
Abstract. Experimental studies of the high-frequency and
acoustic properties of weak ferromagnets are reviewed and a
theory that includes all possible mechanisms of the formation of
magnet dynamics is presented. The dynamic properties of a
magnet are shown to be generally determined by the preces-
sional and longitudinal motions of magnetization and by their
interaction with the elastic, paramagnetic, and dipole subsys-
tems. It was found that the precessional and longitudinal con-
tributions always coexist and are additive and that their relative
magnitudes depend on both external factors and the relationship
(which is characteristic of each specific magnet) between the
temperatures of the spontaneous reorientation and ordering of
the corresponding spin subsystem. Special attention is paid to
the investigation of magnets near the reorientation phase tran-
sitions, where the effects due to changes in this relationship, as

well as those caused by the interaction of various vibrational
subsystems, are most pronounced.

1. Introduction

We hope that the interested reader is acquainted with our
review [1] devoted to the magnetoacoustics of rare-earth (RE)
orthoferrites (OFs), which mainly concerned the theoretical
and experimental investigations of the dynamics of REOFs in
the field of various spontaneous reorientation phase transi-
tions (RPTs) that occur in these compounds. Both the theory
and the interpretation of experimental results in that review
were based on the spin-wave approximation. This means that
the magnetizations of the sublattices were postulated to be
unaltered by the absolute value and only the precessional
motion of the ferromagnetism and antiferromagnetism
vectors was taken into account. This approach permitted us,
nevertheless, to explain most experimental results that
concerned the investigation of soft magnetoresonance
modes, the anomalies of the sound velocity, and sound
attenuation in the immediate vicinity of the RPTs. However,
some effects have not received convincing explanation within
this approach, especially, in the case of transitions induced by
an external magnetic field rather than occurring sponta-
neously. One such effect that has not received satisfactory
quantitative explanation is a very small (in comparison with
the expected value) change in the sound velocity at the RPT
points. According to the theory developed in Ref. [2], which
ignores the longitudinal vibrations and the relaxation of
magnetization, the velocity of the transverse sound should
vanish at the points of those RPTs that occur as second-order
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phase transitions (PT-2). However, no such effect has been
observed experimentally to date. The maximum decrease in
the sound velocity that was fixed in the vicinity of the G2 ±G4

transition typical of REOFs is several percent instead of the
predicted value of 100%. The same refers to the magnitude of
the energy gap in the spectrum of spin waves. Upon the
experimental restoration of spectra of soft magnetoresonance
modes, significant energy gaps are revealed at the RPT points
in all REOFs (and not only in them). In many cases, their
frequency ± field dependences could not be explained in terms
of the spin-wave model. This suggested that even the full
allowance for the contributions to the dynamic characteristics
of REOFs from various vibrational subsystems that was used
in the theory developed in Ref. [1] (which was modified as
compared to [2]) cannot give adequate explanation for the
entire body of experimental data within the framework of the
above model.

To find the way from this situation, we turned to the idea,
first stated by Yu M Gufan [3], that upon a thermodynamic
description of the resonance properties of ordered magnets,
one should take into account not only precessional, but also
longitudinal vibrations of magnetization. This was also
supported by later works of Gufan, Marchukov, Ruda-
shevski|̄, et al. (see, e.g., [4, 5]), who established that, indeed,
under real experimental conditions (i.e., at T > 0), the
longitudinal vibrations and the relaxation of magnetization
could not be ignored if one wanted to obtain a correct
description of experimental data. Moreover, the allowance
for these factors leads to a quite different explanation of the
effects that are observed in magnetoresonance measurements
performed on REOFs. In particular, this refers to the
understanding of the nature of energy gaps. Truly, the theory
of Refs [4, 5] in the existent form is only applicable to
transitions induced by an external magnetic field. However,
as we recognized after a series of measurements carried out on
various compounds, it can be successfully extended to
spontaneous RPTs as well. This conclusion is supported by
new experiments that were conducted on REOFs and on
Fe3BO6, which is isomorphic to REOFs. The results of these
experiments permit us to obtain a more comprehensive idea
of the mechanisms of formation of the dynamics of magnets
near RPTs than could be done within the framework of the
classical spin-wave approach. Already the first theoretical
works in this direction [6, 7] showed the availability of this
approach. It turned out that even the allowance for only the
magnetoelastic interaction in the thermodynamic theory [4]
makes it possible to explain more fully and in a different way
the magnetoacoustic anomalies experimentally observed at
RPT points.

Before proceeding with the presentation of experimental
and theoretical results on the questions that will be touched
upon in this review, we turn to the problem of the method of
description of the dynamics of magnets that has frequently
appeared in recent years in science discussions and in the
literature. Usually, the well-known Landau ±Lifshitz equa-
tions are used in the investigations of the dynamics of
magnets. In many works devoted to the calculation of the
frequencies of magnetic resonance in antiferromagnets, the
changes in the magnitudes of the magnetizations of the
sublattices, as well as the longitudinal relaxation, are usually
neglected both in statics and dynamics. This corresponds to
the case where only a precessional motion of the vectors of
ferromagnetism and antiferromagnetism is possible. This
approximation, strictly speaking, holds in the range of

relatively low temperatures Ð far from the NeÂ el tempera-
ture. The method of the calculation of magnetic resonance
frequencies based on the above approximations is called the
spin-wave method. Gufan [3] suggested the use, instead of the
Landau ±Lifshitz equations, a more general phenomenologi-
cal method Ð the Onsager theory of thermodynamic
fluctuations. Later, Dzyaloshinski|̄ and Kukharenko [8]
developed another phenomenological method of calculating
magnetic resonance frequencies Ð the generalized Lagrange
method of the theory of small oscillations. In both methods,
the magnetizations of the antiferromagnet sublattices were
assumed to change their magnitudes both in statics and
dynamics. The calculation of the frequencies of magnetic
resonance and of spin waves using the Onsager and Lagrange
methods was performed in Refs [8 ± 10]. The frequencies
calculated by these methods turned out to differ from one
another for some vibration modes, namely, for those modes
that are excited by the longitudinal (directed along the
antiferromagnetism vector) high-frequency field and do not
retain the lengths of the sublattice magnetizations. In 1992,
Mukhin and Prokhorov [11] showed that the difficulties that
arise upon comparison of the results obtained by the
Lagrange and Onsager methods are related to the neglect of
longitudinal relaxation. They also noted that in the descrip-
tion of the dynamics of antiferromagnets whose sublattice
magnetizations change their length in both statics and
dynamics, one can use the Landau ±Lifshitz equations with
allowance for longitudinal relaxation. Such equations were
suggested by Bar'yakhtar in Ref. [12]. The Landau ±Lifshitz
equations with allowance for the longitudinal relaxation and
the changes in the magnitudes of the sublattice magnetiza-
tions in statics and dynamics were used in calculations of
magnetic resonance frequencies and coupled magnetoelastic
waves in Refs [6, 7]. Note that the results of our work [6, 7]
coincide with those obtained by other methods mentioned
above. Therefore, in this review we will use the classical
approach based on the Landau ±Lifshitz equations with
allowance for the longitudinal relaxation and changes in the
magnitudes of the sublattice magnetizations in statics and
dynamics.

