
Abstract. A review of the theory of electron momentum spectro-
scopy (EMS) based on the single (multiple) electron impact
ionization of a quantum target (atom, molecule, thin film) is
presented. Numerous examples are considered which demon-
strate the advantages of EMS for interpreting the momentum
distributions of the ejected electrons compared to other methods
used for direct studies of the many-body wave function of a
target. In particular, it is shown that EMS provides consider-
able progress in the quantum chemistry of molecules and gives a
better understanding of processes leading to rearrangement of
their outer electron orbitals upon their adiabatic approach. In
addition, EMS allows one to study in detail the band structure
and form of one-electron wave functions for both crystalline and
amorphous thin films. The possibility of direct `portraying' of
electron correlations in atoms using the double ionization tech-
nique is also considered.

1. Introduction

Experimental determination of the electron wave functions in
atoms, molecules, and solids have long attracted the attention
of researchers. Historically, a steady tendency is observed of
passing from the methods providing a global, general picture
to more detailed microscopic information. For example, the

electron diffraction technique successfully employed in this
field [1] deals with the angular distributions of elastically
scattered high-energy electrons. This allows one to determine
with good accuracy the general pattern of the electron cloud
and the spatial distribution of the total electron density.

The one-particle wave functions ci�q� in the momentum
representation are being extensively studied. Thus, the total
momentum distribution (MD) of electrons

P
i jci�q�j2 is

measured in the reaction e�eÿ ! 2g of annihilation of a
positron with one of the electrons of the system (positrons
annihilate inmatter after slowing down to the thermal energy)
[2]. In experiments, the angular correlation of two photons
with energies of about 500 keV is studied in the range of y in
the vicinity of 180� (i.e. the dependence of the coincidence rate
on the angle y between photons). The observed small
deviation of the angle y from 180� is explained by the fact
that at `some point' during annihilation an electron interact-
ing with a positron has the momentum q with a nonzero
component perpendicular to the line of photons bouncing
apart. The angular correlation curve is used for reconstruc-
tion of the electron transverse MD, which includes contribu-
tions from a quite broad group of orbitals i, because the
energy resolution DE for 500-keV photons is rather poor.

The technique of (g, e) photoelectron spectroscopy (PES)
permits the study of individual electron orbitals i [3, 4];
however, this mainly concerns measurements of the binding
energy of electrons. In experiments with solids, the angular
distributions of photoelectrons relative to the direction of a
photon beam are usually measured, and the valent states are
analyzed with the help of photons with energy Eg � 50 ± 60
eV, which eliminates uncontrollable losses of the emitted
electrons and provides high energy resolution DE ' 0:02 eV
[5]. The PES technique is called ARPES (angle-resolved
photoelectron spectroscopy) in the foreign literature.
Because the momentum of the ejected electron is two orders
of magnitude greater than that of the photon, the latter
transfers its energy to the bound electron, almost not
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changing its virtual momentum q (an analog of the `vertical
transition' in optics). As a result, the kinetic energy of the
ejected electron is Eg � ei ' q 2=2m. Thus, the differential
cross section contains a factor jci�q�j2, where the momentum
q has a large component qz directed along the momentum of
the escaping electron and is close to it in magnitude, and two
small components qx and qy, which depend on the angle
between the electron and the photon beam. As a result, in
general, the MD jci�q�j2 cannot be studied in the most
informative region of comparatively small momenta
[q ' �1ÿ 2�aÿ10 , where a0 is the Bohr radius or the atomic
length unit] except for single crystals (see Section 4).

The electron momentum spectroscopy (EMS) considered
in this review is the most informative microscopic technique,
which allows one to obtain MDs for the individual occupied
orbitals of a many-electron system (which differ in the
binding energies) over the entire range of virtual electron
momenta q, including their small values. The solution of this
problem is the final aim of EMS, and this technique has no
rivals in this respect. The investigation of MDs by the EMS
technique reveals a variety of important physical properties of
the objects under study, which are shortly listed below in
paragraphs 1 ± 9 and are discussed in detail in the next
sections. The energy resolution of EMS is worse than that of
PES: DE ' 0:2 eV for gaseous targets, and DE ' 1 eV for
thin films. However, such a resolution proves to be sufficient
for comparison, for example, of the MDs of individual
electron orbitals in molecules and of the corresponding
orbitals in complexes, analysis of MDs in different parts of
the valence band in solids (including amorphous solids) and
so forth. Of course, the EMS results obtained for the large
virtual electron momentum q in a target coincide with those
obtained by the PES technique [4].

The essence of the EMS technique proposed in papers
[6 ± 8] and first implemented about thirty years ago [9 ± 11] is
as follows. A gaseous or solid (very thin film) target is
irradiated by a sufficiently monochromatic high-energy
electron beam (the values of the electron energy E0 required
for different targets are given below). By means of a
coincidence circuit, those events are separated from an
abundance of events initiated by the electron beam in which
the incident electron flying near one of the target electrons at a
very small distance (on an atomic scale) `instantly' knocks out
the latter from the target through the Coulomb interaction
and transfers to it a large part of the kinetic energy, which is
usually chosen close to E0=2.

In particular, if we consider the simplest case of coplanar
geometry (the zero angle f in Fig. 1a), then a coincidence
circuit detects the ejected electrons with energies E1 and E2,
escaping at angles y1 and y2 to the direction of the incident
beam (for y1 � y2 and E1 � E2, the kinematics is symmetric).
In this way, the momenta p1 and p2 of the ejected electrons are
determined.Wemean, namely, the kinematics of quasi-elastic
knock-out, which is close to the kinematics of free scattering
when the angle between moments p1 and p2 is approximately
90�, and the energies E1 and E2 approach their values for free
scattering. This restriction implies that the virtual momentum
of the knocked-on electron q5 p1; p2 and its binding energy
in a target jefij5E1; E2. It is important that the momenta p1
and p2 are comparable to p0, i.e. energies E1 and E2 are
comparable to E0.

The kinematics of the described binary collision are fixed
with the EMS method in such a way that the effect of the
many-electron system, in which the knocked-on electron finds

itself, is reduced to the fulfilment of two simple but principally
important conditions: the knocked-on electron has a certain
binding energy ei 5 0 and (`at the moment of impact') the
momentum ÿq (the momentum q of the opposite direction is
a recoil momentum transferred to the final system; such a
choice of themomentum signs is traditional). These quantities
are experimentally determined from the laws of conservation
for binary collisions:E0 ÿ efi � E1 � E2 and p0 ÿ q � p1� p2.
For this reason, the EMS technique is often called the (e, 2e)
technique.

Thus, the quantities efi and q can be reconstructed from a
small, reliably detectable deviation of the kinematics of the
(e, 2e) process from the kinematics of fast-electron scattering
by a free electron at rest. The momentum q can be changed by
slightly varying, for example, the escape angles of two ejected
electrons (Fig. 1a). In this way, the MD of electrons in the
orbital i with the binding energy ei is measured, which we
denote as jFi�q�j2 (sometimes, this quantity is called the form
factor). In so doing, the entire range of physically (and
chemically) actual values of the momentum q, from zero up
to several atomic units, may be covered. The noncoplanar
kinematics when the angle f in Fig. 1 is rather small are also
methodically expedient; although, strictly speaking, upon
deviation from the quasi-elastic impact geometry, a contribu-
tion of multiple scattering inside the interacting system begins
building up.

The physical mechanism of the (e, 2e) process is very close
to the Compton scattering of hard photons [12], however, in
the latter case the accuracy of energy measurements is much
worse than in the (e, 2e) method, so that, as upon annihilation
of positrons, the total MDs of electrons are measured in the
system under study.

In the last thirty years, the development of the experi-
mental technique has gone through a number of stages related
mainly to the type of spectrometers used [9 ± 11, 13 ± 21], the
substantial increase in the rate of coincidence counting and in
the accuracy of measurements of angles and energies of the
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Figure 1. Schemes of (a) the (e, 2e) experiment, and (b) the (e, 2e) spectro-

meter: (1) Faraday trap, (2) electron analyzers, (3) electron gun, (4) gas
beam of target atoms, (5) uncoupled rotary tables.

1018 V G Neudatchin, Yu V Popov, Yu F Smirnov Physics ±Uspekhi 42 (10)



electrons flying apart. Geometry of the experimental setup
depends on the target. In the case of atoms andmolecules, the
technique of crossed electron and gaseous target beams is
employed (see Fig. 1b).

Electrostatic cylindrical-symmetry analyzers with two-
dimensional position-sensitive detectors placed at their out-
put are usually oriented at angles y1 � y2 � 45� to the
direction of the electron beam or in the same plane with the
beam (f � 0) or at a small angle f to it. Initially, the
coincidence circuit is adjusted, as a rule, for detection of
electrons with equal energies (E1 � E2). The energy difference
E0 ÿ E1 ÿ E2 can be varied by continuously elevating the
voltage across the electron gun, i.e. by increasing the energy
E0 of the electron beam.

The coincidence circuit detects a signal at some energy E0.
This means that the difference E0 ÿ E1 ÿ E2 � efi, i.e. the
ionization of electrons from the orbital i begins, accompanied
by the ion transition to the final state f. Then, the electron-gun
current is fixed and by varying angles y1 and y2 of the
analyzers the angular dependence of the differential cross
sections is obtained, which is used for constructing MDs of
the ejected electrons.

The theoretical development of the (e, 2e) technique was
concerned with fundamental problems of how the Coulomb
short-range ee-correlations in many-electron systems are
manifested in this technique [22], how the molecular electron
orbitals are `portrayed' (in particular, how the sp-hybridiza-
tion is manifested) [23], and how the electron wave functions
can be studied in a solid [24 ± 28]. As a result, a great body of
original data has been accumulated, which allows one to
make a number of new conclusions concerning physical
properties of quantum objects.

(1) It was shown experimentally [29 ± 31] that according to
the theoretical predictions the MDs of electrons are drasti-
cally different for atomic orbitals with different angular
momenta l. This is of primary importance in analyzing the
hybridization of orbitals in molecules and solids.

(2) The most direct method for studying the configuration
interaction of the electrons in an atom, caused by short-range
Coulomb ee-correlations, was proposed [22] and successfully
implemented [29]. Along with the quasi-elastic knock-out, for
example, of an electron from the He atom, when the He� ion
is mainly found in the ground 1s state, a weak satellite
transition to the excited 2s and even the 3s state was studied,
which reflects the admixture (with a small weight) of the 2s2

configurations, etc. to the ground state of the He atom.
Similarly, mixing of the 2s2 and 2p2 configurations in the
ground state of the Be atom results in the excitation of two
ionic states, Be��2s� and Be��2p�, in the (e, 2e) reaction [29].
In this case, the cross sections are proportional to the weights
of these electronic configurations, and the corresponding
MDs directly give `portraits' of the 2s and 2p wave functions.

(3) The MDs of electrons in different orbitals were
obtained with an energy resolution DE ' 1 eV and momen-
tum resolution Dq ' 0:1aÿ10 for a variety of comparatively
simple molecules, such as HF, N2, H2O, CO2, NH3, CH4,
C2H2, etc. (see Refs [31 ± 33], where high-precision calcula-
tions of the wave functions are presented; the configuration
interaction was considered in Refs [34, 35]). Notice that the
(e, 2e) technique has a very high sensitivity to the type of
sp-hybridization of the valence orbitals. It is shown that the
use of more perfect wave functions (which only weakly affects
the integral molecular properties such as the bond energy of a
molecule, the spatial distribution of the total electron density,

etc.) substantially changesMDs for the outer electron orbitals
and results in a quantitative agreement between the theory
and experiment. A change in the type of sp-hybridization of
the electron orbitals in the C, N, and O atoms composing
above molecules was studied in detail depending on the
molecular composition [31 ± 33].

(4) It has been shown with a resolution of DE ' 0:5 eV
that the highest occupied (i.e. most weakly bound) molecular
orbital (HOMO) substantially changes, being polarized upon
complex formation [33]. This was demonstrated for trimethy-
lamine �CH3�3N, which forms a loosely bonded complex
�CH3�3N ±BF 3 with boron trifluoride. The EMS was used to
studyHOMOs of dimetoximethane (CH3O)3CH2 and glycine
NH2CH2COOH [36], and the sensitivity of the form of these
orbitals to the mutual arrangement of fragments (conforma-
tion) of a complex molecule was considered. It is known that
HOMOs play a fundamental role in the formation of the
molecular reactivity.

(5) The anisotropy of the electron MD was studied in the
valence band of graphite single crystals [37 ± 41]. The wave
functions of the 2s and 2p oxygen orbitals were found from
the (e, 2e) experiment by integrating theMDs over the energy
of the corresponding bands in an ion Al2O3 polycrystal.

(6) The band structure of amorphous solid films of
carbon, silicon, and germanium has been determined with a
resolution of DE ' 1 eV, and the corresponding wave
functions have been studied [39, 42, 43]. The electron MDs
in the valence band well demonstrate the existence of short-
range order.

(7) Attempts were made to study a plasmaron satellite of
the conduction band inmetals by the (e, 2e) technique [44, 45].
However, only preliminary evidence for the existence of a
plasmaron was obtained.

(8) The absolute cross sections for quasi-elastic knock-out
of electrons from different shells of noble gas atoms were
measured [15, 46 ± 48], which allows one to check most
reliably the theoretical models (plane wave approximation,
distorted wave and eikonal approximations, etc.) and their
validity depending on the electron beam energy.

(9) According to the theoretical recommendations
[49 ± 51], studies have been initiated (so far for atoms) of the
(e, 3e) ionization with triple coincidences at initial energies of
about several keV [52 ± 54] and of the allied (g, 2e) reaction
with double coincidences [55 ± 59], aiming to obtain the
Fourier transforms of radial and angular ee-correlations in
many-electron systems of different densities.

The above topics are considered in this review.
Notice that the role of the EMS technique in the physics

and chemistry of many-electron systems is much more
important than that in the physics of similar nuclear
reactions (p, 2p), (p, pn) [60], (e, e0p) [61] and (p, p0a) [62]; the
latter were used in papers [6, 7] as a primary example. The
(p, 2p) technique, which requires particle beams with energies
of several hundreds MeV, has efficient rivals in the nuclear
spectroscopy of nucleons such as the stripping and pickup
reactions (d, p), (p, d), (d, t), etc., which occur at considerably
lower particle energies (10 ± 40 MeV).

