
Abstract. The physical background of the relation T2 � 2T1

between the transverse and longitudinal relaxation times in
atomic and molecular spectroscopy is discussed.

In a recent paper [1] we reported the relationshipT2 � 2T1 for
the characteristic times T1 of `longitudinal' relaxation of the
diagonal elements of the density matrix and the `transverse'
relaxation timesT2 of the off-diagonal elements of the density
matrix of a quantum system with two nondegenerate energy
levels (see also Ref. [2]). The times T1 and T2 describe,
respectively, the free relaxation of the level population
difference to the equilibrium value and the free relaxation of
the polarization to the zero value. The calculation was
performed for two exactly solvable models of collision and
field relaxation for the limiting case of weak relaxation
perturbations.

This almost self-evident result, however, disagrees with
the widespread notion that the baseline for simple physical
situations (a `zero approximation' of a sort for the analysis of
the more complicated spectroscopic models) is the relation-
ship T1 � T2. It is this case that is usually analyzed as an
instructive example [3], or used for getting various estimates.

The issue is by no means purely academic. The analysis of
experimental data in optical and microwave spectroscopy
always involves if only the discussion of the possible causes of
discrepancies between the measurement results and those
found by calculations for a refined two-level model. Such
causes include the degeneration of the excited level, the
commencement of the regime of `strong collisions' at high
temperatures, the properties of the buffer gas, etc. It goes
without saying that physically justified assumptions leading
to reasonable estimates can only rely on sound knowledge of
the properties of a simplified physico-mathematical model.
We are not aware of any methodologically reliable direct
measurements of the ratio T2=T1 under standard conditions,
but a comparative analysis of the vast body of concomitant
scientific literature goes beyond the scope of this brief letter.

Consider a quantum system with two energy levels E1 and
E2. If it is subjected to a periodic electric field with cyclic
frequency o, then the relaxation equations for the density
matrix hnjrjmi after conventional simplifications [4] reduce to

the standard form
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where r � h1jrj1i ÿ h2jrj2i, E � oÿ o0, o0 � E2 ÿ E1, and
V is the energy amplitude of perturbation brought in by the
exciting field (we use the system of units in which �h � 1). The
equilibrium value of the difference r0 between relative
populations of the ground state and the excited state depends
on the energy temperature y in the usual way:
r0 � tanh �o0=2y�.

For calculation of the shape of the absorption line in the
quasi-stationary regime we introduce the variable
~r � h1jrj2i exp �ÿiEt�, whose imaginary part is a convenient
dimensionless function characterizing the rate of absorption
of the field energy. Straightforward algebra under the
assumption of weak saturation V 2T1T2 5 1 leads to the
simple formula

Im ~r � VT2r0

2�1� E2T2
2�
: �3�

We see that when the field is weak enough, the absorption line
has a Lorentzian shape, and its width is determined by the
time of transverse relaxation T2.

The physical meaning of the parameters T1 and T2

becomes evident when we consider the free relaxation of
variables r and h1jrj2i at V � 0. For this situation, from
Eqns (1) and (2) one finds

r�t� � r�0� exp
�
ÿ t

T1

�
� r0

�
1ÿ exp

�
ÿ t

T1

��
; �4�

h1jr�t�j2i � h1jr�0�j2i exp
�
ÿ t

T2

�
: �5�

After recalculation from a single atom to a unit of gas volume,
these variables characterize the density of the excitation
energy and the amplitude of polarization of the medium,
respectively.

Indeed, in the appropriately selected representation, the
matrix of the electric dipolemoment can bewritten in the form

hnjDjmi � d0
0 exp �ÿio0t�

exp �io0t� 0

� �
; �6�

where d0 is the numerical constant of an elementary dipole for
atoms of a given sort. The dipole moment of the atom is
calculated as the mean value of the relevant operator

hD�t�i � Sp r̂D̂ �
X
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Thus, the parameters T1 and T2 are the characteristic times
taken by the density of energy and the amplitude of
polarization to freely relax to their equilibrium and zero
values, respectively.