Our review [1] contains a detailed introduction to the
magnetoacoustics of REOFs, a description of the objects of
investigation, and the experimental techniques. Since this
paper is a logical continuation of review [1], we thought it
would be excessive to repeat in detail the relevant data, the
more so that we will here consider virtually the same REOFs
that were discussed in [1]. During the presentation, we will
give in more detail only those new features of the experi-
mental technique that are absent in Ref. [1]. The designations
are the same as in [1].

Below the NeÂ el temperature (TN � 620 ± 740 K), two
magnetic subsystems typically exist in most REOFs, namely,
a weakly ferromagnetic ordered structure of Fe ions (d
subsystem) and a system of paramagnetic RE ions
(f subsystem).

Most experiments can be explained in terms of a four-
sublattice model, in which the magnetic structure of Fe ions
corresponds to the irreducible representation G4�Gx;Fz�,
where Gx and Fz are the components of the vectors of
antiferromagnetism (G �M1 ÿM2) and ferromagnetism
(F �M1 �M2), respectively; and M1 and M2 are the
magnetizations of the sublattices. In this model, two
branches of vibrations of iron spins exist, namely, the
quasiferromagnetic (g mode) and the quasiantiferromag-
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netic (s mode). At T > 10 K, the RE ions are in the
paramagnetic state, but magnetized due to the exchange
interaction with the spin subsystem of iron ions. Two
analogous vibration branches and the vectors of ferromagnet-
ism and antiferromagnetism can also be put in correspon-
dence to these ions. Thus, on the whole, the dynamics will be
described in the approximation of two d and two f sublattices,
i.e., by a four-sublattice model. In terms of this model, the
resonance modes corresponding toRE ions can be considered
as cooperative vibrations within the paramagnetic subsystem.

A characteristic feature of REOFs is the occurrence of
various RPTs in them, caused by the temperature-dependent
anisotropic f ± d interaction [13]. In most cases, we will be
interested in the dynamics of orthoferrites with the most
common RPT of the G4�Gx;Fz� ±G24�Gxz;Fxz� ±G2�Gz;Fx�
type, in which case a smooth rotation of the vectorsG andF in
the ac plane of the crystal occurs. At the boundaries of the
spontaneous reorientation, at temperatures T � T1 and
T � T2, PT-2 transitions of the G4 ±G24 and G2 ±G24 types
occur, respectively. These RPTs can be induced on the whole
by varying the temperature in the range of T < TN.
Individually, the G4 ±G24 and G2 ±G24 transitions can be
induced by the fieldsHjjc�z� andHjja�x�, respectively.

One of the problems that arises upon the investigation of
soft magnetoresonance modes is related to the clarifying of
the nature of the observed energy gaps at the RPT points. The
correspondingmeasurements have been performed to date on
virtually all REOFs. In no one case could a frequency gap less
than 15 ± 20 GHz be revealed at the PT-2 points, whereas it
follows from the solution to the set of Landau ±Lifshitz type
dynamic equations specific for the REOFs [14] that at these
points the frequency of one of the branches of spin waves (s
mode) should vanish. Upon an attempt to explain experi-
mental results that do not agree with this conclusion, several
questions arise immediately. Are the experimentally detected
magnetoresonance branches soft in their origin? If yes, then
which is the nature of the observed gaps? If no, then what is
the soft mode? For this reason, two viewpoints on the nature
of the above high-frequency effects, which a few years ago
seemed to be alternative came into existence. One is based on
the fact that in high-frequency experiments in the vicinities of
different RPTs it is just the soft magnetoresonance mode that
is detected, while the gaps observed are the result of a dynamic
interaction of various vibrational subsystems of the magnet,
such as the ordered spin subsystem, paramagnetic, elastic,
and dipole 1 (electromagnetic) subsystems.

The corresponding theoretical calculations [15, 16] were
laid down as the basis for the description of a series
magnetoresonance and magnetoacoustic experiments pre-
sented in review [1]. In that review, we postulated the
fulfillment of the condition that the magnetizations in the
corresponding pair of sublattices remain constant in magni-
tude and are equal to one another [17], which corresponds to
the spin-wave model. For example, for a two-sublattice
antiferromagnet this condition has the form

M2
1 �M2

2 �M2
0 � const ; �1:1�

which is equivalent to the conditions FG � 0,
F2 �G2 � 4M2

0, where M0 is the saturation magnetization
of the sublattices.

Another approach, on the contrary, takes into account
the longitudinal vibrations of M1 and M2, which are related
to the finite longitudinal susceptibility at temperatures T > 0.
In this case, naturally, condition (1.1) is not fulfilled. The
allowance for longitudinal vibrations of the magnetizations
and for dissipation gives an additional relaxational branch of
spin waves with a complex frequency. It is this branch that is
soft, whereas the experimentally observed magnetoresonance
branches are not soft in reality. To the beginning of the
experimental works that are considered in this review, each of
the two above mechanisms of gap formation was tested, but
on different REOFs and under different experimental
conditions. Thus, the experiments on YbFeO3 [18], ErFeO3

[19], TmFeO3 [20], HoFeO3 [21], and some other REOFs
could satisfactorily be explained by the theory [15, 16] that
was mainly developed for the case of spontaneous RPTs. At
the same time, the mechanism suggested in [4, 5] was tested on
YFeO3 and DyFeO3 under conditions where the RPT was
induced by an applied magnetic field.

The experimental investigations that are considered below
were initially directed to searching for the manifestation of
the effects of relaxational modes predicted in [3 ± 5] (long-
itudinal vibrations of the sublattice magnetizations) in both
RPTs induced by the field and in spontaneous transitions. It is
important to emphasize that these experiments were per-
formed on the same compounds for which the previous
experiments were successfully explained on the basis of the
spin-wave model without resort to relaxational and long-
itudinal vibrations.

2. Experimental studies

Going to the description of the results of specific experiments,
we note that the sequence of presentation follows a logic that
will be explained later. Here, we only indicate that the
sequence of presentation corresponds to the increase in the
parameter tSR � TSR=TN, which we called the relative
temperature of spontaneous transition (TSR is the averaged
temperature of spontaneous transition (T1 � T2�=2). It is
obvious that this parameter is specific to each particular
REOF. Its increase, as will be seen below, leads to the change
in the ratio of the contributions to the dynamics from one
characteristic of the spin-wave to that specific of the
thermodynamic mechanism.

2.1 Spectra of soft magnetoresonance modes under
conditions that satisfy the spin-wave approximation
We begin the presentation from YFeO3, which has the
smallest tSR parameter among the orthoferrites that were
studied in our work. In this compound, spontaneous spin
reorientation occurs in a temperature range fromT1 � 7:95K
to T2 � 6:85 K; its NeÂ el temperature is TN � 627 K, i.e.,
tSR � 0:01. Therefore, this REOF corresponds best to the
condition of applicability of the spin-wave approximation
tSR 5 1 when the sublattice magnetizations reach the greatest
saturation.