However, the study of the reactions (p, 2p), (p, pn), and
(e, e0p) yielded an excellent result Ð the energies and
unexpectedly large widths of the hole levels upon knocking
out nucleons from deep shells of medium and heavy nuclei
[60, 63]. The quasi-elastic 1H(e, e0p�)n reaction proceeding at
the energy of several GeV was also successfully used for the
study of the meson cloud in a nucleon [64].
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We start the review with the theory of quasi-elastic knock-
out of electrons from atoms [7], molecules [7, 23], and solids
[7, 24]. In doing so we consider the most important variant of
the theory, when a special choice of the high-energy beam and
kinematics of quasi-elastic knock-out provides the simplest
mechanism of the binary ee-interaction. As this takes place, a
large energy and a large momentum are transferred to only
one particle in the system, which gives in the most direct way
valuable information on one-particle degrees of freedom in
many-electron systems and on their coupling with collective
motions.

We shall employ below the system of atomic units (au)
because they are widely used in the scientific literature
devoted to the (e, 2e) topic. Recall that the atomic unit of
energy is 27.21 eV and the atomic unit of cross section is
27.98Mb. In addition, we often use the generally adopted
English abbreviations, such as TDCS, 5DCS, PWIA, DWIA,
etc., which will be explained in the text when first appeared.

2. Theory of quasi-elastic knock-out of electrons
at high energies

2.1 General formalism
We start from a general expression for the differential cross
section in the collision theory, when in the final state there are
two electrons in the continuum [65]:

d4s � 2p
p0
jTfij2 d�E1 � E2 � efi ÿ E0� dp1

�2p�3
dp2

�2p�3 : �2:1�

Here, p0, p1, and p2 are the momenta of the incident and two
ejected electrons, respectively; E0, E1, and E2 are their
energies, and efi � ef ÿ ei is the ionization potential of an
atom in the i state with the wave function ci, complying with
the transition to the f state of the ion. If necessary,
summation over the final and averaging over the initial states
with the same quantum numbers should bemade in Eqn (2.1).

In general, the amplitude Tfi of the reaction has a
complicated structure corresponding to multiple scattering
of the incident electron from atomic electrons and nucleus,
which is described by the interaction potential

V �
XZ
s�1

v0s � V0 : �2:2�

In the case of quasi-elastic knock-out of the atomic electron
accompanied by transfer of a large momentum and energy to
it, scattering of the incident electron proceeds via its single
collision and is related to only one of the terms in the sum
(2.2), for example, to v0z, where z is the number of the
knocked-on electron (the identity of electrons is taken into
account below by the factor Z).

The amplitude in the quasi-elastic impact approximation
[which is also called the plane wave impulse approximation
(PWIA)] can be represented by the following diagram

Since the theory of impulse approximation is well known
[66], wewill present the analytic expression forT PWIA

fi without
the derivation:

T PWIA
fi � Z1=2 Ffi�q� hp1; p2jt̂0z�Etot ÿ ef�jp0; qi : �2:3�

Here, the amplitude Ffi�q� is the overlap integral

Ffi�q� �
�
ci�r1; :::; rz� c�f �r1; :::; rzÿ1� exp�iqrz� dr1::: drz ;

�2:4�

where hjt̂0zji is the Mott amplitude of the free ee-scattering
stemming from the interaction v0z.

Finally, we obtain the theoretical expression for the cross
section which is measured in `coincidence' experiments [6 ± 8]:

d4s
dO1 dO2 dE1 dE2

� Zp1p2

�2p�3p0
ds
dO

� �Mott

ee

jFfi�q�j2 d�E1 � E2 � efi ÿ E0�: �2:5�

The cross section for the free Mott scattering has the form

ds
dO

� �Mott

ee

� 4

Q4
f�x�C�y� ; �2:6�

where the following notation was used

f�x� � 2px
exp�2px� ÿ 1

; C�y� � 1� y4 ÿ y2 cos �2x ln y�� �
;

x � jp1 ÿ p2jÿ1 ; y �
jp0 ÿ p1j
jp0 ÿ p2j

; Q � p0 ÿ p1 : �2:7�

For high energies and large relative angles between ejected
electrons, the cross section (2.6) is very close to the cross
section for the elastic ee-scattering.

If necessary, averaging over the initial and summation
over the final states with quantum numbers unobservable in
the experiment should be performed in Eqn (2.5). In
particular, expression (2.5) implies that the electron spins
are not measured.

The square of the amplitude Ffi�q� represents the electron
MD in the atom corresponding to the i! f transition. The
normalization of this distribution

Sfi �
�
jFfi�q�j2 dq �2:8�

is called a spectroscopic factor. In an atom with unfilled
electron shells, as in a nucleus [67], it characterizes the square
of the so-called coefficient of fractional parentage [68].

In the Hartree ± Fock (HF) approximation, the ampli-
tude (2.4) takes the form Ffi�q� � S

1=2
fi jg�q�, where jg�q� is

the wave function (in the momentum representation) of the
one-particle orbital g from which the electron is knocked out.
The form factor jFfi�q�j2 can be treated as a correction factor
to the Mott cross section, which reflects the peculiarities of
electron `delocalization' in a quantum target.

In a number of experimental papers [15, 46 ± 48], the
results of measurements of not only the MD shape for
individual atoms were presented but also of the absolute
cross sections, which yielded the limits of applicability of the
above-discussed theory in the plane wave approximation. For
the knock-out of an electron from the outer shells of such

e0

es

tee
e1

e2

A A�

T PWIA
fi � PZ

s�1
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atoms as Ne and Ar in the case of symmetric kinematics
(E1 � E2), the inequality E0 > 2:5 keV should hold (see
Section 3).

2.2 Electron orbitals in molecules
In the case ofmolecules (and solids, see below)we arrive at the
results [23] that no longer have an analog in the nuclear
theory; however, some salient features of these results
common with those in the theory of X-ray scattering,
Compton scattering of photons [69], etc. can be noted,
namely, the interference of the amplitudes of quasi-elastic
knock-out of electrons from different centers.

Expression (2.4) can be simply generalized to the case of
molecules:

Ffi�q� �
�
exp�iqrz� c�f �r1; :::; rzÿ1;R1; :::;RN�

� ci�r1; :::; rz;R1; :::;RN� dr1:::drz dR1::: dRN ; �2:9�

where R1; :::;RN are the coordinates of nuclei in the
laboratory reference frame. By using the adiabatic approx-
imation, we transform this expression to the form

Ffi�q� �
�
dO c� rotJ 0M0K0 �O� crot

JMK�O�

�
�Y

a

dQa c
� vib
n 0 �Qa� cvib

n �Qa�

�
�Yz

i�1
dri exp�iqrz�c� eln 0 �r1; :::; rzÿ1;Qa�cel

n �r1; :::; rz;Qa�;

�2:10�
where primed subscripts correspond to the final state, and the
vectors Qa form a system of normal coordinates of the
molecule whose orientation in the laboratory frame is
specified by the Eulerian angles O.

Taking into account, as usual, the equilibriumpositions of
nuclei in the electron wave functions cel

n and cel
n 0 and one-

particle HF wave functions cg�r;Rs� of orbitals g, we obtain
the following expansion for the electronic part of a molecular
wave function

c el
n �r1; :::; rz;Rs� �

X
n00;g

hnjn00; gi cel
n00 �r1; :::; rzÿ1;Rs� cg�rz;Rs�;

�2:11�

where hnjn00; gi are the coefficients of fractional parentage.
Considering (2.11), the momentum amplitude (2.10) is
transformed to

Ffi�q;Rs� � gnn0

�
dO c� rotJ 0M0K0 �O�c rot

JMK�O�F el
nn 0�g��q;Rs�: �2:12�

The quantity Rs in Eqns (2.11) and (2.12) stands for a set of
nuclear radius vectors which are now parameters

F el
nn 0�g��q;Rs� � hnjn0; gi

�
exp�iqr� cg�r;Rs� dr ; �2:13�

gnn0 �
�Y

a

dQa c
vib
n 0 �Qa�cvib

n �Qa�;
X
n 0
jgnn 0 j2 � 1 : �2:14�

Assuming that the molecules under study are in the
ground state and are characterized by a thermal distribution
over the rotational states with the temperature

T4Trot �Trot � h2=8p2kI� ;

we can use the property of completeness of the rotational
wave functionsX

JMK

c� rotJMK�O0� c rot
JMK�O� � d�Oÿ O0� :

Then, the MD averaged over the rotational states takes the
form

jF�g��q;Rs�j2 �
X
n 0
jg0n0 j2

�
dO
8p2
jF el

0n0�g��q;Rs�j2

�
X
n 0
jg0n 0 h0 j n0; gij2

�
dOq

4p

�
exp�iqr�cg�r;Rs� dr

���� ����2;
�2:15�

i.e. the result is averaged over orientations of the vector qwith
fixed spatial orientation of themolecule, as in the theory of X-
ray scattering.

Let us represent the molecular orbital cg as a linear
combination of atomic orbitals (MO LCAO):

cg�r;Rs� �
XN
s�1

XKs

p�1
Cs

p�g� js
p�rs�; rs � rÿ Rs ; �2:16�

where Ks is the basis set dimensionality of the atom s, and the
coefficients Cs

p characterize the hybridization properties of
the atomic orbitals. The individual components j s

p�r� are the
Coulomb wave functions jnlm�r� with the Fourier transform

jnlm�q� �
�
jnlm�r� exp�iqr� dr � Pnl�q� Ylm�Oq� :

Substitution of expression (2.16) into (2.15) gives

jFg�q;Rs�j2 � G

�
dOq

4p

XN
s�1

exp�iqRs�
XKs

p�1
Cs

p�g� j s
p�q�

�����
�����
2

;

G �
X
n0

g0n 0 h0 j n0; gij j2 : �2:17�

We shall obtain the final expression for the form factor
(2.17) in two variants. The first one is based on the expansion
of expfiq�Rs ÿ Rs0 �g in (2.17) in terms of the partial waves
[23], which yields

jFg�q;Rs�j2 � F 2
at � F 2

int : �2:18�

Here, the following designations were used:

F 2
at �

G

4p

XN
s�1

XKs

p; p0
Cs

p�g� C �sp0 �g� jPnili�q�j2 dli li 0 dmimi 0 ;

F 2
int � 2G Re

X
s0 > s

XKs

p� 1

XKs0

p0 � 1

Cs
p�g� C �s;

0
p 0 �g� Pnili�q� P�ni 0 li 0 �q�

�
Xli�li 0

l� jliÿli 0 j
iljl�qjRs ÿ Rs0 j��ÿ1�mi

���������������������������������������������������
�2l� 1��2li � 1��2li 0 � 1�

4p

r

� Yl;miÿmi 0 �ORsÿRs 0 �
l li li 0

mi 0 ÿmi mi ÿmi 0

� �
l li li 0
0 0 0

� �
;

where jl�qR� is the spherical Bessel function, i � �s; p�, and the
rest of the notation is obvious. Expression (2.18) is probably
the most convenient for diatomic and polyatomic molecules
with a simple symmetry of the CH4 type [23].
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As an example, consider the sg orbital of a diatomic
molecule (with atoms a and b) with hybridization from the s
and p orbitals:

cgs � Cs�jnsai � jnsbi� � Cp�jn0psai ÿ jn0psbi�;
jFj2at �

G

2p
C2

s jPn0�q�j2 � C2
pjPn01�q�j2

h i
;

jFj2int �
G

2p
2C2

s jPn0�q�j2j0�qR� ÿ C2
pjPn01�q�j2

h
� fj0�qR� ÿ 2j2�qR�g � 2

���
3
p

CsCpPn0�q�Pn01�q�j1�qR�
i
:

Here, we used the following identities:X
J 0
�2J 0 � 1� J 0 l J

0 0 0

� �2
�1; 2

X
l even

�2l� 1� j 2l
x

2

� �
� 1� j0�x�:

In the HF approximation for the s orbital occupied by
two electrons, h0jn0; gi2 is equal to 2, while for the p orbital it
equals 4. This example shows that MDs give an easily
interpretable direct `portrait' of individual valence orbitals,
which is highly sensitive to the type of sp-hybridization.

The second variant is based on the expansion of exp �iqRs�
in (2.17) in terms of the partial waves [23]:

jFg�q;Rs�j2 � G
XN
s; s 0

XKs

p�1

XKs 0

p 0�1
Cs

p�g� C�s
0

p 0 �g� Pnili�q� P�ni 0 li 0 �q�

� �ÿ1�mi 0
������������������������������������
�2li � 1��2li 0 � 1�

p X
lm

X
l 0m 0 �ÿi�lii 0 jl�qRs�

� jl 0 �qRs 0 �;Ylm�ORs
� Y�l 0m 0 �ORs 0 ��ÿ1�m

����������������������������������
�2l� 1��2l 0 � 1�

p
�
X
LM

�ÿ1�M�2L� 1� l li L
ÿm mi M

� �
l li L
0 0 0

� �
� l 0 li 0 L

m0 ÿmi 0 ÿM
� �

l 0 li 0 L
0 0 0

� �
: �2:19�

Because Eqn (2.19) immediately contains vectors Rs, the
symmetry properties of the molecule are explicitly repre-
sented, although this expression is more cumbersome than
(2.18). A wide application of the above expressions is
discussed in Section 4.

2.3 Electron wave functions in a solid
The electron wave function in a single crystal in the tight-
binding approximation possesses translation invariance and
has the form

ckl�r� �
1����
N
p

X
R

exp�ikR�jl�rÿ R�: �2:20�

Here, k is the quasi-momentum related to the first Brillouin
zone, R is the cell coordinate, l is the zone index correspond-
ing to the atomic wave functionsjl�r�, andN is the number of
atoms in the crystal. The Fourier amplitude (2.4) for (2.20)
can be written in the form

Fkl�q� � 1����
N
p jl�q�

X
R

expfi�kÿ q�Rg

�
����
N
p

jl�q�
X
B

dk�B; q ; �2:21�

whereB is the reciprocal lattice vector. By thismeans the cross
section is described by the expression [7, 24]

d4s
dO1 dO2 dE1 dE2

� p1p2g

�2p�3p0
X
B

jjl�q�j2Ndk�B; q

� ds
dO

� �Mott

ee

d�E1 � E2 ÿ el�k� ÿ E0�: �2:22�

Here, it should be taken into account that
NVdq; k � �2p�3d�qÿ k�, where V is the volume per atom.
The factor g in Eqn (2.22) is equal to the number of valence
electrons per atom; for brevity, we assume it equal to unity at
a later time.