The relation T1 � 2T2 is not a specifically quantum
relation. Consider, for example, a medium of charged
dissipative oscillators, employed in the elementary theory of
dispersion. In this case the above relation is self-evident. It
simply derives from the fact that the energy is a quadratic
function of the canonical variables, whereas the polarization
is a linear function of the oscillator coordinates.

The quantum version of this relation is not our invention.
In the book ofWHeitler [5], the perturbation theory was used
for calculating the Lorentzian shape of the absorption ±
emission line for a two-level atom in the presence of radiation
friction:

L�o� � 1

�oÿ o0�2 � g2=4
; �8�

where g � 1=T1 is the inverse time of the atom's stay in the
excited state. Comparison of Eqns (8) and (3) reveals that the
relation T2 � 2T1 holds in this case too.

It looks like the arguments developed above leave no place
for doubt; nevertheless, the belief in the `priority' of the
relation T2 � T1 is quite common. The most obvious ground
for this belief is the customary resort to the semiphenomeno-
logical Kubo equation for the density matrix [6, 7]. As applied
to the two-level model under consideration, this equation can
be written in the form

d

dt
hnjrjmi � i hnj�V; r�jmi � ÿ hnjrjmi ÿ hnjr0jmi

t
; �9�

where V̂ is the operator of perturbation by the exciting field,
and hnjr0jmi � Zÿ1 exp �ÿEn=y�dnm is the equilibrium den-
sity matrix.

According to Eqn (9), the diagonal and off-diagonal
elements of the density matrix in the absence of an external
field relax to equilibriumwith one and the same characteristic
time t � T1 � T2. As a first estimate, the value of t is usually
taken equal to the free running time. Then, based on the
results of correlation between calculated results and those of
the spectroscopic experiment, this value usually has to be
made several times larger.

In all likelihood, the traditional trust in the Kubo
equation rests on its being structurally similar to the
Boltzmann kinetic equation in the t-approximation [7]:
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where f�xk; vk� is the one-particle distribution function, xk
and vk are the components of coordinates and velocities, and
F�xk; vk� is the macroscopic field of force. The function f0 is
the locally equilibrium biased Maxwell distribution with
respect to velocities, normalized to the local density of the
weakly nonequilibrium gas.

Equation (10), notwithstanding the obviously phenomen-
ological nature of its relaxation term, correctly describes the
relation between viscosity and thermal conductivity of a gas
medium and allows the formulation of the equations of
macroscopic gas dynamics. Applied to an electron gas in
plasma, this equation permits the study of the behavior of

complex conductivity, spatial dispersion of waves, etc. In
short, this equation is relevant to a broad class of atomic,
molecular and electron processes, and its validity has more
than once been proven by experiment.

Compared to that, the repute of the Kubo equation has
much less substance behind it, and is mostly based on the
outward analogy and seeming simplicity. Sometimes thrown
in is the formally treated principle of correspondence between
quantum and classical equations. We believe that application
of this principle to phenomenological mathematical construc-
tions is not sufficiently justified. As shown above, a micro-
physical treatment of the principle of correspondence leads to
a different result.

Of course, the final arbiter is the `pure' experiment.
Paradoxically, the staging of such an experiment is prevented
by the a priori anticipation of the result T2 � T1 by many
experimenters within the available accuracy, given that it is
not that simple to ensure the `purity' of the experiment. One
has to select a spectroscopic object with a nondegenerate
quantum transition, make sure that the relaxation perturba-
tions are small, and generate the exciting pulses with perfectly
steep fronts.

However, the theoretical arguments developed above
convince us that the result of such an experiment will most
likely beT2=T1 � 2. This allows us to formulate the following
preliminary conclusions:

(1) the relationship T2 � 2T1 is basic for simple models of
relaxation;

(2) the Kubo equation gives an exaggerated rate of
transverse relaxation;

(3) formal nonphysical application of the principle of
correspondence may be misleading.

We hope that this brief analysis will help the readers to
avoid misconceptions which, multiplied by the human factor,
may be quite impeding to the progress of science.
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