2.1.1 Dynamic properties of the induced transition C2 ±C4 in
YbFeO3. The choice of the technique of measurement for
YbFeO3 was determined by the necessity of obtaining
experimental results in a form suitable for comparison with
the theory that existed at that time and with experiments that
were performed to check that theory with previously
performed experiments on YFeO3 and DyFeO3 [4, 5]. The

1 By dipole interaction, we understand the interaction of the magnetic

moment of the crystal with the magnetic component of the electromag-

netic wave that propagates in it.
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requirement of closeness of experimental conditions means,
first, the coincidence of the character and type of the phase
transitions; second, of the orientation of the magnetic field
that induces the transition; and, third, of the nature of the soft
modes. In order to clarify the importance of the fulfillment of
the last condition and the limits of the applicability of the
theory developed in [4, 5], experiments were performed on a
number of orthoferrites with substantially differing relation-
ships between the natural frequencies of the subsystems of
iron (ns) and rare earth (nr) ions. It has been reliably
established to date [1, 17] that both the s and the RE modes
can be soft near the RPT because of the intersection and
strong interaction of different resonance branches. In
YbFeO3, as is known [18], the soft mode is the RE mode,
and the relation nr 5 ns holds.

How does the transition induced by an applied magnetic
field occur? We will demonstrate this using an RPT in a field
Hjja as an example.

The switching on of an arbitrarily small field of this
orientation at once transforms the symmetric phase
G4�Gx;Fz� into a canted phase G24�Gxz;Fxz�. The further
reorientation in an increasing field goes by the rotation of F
and G to its completeness at the G24 ±G2 (PT-2) point.

The fact that this transition in YbFeO3 (as, though, in all
the other orthoferrites that were studied in our work) can be
induced by both the temperature and the field gives certain
methodical advantages. They are as follows. In the experi-
ments on YFeO3 and DyFeO3 in the working temperature
range (78 ± 400 K), the transition can only be induced by a
sufficiently strong magnetic field (50 ± 100 kOe). As follows
from theH ±T phase diagrams of these compounds, measure-
ments in lower fields would require increasing the tempera-
ture to above 600 K, where no resonance could be detected in
either YFeO3 [23] orDyFeO3 [24]. In the other REOFs, owing
to the existence of second-order spontaneous transitions, the
G2 ±G24 transitions similar to those observed in YFeO3 and
DyFeO3 can be detected even in very weak magnetic fields.
The methodical trick in experiments with YbFeO3 consisted
in that the `starting position' was chosen by fixing one of the
parameters, H or T, whereas the scanning of the second
parameter was used to initiate the transition. As follows
from the experimental H ±T phase diagram (Fig. 1), the
G2 ±G24 transition can be induced by an arbitrarily small
magnetic fieldH � HIR. The restrictions onH from below are
only due to the field width of the resonance line. In
experiments, this width was 0.5 ± 1.0 kOe, but the position of
its peak can reliably be fixed at already as low a field as
H � 0:1 kOe. Thus, the first condition for the compatibility of
the techniques was fulfilled to the full extent: we have just the
PT-2 of the G2 ±G24 type induced by the field Hjja, as in
YFeO3 and DyFeO3.

It is obvious from the above that the fulfillment of the
second condition was actually predetermined. But in the
experiments with YbFeO3, apart from the G2 ±G24 RPT
induced by the field Hjja, a G4 ±G24 RPT was also induced
by the field Hjjc. In the final account, this gave the
opportunity to restore the total magnetoresonance spectrum
in the vicinity of the RPT and obtain comprehensive
information on the field dependence of both energy gaps Ð
located at both T1 and T2.

As for the third conditions, we should note the following.
Yttrium is a nonmagnetic ion; i.e., in YFeO3 the entire statics
and dynamics of the reorientation are controlled only by the
sublattices of iron. Therefore, this compound may be

considered as a model one for the theory developed in [4],
whereas inDyFeO3 thesmode is determined to a large extent
by the f ± d interaction [24]. This was noted in [5], but it was
also concluded there that this factor exerts only an insignif-
icant effect on themagnitude of the energy gap.We say here in
advance that, in order to check this conclusion, orthoferrites
withmarkedly different ratios nr and ns were selected. Andwe
remember that these ratios are directly related to the strength
of the f ± d interaction.

The measurements were carried out on a direct-gain
spectrometer, in which the reflected absorption signals from
spherical samples (0.8 ± 0.9 mm in diameter, placed in the
center of the cavity piston that short-circuited the waveguide)
were detected (see, e.g., [25]). The orientation of the field H
along the crystal axes was attained by trial experimental
recordings and was fixed by the maximum separation of two
resonance lines located on both sides of the transition point,
similar to the way it was performed in [4]. The attained (and
sufficient) accuracy of orientation was � 100. The absorption
was recorded in the process of scanning both in the
temperature at a constant field and in the field at a constant
temperature. The relative accuracy of measurements of the
field and temperature was 10ÿ3. The direction of the magnetic
component of the linearly polarized high-frequency field h
with respect to the crystal axes was chosen from the condition
of the excitation of the soft mode at the G2 ±G24 RPT . This
condition corresponds to h ? a in the G2 phase (T < T2) and
h ? c in the G4 phase (T > T1). The accuracy of the
orientation of the field h that was sufficient for this was 5�.
The same technique was used in experiments with other
REOFs. The only difference was in the accuracy of orienting
H along the crystal axes, which was specific in each particular
case. Thus, e.g., it was 3000 for the analogousmeasurements on
TmFeO3.

Figure 2 displays a fragment of a temperature dependence
(characteristic of the REOFs) of the soft mode frequency,
obtained in experiments with YbFeO3 upon a spontaneous
RPT. In a fuller form, these results were presented in review
[1]. Here, they serve as a starting point, since in the context of
this work we are interested in the temperature (field)

6.5 7.0 7.5 8.0
0

2

4

6

8

10H, kOe
YbFeO3

T, ¬

T2 T1

Figure 1. HÿT phase diagram of YbFeO3 at various orientations of

magnetic field: (�)Hjja; and (�)Hjjc.
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dependences of the energy gaps at the points of completion of
the spin reorientation T1 and T2 rather than in the resonance
spectra themselves. The magnetoresonance spectrum was
obtained in a zero field by recording absorption lines at
fixed frequencies upon scanning in temperature. Usually, in
the restoration of the spectra of soft modes, the absorption
from the slopes of the resonance lines at frequencies below
those corresponding to the gap is also observed (see, e.g. [4]).
This absorption decreases rapidly in amplitude and vanishes
as the frequency decreases by a value equal to the width of the
resonance line. From the position of the unsplit line of this
absorption, we determined the values of T1 and T2 upon
spontaneous transitions and ofH � HIR upon the transitions
induced by the field. The measured values of the gaps in the
spontaneous RPTs at points T1 and T2 were n1 � 20:2 GHz
and n2 � 37:5 GHz, respectively. The temperature depen-
dences of the magnetic resonance frequencies upon field-
induced transitions are similar to those shown in Fig. 2 for
the spontaneous reorientation, but are displaced along the
temperature axis in accordance with the phase diagram (see
Fig. 1). This diagramwas constructed by processing a series of
temperature dependences of resonance frequencies at various
values of the fixed field Hjja andHjjc. The effect of the angle
of misorientation between the field H and the crystal axes a
and c is seen from Fig. 3. The accuracy of the orientation of
the fieldHwith respect to the crystal axes in such experiments
plays a decisive role, since the effect of the longitudinal
vibrations of magnetization on the dynamic characteristics
is determined (according to [3 ± 5]) just by the changes in the
inducing magnetic field. And this dependence may be

substantially distorted by the inaccurate geometry of the
experiment (see Fig. 3). Indeed, the deviation of H from the
a and c axes necessarily transforms the sample into a canted
phase G24�Gxz;Fxz� at any temperature, even in the tempera-
ture ranges where the collinear phases G2 and G4 exist. In this
case the second-order transitions under study disappear. At
the T1 and T2 points, the energy gaps cease to be minimum,
since now they include `additions' due to the noncollinear-
field-induced anisotropy.