For fixed el�k� � ÿE0 � E1 � E2, by varying q in the
specified direction in a single crystal (which can be done by
the EMS technique), we obtain the jFkl�q�j2 MD in the form
of a discrete set of peaks corresponding to differentB, where k
is specified by the energy el�k�. By continuously varying the
value ofE1 � E2, and thereby el�k� and k, we obtain the entire
dependence jjl�q�j2 in the first Brillouin zone (B � 0) (see
discussion below about Al2O3 polycrystals).

Despite its compactness, expression (2.22) is quite
informative and allows one to analyze in detail the interest-
ing experimental data and also (as one of the theoretical
proposals) to consider various manifestations of the sd-
hybridization of the electron wave functions in the conduc-
tion band of a copper single crystal [24], which in turn
suggests that the (e, 2e) technique can be successfully used
for studying the electronic structure of high-temperature
superconductors (see Refs [25 ± 28], where the theoretical
discussion about other aspects of the band structure relevant
to the (e, 2e) technique is of interest).

Consider the influence of collective effects on one-particle
degrees of freedom using the one-particle Green functions.
For this purpose, we represent expression (2.4) in the form

Faf�q� �
�
exp�iqrN� c�af �1; :::;Nÿ 1�

� c0�1; :::;N� dt1::: dtN �
1����
N
p Saf ja�q� : �2:23�

Here, Saf is the spectroscopic factor, and the function ja�q� is
normalized to unity. The Slater determinantc0 can be written
as an identity [70]

c0�1; :::;N� �
1����
N
p

X
i

ji�N� âij0i ;

where i denotes the electronic state, âi is the electron
annihilation operator, and j0i � c0. In this case, expression
(2.23) takes a compact form

Faf�q� � 1����
N
p ja �q� �âa�0f : �2:24�

Note that for plane waves one obtains jk�q� � d�kÿ q�.
Let us introduce the spectral density of the one-particle

Green function [71]

A�q; e� �
X
f

j�âq�0fj2 d�eÿ ef� �2:25�

in such a way that

A0�q; e� � d�eÿ �eq ÿ m��
for the Fermi gas of noninteracting electrons. The quantity

n�q� �
�0
ÿ1

A�q; e� de
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characterizes the total electron MD in a solid, and the
difference of the function n�q� from the step function
Y�qÿ kF� is the simplest manifestation of the deviation of a
degenerate electron gas from an ideal gas. Comparison of Eqn
(2.25) with (2.23) and (2.24) shows that the function A�q; e� is
equivalent to the quantity

P
f S

2
af jja�q�j2 applied to a unit

energy interval. Now, we can write out the expression for the
cross section [25, 26]

d4s
dO1 dO2 dE1 dE2

� p1p2

�2p�3p0
ds
dO1

� �Mott

ee

� C 2
s A�q; e� d�E1 � E2 ÿ eÿ E0� ; �2:26�

where the spectroscopic factor C 2
s characterizes the spin

degeneration. A formula equivalent to (2.26) is used in
nuclear physics [72] for the analysis of results of the (e, e0p)
reaction at the energy E0 ' 600 MeV for medium and heavy
nuclei [61], when the density of levels of the final nucleus is
high.

One can see from Eqn (2.26) that the (e, 2e) technique
allows one to study the entire `topography' of the spectral
density A�q; e� Ð its dependence both on q and e. This
topography just reveals the role of collective effects.

As an example, consider the knock-out of an electron
from the closed shell of an atom in metal (`the deep hole'). In
this case, the collective response of the conduction electrons
to a `sudden' appearance of a deep hole is of interest [25, 26].
Two simplifying circumstances become important. First, the
deep hole does not multiply (in contrast to the soft
particle ± hole excitations of the Fermi gas), and its recoil
momentum can be neglected (`an infinitely heavy ion').
Second, the momentum of collective excitation is small
compared to the mean value of q for a highly bound electron.

Thus, the factor taking into account the formation of a
deep hole a is simply introduced as a separate multiplier, and
the momentum amplitude (2.24) can be presented in the form

Faf�q� � Cs�âa�0f ja�q� ;
so that the cross section is

d4s
dO1 dO2 dE1 dE2

� p1p2

�2p�3p0
ds
dO1

� �Mott

ee

� S 2
a Za�e� jjnl�q�j2 d�E1 � E2 ÿ eÿ E0� ;

where

Za�e� �
X
f

j�âa�0fj2 d�eÿ ef� �2:27�

is the spectral density of the deep hole [73], with summation
being performed over the excited states of a system of
conduction electrons, and S 2

a � 2�2l� 1�.
In the theory of collective response [73], the functionZa�e�

has the form

Za�e� �
X
n

exp�ÿa� a
n

n!

� �
A�eÿ e0 ÿ nop� : �2:28�

Here, A�x� � jxjÿ�1ÿb�Y�x�, b � 2
P �2l� 1� �dl=p�2, a '

' rs=6, dl are the phases of an electron scattering by the
deep hole potential, rs is the mean distance between conduc-

tion electrons, and op is the plasmon energy (for brevity, its
dispersion is not discussed).

Consider the termwith n � 0 in Eqn (2.28) (the main peak
without plasmon satellites). Calculations have shown [73]
that for such metals as Li, Na, and Cu the values of 1ÿ a are
equal to 0.80, 0.87, and 0.98, respectively, i.e. the (e, 2e) cross
section should exhibit the Mahan ±Nozieres threshold
singularity for e! e0 in the form of a sharp asymmetric
peak [25, 26]. At the same time, the result will be different for
the threshold UV absorption, which was considered in papers
[73] as a physical application of the theory of collective
response. Instead of A�e�, the quantity B�o� � jojÿbl
appears in (2.28), where bl � 2�dl=p� ÿ b, o � eÿ e0, and l
is the orbital moment of an electron on the Fermi surface after
its transition from the highly bound state.

If 1ÿ b4 0, but bl 5 0 (for example, upon the s ± p
transition in Li, Na and some other metals, where b1 ' ÿ0:1
[73, 74]), the Mahan ±Nozieres singularity manifests itself
upon optical absorption as the threshold suppression of the
cross section. The physical reason is that the singularities
reveal themselves not in the function Z�e� for the deep hole
but in the spectral density B�o� of a convolution of the deep-
hole Green function with the Green function of the conduc-
tion electron upon the action of the nonstationary potential of
the deep hole. This is one of numerous examples when the
(e, 2e) technique can give substantially new information on
the object under study (in contrast to optical methods), and
the energy resolution achieved at present allows one to
perform such experiments (see below).

Another example of the study on the spectral density
A�e; q� by means of the (e, 2e) technique is an investigation
of the plasmaron satellite in the conduction band in metals.
The spectral density A�e; q� of the ideal Fermi gas as a
function of e at q fixed is zero everywhere except the energy
e � e0 ÿ �k2F ÿ q2�=2m�, where a peak of the unit intensity
shows up. For a real electron gas, for example, in a thin
Mg film (rs � 3), the calculation performed by the random
phase method [75] yields two peaks near the bottom of the
conduction band (say, at q � 0:2 kF). These peaks have
comparable heights: one of them, with intensity 0.6, is
located approximately where the unit peak is observed in the
ideal Fermi gas, and the second one, with intensity 0.35, is
located 1:5op below the bottom of the conduction band
(op ' 17 eV). The second peak is caused by the collective
excitation, i.e. a plasmaron. Its characteristic feature is that
the limiting momentum qmax above which the hole level
broadens (gets wider) approximately equals 0:5 kF [75]. This
property can be conveniently studied namely by the (e, 2e)
technique. It allows one to separate `trivial' events, when an
electron is knocked out from the conduction band and excites
a plasmon `in the external way' during propagation through a
film. Experimental studies [44, 45] have given only prelimin-
ary evidence of the existence of a plasmaron because of the
insufficient statistical accuracy.

Having reported the fundamentals of the formalism, we
can enter into a discussion of the results obtained for atoms,
molecules and solids.

3. Electron momentum spectroscopy of atoms

3.1 Atoms as a bridge to quantum chemistry
The EMSwas mainly applied to atoms of noble gases He, Ne,
Ar, Xe, and Kr. The EMS kinematics of noble gases have
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been extensively studied by Australian and Italian scientists,
so we refer here to reviews [76 ± 79] which contain references
to the original papers.

The EMS language is the language of HF orbitals, and
only in the case of light atomic particles (H,He, Hÿ, Li, etc.) it
seems timely to use the language of the quantum theory of
few-body systems. In fact, we are dealing with different
approximate models of the same physical reality, the
difference being that the HF model considers a part of the
ee-interaction implicitly in the mean-field potential, while
another part of this interaction is explicitly specified in the
wave function of an atom (residual ion) by including the
interaction of several electronic configurations (the so-called
correlation effects).

Theoretical models of systems containing few particles
assume either the direct numerical solution of the initial
SchroÈ dinger equation or the use of trial functions taking
into account their radial and angular correlators, when the
explicit dependence on the coordinate r12 is introduced into
the wave function. For example, for para helium the trial
wave function of the ground 1S0 state, allowing for the
interaction of electron configurations �1s; 1s�, �1s; 2s�,
�2s; 2s�, �2p; 2p�, etc., can be used or the Hilleraas type
function [see Eqn (3.12)]. Of course, these representations
are related to each other and, for example, the Hilleraas
function can always be expanded over a total system of one-
particle HF wave functions, although the number of
significant terms in this expansion can be large.

In this section, we shall use the language of interaction of
theHF configurations when discussing (by the example of the
He atom) the important question of how the wave functions
of many-electron systems differ from the HF wave functions
(or how the ee-correlations manifest themselves in these
systems). Then we apply the theory of few-body systems to
the He atom.

After an `instant impact', a virtual state of an atom with a
hole is formed, which should decay to the ion state with the
same binding energy; we denote this state by a subscript a.
The summation in expression (2.5) for the cross section
should be performed over this subscript. Let us write the
initial state of the atom as a product of the wave function of
the atomic orbital from which ionization occurs and the
residual minor

jcii �
1����
Z
p

X
jfnl F

R
i i : �3:1�

The number of terms in the sum corresponds to the number of
electrons in the system.

The ion state can be written for generality in the
representation of interacting electron configurations:

hcfa
j � aa0 hfHF

fa
j �
X
j

aaj hF j
fa
j : �3:2�

Here, hF j
fa
jare the electron configurations that, inour opinion,

should be present in the ionmodel. According to the Brillouin
theorem, they include two or more excited electrons in order
to correspond to the same quantum numbers as the jfHF

fa
i

state.
The convolution of (3.1) and (3.2) yields

Ffai�q��
X

fnl�q� aa0 hfHF
fa
jFR

i i �
X
j

aaj hF j
fa
jFR

i i
" #

: �3:3�

The role of the sum taken over the number of electrons in the
orbital in Eqn (3.3) after substitution in Eqn (2.5) and aver-
aging over the initial states is reduced to a simple replacement
of the factor Z in the cross section by the number of electrons
in the orbital Nnl. In turn, the square of the quantity in
brackets in Eqn (3.3) is equal to the spectroscopic factor Sfai

considered in Section 2.1. Notice that the convolution
hfHF

fa
jFR

i i is not equal to unity because radial one-particle
wave functions of an atom and an ion are generally different
[80]. The convolutions in the sum over j can be either zero due
to the orthogonality of the angular states (as in the case of
inert gases) or can make, as a rule, a small contribution in the
case of a weakly populated outer electron shell.

Of course, other expansions of the initial and final states
are possible depending on the physical properties of an
atomic target and an ion; however, the form factor (3.3) will
contain in any case (in the configuration interaction approx-
imation) the Fourier transform of the one-particle wave
function of the atomic orbital from which the ionization has
occurred. This orbital is identified by the dependence of the
differential cross section on q and by the difference energy
spectrum eaf � ÿE0 � E1 � E2.

Figure 2 shows the classical angular spectra in the case of
the (e, 2e) ionization from the 2s and 2p shells of the Ne atom.
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Figure. 2. Classical angular and momentum TDCSs for the Ne(e, 2e)Ne�

reaction upon the (e, 2e) ionization from the (a) s and (b) p shell;

E0 � 2:6 keV [78].
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The qualitative difference in the shapes of the curves of triple
differential cross sections (TDCS) clearly demonstrates the
advantage of EMS, which allows one to separate with high
accuracy the contributions of the s and p components when
studying the hybridized orbitals in quantum chemistry, and
also to reliably distinguish the MDs of su and sg orbitals in
diatomic molecules (N2, F2, etc.). For smaller angles in the
case of the p shell, the result of calculations with trial func-
tions taken from the handbook [80] does not well agree with
experiment. This can be explained by the necessity of
accounting for a small correlation between the 2s and 2p
configurations in theNe atom, as was pointed out inRef. [81].

Of great interest is a series of symmetric relativistic
experiments on the ionization of the k shells in Cu, Ag, and
Au atoms [82]. The correlation effects are not very important
for deep holes, so that the mechanism of ionization of the k
shells of heavy atoms is similar to that of the He ionization.
However, in this case the relativistic effects and the extra-
energetic effects due to distortion of plane waves play an
important role, the latter emerging from the fact that these
waves spend a `long time' in the mean atomic field. Simple
estimates have shown that this assumption is correct [83]. It
has received further support through relativistic calculations
in the distorted wave impulse approximation (DWIA) [84].

To describe the details, however, the complete relativistic
calculations were required, taking into account the quantum
electrodynamic propagator, spin ± orbital effects, singlet and
triplet states and discarding the amplitude factorization. It
became obvious that the quasi-relativistic approach does not
work. Also, it was apparent that calculations of the distorted
waves should take into consideration the excitation channels
along with elastic scattering channels. These circumstances
impose natural restrictions on the fields of applicability of the
PWIA [see Eqn (2.3)] in the case of atomic ionization from the
inner shells: by increasing energy, we pass to the relativistic
domain, where the elegant formula (2.5) is not valid. Other
restrictions are considered in Section 3.3.

Consider anew the correlation effects and their influence
on the energy and angular spectra. If the configuration
interaction in the initial-state wave function is strong,
representation (3.2) should be used not only for an ion but
for a target as well. In this case, contributions from the MDs
of orbitals with different angular momenta can make their
appearance in expression (3.3), for example, the s and p
orbitals, which will affect both the energy and momentum
(angular) spectra of the (e, 2e) reactions. In particular, along
with the peaks related to the dominating HF orbitals, the
energy spectrum will exhibit (in the case of an adequate
resolution) the corresponding correlation peaks Ð satellites
of the main peaks of the different intensity (Fig. 3). This
conclusion was drawn by Levin in paper [22], where the
energy and angular spectra of the C and Be atoms were
calculated taking into account the intense configuration
interaction in the ground state.

