessary constant
factors have been incorporated into the measure d�w� of
the functional integration. Then, using Eqn (3.30) one
arrives at

TF �ĵ� �
�
d�w� eF �w� exp�ÿ 1

2
wDcw

�
: exp�iwĵ� : : �6:29�

Substituting this into the inverse Fourier transform

eF �w� � � d�Z� exp�ÿiwZ�F �Z� ;
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making the shift Z! Z� ĵ and integrating over w we find

TF �ĵ� �
�
d�Zw� :exp

�
iwĵÿ iwZÿ 1

2
wDcw

�
:F �Z�

�
�
d�Z� exp

�
ÿ 1

2
ZDÿ1c Z

�
:F �Z� ĵ� :

(with the integration measure incorporating all the constant
factors that appear). Further, recalling the definition of the
causal operator, Dc � i=�p2 ÿm2 � ie�, and noting that
ZDÿ1c Z � ÿi � d4xZ�ÿq2m ÿm2 � ie�Z � ÿ2iS0�Z�, where S0 is
the free field action, the desired representation is

TF �ĵ� �
�
d�Z� exp ÿiS0�Z�

�
:F �Z� ĵ� : : �6:30�

For the S-matrix we rewrite Eqn (6.30) in the form

bS � � d�Z� :exp ÿiS0�Z� � iSint�Z� ĵ�� : ; �6:31�

where ĵ are free field operators. The contribution of the
vacuum diagrams is eliminated by dividing the operator
(6.31) by the vacuum average of bS. Representation (6.31) is
also valid for Fermi fields provided the specifics of integration
over such fields [61; 68, p. 354] is taken into account. From
here on d�Z� denotes the measure of integration over all
quantum fields (e.g., in spinor electrodynamics
d�Z� ! d��ccA�).

In the framework of representation (6.31) the emission of
real infrared photons is described as follows. Using Eqns
(3.18), (3.19), and (3.36), and the current properties (2.10),
(2.16) it is found that the emission of real infrared photons in
the hard process a! b is given by the operator

bS IR
ba �

�
d�Zm� :exp

�
iS0�Zm� � iS 0ba�Zm � bAQ

m �
�

: ; �6:32�

where

S 0ba�Zm� � ÿ
�
d4x jmba�x�Zm�x� ;

jmba�x� � i

�
d4q

�2p�4 exp�ÿiqx� jmba�q; p�

�
�

d4q

�2p�4 exp�ÿiqx�
�X

b

ieb p
0b
m

p 0bq� i0
ÿ
X
a

iea p
a
m

paqÿ i0

�
:

It is assumed that a gauge-specifying term [53] is incorporated
into S0 (i.e., that Feynman's gauge is used).

Integrating now over Zm, Eqn (6.32) becomes

bS IR
ba �exp

�
ÿ 1

2
jmba D

mn
Qc jnba

�
: exp

�
ÿ i

�
d4x jmba�x� bAQ

m �x�
�
:

� exp

�
ÿ 1

2
N

�
: exp�ÿijbaAQ� : : �6:33�

(following the infrared regularization procedure), where Dmn
Qc

denotes the propagator of the field AQ
m , Eqn (3.17), and ReN

[� �N � N0�Q; l�] is the average number of emitted photons
[see Eqns (2.23) and (2.24)]. It is readily seen that


q1e1; . . . ; qNeN
�� bS IR

ba

��0� � j1e�1 . . . jNe�N exp

�
ÿ 1

2
N

�
�6:34�

reproduces the product of the factors in front of the amplitude
of the main process T0 �� Tba� which describe the creation of
real (2.15) and virtual (2.24) photons.

The probability density of a hard process a! b with the
total energy loss due to infrared emission

P
oi 4E gives

[according to Eqns (2.18) ± (2.20), (2.27)] a factor
b�A� �E=l�A, whereas ReN � A ln�Q=l� from Eqn (2.19).
As a result, we obtain expression (2.26) (with the replacement
L! Q),

ePE � jTbaj2 b�A�
�
E

l

�A� l
Q

�A

� jTbaj2 b�A�
�
E

Q

�A

;

�6:35�

which is regular for l! 0.
The by far more primitive (no-pair-creation) Bloch ±

Nordsieck model [19] is obtained by the replacement
gm ! um in spinor electrodynamics (um being a constant unit
vector, u2 � 1) Ð which is equivalent to the replacement
pm ! um in, for example, Eqns (2.13) or (6.12). The continuum
integration calculation of the propagator of a charged
fermion within this model is given in Refs [67; 68, p. 368].
Clearly, for u � p=m the Bloch ±Nordsieck model accounts
well for infrared emission by incident or scattered particles.

The Hamiltonian (4.13) for collinear processes is also
represented by the continuum integral (6.31), but whether this
latter can be calculated explicitly is still an open question.

Note. Since in perturbation theory the multiplicative
cancellation of divergences in Eqn (6.35) becomes additive
[e.g., �1� A ln�E=l���1� A ln�l=Q�� � 1� A ln�E=Q�, A �
O�a�], a question may occur to a nonspecialist, how is it that
three positive quantities (4.1) divergent at l! 0 sum to a
finite quantity? Let us write down those terms in the relations
da;b;c � sa;b;c=�O�ds=dO�0� [35] which diverge as l! 0:

da � g2R�ÿ4 ln 2Eÿ 3� lnE
l
> 0 �E5 1� ;

db � g2R

�
2 ln2

E

l
� 4 ln 2E ln

E

l

�
> 0 ;

dc � 1� g2R

�
ÿ 2 ln2

E

l
� 3 ln

E

l

�
(g2R � g2E=3p

2, gE is the renormalized coupling constant). We
see that the sum of the above terms is unity. The last
expression is positive if 2g2R ln2�E=l� < 1, i.e., only if the
condition for the applicability of perturbation theory is
satisfied. That the sum of positive cross sections (4.1) for
l! 0 is finite comes as no surprise because each cross section
is positive only for a finite (large enough) value of l, and the
gluon mass l does not enter the sum.

Note added in proof. As was discovered in the preparation
of materials for the 100th anniversary of V A Fock's birth
(22 December 1998), the Coulomb scattering problem (see
Section 2.1.1) was also solved by V A Fock. Obtained in
February of 1928, the solution was published by Fock in his
Principles of QuantumMechanics (Leningrad: Kubuch, 1932)
and byWGordon [Zs. Phys. 48 180 (1928)]. For details see L
V Prokhorov Fiz. Elem. Chostits At. Yadra 31 47 (2000).
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