Since the theory of [4, 5] only concerns the two-sublattice
subsystem of iron ions, it does not take into account the f ± d
interaction, at least when deriving the expression for the gap.
However, when nr 5 ns, which takes place in YbFeO3, the
theory apparently can be extended to this compound without
any restrictions, since in this case as well, the thing is the
description of the dynamics of an ordered two-sublattice
subsystem. A test to confirm the theory [4] must be a linear-
in-field growth of the energy gap and the resulting tempera-
ture dependence of the ratio between the longitudinal and
transverse susceptibilities (wjj=w?). Themain information that
should be obtained from the experiment at hand is shown in
Fig. 2. This is the gap dependence on the temperature and
field. The results shown indicate that in the limits of the
accuracy attained, the energy gaps are independent of the
external factor that induces the transition. As for the theory of
[4], the gap at the point of the G2 ±G4 transition is (to the first
approximation)

n2jH�HIR
� g2

2p

�
wjj
w?

�1=2

HIR ; �2:1�

where g2 is an unknown kinetic coefficient, which at room
temperature differs from the gyromagnetic ratio
g0 � ge=�2mc� by only 1 ± 2%. Thus, according to [4], the
gap should grow with increasing field and temperature. The
independence of the gap of the temperature, found in our
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Figure 2. Temperature dependence of the frequency of the soft magneto-

resonance mode in YbFeO3 in the vicinity of spontaneous transitions

G2ÿG24 (4) and G4ÿG24 (~) and of the energy gaps for transitions

induced bymagnetic fieldHjja (�) andHjjc (�) of the followingmagnitude:
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experiment, equivalent to the condition qn2=qH � 0, indi-
cates that the longitudinal vibrations of magnetization yield
only an insignificant contribution to the gaps measured.
However, the equality wjj � 0 implies a transition to the
conventional Landau ± Lifshitz equations, which satisfy
condition (1.1), and the vanishing of the gaps at the PT-2
point.

How could it be possible to correlate this, at first glance,
negative result with the existent (at that time) theory [4, 5]? A
comparative analysis performed in [20] reduced to the
following. The experiments on YFeO3 and DyFeO3 were
carried out in strong magnetic fields and at relatively high
temperatures. The `rigidity' of the magnetic sublattices
decreases as T! TN, and the increasing magnetization
fluctuations favor the growth of the longitudinal suscept-
ibility. At the upper temperature boundary attained in [4]
(400 K), the wjj=w? ratio is � 0:5, i.e., is half its limiting value
that follows from the molecular-field theory. Therefore, the
manifestations of the exchange relaxation mode should here
be pronounced most vividly. Correspondingly, a decrease in
the transition temperature and the induction of the transition
by a relatively small field can significantly decrease the above
effect. This would mean, in reality, a smooth transition from
the requirement of the conservation of the absolute magni-
tude of G [4] to the condition of the conservation of the
magnitudes ofM1 andM2 (1.1). At temperatures T < 100 K,
the contribution of longitudinal vibrations to the magnitude
of the observed gap can be masked by more substantial
contributions from precession-related mechanisms [15, 16].
It is this that most likely is observed in the above experiment.
In this connection, we should first of all recall the magnetoe-
lastic interaction, which is most frequently used to explain the
formation of a gap. In the theory of Refs [4, 5], this interaction
plays an insignificant role; the gaps observed in YFeO3 and
DyFeO3 (107 and 136 GHz at room temperature, respec-
tively) are greater by almost an order of magnitude than the
estimated magnetoelastic contribution (no more than 20
GHz). A different picture takes place in those REOFs in
which the reorientation occurs spontaneously and at lower
temperatures. The values of n1 and n2 given above forYbFeO3

coincide on the order of magnitude with the above estimate of
the magnetoelastic contribution. But this contribution is not
the only one here. As was shown in [1], each transition,
depending on the specific RE ion, correlates with a quite
definite set of exchange-enhanced dynamic interactions that
affect the gap. Therefore, the independence of the gaps of
temperature (field) obtained in this work does not contradict
the results of [4, 5]. The mechanisms suggested in [4, 5] and in
[15, 16] are most likely coexistent rather than alternative. At
low temperatures, the longitudinal susceptibility is small, and
the soft mode is usually represented by the usual magnetore-
sistance mode, whereas with increasing temperature, the
contribution from the longitudinal susceptibility increases
and now controls the magnitude of the gap. Each specific
REOF should be associated with a certain transition range of
fields where neither the mechanisms developed in [4, 5] nor
those suggested in [15, 16] separately can adequately describe
experimental results. In such a transition region, these
mechanisms are competing and contribute additively to the
observed energy gap values. Evidence for the existence of such
a transition region can be found in measurements [5]: in the
range of T � 78 ± 100 K, the experimental values of wjj=w?
ratios and gaps in YFeO3 are virtually independent of
temperature, whereas at T > 100 K, the results are excel-

lently described by the model suggested. To summarize, we
may say that the wjj=w?�T� dependence obtained in [5] cannot
be regarded from the quantitative viewpoint as a universal
characteristic of all compounds of this symmetry; the theory
suggested in [15, 16] also cannot be considered all-embracing,
since it ignores the contributions of the relaxation and the
longitudinal vibrations of magnetization.

2.1.2 Magnetoresonance and acoustic properties of TmFeO3

near the C2 ±C4 induced transition. In Refs [25, 26], the
following experimental values of characteristic quantities at
the points of completion of the G2 ±G4 spontaneous reori-
entation transition in TmFeO3 were obtained: T1 � 93:0 K,
T2 � 84:0 K, n1 � 23 GHz, and n2 � 20 GHz. With allow-
ance for the value of the NeÂ el temperature TN � 632 K, we
have for the tSR parameter of this orthoferrite � 0:14.
TmFeO3 is an antipode of YbFeO3 in the sense that an
opposite relationship between the characteristic frequencies
takes place in it, i.e., ns 5 nr. This means that the entire
dynamics at frequencies close to the magnitude of the gap,
i.e., at minimum magnetoresonance frequencies, is mainly
determined by the ordered subsystem of iron spins, whereas
the soft mode is the s mode. This property of TmFeO3 gave
all grounds to correlate its dynamic characteristics with the
theory ofRef. [4], which alsowas developed on the basis of the
iron sublattices.