Beryllium is of interest because it is similar to theHe atom:
along with the filled inner shell, it also contains two outer-
shell electrons. The ground 1S0 state is a superposition of two
electron configurations 0:95�1s22s2� � 0:32�1s22p2�. It can
transfer either to the 2S state of the Be� ion (the 1s22s
configuration, the transition energy efi � 9:3 eV) or the 2P
state (the 1s22p configuration, efi � 13:3 eV). In contrast to
He, the electronic states of the Be� ion are quasi-degenerate
because the energies of transitions to these states are different,
and the energy (e, 2e) spectrum exhibits an additional
correlation peak. As in the case of helium, the P form factor
is approximately 100 times smaller than the S form factor;
however, as a whole the distributions correspond to those
displayed in Fig. 2.

3.2 Helium as the simplest target
Helium is a simplest two-electron target which permits in a
number of cases the study (within the framework of three- and
four-particlemicroscopicmodels) of themechanisms of (e, 2e)
and (e, 3e) collisions and the effect of the ee-correlations on the
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Figure 3. Energy spectrum of an argon atom measured in the symmetric kinematics of the EMS experiment for f= 0� (a) and 10� (b).
Peaks 1, 4, 6, 8, and 9 belong to the 2S family; the rest of the peaks belong to families 2P and 2D; E0 � 500 eV [133].
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energy spectrum structure and the formof angular differential
cross sections. Helium represents a kind of test object for
verifying various microscopic models in the scattering theory
of several chargedparticles, including themodels of theatomic
wave functions with the direct inclusion of the ee-correlators
(it is assumed that in a classical HFmodel the ee-interaction is
taken into account implicitly, via the mean electric field).

Themost abundant in nature is para helium, for which the
coordinate part of the ground-state wave function is sym-
metric. It can be represented as the sum

ci�r1; r2� � 4p
X1
l�0

F0l�r1; r2� hYl�n1�jYl�n2�i �3:4�

over the angular correlations, where the function F0l is
calculated, as a rule, using the symmetrized products of the
Laguerre type trial functions.

Taking into account expansion (3.4), after integration
over dE1 and the angular variables, expression (2.5) takes the
form

d3sn
dO1 dO2 dE2

� 26

p
p1p2
p0

�
ds
dO

�Mott

ee

Xnÿ1
l�0
�2l� 1�

�
�����
1

0

r 21 jl �qr1� dr1
�1
0

r 22jnl�r2� F0l�r1; r2� dr2
����2 ; �3:5�

where jnl�r� are the Coulomb functions of the stationary
states in a field with the charge Z � 2, and jl�x� are the
spherical Bessel functions. It is assumed in Eqn (3.5) that the
hydrogen-like residual ion can be found both in the ground
(n � 1, l � 0) and the excited state.

Helium constitutes a peculiar atom. Because of a large
binding energy ei � ÿ79 eV, the contribution F00 dominates
with a weight of 94 ± 98% in various simple and correlated
models of the wave function ci. It was found that almost all
known models of the wave function yield the same cross
section in the vicinity of a quasi-elastic peak. The EMS
experiments cannot distinguish the details (Fig. 3a). To
explain this fact, write out the expression for the momentum
q in the case of the coplanar symmetric kinematics of the EMS
experiment:

q '
��������
2E0

p
1ÿ cos y

cos y�

� �
; y� ' p

4
ÿ eif
2E0

: �3:6�

It follows fromEqn (3.5) that for n � 1, the momentum q � 0
at the cross-section maximum. By expanding the integrand in
Eqn (3.5) in a series in the vicinity of q � 0, we obtain

Ffi�q� ' Aÿ Bq 2 : �3:7�
Here, the term A determines the absolute value of the cross
section, which has not been measured in earlier experiments
and was substantially different (approximately by a factor of
two) in the later experiments performed by different authors
[85, 86], because they used different methods for evaluating
the area of intersection of the electron and atomic beams.
Thus, the termA in Eqn (3.7) cannot give definite information
on the ground-state wave function.

In turn, the coefficient B determining the shape of a
parabola is proportional to the integral

B /
�1
0

r42 dr2

�1
0

r 21 exp�ÿ2r1�F00�r1; r2� dr1 : �3:8�

It follows from the latter expression that the integration over
r2 essentially `cuts' the inner region of the helium one-particle
wave function for r2 � jeijÿ1=2 ' 0:5 au, so that the coefficient
B is substantially determined by its asymptotics, which should
be the same of all `correct' trial functions.

From the point of view of the study on ee-correlations, of
most interest are the experiments in which the He� ion is
excited to the state with the principal quantum number n � 2;
we denote such reactions as (e, 2e)�. In this case, the
momentum distribution density has the formX

f

jFfi�q�j2 � rn�q�

�
Xnÿ1
l�0
�2l� 1�

�����
1

0

r 22 jl�qr2� dr2
�1
0

r 21 jnl�r1�F0l�r1; r2� dr1
����2:
�3:9�

The term with l � 0 can no longer play the dominating role,
and the contributions from the higher with respect to l waves
should affect the cross section shape.

A series of symmetric experiments upon reactions
He(e, 2e)He�n with n � 2 and 3 was performed by Australian
scientists in the mid-1980s [87]. The authors found that the
experimental cross sections were substantially different from
those calculated using the HF model. However, later on the
correctness of the PWIA computations [87] was questioned
[88], although the initial energy was 1.2 keV.

The use of distorted waves somewhat improved the
situation and was substantiated by the fact that the excited
state is spatially `broader' than the ground state, and electrons
spend `more time' in the distorting atomic field.

In reality, the necessity of taking account of the distorted
waves in experiments [87] stemmed from their noncoplanar
geometry. If the momenta of the incident and knocked-out
electrons do not lie in the same plane, themechanism of quasi-
elastic knock-out becomes not unique, and the internal
multiple scattering should be taken into account. When the
azimuthal angle is small, this can be easily performed by
calculating eikonal corrections. In turn, the necessity of the
noncoplanar kinematics of the experiments was caused by a
substantial increase in the intensity of satellite spectral lines
with increasing azimuthal angle.

Figure 4 illustrates the effect of explicit correlations on
the shape of the differential cross section, when the residual
ion resides in the ground state with the principal quantum
number n � 1 and also when it is excited to the states with
principal quantum numbers n � 2 and 3 [89]. The calcu-
lations were performed using the HF type wave function
RHF of the helium atom from Ref. [80]:

cRHF
i �r1; r2� � F�r1�F�r2�; F�r� �

X5
i�1

ai j1s
i �r� ; �3:10�

and functions explicitly containing both radial and angular
correlations, namely, one of the Silverman±Platas±Matsen
(SPM) functions [90]

cSPM
i �r1; r2�� 1�������������

1� l2
p �

N j1s�r1�j1s 0�r2� � j1s 0�r1�j1s�r2�
h i

� 4pl���
3
p j2p�r1�j2p�r2� hY1�n1�jY1�n2�i

�
; �3:11�
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and the Hilleraas (H) type function [91]

cH
i �r1; r2�
� N j1s�r1�j1s 0 �r2� � j1s 0 �r1�j1s�r2�

h i
�1� C0e

ÿlr12� : �3:12�

In expressions (3.10) ± (3.12), we set

j1s�r� �
�����
g3

p

r
exp�ÿgr� ; j2p�r� �

������
d5

3p

s
r exp�ÿdr� ;

where parameters g and d depend on the model type. Notice
here that we denote the functions with explicit angular
correlations by the spectroscopic symbol �1s1s 0� (instead of
1s2) adopted in the modern scientific literature, which
emphasizes that electrons occupy different s orbitals.

One can see that the cross sections for the models which
take into account the ee-correlations explicitly differ in the
absolute magnitude and shape from the cross sections for the
HFwave functions with n � 2 and 3. It should be emphasized
that the above-mentioned splitting of the quasi-elastic peak is
mainly caused by radial ee-correlations, although expression
(3.2) could suggest that this effect results from the admixture
of the higher waves, i.e. from the angular ee-correlations. This
conclusion follows from the almost complete coincidence of
the cross sections calculated from Eqn (3.2) both by taking
into account only the term with l � 0 and without this
restriction, i.e. the p-waves do not play an important role in
this case.

Let us try to explain an obvious discrepancy appearing in
the description of an atomic target by different models (using
different `languages', as we wrote in Section 3.1). Consider in
Eqn (3.9) only the term with l � 0. Let the function F00 be a
symmetric sum of exponentials exp �air1 � ajr2� with some
coefficients ci. In that case, the double integral in Eqn (3.9)
equals the sumX

i

ci

�q2 � a2i �2
:

For n � 2, the inner overlap integral in formula (3.9) can
become negative, which is impossible for n � 1. In addition to
that if the exponents are different, the above sum can have
several extrema and q � 0 will correspond to a minimum
rather than to a maximum, which is just observed in the case

of the SPM and H wave functions. This is not the case for the
RHF function, although it is also composed of a sum of
exponentials.

From the physical point of view, this effect appears due to
the conceptual difference in the structure of the 1S0 states.
Indeed, the use of the SPM and H wave functions with radial
correlations allows one to consider two ionization mechan-
isms. In the first case, an electron is knocked out from the 1s
state and the remaining electron passes from the 1s0 state to
the excited state of the He� ion because of the presence of the
correspondingHF component in the expansion. In the second
case, an electron is knocked out from the 1s0 state, while the
remaining electron passes from the 1s state to the excited state
of the He� ion for the same reason. The interference in the
amplitudes corresponding to these two mechanisms results in
the shift of the binary peak to smaller angles, its smearing and
even in its noticeable splitting into two peaks.

In the case of the HF function, both electrons are located
in the same orbital, so that only the (e, 2e) scattering is rea-
lized. In turn, the location of the electrons in different orbitals
is explained by the fact that they are charged particles. One
electron `sees' a nuclear charge Z � 2 and is located closer to
the nucleus by screening one charge unit, whereas another
electron `sees' a charge Z � 1 and is located farther from the
nucleus. This qualitative picture corresponds to the now
popular Temkin ± Poet approximation (the s-atom) [92].

The trial HF type radial functions are usually written as a
sum of products of the Laguerre polynomials and exponen-
tials [80]. The expansion of the radial-correlated wave
function of He in such a `Sturmian' basis set results in a
rather intense mixing of the (ns, ms) configurations, which is
rarely employed in the HF calculations. According to the
concept of the HF approximation, the explicit radial correla-
tions are caused by intensive exchange processes. In this
sense, the HF functions and Hilleraas functions are opposite
to each other.

Thus, the above results show that the (e, 2e) ionization of
helium accompanied by the transition of the helium ion to the
ground state gives us in fact no information on the type of the
wave function of the helium atom (except a small decrease in
the spectroscopic factor in the case of functions other than the
HF functions). The boundedness of the angular range of
measurements by the values q � 2 au does not allow one to
make an unambiguous inference about the electron density at
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small distances from the nucleus and about the short-range
angular and even radial electron correlations. Hence there is a
whole set of various trial wave functions that are physically
equivalent for the description ofMDswithin the experimental
error and considering the boundedness of the measurement
range. This resembles somewhat the situation with the phase-
equivalent potentials in nuclear physics.

At the same time, an atomic ionization accompanied by
simultaneous excitation of the residual ion is more informa-
tive in this respect. First, such EMS experiments can be
employed for studying radial ee-correlations, because their
presence in a target substantially affects not only the absolute
value but also the shape of the TDCS. In other words, the
(e, 2e)� experiments give distinctive information about the
type of the functions.

As for the angular ee-correlations, their presence in the
wave function of a target only weakly affects the calculated
cross sections. However, these conclusions are mainly result
from the peculiarity of the He atom which is the most
`compact' atom, whereas in the case of heavier two-electron
atoms, for example, Mg or molecules, both types of correla-
tions should be considered.

In addition, taking into account expression (3.5), one can
conclude that the EMS experiments with less `compact' two-
electron atomic targets, for example, negative ion Hÿ or an
initially excited atomcarrymore information about thedetails
of the wave function at distances more than 1 au from the
nucleus. This is also valid for molecules (see Section 4).

3.3 Corrections to a plane wave impulse approximation
Helium can be conveniently used for studying the limits of
applicability of the EMS technique based on the model of
quasi-elastic impact and plane waves, because only few pure
experiments have been performed with atoms in the EMS
kinematics Ð either the initial energy of the beam was
insufficient for expression (2.5) to be valid or the geometry
of the experiment was noncoplanar. In the latter case, the
quasi-elastic knock-out of the electron is no longer dominant
and the contribution of the secondary processes should be
accounted for.

Figure 5 shows results of a series of typical (e, 2e)
experiments with a helium atom for different initial
energies E0 [93]. One can clearly see that the PWIA and
DWIA (Coulomb waves) calculations coincide in fact only
for E0 � 3:6 keV. For an energy 1.6 keV and higher, the
shapes of the curves coincide but the absolute values are
markedly different (note that the scale is logarithmic!). For
E0 � 800 eV, the difference between the PWIA and DWIA
calculations and the experimental data becomes substantial.
The experimental findings were normalized to the calculated
results in the maximum of the differential cross section at
E0 � 3:6 keV.

Because complicated computations of the (e, 2e) processes
in molecules and solids are often performed in the PWIA, we
will discuss below corrections to it introduced by other
interaction mechanisms in order to find the limits of
applicability of the model of quasi-elastic impact.

In Refs [81, 94] based on the theory of multichannel
scattering of several particles, the expression

Tfi�p0; p1; p2� � Z1=2

�
dp01 dp

0
2 dq

0

�2p�3�2p�3�2p�3 hc
ÿ
f �p1; p2�jp01; p02i

� hwÿ1 �p01�; wÿ2 �p02�jt̂ee�Eÿ ef�jw�0 �p0�; q0i Ffi�q0� �3:13�

was obtained for thematrix element of a single (e, 2e) collision
with an outer-shell electron, which supplements formula
(2.3). The one-particle wave functions jw�i �p�i in Eqn (3.13)
correspond to the outgoing or ingoing wave distorted by the
mean atomic field. The potential of this field in a complex
target is usually represented by a square well potential, which
in turn leads to the representation of the distorted wave in the
form of a plane wave directed along the vector p, with the
wave number found from the expression p � �2�E� �V��1=2.
The potential �V of the mean atomic field includes both the
real and imaginary parts. In a particular case of a high-energy
particle or a weak field, we obtain eikonal corrections
distorting the phase of the plane wave.