Figure 4 displays the phase diagram of TmFeO3 in a field
Hjja, whichwas constructed by the samemethod as in the case
of YbFeO3. This diagram differs from that of YbFeO3 only in
a quantitative respect, namely, in the larger values of the
temperature and field of the transition.

Figure 5 displays the temperature dependence of the soft-
mode frequency upon spontaneous RPT and the temperature
(field) dependences of the energy gaps in inducing fields of
various orientations. The latter dependences were restored by
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scanning in temperature at fixed values ofH. At the line of the
G2 ±G24 transition, this was carried out in more detail: the gap
was measured at the values of the fieldHjja equal to 2, 4, 6, 8,
and 10 kOe. It can be seen fromFig. 5 that within the attained
accuracy, the gap at the line of the induced G2 ±G24 transition
is independent of the field (temperature). Since the process of
measuring the gap is rather laborious, the authors of Refs [25,
26], having been convinced of its independence of T andH at
the G2 ±G24 line, restricted themselves, when investigating the
dynamics in the region of theG4 ±G24 transition, tomeasuring
the gap only in the field Hjjc equal to 10 kOe, which is most
easily experimentally accessible. The gap here also is
independent of field (temperature). Thus, a picture is
obtained which is qualitatively absolutely the same as in the
case of YbFeO3. Its main result is the independence of the
energy gaps of the field at both points of the completion of
spin reorientation induced by the fieldsHjja andHjjc.

Therefore, all the conclusions of the previous section
concerning YbFeO3 can completely be referred to TmFeO3

as well. Note only that no signs of the contribution of
longitudinal vibrations of magnetization to the magnitudes
of the energy gaps were found upon an increase in the
parameter tSR by more than an order of magnitude in
comparison with that for YbFeO3. This means that the
values T1 and T2 involved here are also `insufficiently high'
for the sought effect to be found, and that the initial (at
H � 0) gaps are formed through mechanisms that were

investigated in detail in [1]. On the other hand, if the
mechanisms developed in [4, 5] worked here, then the
increase in the gap that should be expected in a field of
10 kOe would be, according to (2.1), �8:4 GHz [25]. This
significantly exceeds the error in the determination of the
absolute magnitudes of the gaps.

2.1.3 Temperature±field dependence of the energy gap at the
point of the induced C2 ±C24 transition in ErFeO3. While
YbFeO3 and TmFeO3 are characterized by the relations
nr 5 ns and ns 5 nr, respectively, for most REOFs a situa-
tionwhere nr � ns is characteristic. In this case, because of the
strong dynamic f ± d interaction, the experimentally observed
soft mode cannot be considered as being caused by only one
spin subsystem (iron or RE ions). This situation is character-
istic of ErFeO3, in particular. For this reason, further
experiments were carried out on this crystal [27]. Note that
the static characteristics of the orthoferrites of erbium and
thulium are virtually coincident both qualitatively and
quantitatively. Indeed, the boundaries of the spontaneous
reorientation region in ErFeO3 given in [27] (T1 � 100 K and
T2 � 90 K) are virtually coincident with those of TmFeO3.
The same can be said about the temperature of ordering in the
iron sublattice and, consequently, about the parameter tSR. In
ErFeO3, we have TN � TN1 � 636 K, and tSR � 0:15 (in
ErFeO3, as is known, apart from the temperature T � TN1

for the iron ions, there is also a temperature of ordering of
erbium ions, T � TN2). The energy gap n2 measured at the
point T � T2 for the spontaneous G2 ±G24 transition is equal
to 26.2� 0.2GHz.Note that in the conventional form the soft
mode is detected only in the vicinity of T2 and, as was shown
in [15, 22], it is mainly formed by the vibrations of the spins of
iron. Thus, we are dealing here with thesmode at the point of
theG2 ±G24 transition, i.e., precisely with that situation that is
realized in YFeO3 [4]. What is going on with the gap n2 in a
magnetic field Hjja? The answer to this question will give an
idea of which of themechanisms is prevailing in the process of
formation of the gap, i.e., whether this is the one developed in
[4] or in [15]. The gap was measured in [27] at the field values
of 1, 5, an 10 kOe. The results of thesemeasurements are given
in Fig. 6. In order to avoid giving the phase diagram of
ErFeO3, which in its main features coincides absolutely with
that for TmFeO3 (see Fig. 4) and only differs insignificantly in
the values of the temperature and the field at the transition
point, we give in Fig. 6 the field scale as well, apart from the
temperature scale. The answer to the above question is
obvious: within the accuracy of measurements (2 GHz), no
increase in the magnitude of the gap was found. Therefore, in
ErFeO3 as well, at temperatures of T < 100 K, the long-
itudinal susceptibility and, correspondingly the contribution
of longitudinal vibrations to the magnitude of the gap are
negligibly small (as follows from measurements performed in
[5], we have wjj=w?5 1 at T � 90 K). In this compound, the
gap is formed, both in the spontaneous and induced RPTs, by
mainly precessional mechanisms. As was shown in [15], the
gap at the point of the G2 ±G24 transitions is caused by the
magnetoelastic and dipole contributions. Thus, based on the
experiments with YFeO3, TmFeO3, and ErFeO3, we may
conclude that the independence of the gap magnitude on the
field (temperature) is likely to be a common property of all
REOFs in which the reorientation occurs at temperatures T1,
T2 that are significantly less than the temperatures TN of
ordering in the iron sublattice and, correspondingly, in
relatively low fields. This fact is independent of the ratio of
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the characteristic resonance frequencies nr and ns and,
consequently, of the degree of dynamic interaction of
vibrational subsystems of iron and RE ions. This has not yet
been explained in the existent thermodynamic theory [4, 5].
On the other hand, we may predict with a large degree of
certainty that the analogous, in the technology and geometry
of experiment, measurements on the same REOFs but in
stronger fields (H � 50 ± 60 kOe) should reveal noticeable
effects of the manifestation of longitudinal vibrations in the
dynamics of the considered magnets near an RPT. In view of
the arguments that were stated in section 2.1.2, the most
suitable compound for the comparison of the results of high-
field measurements with the existent theory is TmFeO3.

2.2 Dynamics of magnets near reorientation transitions
at comparable contributions of the precessional
and longitudinal vibrations of magnetization
Based on the above arguments, we should expect comparable
contributions from the precessional and longitudinal vibra-
tions to the dynamics of magnets in the RPT region either in
compounds with relatively high temperatures of spontaneous
reorientation tSR or in sufficiently strong magnetic fields.
From the viewpoint of tSR, the only REOF that falls into this
group is SmFeO3 (T1 � 478 K, T2 � 450 K, TN � 674 K,
tSR � 0:7). However, attempts to carry out corresponding
magnetoresonance measurements on this orthoferrite were
unsuccessful. The reason is the small intensity and large width
of the absorption lines [28], which appear to be due to the
strong attenuation introduced at these high temperatures by
the RE subsystem. Therefore, the necessity arose to search for
a suitable compound outside the known set of REOFs. The
compound most suitable for the attainment of this purpose
turned out to be the weak ferromagnet Fe3BO6; the next
section is therefore devoted to this compound.

2.2.1 High-frequency and acoustic properties of Fe3BO6 upon
spontaneous RPT. As all orthoferrites, Fe3BO6 has an
orthorhombic structure. At T < TN � 508 K, it is a weak
ferromagnet. At T � TSR � 415 K, a G2 ±G4 reorientation
occurs in it, which is conventional for the REOFs. However,
in contrast to the orthoferrites of rare earth metals, in
Fe3BO6 this reorientation occurs as a first-order phase
transition (PT-1), i.e., jumpwise, rather than through the
canted phase G24. The latter can be induced in this compound
only by an applied field; we consider this question in the next
sections. Here, we only consider the dynamic characteristics
that are observed upon a spontaneous RPT. Since the
corresponding results were not mentioned in review [1], we
dwell on them in more detail. Upon the spontaneous
reorientation, the magnetic resonance spectrum in Fe3BO6

was restored in most detail in Ref. [30], where an antiferro-
magnetic g mode with a frequency jump at the RPT point
characteristic of the PT-1s was revealed for the first time. At
the same time, it followed from the theory developed in Ref.
[30] that the frequency of the ferromagnetic s mode at this
point becomes zero without any frequency jump. The first
experiments on the investigation of the soft s mode in the
millimeter wave range [31] showed that in reality the spectrum
of this mode contains a significant energy gap, equal to
17.5 GHz. Note that the temperature dependence of the
resonance frequencies in this case has the conventional form
characteristic of the soft mode (see, e.g., Fig. 6).

Thus, the concept of the full softening of the s mode
stated in Ref. [30] has not been confirmed. Note that,
proceeding from general considerations, it did not have to
be confirmed, since at the PT-1 point (in contrast to the PT-2)
the anisotropy energy and, consequently, the magnetic
resonance frequency do not vanish. The residual anisotropy
in this case causes the presence in the PT-1 point of a finite
frequency gap. Consequently, the energy gap that was
revealed in [31] may be of a quite different origin than in the
case of a PT-2. If the residual anisotropy is large, it can
completely mask the fine mechanisms of gap formation
originating from both the dynamic interaction of various
vibrational systems [15, 16] and the relaxational mode [4, 5].
Therefore, the experimental result obtained at this stage could
be explained in at least three ways. One of these ignores the
mechanisms developed in Refs [4, 5, 15, 16], since usually in a
PT-1 the gap is determined by the residual anisotropy, and the
transition vicinity itself is characterized by a certain range of
phase lability. The extrapolation of the temperature depen-
dences (on both sides of the RPT) to zero frequency yields
lability temperatures of 419 and 410 K for the G2 and G4

phases, respectively. Another possibility consists in that the
gap is completely determined by the mechanisms considered
inRefs [4, 5, 15, 16] with a zero range of lability. This situation
would mean that here the PT-1 is close to PT-2. The third
possibility is a combination of the first two, when contribu-
tions come from both the mechanisms indicated and the
residual anisotropy.

Because of the insufficient resolution of the technique
used in [31], no unambiguous conclusion could be made on
the presence or absence of a frequency jump at the RPT point.
Therefore, later new experimentswere conducted [32] with the
use of a modified technique, aimed specially at this work. We
consider these experiments in next sections.

Here, we also touch somemagnetoacoustic measurements
in the vicinity of the spontaneous G2 ±G4 transition in
Fe3BO6. In Ref. [33], the experiments were mainly carried

88 89

0 3 6 9 12

90 91 92 93 94

50

40

30

20

A B C

H, kOe

T, ¬

T2

ErFeO3

n, GHz

n2

Figure 6. Temperature dependence of the soft magnetoresonance mode

frequency (4) in ErFeO3 in the vicinity of the spontaneous reorientation

transition G2ÿG24 and of the energy gap (�) for the case when this

transition is induced by fields Hjja of the following strength: A, 1; B, 5;

and C, 10 kOe.

964 D Buchel'nikov, N K Dan'shin, L T Tsymbal, V G Shavrov Physics ±Uspekhi 42 (10)



out with the aim of establishing the character of the phase
transition. As a result, various effects were revealed; some of
them speak in favor of the PT-1, while others indicated PT-2.
On this basis, a conclusion was drawn that the spontaneous
RPT in Fe3BO6 in essence is of a boundary nature,
intermediate between PT-1 and PT-2. One unusual effect
that was revealed in this experiment consists in that, unlike all
known ultrasonic measurements on REOFs, a decrease in the
attenuation of sound passing through the sample is here
observed at the RPT point. The velocity of the active sound
wave in this case decreases, as could be expected, although
insignificantly Ð by only 0.2%.

2.2.2 Temperature (field) dependences of the energy gaps in
Fe3BO6 upon induced C2 ±C24 andC4 ±C24 transitions.As can
be seen from the above, the conclusion that in real experi-
ments the contributions of precessional and longitudinal
vibrations of magnetization to the dynamics of reorientation
should always be considered as coexistent and competing was
not drawn until the spin-wave [15, 16] and thermodynamic [4,
5] models were checked in experiments that were conducted
under essentially different conditions. These conditions were
dictated by the properties of particular magnets that were
used in experiments. And although in almost all cases these
were REOFswith virtually the same ordering temperatures of
iron ions (TN � 620 ± 640K), the decisive factor turned out to
be the difference in their static characteristics in the reorienta-
tion region.

It turned out upon comparison of the results of the
corresponding experiments that the experiments that, taken
separately, each confirmed one or another model were carried
out in different ranges of temperature and field. As a result,
the spin-wave model sufficiently well described the experi-
mentally observed dynamics of magnets only near sponta-
neous transitions or induced transitions caused by relatively
small fields (H < 10 kOe) at temperatures of the induced
reorientation TIR 5TN, whereas the thermodynamic model
was first confirmed at TIR=TN > 0.3 ± 0.6 in magnetic fields
H > 60 kOe [4]. The latter circumstance permits one to
interpret the significant role of the longitudinal susceptibility
as the effect of a strong field. However, our analysis of the
whole body of experiments devoted to the investigation of the
dynamics upon induced reorientation shows that the very fact
of the manifestation of longitudinal vibrations in resonance
properties is independent of themagnitude ofH, although the
absolute magnitude of the gap increment in a field, predicted
by the theory of Refs [4, 5], undoubtedly increases with the
field. The ratio of the contributions to the dynamics from
precessional and longitudinal vibrations correlates rather
with the relative temperature of the induced reorientation
tIR � TIR=TN, which at H � 0 is identical to tSR. We will
show, using Fe3BO6 as an example, that the longitudinal
vibrations at the relatively large value of tSR characteristic of
this compound give a noticeable contribution to the dynamics
even atH � 0. First of all, we note some specific technical and
methodical features of these measurements.