However, because electrons are the charged particles, the
theory of scattering by short-range potentials cannot be
formally applied to the (e, 2e) scattering [95, 96]. In Refs [81,
94], quantitative corrections to the PWIA results, caused by
the interaction of electrons at the atom periphery and related
to the term hcÿf �p1; p2�jp01; p02i in expression (3.13), were
found. Their physical background is quite simple: during
their motion from `the atomic surface' which can be, for
example, the outer electron shell to the detectors, the electrons
will continue attracting the ion (Z � 1) and repulsing from
each other. As a result of this peripheral process, the electron
paths bend and they enter the detectors at larger angles
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compared to those in the case of straight-line motion.
Therefore, the experimental curve of the differential cross
section shifts to larger angles compared to the PWIA
calculations. The same conclusions were drawn by Gailitis
[97].

By neglecting the peripheral Coulomb interaction, we
obtain

hcÿf �p1; p2�jp01; p02i � �2p�6 d�p1 ÿ p01� d�p2 ÿ p02� �3:14�

and arrive at the DWIA expression (3.13). The idea of using
the optical potential for calculations of the distorted waves
was successfully developed in the 70s ± 80s by McCarthy,
Weigold et al. [98]. The advantage of their model is that it
simplifies expression (3.10) and eliminates the integration
over q0, because the amplitude hp01; p02jt̂ee�Eÿ ef�jp0; q0i
includes the law of conservation of momentum
d�p01 � p02 ÿ p0 ÿ q0�. This circumstance again leads to the
factorization of the amplitude into the structural and
dynamic cofactors.

With advances in computer technology the above analytic
model was replaced by more developed models of the
distorted waves and computational algorithms borrowed
from nuclear physics. However, the `optical' eikonal which
has a clear physical meaning proved to be useful for the
qualitative explanation of relativistic (e, 2e) experiments [82]
performed with inner atomic shells of Cu and Ag, as was
mentioned above. Notice that the DWIA calculations also
result in the shift of a curve of the differential cross section to
larger angles, thus improving the agreement with the
experiment.

Thus, the theory of the (e, 2e) ionization contains (along
with corrections related to the distortion of the electron plane
waves by a central mean field and inherent in any scattering
theory) three-particle distortions, which are specific for
Coulomb scattering and are caused by the long-range
interaction. Their effect can be conveniently estimated using
the semiclassical approximation of quantum mechanics [99]
[in fact, the delta functions in Eqn (3.14), reflecting the
straight-line motion of the ejected electrons, should be
replaced by delta functions along their classical paths]. For
this reason, we shall call such corrections the three-particle
semiclassical corrections as opposed to the eikonal correc-
tions which are related only to the two-particle dynamics of a
free electron motion in a mean atomic field (although both
these corrections are actually semiclassical).

The eikonal phase corrections to the plane waves in
functions jw�i �p�i can make a much greater asymptotic
contribution to the differential cross section, because they
are proportional to E

ÿ1=2
0 (see, for example, Ref. [66],

Ch. C5), whereas semiclassical corrections for the path
bending are proportional to Eÿ10 [81]. The eikonal correc-
tions remained in the high-energy asymptotics, so that the
DWIA represents a natural `analytic' continuation of the
PWIA. However, the semiclassical corrections which have no
analogs in the conventional scattering theory also play an
important role in practice.

Figure 6 displays the ratio of the experimental and
theoretical cross sections for the He(e, 2e)He� ionization in
the EMS geometry in a broad range of the initial energies,
taking into account only semiclassical corrections [81]. One
can see that the deviation of the theory from the experiment
does not exceed 20% even for comparatively low energies. It
seems likely that calculations for medium energies should

consider both eikonal and specific semiclassical corrections;
however, such combined calculations have not been per-
formed so far.

Let us estimate the range of applicability of the PWIA
model. It follows from the virial theorem that the mean field
potential �V ' 2e0, where e0 is the energy of the ionized shell.
In this case, the condition of smallness of eikonal corrections
has the form

�Vr0
pa�b�

5 1 or
2e0r0������
E0

p 5 1; �3:15�

where r0 is the radius of the ionized electron shell. Because
e0r20 � 1=2C 2, where C is a constant of the order of unity,
criterion (3.15) takes the form

C

�������
2e0
E0

s
5 1 :

The PWIA andDWIA calculations give close results for most
atoms at E0 ' 3 keV [96].

4. Electron orbitals in molecules

It was noted in Section 1 that general information on the
shape and size of molecules can be obtained, for example,
from elastic scattering of high-energy electrons. The (e, 2e)
technique has another advantage. It allows one to directly
`see' an individual molecular orbital (MO) in the momentum
space, its structure as a linear combination of atomic orbitals
(LCAO), and to distinguish bonding and antibonding
orbitals. In addition, this technique permits one to study the
ee-correlations, which can strongly affect the inner valence
orbitals, and the deformation of the outer occupied MOs
upon the complex formation, being a first step in the
`microscopic' study on the reactivity of molecules, etc.

We showed in Section 3 how different MDs for s and p
electrons in atoms are (the MD for d electrons at small q is
proportional to q4 rather than to q2, as for p orbitals, which
can be distinctly revealed in experiment). This results in the
high sensitivity of the (e, 2e) technique to the sp-hybridization
of individual bonding orbitals (in particular, the 3sg orbital of
the N2 molecule) [7]. For example, the degree of sp-hybridiza-
tion producing directed C ±H bonds in the CH4 molecule
presents an important parameter of the MO LCAO approxi-
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mation. The hydrogen 1s orbital differs from the carbon 2s
orbital by the width of theMD, and their contributions can be
determined from the shape of a peak located at q � 0. The
detailed analysis of contributions of the LCAO terms to the
measured electron MDs for the outer occupied orbital in
acetone (CH3)2CO (2p electrons of oxygen, the C ±H s-bond
of methyl groups CH3, etc.) was performed in paper [100].

It is important to note that the (e, 2e) technique reliably
distinguishes bonding and antibonding MOs constructed
from the same atomic components [7, 14]. This is possible
due to the interference in the amplitudes of the electron
knock-out from the orbitals belonging to different centers.
Its role is clearly revealed when the spatial structure of a
molecule is known (see Section 2.2). For example, the sg
orbital of the homonuclear N2 molecule is represented by the
sum of atomic orbitals 2sa � 2sb. The interference in the
waves from centers a and b upon the electron knock-out
results in the appearance of the multiplier 1� �sin qR�=qR in
the amplitude, which is approximately equal to 2 for small q.
In this case, the MD qualitatively retains the s shape of the
atomic orbital. The analogous molecular su orbital is
represented by the difference of atomic orbitals 2sa ÿ 2sb
and contributes the destructive interference multiplier
1ÿ �sin qR�=qR to the amplitude. As a result, the MD
acquires the p shape because the above multiplier becomes
zero for q! 0. For this reason, the hybridization from
atomic s and p orbitals in the nitrogen molecule is distinctly
observed for bonding 3sg orbitals and is poorly revealed in
antibonding 3su orbitals [7, 14, 101].

This is illustrated by the MD for the 3sg orbital in the F2

molecule [101], presented in Fig. 7, where both s and p
components of the hybridized orbital are distinctly identi-

fied. At the same time, the ee-correlations should be taken
into account for the consistent quantitative description (see
below).

As amore scaled example of the use of the above concepts,
consider in the framework of the (e, 2e) method the widely
discussed question of how donor ± acceptor bonds are
changed in hydrogen-containing inorganic molecules such
as H2O, NH3, PH3 upon the successive replacement of
hydrogen atoms by methyl groups CH3. Figure 8 presents
the electron MDs for the highest occupied molecular orbital
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(HOMO) in molecules NH3, NH2(CH3), NH(CH3)2, and
N(CH3)3 [102]. One can see that the MD with a small
contribution of the s orbital, which is close to the p shape
and typical of the NH3 molecule, is rapidly displaced by the
MD with a larger contribution of the s orbital inherent in the
CH3 group.

If the NH3 molecule is characterized by a partial
displacement of the electron density from H atoms to a
central N atom, then the replacement of H atoms by methyl
groups CH3 is accompanied by the reverse redistribution of
the electron density from the N atom to methyl groups CH3.
In accordance with the increasing weight of the s-component,
the angles between bonds increase from 106.7� for the NH3

molecule to 110.9� for the N(CH3)3 molecule (see analogous
comparison of molecules H2O, H2S, H2Se, and H2Te in
Ref. [101]).

Similar behavior was observed for a series of molecules
PH3, PH2(CH3), PH(CH3)2, and P(CH3)3 [103] as well as
H2O, H(CH3)O, and (CH3)2O [104]. As a whole, this effect is
well described in the framework of the HF approximation
providing the basis of the MO LCAO method.

At the same time, there are a number of examples pointing
to a very high sensitivity of the (e, 2e) process to the ee-
correlations in the target. This is manifested in the appearance
of satellites of the basic transitions, resulting in a decrease in
the intensity of the latter, as well as in the shape of the MDs
characterizing these transitions. Figure 9 demonstrates the
most often cited example of this kindÐ theMD for the outer
occupied 1b1 orbital of the H2O molecule, where the 2p
orbital of the O atom is the main component of the LCAO
[34, 105] (the deviation of the theory from the experiment for
small q is explained by the finite angular resolving power of
counters). One can see that both the wave functions of the
molecule and the ion, calculated in the configuration
interaction approximation (CIA), quantitatively describe the
experiment. Notice here that the CIA gives for this orbital a
value of the spectroscopic factor S00 � 0:86, i.e. only 14% of
the intensity is transferred to the correlation satellites (see
below the case of the I2 molecule). Figure 9 shows that the

(e, 2e) technique is capable of distinguishing rather fine effects
related to the ee-correlations in molecules.

Notice that it is the CIA wave function (which quantita-
tively complies with the experiment) that gives simultaneously
the experimental dipole moment of the H2Omolecule and the
binding energy of a water dimer, thereby describing ade-
quately the van der Waals forces [34]. This is a typical feature
of modern studies (see analogous extended description of the
data collection in Ref. [32], where the MDs for the valence
orbitals in the NO molecule were presented).

The next example is related to the extensively studied
series of diatomic homonuclear halogenmolecules. We noted
in the discussion of Fig. 7 that the HF approximation cannot
describe quantitatively the MD for the 3sg orbital of the F2

molecule (because the ee-correlations in a target should be
taken into account). The relevant CIA calculations [100]
shown by curves 3 ± 5 in the same figure quantitatively
comply with the experiment.

The density functional theory (DFT) [106] also well
describes the experiment (curve 6 in Fig. 7). This theory was
put forth in the known paper by Kohn and Sham [107], where
the one-particle SchroÈ dinger equation was solved with a
nonlocal potential taking into account the ee-correlations
and some exchange effects. Examples with the F2 molecule
and other simple molecules bring out that the DFT which
significantly simplifies numerical calculations (in contrast to
the many-particle CIA) adequately reflects correlation effects
and can be very useful in the description of complex
molecules. However, the DFT, like any other one-particle
potential approach, cannot be used for calculating the
spectroscopic factor of an electron.

The spectroscopic factor Sfi introduced by Eqn (2.8) is an
important parameter of the many-electron wave function of a
molecule. First of all, this factor indicates the branching
character of its couplings with the states of a final molecular
ion, which is manifested in the breakdown of the main
transition peak in the energy (e, 2e) spectrum into a family
of satellites, whose relative intensities reflect the degree of
excitation of the different hole states (see Fig. 3 and Ref. [22]).
It was found from measurements of the MDs and spectro-
scopic factors that the correlation effects are comparatively
weak for the highest occupied (i.e. outer) orbitals of halogen
molecules [108]. However, when passing from the light
molecules (of the F2 type) to heavy ones (of the Br2 and I2
types), excitation of the correlation satellites accompanied by
ionization of the inner valence orbitals dramatically increases,
and the basic transition in the I2 molecule (which would be the
only one in the HF approximation) becomes weaker upon the
electron knock-out from the 10sg or 10su orbital. The
intensity of this transition is imparted to the satellites,
resulting in its `sinking' in them and smearing over a broad
energy interval of many-particle excitations. The basic-
transition intensity also depends on the relaxation effect, i.e.
on the variation in the self-consistent field caused by the hole
appearance [109]. An important role of the correlation
satellites manifested through the decrease in the spectro-
scopic factor was also found for hydrogen halides [110].

When passing to complex molecules, the ee-correlations
more strongly affect the shape of the MD of electrons in
valence orbitals, compared to the changes shown in Figs 7 and
9. Figure 10 presents theMD for the 1e00 orbital of the [1, 1, 1]-
molecule of propellane C5H6 [111]. One can see that the
model which takes into account the ee-correlations (curve 1)
and is in good agreement with the experiment, effects theMD
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shift to the left (to lower momenta q) compared to variants of
the self-consistent field approximation, i.e. because of the
ee-repulsion, the electron cloud shifts to the periphery of a
molecule, in contrast to the HF approximation. The result is
enhanced with increasing the size of the molecule and the
number of valence electrons in the system.

The improved sensitivity to the ee-correlations in con-
junction with the fact that the CIA calculations of more
complex molecules become too cumbersome resulted, despite
the above-mentioned drawbacks, in the wide application of
the DFT for analysis of the (e, 2e) MDs of electrons
occupying valence orbitals of complex molecules [112].
Bearing in mind more general aspects of these problems it is
worth mentioning that the most important problem of
molecular quantum theory and quantum chemistry is a
microscopic electron theory of molecular reactivity (chemi-
cal reactivity), which requires first of all the (e, 2e) data on the
structure of outer molecular orbitals [106] and (which is
especially complicated) on their variation when two colliding

molecules approach each other. However, just these data are
within the grasp of the present-day experimentation.

Figure 11 shows the electron MD for the 11f1 orbital of
the (CH3)3N±BF3 complex [112]. Compared to its molecular
components, the complex is a very loose system which can be
treated as a model of chemically interacting molecules. One
can also see from Fig. 11 that the 6a1 orbital of trimethyla-
mine is substantially transformed in passing to the complex,
namely, the type of its sp-hybridization (i.e. the shape of the
directed electron clouds) changes. The quantitative analysis
of the data presented in Fig. 11 showed that a certain
displacement of the electron cloud from nitrogen to boron
takes place [112].

A similar conclusion was drawn in paper [36] where the
substantial effect of the mutual arrangement of parts (viz.
conformation) of the dimetoxymethane (CH3O)2CH2 mole-
cule (of interest for biology) on the MDs of outer-orbital
electrons was found by means of the DFT and (more
indirectly) experimentally. With this striking demonstration
of plasticity it was natural to conclude that HOMOs, being so
highly deformable, which is manifested in the redistribution
of electrons between orbitals of different atoms, are mainly
responsible for the chemical reactivity [112]. This is a very
promising field of investigation.

So far it has been assumed that a residual ion retains the
geometry of a molecular target. A change in the molecular
spatial structure caused by electron knock-out [113, 114] can
complicate the interpretation of the MD but, fortunately,
rarely plays an important role. It was noted in Ref. [113] that
if the electron is knocked out from the g orbital with the wave
function cg which is not symmetric (i.e. not invariant upon
molecular symmetry-group transformations) and the symme-
try of the final-ion equilibrium configuration differs from the
symmetry of the initial molecule, then the MD is no longer
zero for q � 0.

Let us denote the equilibrium nuclear coordinates in the
initial molecule and in the final molecular ion by Q0 and Q00,
respectively, and the average value of these quantities by �Q.
The value of �Q depends on the vibrational state being excited
[114]. The molecular symmetry for the nuclear configuration
�Q is lower than that for theQ0 configuration. In this case, we
have

cg�q; �Q� � acg�q;Q0� � bca1
�q;Q0� � :::; �4:1�

where a1 is a symmetric orbital with the s-shape MD; for this
reason, jcg�q � 0; �Q�j2 6� 0 due to the second term in the
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Figure 10. TDCSs for the 1e00 orbital of the [1, 1, 1]-molecule of propellane
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expansion. The property of a `partial filling of zero' appears
upon electron knock-out from orbitals that do not possess
total symmetry both for nondegenerate and degenerate states
of the final molecular ion.

Indeed, the geometry of the degenerate states of the final
molecular ion changes due to the Jahn ±Teller effect [113,
115] which results in splitting of the energy levels ga emerged
in the (e, 2e) spectrum. The wave function of each of the levels

cga�q; �Q� �
X
i

Cg
ia� �Q�cgi�q;Q0� �4:2�

reflects mixing of the initial degenerate states cgi�q;Q0�
between themselves, caused by the symmetry lowering.
Because the expression for the scattering cross section
contains the MD averaged over molecular orientations (see
Section 2), we are dealing finally with the quantities�

dOq jcga�q; �Q�j2 �
X
i

jCg
ia� �Q�j2

�
dOq jcgi�q;Q0�j2: �4:3�

The second integral in the last formula is independent of the
degeneration index i, similarly to the independence of the
atomic form factor from the total magnetic quantum number
in the general case. For this reason, because the system of
functions cgi is orthonormal, the equality

P
i jCg

ia� �Q�j2 � 1 is
valid. That is the first integral is independent of the subscript
a. This means that the MD is the same for each ga orbital.

Thus, both the vibrational broadening of the hole level
and the broadening caused by the Jahn ±Teller effect are
manifested in the interesting property: jcg�q � 0; �Q�j2 6� 0,
despite the fact that the electron is knocked out from the
degenerate orbital [113, 114]. The larger the distinction
between configurations Q0 and Q00, the greater the difference
of the MD from zero for q � 0. Figure 12 illustrates the
urgency of this problem. Here, theMD is shown for the outer
degenerate 3e 0 orbital of cyclopropane C3H6 molecule having
D3h symmetry [113]. The ion symmetry is lowered to C2v due

to the Jahn ±Teller effect, and the ground state of the ion is
split into two energy-discriminated components which can be
experimentally resolved. One can see that, firstly, the
D3h ! C2v lowering of the symmetry results in a noticeable
filling of the MD zero (i.e. b 6� 0 in formula (4.1)) and,
secondly, the MDs of both components are identical.

5. Electron orbitals in crystalline and amorphous
solids

The EMS of solid targets substantially differs from that of
atoms and molecules by the experimental procedure. There
are two types of (e, 2e) experiments: with `shooting' through a
self-supporting film of thickness about 100A, and with
`reflection' from the sample surface. Because most of the
experiments with solid targets have been performed in the
shooting mode, we will discuss them in this section.

The study of the (e, 2e) process in a solid is characterized
by the stepwise overcoming of severe methodical problems.
Thus, to reduce the multiple scattering of electrons in a
sample to a reasonable level, high-energy electrons are
required (of order 20 keV and above). However, the cross
section of free (e, e) scattering accompanied by the transfer of
a sufficiently large energy (several keV) to the knocked-on
electron is small. Below, we consider the results of studies
performed by the group of I McCarthy and E Weigold
(Australia) with the initial electron energy E0 � 20 keV and
energies of knocked-out electrons E1 � 18:8 keV and
E2 � 1:2 keV. In the case of such asymmetric kinematics,
the scattering cross section is not very small, but because of
the small value of E2 only a thin layer of thickness 30 A at the
rear surface of a film is actually studied. Here, we encounter
another difficulty, namely, an important role, under certain
conditions (even for very thin films), of multiple elastic and
inelastic electron scattering accompanied by creation of
plasmons. Fortunately, the multiple scattering of electrons
with energies 1 keV and above is well simulated by theMonte
Carlo method [116], and such a background is taken into
account in the analysis of the experiment. To exclude the
effect of multiple scattering, Weigold and coworkers are
making the experimental complex with energies
E0 � 50 keV and E1 � E2 � 25 keV [19] by retaining the
energy resolution DE4 1 eV and the momentum resolution
Dq ' 0:1 au achieved to date.

The first subject that we will consider here concerns an Al
polycrystal and its valence band, which furnish an example of
how the electron Fermi gas `appears' in a metal in studies by
the (e, 2e) technique. Figure 13 compares the MDs (i.e.
spectral densities for different binding energies e of the
knocked-on electron in the conduction band [25, 26, 44,
118]) with the theoretical result [117] obtained in the well-
known muffin-tin (MT) potential approximation (see, for
example, Ref. [119]). This approximation corresponds to a
choice of electronwave function in the conduction band in the
form of a plane wave, which means the complete conformity
of the electron momentum q to the quasi-momentum k. In
addition, in calculations the form factor was convoluted with
a Gaussian distribution modelling the finite experimental
energy resolution. One can see from Fig. 13 that a single
peak typical for each value of e upon varying the quasi-
momentum k does not reveal any appreciable `inner' width,
i.e. the parabolic law of dispersion e�k� � e0 ÿ k2=2m�, where
m� � me � 1, is confirmed. In this case, the role of multiple
scattering near the Fermi surface (e � 4 eV) is negligible.
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Figure 12.MDs for the 3e0 orbital of the cyclopropaneC3H6 molecule. The

light and dark circles are experimental data for the first (less coupled)

Jahn ±Teller component and the second component, respectively (see

details of calculations in Ref. [113]).
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Thus, the example considered in Fig. 13 corresponds to
the well-known physics of a Fermi gas and demonstrates the
methodical reliability of the (e, 2e) technique. Note in
addition that this figure also shows how an increase in the
binding energy of the knocked-on electron (an approach to
the band bottom, e � 16 eV) results in a significant enhance-
ment of negatively manifested multiple scattering. This
hinders at present the study of a number of interesting effects
(the plasmaron satellite in the conduction band and the
Mahan ±Nozieres effect discussed in Section 2.3) typical for
the states below the bottom of the conduction band. New
experimental complex that is now in the making in Australia
will permit the investigation of such effects to be launched.

The second, more physically complicated example is
related to the study on the valence band of a graphite single
crystal. It is known that graphite has a scaly structure and its
(x; y) plane contains the s band characterized by the sp2

configuration of the carbon atom. The corresponding
hybridization from the s and p orbitals leads to hexagonal
flat cells in graphite. For this reason, the dispersion curve for
the s band is anisotropic. This is clearly seen from Fig. 14,
where the results of the (e, 2e) experiment [40] show that this
curve duffers by appearances in the GK and GM directions.
Theoretical calculations took into account the experimental
resolutions DE and Dq but neglected multiple scattering [40].

The anisotropy (i.e. the sensitivity to special features of a
lattice) is observed only in the upper part of the dispersion
curve. In the GM direction, this curve encloses s1 and s2
bands with the boundary between them at q � 0:8 au and the
gap of about 0.5 eV (which is not observed in the
(e, 2e) experiment), while in the GK direction the dispersion
curve emerges from the s1 band to the s3 band.

A graphite single crystal well illustrates an important
property of the (e, 2e) technique, namely, the possibility of
choosing the real electron momentum q in the crystal in any
specified direction (this is directly performed by choosing the
anglesO1 andO2 of counters and energiesE1 andE2 [19]), viz.
to move through the band by changing q in a rigidly
controllable way.

In the z direction, where the distance between atoms is
greater than that in the (x; y) plane, the p band is formed with
the lower electron binding energies. In contrast to the s band,
the minimum of energy of the p band corresponds to a quite
largemomentum qz. The difference between the s and p bands
is explained as follows [120] (we present this explanation here
because it is closely related to the type of electron MD in the
band).

The bonding s orbital in a crystal consists predominantly
of symmetric sums of the atomic 2s orbitals (similarly to the
sg orbital of diatomic molecules; see Section 4). A state of
valence electrons in the s band with the maximum charge
density between nuclei in all crystal cells proves to be the most
energetically favorable. The wave function of this state has a
large constant component in the coordinate representation.

From the point of view of the Fourier transform to the
momentum representation, this means that the electrons near
the bottom of the band have almost zero momentum; in other
words, the form factor jFs�q�j2 reaches a maximum for q � 0
(near the band bottom). In turn, the 2p electrons which also
take part in the formation of the s bandmake no contribution
to the maximum of the MD at zero (similarly to the bonding
orbitals in diatomic molecules).

The p band with weakly overlapping 2p orbitals of atoms
in a chain (which interact through the van der Waals
mechanism) is characterized by the electron density periodi-
city described by the distance az between atoms along the
z-axis, i.e. the band bottom corresponds to the momentum

Ã

ÿ2 ÿ1 0 1
q

2

4 eV

5 eV

6 eV

7 eV

8 eV

9 eV

10 eV

ÿ2 ÿ1 0 1
q

2

10 eV

11 eV

12 eV

13 eV

14 eV

15 eV

16 eV

Figure 13. Series of MDs for polycrystalline Al for different binding

energies e within the valence band. The solid curves are calculated taking

into account multiple scattering for the MT potential by the Monte

Carlo method; the dashed curves are calculated by neglecting multiple

scattering [117].

20

40

0

2 0
qy

2

e, eV

a

G

M M

G

2 0
qy

2

b

G G

K K

2 0
qy

2

c

G G

K K

Figure 14.MD as a function of the binding energy and momentum qy (the

maximum intensity reflects the law of dispersion) for three different

measurement geometries (see the text). In the left halves of the figures,

the calculated results in the MT approximation with the resolutions

DE � 2 eV and Dq � 0:1 au are presented [40].

1034 V G Neudatchin, Yu V Popov, Yu F Smirnov Physics ±Uspekhi 42 (10)



q0z � p=az. The probability jFp�q0z�j2 of finding such a
momentum is large and close to the maximum of this
function. In the basal (x; y) plane, we have qz � 0 and for
this reason the p band is not seen in Fig. 14.

Within the framework of the general discussion related to
carbon properties, note that although the (e, 2e) experiments
have not been performed on diamond crystals, almost
equivalent data are available for a silicon polycrystal having
a structure of the same type [43]. The tetrahedral symmetry of
diamond is characterized by sp3-hybridization, to which the s
band corresponds. The distinct feature of such a symmetry is
the absence of the p band, which is observed in the experiment
[43] shown in Fig. 15a. At the same time, because of the
difference in the bonds C ±C, Si ± Si, and Si ±C, an SiC crystal
has sphalerite symmetry, which admits, along with the s
band, the p band as well. This band was observed in the (e, 2e)
experiment on an SiC polycrystal [3] (Fig. 15b). By the way,
Fig. 15b illustrates in considerable degree what has been said
in the preceding paragraph.

The tapping of the (e, 2e) technique in the examples
considered above did not result in the discovery of hitherto
unknown properties of many-electron systems in a solid.
However, this experimentation directly yielded, along with
the PES technique, the dispersion curves of different types in
the valence band of single crystals and thus successfully
demonstrated its applicability in solid-state physics. The
(e, 2e) technique allows one to obtain similar dispersion
curves for amorphous solids as well, where it gives comple-
tely new information which cannot be obtained by the PES.

The efficiency of the PES technique in studies of single
crystals is based on the fact that the large component of the
momentum qz (see Section 1) can be compensated to a great
extent by the displacement of all momenta by one of the
momenta B of a reciprocal lattice. This allows one to study,
for example, the law of dispersion in the region of small quasi-
momenta q0 � qÿ B. In the case of amorphous and other
disordered structures, the PES technique can also be used for
studying the dependence of the density of states on the energy
e but its efficiency is impaired in investigations of MDs,
because in this case the Brillouin zone can no longer be
displaced by the known momentum B of the reciprocal
lattice [121].

The (e, 2e) study on the electron structure of amorphous
carbon demonstrates the fundamental problems of the theory

of amorphous solids, posed by the experiment [39]. Another
example related to amorphous germanium [24] will be briefly
considered below.

Figure 16 shows electronMDs for the s band of a graphite
polycrystal and amorphous carbon (aC) for different electron
binding energies e [39]. In aC, the long-range order is absent
but the short-range order is retained. TheMDmaxima which
represent the d-like peaks in a single crystal (for a given
electron binding energy e) are considerably smeared in the
presence of short-range order only, but as one can see from
Fig. 16 do not disappear. This degree of broadening reflects
the order ± disorder relation in a pithy manner (competition
between the graphite-like and diamond-like structures, etc.
[43]), but so far it has not been used to characterize the latter.
It is remarkable that the electron MD in the valence band of
aC is almost independent of the binding energy e over a broad
range from 8 to 20 eV.

A no less dramatic demonstration of the `cognitive ability'
of the (e, 2e) technique is linked to the above-mentioned
possibility of obtaining the MD directly for Bloch functions
which are used in the tight-binding approximation [119] (see
also Section 2.3). For this purpose, the summation of MDs
for different electron binding energies should be performed,
i.e. the spectral density should be integrated over the electron
energy e in the corresponding Brillouin zone. This was done,
using the (e, 2e) experimental results [121], in Ref. [120] for an
ionic Al2O3 polycrystal with a rather complex structure. Each
of the two aluminium atoms in the molecular cell of Al2O3

loses three electrons from the outer 3s2 and 3p1 orbitals and
becomes an Al3� cation. In contrast to that, each of the three
oxygen atoms acquires two electrons and becomes an O2ÿ

anion. This occurs in such a way that both theAl3� cation and
O2ÿ anion have the same electron configuration 1s22s22p6, i.e.
a closed shell of neon. As a result, the outer orbitals in the
Al2O3 molecular cell are mainly occupied by the 2s and 2p
electrons of the oxygen atom, because the nuclear charge of
the aluminium atom is much greater and therefore its 2s and
2p orbitals are bounded much stronger than in the oxygen
atom.