A sample of Fe3BO6 of volume about 2.5 mm3 had a form
close to that shown in the inset in Fig. 7. It was glued by its ac
plane in the center of the piston that short-circuited the
rectangular H10 microwave type waveguide. The mutual
orientation of the vectors of ferromagnetism F and the
magnetic component of the microwave field h which is
optimum for the detection of the soft ferromagnetic mode is
F ? h. However, in order to have the opportunity to carry out

measurements in both the G2 ±G24 and G4 ±G24 transitions
without changing the geometry of the experiment andwithout
remounting the sample, the vector h was oriented at an angle
of 45� to the crystal axes a and c.

The measurements were carried out on a direct-gain
spectrometer in the regime of reflected power. The facility
permitted us to record the resonance absorption by scanning
both in the temperature at H � const and in the field at
T � const.

The main results were obtained in the regime of changing
temperature at fixed values of the magnetic field modulated
with a frequency of 39 Hz. In this case, using a number of
frequencies in the range 12 ± 26 GHz, we recorded the
derivative of the signal with respect to temperature. From
these records, we restored the temperature dependences of
magnetoresonance frequencies for each specified value of H.
The application of the modulation technique permitted us to
increase the sensitivity and the resolution of the spectrometer
by more than an order of magnitude in comparison with that
attained in Ref. [1].

Figure 7 displays a low-field fragment of the H ±T phase
diagram of Fe3BO6 corresponding to the points of termina-
tion of the G4 ±G24 ±G2 reorientation in a field Hjjc (at
T < TSR) and G2 ±G24 ±G4 in a field Hjja (at T > TSR). The
figure also shows the structures of these transitions. The
diagram was obtained from the results of high-frequency
measurements shown in Fig. 8. Each point in Fig. 7
corresponds to the position of the minimum frequency of
the soft magnetoresonance mode in the temperature and in
the field. The vertical and horizontal arrows arbitrarily
indicate two ways of intersecting phase boundaries in the
H ±T phase diagram when recording absorption signals by
scanning in H and T. The diagram shown was obtained by
scanning in temperature. In this case, each point in the
diagram corresponds to a specified transition field, and the
temperature of the transition is determined by the position of
the absorption peaks obtained from the slopes of the
resonance lines. This position, as is seen from Fig. 8, is
independent of the frequency within the measurement error,
but behaves individually depending onH.
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The phase diagram of Fe3BO6 given in Fig. 7 differs from
those typical of REOFs in the vicinity of the G2 ±G4

transitions in that here the phase boundaries do not intersect
one another (cf., e.g., with Fig. 1). The fact that the lines of the
second-order phase transitions concur at the point H � 0,
T � TSR, where the G2 ±G4 first-order phase transition
occurs, is unique. This means that the spontaneous PT-1 (its
structure is shown in the lower part of Fig. 7) can
simultaneously be regarded as a G2 ±G24 ±G4 type PT-2 in
which the boundaries T1 and T2 (the temperatures of the start
and finish of reorientation) coincide. Note that in REOFs the
width of the region of existence of the canted phase G24 upon
spontaneous transitions, DT � T1ÿT2, usually varies from a
few to tens of Kelvins. Since the spontaneous transitions G2 ±
G24 and G4 ±G24 in REOFs are second-order phase transi-
tions, in all cases we have DT > 0. Here, however, we have a
situation corresponding to DT � 0, which, in turn, permits
one to assume that the spontaneous G2 ±G4 type PT-1 that is
realized in Fe3BO6 is close to PT-2. This viewpoint, based on
the results of high-frequency [31] and ultrasonic [33] measure-
ments, has already been stated above. In this connection, we
should note the calculation of magnetoresonance frequencies
in Fe3BO6 [30], from which it follows that at the point of the
spontaneous G2 ±G4 transition both the energy gap and the
frequency jump in the soft-mode spectrum characteristic of
PT-1s are absent. As was noted above, Arutunyan et al. [31]
did find a significant energy gap, although no frequency jump
was, indeed, detected. The latter circumstance, as we now
understand, is connected with the insufficient resolution of
the technique that was used in Ref. [31], and the frequency
jump, as was shown in later measurements [32], does exist.
However, this does not affect the conclusion that here we
are dealing with a PT-1 close to PT-2.

Figure 8 gives examples of temperature dependences of
the soft-mode frequency in magnetic fields of various
amplitudes and orientations. The minimum frequency of

each such dependence is the energy gap nIR at the point of
completion of the reorientation induced by the field Hjja or
Hjjc. From the whole body of the results of such measure-
ments, we restored the temperature dependences of the gap
nIR, which are also given in Fig. 8. Their extrapolation to the
point of the spontaneous transition G2 ±G4 yields a value of
the gap nSR � 11:8� 1:5 GHz from the low-temperature side
and a value of 17.5� 0.5 GHz from the high-temperature
side. Note that the absolute value of the frequency jump at the
phase boundary significantly exceeds the measurement error
of determining the gaps.

It is obvious that the results of measurements given above
may also be represented in the frequency-field coordinates.
This is of interest because it is that form in which the results of
the high-field measurements of Fe3BO6 in the submillimeter
wave range were published [34], which we will use below for a
comparison with the results of Ref. [32]. The field depen-
dences of the gaps obtained experimentally in [32] are shown
in Fig. 9. We distinguish the following most important results
of these measurements.

1. In contrast to all previous cases cited above, it was
revealed here for the first time that the curves of the
temperature and field dependences of the energy gaps at the
line of phase transitions approach the point T � TSR,
HIR � 0 with nonzero derivatives qnIR=qT and qnIR=qH.

2. The field derivative is positive at any temperatures
(qnIR=qH > 0), whereas qnIR=qT < 0 in the range T < TSR

and qnIR=qT > 0 in the range T > TSR.
3. The temperature (field) dependences of the energy gaps

at temperatures above and below TSR are substantially
different. Their extrapolation to H � 0, T � TSR yields
different values of the gaps nSR, i.e., there is a frequency
jump at the point of the spontaneous G2 ±G4 transition, and
both gaps nSR have significant absolute values.

Let us compare these data with other experiments and
with the theory that existed at the time when the experiments
described were performed. First of all, we consider the latter
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result. The frequency jump revealed at the point of the
spontaneous transition has no direct relation to the purpose
of the present investigation, but it should be taken into
account in the interpretation of experimental data. This
effect is unexpected, since it not only does not follow from
the calculations of the magnetoresonance spectra of Fe3BO6,
but in the theory of Ref. [30] its absence has been specially
substantiated, although, as is known, such a jump is a
characteristic sign of a PT-1.

Since amagnetic field transforms the PT-1 into a PT-2, the
above frequency jump should vanish in an applied field,
according to the existent concept. But, then, what does its
retention upon such a transformation of the character of the
transition in Fe3BO6 mean? We may assume that in relatively
small fields, i.e., under the conditions of an already induced
PT-2, but near the spontaneous PT-1, this is a kind of a
memory of the last transition. This resembles the situation
when in an inclined magnetic field the energy gaps n1 and n2
transform into merely the minimum frequencies as a kind of a
memory of the vanished PT-2, when at any valuesH, T, only
the canted phase G24 is realized (see, e.g., Fig. 2). Thus, the
anisotropy of the energy gap in a magnetic field is induced by
the proximity to the PT-1. This influence may be explained by
the fact that in Fe3BO6 the spontaneous PT-1 is close to PT-2
in its nature. As a result, the PT-2 induced by a relatively small
field becomes unstable and the more so, the closer (both in T
andH) it is located to the point of the spontaneous PT-1.