Thus in the upper valence band of the aluminium oxide
polycrystal, the 2p orbitals of the oxygen atom dominate,
which are characterized by the specific MD whose maximum
falls on the tangibly nonzero momentum (see above about
atoms in a graphite single crystal). In the lower valence band,
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Figure 15.MDs of the maximum intensity, reflecting the law of dispersion e�q� for (a) amorphous silicon, and (b) silicon carbide [120].
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however, the 2s orbitals of oxygen are dominant, for which
the MDmaximum is located at zero. Actually, of course, one
should bear in mind not simply dominating 2s and 2p oxygen
orbitals but their linear combinations with the 3s and 3p
orbitals of the aluminium atom.We shall call them for brevity
the 2s and 2p type orbitals. The dispersion curve in the upper
band is similar to that for the p band of a graphite crystal, and
in the lower band Ð to that for the s band of graphite [121].
Figure 17 shows MDs for the 2s and 2p type orbitals
characterizing the valence bands of an Al2O3 polycrystal
and firstly obtained in Ref. [120] by the above method. In
particular, the 2p type orbital contains a small admixture of
the s component, which suggests the presence of a so salient
feature as a deviation from a pure ionic crystal structure. One
may hope that similar measurements will soon be performed
for other complex polycrystals.

Finally, as another example of the interesting possibilities
of the (e, 2e) technique, note the comprehensive study of

hydrogen adsorption by amorphous germanium (aGe) [43],
where (as in the papers discussed above) the multiple
scattering of electrons was considered. Comparison of the
spectral densities r�q; e� of the aGe valence bands and
hydrogen-adsorbing germanium (H± aGe) firstly showed
that there are both regions where the value of r�q; e� is higher
in aGe and where the value of r�q; e� is higher in H± aGe.
Such nuances can be helpful in understanding the effect of
adsorbed hydrogen on surface defects [43].

In conclusion of this section, we will formulate some
accessible experimental problems which reflect our experi-
ence and seem interesting to us.

(1) The conduction band of transition metals is character-
ized by the hybridization from the orbitals of almost free s
electrons and localized d electrons. For this reason, for
instance, the electron MD pattern in a copper single crystal
[24] should differ from that presented above for a simplest
example of the conduction band of aluminium, demonstrat-
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ing properties of a Fermi gas. Specifically, the L1 symmetry
corresponds to the s electrons (the one-dimensional represen-
tation of a small group of the quasi-momentum k), and the
hybridization should be directly manifested in the shape of
the electron MD along the [111] direction in bands G1L1L1

and G025L1L
0
2 [27] (Fig. 18). To the left of the point of

intersection of the curves (at k=kL ' 0:7), the MD for the
G1L1L1 band has the dominating s component, while to the
right Ð the d component. The opposite picture should be
observed for the G025L1L

0
2 band: the MD curve for the d

electrons should tend to zero as k4 for small k, whereas for the
s electrons it should tend to a constant as for the Fermi gas.
The G1L1X1 and G12L1X

0
4 bands should reveal similar

interrelated features along the [100] direction.
The hybridization is absent for the bands corresponding

to the two-dimensional representations of the above-men-
tioned group (to the L3 representation). There are two such
`purely d-electron' bands (the s orbitals do not make
contributions because they remain invariant upon the
symmetry-group transformations of the crystal, viz. they
correspond to the one-dimensional symmetric representa-
tion). However, for example, along the [111] axis the electron
MDs in these bands vanish, and other lower-symmetry
directions should be used for their study [24].

Single crystals of transition metals represent a rich field
open for (e, 2e) experimental studies. The energy and

momentum resolutions achieved in this field are quite
sufficient.

Of course, it is expedient to perform EMS studies in
conjunction with PES [3]. The matter is that an electron with
an energy of about 50 eV, emitted in the (g, e) reaction,
strongly interacts with the surface layer of the sample from
which it is emitted. Bearing inmind the advantage of the high-
energy resolution of PES, it is interesting to study the effect of
the surface layer on the MDs of different shapes in single
crystals of graphite, silicon, transition metals, etc., obtained
both by the EMS and PES techniques.

The study of the valence electron orbitals in oxides of
transition metals (see the above example of Al2O3) is also
promising. This study can be used as a first step in the (e, 2e)
analysis of the electron structure of materials exhibiting the
high-temperature superconductivity, in which the Cu ±O
bond plays an important role.

(2) We have mentioned above the problem of studying a
plasmaron satellite in the conduction band of metals, whose
existence was only suggested so far by the (e, 2e) experiments
[38, 44]. The achieved energy resolution DE ' 0.5 ± 1.0 eV is
sufficient for this purpose [19], but the energy of each of the
ejected electrons should exceed 10 ± 15 keV in order to avoid
intense multiple scattering accompanying the knock-out of
strongly bounded electrons.

Unfortunately, the PES method has been employed so far
for studying the interaction of electrons in solids with other
collective excitations of the crystal lattice, phonons, resulting
in the broadening (splitting) of the hole levels [3], because
such a study requires the higher energy resolution
(DE � 10ÿ2 eV). Here, superconductivity physics is natu-
rally the focus of attention [122].

(3) We formulated above the problem of the collective
response of the conduction electrons in ametal to the `sudden'
appearance of a deep hole upon the electron knock-out from
the atomic inner shell. The requirements on the values of DE
and final energies E1 and E2 are obviously somewhat more
stringent than for plasmaron study. In this connection, the
unit with electron beam energy E0 � 50 keV and symmetric
kinematics, which is now in the making in Australia [19],
promises especial urgency.

(4) We noted in Sections 3 and 4 that the Coulomb
ee-correlations in atoms and molecules can be reliably
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detected in the (e, 2e) reaction as a measurable transition to
the satellite states of the ion with the excited electron
configurations. In a solid, an analog of this could be, for
example, the final satellite state with two holes in the
conduction band and one excited electron in the higher-lying
unfilled band. Such experiments have not been performed so
far.

6. (e, 3e) ionization and electron ± electron
correlation spectroscopy

6.1 Choice of kinematics
In Section 3, we considered some successful approaches to the
study of the ee-correlations by means of the (e, 2e) and (e, 2e)�

reactions both in many-electron systems, where they are
realized via mixing of the HF configurations, and for a small
number of electrons, where the correlators can be included in
the trial wave functions in the explicit form (the Hilleraas
functions). A natural continuation of this chain of reactions
to a better understanding of the target structure is the double
ionization of the target by an electron impact or the (e, 3e)
process, when the energies and directions of momenta of all
three knocked-on electrons are measured, and the so-called
(e, 3 ± 1e) reaction, when the direction of propagation of one
of the electrons is not detected but its energy is measured.

The first theoretical papers on (e, 3e) ionization were
reported by our group about 20 years ago [26, 49]. The first
(e, 3e) and (e, 3 ± 1e) experiments performed by the group of
A Lahmam-Bennani in France [52, 123] and the group of
M Coplan in USA [124] suggested the possibility of direct
ee-correlation. This raised the question: What type of
experimental kinematics are suitable for these purposes?

The (e, 3e) `coincidence' experiments consist in the
measurement of directions and energies of all emitted
electrons involved in the reaction. The momenta of two
from the three knocked-on electrons, for example p2 and p3,
can lie both in a plane formed by the vectors p0 and p1 and
outside it, and their values canmarkedly varywithin the limits
of the laws of conservation. This provides rather great
opportunities for theoretical studies and predictions. The
theory of such processes even in the simplest case of a
helium-atom target reduces to a theory of scattering of three
charged particles in a central Coulomb field of a nucleus. This
is a very complicated mathematical problem (see works [95,
96] and references cited therein), which virtually cannot be
solved in the general form using computational methods.

One of the simplifying factors is the case when the energy
of an incident electron is great compared to the transition
energy (say, 5 ± 10 keV in the event of the helium atom). If the
energy of one of the knocked-on electrons, for example e1, is
comparable to the energy of an incident electron, then such
experimental kinematics (called dipolar kinematics in the
modern scientific literature) allows one to describe fast
electrons with plane waves. This approximation is realized
at small transferred momenta Q, so that the dipolar (e, 3e)
process is close (in physics of the collision mechanisms) to the
double photoeffect.

In the experiments of Lahmam-Bennani's group, reliable
counting of triple coincidences was achieved for low energies
E2 and E3 of the ejected electrons (10 ± 25 eV). Such energies
are obviously inadequate for reliable theoretical studies of a
target by the double ionization technique, because the
electron wave function of the final state jcÿf �p2; p3�i is very

complex for calculations and estimates even for the helium
atom.

Most of the simplifications in the scattering theory are
achieved by increasing the energy of scattered particles. Then
bearing in mind purely theoretical reasons, it seems desirable
to enlarge the energy transferred to the electrons on retention
of a small transferred momentum, so that both ejected
electrons would have sufficiently large energies (say, 100 ±
200 eV) and the electron wave function jcÿf �p2; p3�i could be
represented as a product of the plane, Coulomb or distorted
waves, resulting in a considerable simplification of calcula-
tions. However, this assumption as a whole does not allow
one to perform the correlation investigations exactly in a
target.

Indeed, the nonsymmetrized wave function of the two
`free' interacting electrons in a field of the residual He�� ion
can be written in the general form as

cÿ�p2; p3; r2; r3� � D�p2; p3�
� �jÿ�p2; r2�;jÿ�p3; r3� � I�p2; p3; r2; r3�� : �6:1�

The coefficient D�p2; p3� appears due to the long-range
Coulomb interactions and its modulus is equivalent to the
Gamow factor

jD�p2; p3�j2 �
px

exp�px� ÿ 1
; x � pÿ123

(the details can be brought up, for example, in Ref. [125]). For
large energies E2 and E3, the function jD�p2; p3�j equals unity
everywhere except the region of small angles y23, which we do
not consider here. The function I�p2; p3; r2; r3� also describes
the multiple scattering of the ejected electrons in the final
state. In turn, the one-particle function jÿ�p; r� at large
energies can be written in the eikonal approximation as the
product of the fast oscillating and smooth functions

jÿ�p; r� � exp �ipr� z�p; r�: �6:2�

As was mentioned above in Section 2.1, the distinctive
property of (e, 2e) spectroscopy is a comparatively small
recoil momentum q. The form factor (2.4) remains promi-
nent exactly for small momenta q. In the case of the dipolar
kinematics of the experiment, one has q � jQÿ p2 ÿ p3j. The
first term in square brackets in (6.1) describes the final state in
the absence of the interaction between electrons 2 and 3, and
large momenta p2 and p3 cannot appear in this case due to
absorption of a real or virtual photon with the small
momentum Q. This means that the contribution of the first
term in sum (6.1) to the matrix element of the (e, 3e) process
should be extremely small, although just this term is directly
related to the double Fourier transform of the target wave
function. A more detailed study showed that the character-
istic structure in the scattering cross section, related to the
first term in (6.1), is concentrated around the direction of the
momentum Q and has the asymptotic order of magnitude in
the transferred energy �DE�ÿ7 [126].

The second term in sum (6.1) can `mix' momenta p2 and p3
due to the interaction of electrons, resulting in the regime
Q ' p2 � p3 or q ' 0. The structure in the scattering cross
section related to the second term is concentrated around the
direction of the momentum q, and the characteristic peaks
have the asymptotic order of magnitude �DE�ÿ3 [126]. It is
these peaks that we will `see' first of all in the MD of the
dipolar (e, 3e) process whose total cross section is extremely
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small even so. The calculations performed in Ref. [126]
confirm these simple qualitative considerations.

The function I�p2; p3; r2; r3� in sum (6.1) governs the
interaction of electrons in the final state, i.e. it distorts the
direct information on the quasi-elastic impact phenomenon
contained in the first term. This circumstance means that if
some model of the target wave function yields the theoretical
result coinciding with the experiment (say, in the approxima-
tion of a product of the orthogonalizedCoulombwaves), then
the function cÿf accounting for the interaction of electrons
after a collision event can completely destroy this coincidence,
and the conclusion about the wave structure of a target will be
incorrect.

Thus, from the above discussion follows that the kine-
matics of the (e, 3e) experiment even with comparatively large
energies E2 and E3 of electrons ejected by a target under the
action of a virtual photonwith a small transferredmomentum
cannot be used for the direct spectroscopic investigations of
electron correlations in atoms, although these kinematics are
very attractive to experimentalists because of the large
magnitudes of the corresponding cross sections.

6.2 Large transferred momenta. General formalism
The considerations presented in Section 6.1 suggest the choice
of kinematics that retains the advantages of direct measure-
ment of the Fourier transform of the target wave function
without going to the region of the (e, 3e) measurement
background. This is the kinematics in which a large energy
of the incident electron is divided approximately equally
between two of the three ejected electrons, i.e. we are dealing
with the geometry of the quasi-elastic impact with a large
transferred momentum.

The material of this section is mainly presented in papers
[126, 127], and the concept was formulated in Ref. [49]. For
the binary (e, 2e) reactions, the following conditions are
typical: a plane geometry, E1 ' E2 ' E0=2, and
y1 ' y2 ' 45�. The validity of these conditions for the
binary (e, 3e) processes results in the PWIA approximation.
The reaction can be illustrated by the following diagram

Recall that �E0; p0�, �E1; p2�, �E2; p2�, and �E3; p3� are the
energies and momenta of the incident, scattered, as well as
one and another ejected electrons, respectively, which satisfy
the laws of conservation

Etot � E0 � ei � E1 � E2 � E3 � ef ; �6:3�
p0 � p1 � p2 � p3 � q : �6:4�
Using the PWIA, we can write, similarly to Eqn (2.3), the

expression for T PWIA
fi in the analytic form

Tfi � Z1=2Ffi�k; p3�hp1; p2jt̂0z�Etot ÿ ef ÿ E3�jp0; ki : �6:5�
Here, the form factor Ffi�k; p3� equals the overlap integral

Ffi�k; p3� �
�
exp�ikrz�ci�r1; :::; rz�

� cÿ�f �p3; r1; :::; rzÿ1� dr1 ::: drz; �6:6�

and the notation k � Qÿ p2 � p3 � q was used for brevity.
The sixfold differential cross section for electron scatter-

ing can be written, similarly to Eqn (2.5), as

d6s
dO1 dO2 dO3 dE1 dE2 dE3

� Zp1p2

�2p�5p0
ds
dO

� �Mott

ee

� r�p3; k�d�E1 � E2 � E3 � efi ÿ E0�; �6:7�

where

r�p3; k� �
p3

�2p�3 jFfi�k; p3�j2: �6:8�

The momenta p3 and k in the last formula are assumed small,
which allows one to make an asymptotic estimate of the cross
section (6.7) as �DE�ÿ3=2, which is the smallest of all the
previous estimates.

Of course, the analysis of scattering cross section (6.7)
cannot give a conclusion on the unambiguity of the
determination of the initial-state wave function, however,
we can try to find the stable specific features of the cross
sections depending on the model type. To simplify the
following analysis, we will restrict ourselves to the helium
atom. This allows us, in turn, to simplify somewhat expres-
sion (6.7) by using partial expansions of the functions
involved. After integration of Eqn (6.7) over dE1, we obtain
the following expression for the fivefold differential cross
section (5DCS):

d5s
dO1 dO2 dO3 dE2 dE3

� 25

p3
p1p2
p0

�
ds
dO

�Mott

ee

� �1ÿ exp�ÿ4p=p3��ÿ1
�����X1
l�0
�2l� 1� exp�isl�Pl�cos ykp3�

�
�1
0

r21 jl�kr1� dr1
�1
0

r22Rl�p3; r2� F0l�r1; r2� dr2
�����
2

; �6:9�

where

Rl�p3; r� �
Yl
m�1

���������������
m2 � Z2

p !

� �2p3r�
l

�2l� 1�! exp�ÿip3r�1F1�l� 1ÿ iZ; 2l� 2; 2ip3r�

is the partial Coulomb function in the continuum. The cross
section (6.9) can be further integrated over dO3, yielding the
fourfold differential cross section (4DCS) for the (e, 3 ± 1e)
process in which the angles of a slow electron are not
measured:

d4s
dO1 dO2 dE2 dE3

� 27

p2
p1p2
p0

�
ds
dO

�Mott

ee

� �1ÿ exp�ÿ4p=p3��ÿ1
X1
l�0
�2l� 1�

�
�1
0

r21 jl�kr1� dr1
�1
0

r22Rl�p3; r2�F0l�r1; r2� dr2

������
������
2

: �6:10�

Comparison of expressions (6.9) and (6.10) shows that the
d4s cross section is a sum of squares of moduli of the partial
amplitudes, whereas the d5s cross section includes a direct

e0
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tee
e1

T PWIA
fi � PZ

s�1

A

e3

A��

e2
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sum of the partial amplitudes, which takes into account the
relative phases of the components. This suggests that analysis
of the d5s cross section can give much more information on
the object under study. Notice also that the low energies E3 of
the ejected electrons do not lead, as in the case of nuclear
forces, to the automatic disappearance of contributions from
the nonzero harmonics, because the Rl�p3; r� function tends
for E3 ! 0 to a certain finite limit for any l, which reflects the
parabolic rather than spherical symmetry of the final-state
wave function.

Finally, expressions (6.9) and (6.10) can be easily gene-
ralized to the case of heavier atoms. To do this, the Coulomb
phase sl should be replaced by sl � dl, where the additional
phase corresponds to electron scattering by a short-range
potential of the mean intraatomic field, and the partial wave
of scattering by the total potential should be considered for
the function Rl.

6.3 (e, 3e) spectroscopy of electron correlations
Using the notation introduced in the previous section and
assuming that the quasi-elastic (e, 2e) subprocess takes place,
the momentum ÿk corresponds to the virtual momentum k1
of the electron knocked out from a pair. The another electron
in the pair has the momentum k2 � p3. The momentum of the
relative motion of the electrons in the pair and their center-of-
mass momentum are equal to k12 � 1=2�k1 ÿ k2� and
K � k1 � k2, respectively. A correlated electron pair (corre-
lator) is formed when the average distance between the
electrons is less than the average distance a0 between the
electrons in a target, i.e. k12 > aÿ10 . Because K ' aÿ10 , the
momentum k12 > K, which represents the condition of the
existence of the so-called quasi-free pair. In our notation, this
condition has the form

p3 � q

2

��� ���4 q

and is obviously satisfied for q ' 0. It follows from this
inequality and expression (6.6) that for very small q the
third-electron angular distribution is virtually uncorrelated
with the direction of q and is not coupled in energy with the
quantity q2=2 (`shaking off ', according toMigdal [109]). As q
increases, both the angular correlation and the energy
coupling appear. This means that the experiment can really
give the form of the ee-correlator in the many-electron wave
function of the atomic target. The greater the momentum p3,
the broader the range of variation of the recoil momentum q.

Indeed, if themomentum p3 is sufficiently large for a plane
wave to be separated in the functioncf, then formula (6.6) can
be rewritten in the form

Ffi�k; p3� � �Zÿ 1�1=2

�
�
eiqrz�ip3�rzÿrzÿ1�ci�r1; ::: ; rz�c�f �r1; ::: ; rzÿ2� dr1 ::: drz:

One can see that it is the dependence of the form factor on p3
that `portrays' the rigid ee-correlator in the target. However,
in this case the density r in Eqn (6.8) is extremely small
compared to themomentumdensity of the quasi-elastic (e, 2e)
scattering not only because of the presence of the factor
�2p�ÿ3 equal approximately to 0.004, but also because the
form factor itself is small and proportional to Eÿ23 . For the
density to be more or less noticeable, the values of q and p3
should be comparatively small (no more than 2 ± 2.5 au).
Then it is highly conjectural to separate a plane wave from the

final-state wave function, and one should solve the multi-
dimensional SchroÈ dinger equation, when one slow electron
finds itself in a continuum. This problem is very complex,
except the case of the helium atom. It is for this reason that we
considered here only this atom.

Comparison of Eqns (6.9) and (6.10) with Eqn (3.5) shows
that the TDCS in formula (3.5) includes the overlap integrals
between the target wave function and the discrete states of the
Coulomb spectrum, whereas the 4DCS and 5DCS include
analogous integrals containing Coulomb functions in the
continuum. This circumstance suggests that additional
information on the target can be obtained even for small
momenta p3. To obtain qualitative estimates of the possibi-
lities of (e, 3e) spectroscopy in this case, we chose three
different simple functions which reproduced the electron
binding energy in helium no worse than to 95%. These
functions are described by expressions (3.10) ± (3.12).

Figure 19 displays the d5s cross sections for the binary
process of the helium double ionization, which reflect the
projection of the atomic wave function onto the continuous
part of the Coulomb spectrum [128]. The fundamental
difference of cross sections d5s from d3s [see Eqn (3.5)] is
their additional dependence on the angle and energy of a slow
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Figure 19. 5DCS as a function of the scattering angle y and the angle y3 of a
slow ejected electron for the He(e, 3e)He�� reaction: (a) SPM (3.11); (b) H

(3.12); E1 � E2 � 250 eV.
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ejected electron e3. The shape of the cross section along the y3
axis even visually shows the contribution of the angular
electron correlations. Thus, the angular correlations can be
studied in a pure form by examining the dependence of the
d5s cross section on y3.

Of interest, in our opinion, are also cross sections for the
(e, 3 ± 1e) processes shown in Fig. 20 [128], from which it
follows that in the case of models with radial correlations, a
quasi-elastic peak splits into two peaks of different intensities,
which does not occur for the typical HF function. In this case,
different models accounting for the angular correlations do
not change the characteristic feature as a whole, but affect the
absolute values of cross sections. The partial term with l � 0
makes the main contribution to d4s in the case of the SPM
andHmodels. This result was expected because the contribu-
tion of the �1s1s0� state dominates in functions (3.11) and
(3.12), while the role of the angular terms is small.

The dependence of the cross section (6.9) on the angles y1
and y2 of fast ejected electrons gives certain information on
the presence and intensity of radial electron correlations in a
target. The splitting of the quasi-elastic peak has here the
same nature as in the case of (e, 2e)� reactions, which was
discussed in detail in Section 3.2 (see Fig. 4). It is interesting to
note that the shapes of TDCSs and 4DCSs are already very
close for n � 3.

In conclusion of this section notice that a combination of
(e, 2e), (e, 2e)�, and (e, 3e) experimental data permits the
formulation of the problem of complete diagnostics of the
target wave function in the restricted region of angles and
energies.

6.4 Comparative analysis of (e, 3e) and (g, 2e) techniques
for studying electron correlations
In this section we do not intend to describe in detail the
rapidly developing field of multiple photoionization pro-
cesses (which could be the subject of a separate review) but
will perform only a comparative analysis of (e, 3e) and (g, 2e)
reactions for the electron correlation studies in a target over
the region of high initial electron energies of interest to us.We

showed in Sections 6.1 ± 6.3 that in the case of the (e, 3e)
reaction, the most informative is the same kinematics of
quasi-elastic knock-out, when the energy of the initial
electron is about evenly divided between the scattered
electron and one of the knocked-out electrons, whereas the
second, slow electron leaves the target due to the rearrange-
ment of the intraatomic field. In this case, the cross section is
of the order of 10ÿ6 ± 10ÿ7 au.

It was noted in paper [129] where the (g, 2e) processes were
studied for atoms that the energy distribution curve for
ejected electrons has a characteristic U shape with a broad
minimum in the region of approximately equal energies, i.e.
for x � E1=�E1 � E2� � 0:5. This suggests that absorption of
a photon by one of the atomic electrons dominates, whereas
the second, slow electron is emitted due to the rearrangement
of the self-consistent atomic field, caused by the `instant'
appearance of a hole [130]. This mechanism completely
corresponds to the quasi-elastic knock-out in the (e, 3e)
reaction, however, in the case of the (g, 2e) ionization, the
cross sections for such processes are extremely small. Let us
show this by the example of the He atom. For more
convenient comparison with the results of previous sections,
we denote the fast and slow ejected electrons by the subscripts
2 and 3, respectively.

The fourfold differential cross section for the (g, 2e)
process in the `velocity' representation has the form (the
speed of light in the atomic units is c � aÿ1 � 137)

d4s
dO2 dO3 dE2 dE3

� ap2p3
�2p�4Eg

� d�E2 � E3 � eHe
0 ÿ Eg�

������ dr1 dr2 ci�r1; r2�

� �exp�iQr1��e~H1� � exp�iQr2��e~H2��cÿ�f �p2; p3; r1; r2�
����2:

�6:11�

Here, Eg � aÿ1Q, e is the photon polarization vector, and
�eQ� � 0. If the g-quantum energy is almost completely
transferred to one electron, then taking into account the
symmetry of the helium wave function we can write approxi-
mately

cÿf �p2; p3; r1; r2� �
1���
2
p �eip2r1jÿ�p3; r2� � �r1 $ r2�� :

Thus, the matrix element M�p2; p3;Q� is a sum of the matrix
elementsM1 andM2, where

M1�p2; p3;Q� �
���
2
p
�ep2�

�
expfÿi�p2 ÿQ�r1g dr1

�
�
jÿ��p3; r2�ci�r1; r2� dr2 ; �6:12�

M2�p2; p3;Q�

� i
���
2
p
�ep2�

�
exp�iQr1��e~H1�jÿ��p3; r1� dr1

�
�
exp�ÿip2r2�ci�r1; r2� dr2 : �6:13�

The exchange process governed by the matrix element M2 is,
as a rule, asymptoticallymuch weaker than the direct process,
which is evident, by the way, from the form of the integrals, so
that it can be neglected at large energies Eg and E2. The direct
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process could be not weak, if the quantity k � Qÿ p2 is small,
as in the case of the (e, 3e) processes [cf. Eqn (6.8)]. However,
due to the laws of dispersion p2 �

��������
2E2

p
, Q � aEg, and if

Eg � E2, then p2 �
�����������
2=aQ

p
4Q. Typical energies Eg of the

synchrotron radiation are of the order of 10 keV, i.e. the
photon momentum Q is approximately 3aÿ10 , whereas the
momentum p2 is greater by a factor of ten. Thus, in contrast to
(e, 3e) scattering, the value of k is large. Estimates of the cross
section (6.11) with thematrix elementM1 yield the asymptotic
order E

ÿ7=2
g , which is much smaller than the cross section of

the (e, 3e) process [recall that in this case the cross section is
proportional to �DE�ÿ3=2].

Against this background, the probability of absorption of
a photon by a virtual ee-pair with a large relative momentum
becomes negligibly small. Even for energies Eg ' 500 eV, the
cross section for the double photoeffect with equal electron
energies E2 � E3 is of the order of 10ÿ6 ± 10ÿ8 au [131]. In
addition, under such experimental kinematic conditions, the
considerations presented in Section 6.1 become valid, where
the `negative' role of the ee-interaction in the final state was
noted, which does not allow one to come to an unambiguous
conclusion concerning the structural features of the target.
This fact has also been pointed out in paper [51].

By this means binary (e, 3e) reactions permit studies in the
region of energies and momenta inaccessible for double
photoionization.

7. Conclusions

Thus, this review gives an insight into a kind of information
on the structure of many-electron systems that can be
obtained from studies of electron collisions at high energies,
which are based on the conceptual experience of nuclear
physics. The reviewed material well illustrates the known
idea that the progress combining concepts and methods from
different fields of science can yield original results having new
physical meaning. One can see by the example of atoms that
the EMS technique gives a detailed picture of mixing of the
HF configurations. This method allows one to directly
obtain, by exciting the satellite states, the MDs (and the
corresponding probabilities) of electrons for the individual
configurations appearing in the ground state of the many-
electron system due to the effect of short-range ee-correla-
tions. Moreover, the EMS of the excited states yields
information on the ground-state wave function in the case of
sufficiently strong radial correlations.

Studies of complex molecules have resulted in a nontrivial
conclusion that the MDs of the outer-orbital electrons are
very sensitive to the type of molecular conformation.

In the case of amorphous solids, EMS has no rivals in
studies of both the band structure, dispersion curves, and
MDs of electrons for different binding energies. This allows
one to directly see the manifestation of the short-range order
in the system.

The study of collective properties of the degenerate
electron gas in metals by the (e, 2e) technique is a promising
field in the physics of solids as well. Here, certain experi-
mental progress is expected in the near future.

Finally, there are interesting possibilities for studying
short-range ee-correlations in many-electron systems by
their manifestation in binary (e, 3e) collisions.

As for the alternative prospects which have not been
realized so far, they concern, for example, the quasi-elastic
knock-out of atoms from molecules by atoms (in particular,

by helium atoms), accompanied by the production of free
radicals as `final observing particles' in the kinematically
complete microscopic experiment. Within the framework of
the EMS itself, the next significant step will be the use of
polarized electron beams and polarization measurements,
which is important for studying the role of the spin ± orbit
interaction in many-electron systems.
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