Such an explanation of the results is confirmed by the
extrapolation of the temperature (field) dependences of the
gaps to the point of the spontaneous transition from the
regions ofT andH that are maximally distant from this point.
For the G24 ±G2 transition, we will use the results of
measurements [34] at H > 8 kOe and T > 425 K, whose
extrapolation to the zero field yields nSR � 15 GHz (Fig. 9).
For the G24 ±G4, it is preferable to use the data of Ref. [29], in
which the field dependences of the gap were restored in the
ranges of H � 40 ± 80 kOe and T � 290 ± 380 K. Their
extrapolation to the zero field yields the same value of the
gap at the point of the spontaneous transition. Although this
approach is rough, we should note that the tendency to the
coincidence of the thus-obtained values of the gaps is logical,
since this extrapolation is carried out from the regions where
the PT-2 is sufficiently stable, and we remember that for the
PT-2 the absence of a frequency jump is a fundamental
property. It is this value of nSR that should be considered as
the `starting' gap, i.e., inherent in the spontaneous RPT. But
in Fe3BO6, this is the common starting gap upon the
induction of the RPT by both the field Hjja and Hjjc. For an
REOF, this would mean that n1 � n2. The field gradient of
this gap is 0.7 GHz kOeÿ1 (dashed line in Fig. 9), whereas the
extrapolation of the field dependences to the zero field from
the range of 1 ± 3 kOe for both transitions yields
qnIR=qH � 0:2 GHz kOeÿ1 (solid lines in the same figure).
Somehow or other, we in any case have qnIR=qH > 0 even at
H � 0. Note that in fields of 10 ± 12 kOe the increments of the
starting gaps are several times the maximum error of
measurements. To what extent do the results presented here
agree with the thermodynamic theory? To answer this
question, we turn to expression (2.1). Its modification to suit
Fe3BO6 [34] does not violate the main conclusion: as H! 0,
the gap at the point of the termination of induced reorienta-
tion also tends to zero. Thus, neither the initial nor the
modified theoretical models correspond to the experimen-
tally observed dynamics of Fe3BO6 near the RPT, when

H! 0. However, their fundamental property, i.e., the fact
that qnIR=qH > 0 atHIR > 0, as the evidence of the contribu-
tion of longitudinal vibrations of magnetization and relaxa-
tion to the dynamics, is indubitable and gives an easy test for
the identification of this contribution in experiments.

With such a relatively high temperature of spontaneous
reorientation �tSR � 0:8�, Fe3BO6 seems to be better than
other similar compounds for comparison with the thermo-
dynamic theory. The field dependence of the energy gaps
obtained in Ref. [34] for a range of fields H � 40 ± 80 kOe at
appropriate temperatures tIR � 0.5 ± 0.7 is indeed explained
by this theory verywell. This dependence, as was noted above,
is almost linear, which permits one to easily extrapolate it to
zero field. The first of the above-mentioned results, in our
opinion, is indeed related to the large value of tSR, which, in
turn, causes the large value of the factor wjj=w? in the
expression for the gap. From the temperature dependence of
wjj=w? for the G2 ±G24 transition in YFeO3, we may estimate
the value of this factor for Fe3BO6 as well. As a result, for the
point T � TSR we obtain wjj=w? � 0:7. The correctness of
resorting to the results of Ref. [4] is well warranted by the fact
that the entire dynamics in both YFeO3 and Fe3BO6 is caused
by only the subsystem of iron ions.

The large value of the ratio wjj=w? in Fe3BO6 even in a zero
field permits us to look at the nature of the energy gap
observed here upon the spontaneous transition in a different
way. In the above-presented experiments with the orthofer-
rites of ytterbium, thulium, and erbium, we dealt with
relatively low temperatures of spontaneous transitions tSR
and, consequently, with small wjj=w?. Therefore, the corre-
sponding results were described well within the framework of
the spin-wave approximation taking into account only
precession. If we follow the logic of the redistribution of
partial contributions of the precessional and longitudinal
vibrations depending on tSR, then we should assume that in
Fe3BO6 even the starting gap is formed to a significant extent
at the expense of the latter. As an outward sign of this, the
nonzero derivative qnIR=qH at H � 0 may serve. An increase
in the field Hjjc or Hjja increases the amplitude of this
contribution. But the presence of an applied magnetic field
by no means is a necessary condition for the participation of
longitudinal vibrations of magnetization in the formation of
the spin dynamics of reorientation. And it is only in this sense
that the related partial contribution to the magnitude of the
gap is not the effect of a strong field. Naturally, this does not
follow from the existent thermodynamic theory, in which not
only nIR ! 0, but also qnIR=qH! 0 as H! 0. The question
of the exact relationship between the contributions of
precessional and longitudinal vibrations at H! 0 requires,
of course, special calculations, especially when the expected
contributions are comparable in magnitude. At present, the
theory yields a satisfactory answer only in the limiting cases:
at TIR=TN 5 1 (spin-wave model) and at T! TN (thermo-
dynamic model).

Now, we turn to the field dependences of the gaps shown
in Fig. 9. From the fact that at H � 0 not only nIR, but also
qnIR=qH do not vanish, there follows one more aspect that
should be taken into account when describing the actually
observed dynamics in most compounds of this type. This
aspect consists in the following. The initial theory [4] was
developed for YFeO3, in which no spontaneous RPTs occur
and the resonance mode in the zero field softens only at the
point T � TN. As applied to YFeO3, this theory is valid
without any restrictions. Its extension to DyFeO3 [4] proved
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to be possible only in a range of temperatures that are much
higher than TSR. Thus, both in YFeO3 and in DyFeO3 the
transition field is nonzero over the whole working tempera-
ture range where the role of longitudinal vibrations becomes
noticeable. A question arises: How can the situation be
described when HIR vanishes not only at T � TN, but also at
an intermediate point from a temperature range 0 ±TN? In
compounds with small tSR, the contribution of longitudinal
vibrations to the magnitude of the gap can manifest itself in
the corresponding increase in TIR. This took place, e.g., in
DyFeO3 [4] in fields H > 40 kOe at T � 100 ± 400 K. In this
situation, the contribution of longitudinal vibrations to the
dynamics of the magnet near an RPT can indeed be regarded
as a strong-field effect. A new aspect in experiments with
Fe3BO6, which has already been noted previously, consists in
that here the spontaneous transition occurs at large tSR, so
that the increment DnSR 6� 0 even in fieldsH � HIR ! 0.

2.3 Dynamics of magnets near the reorientation transition
under conditions where the longitudinal susceptibility
predominates over the transverse susceptibility
In the simplest case of two-sublattice antiferromagnets (e.g.,
MnF2, CuCl2�2H2O) or weak ferromagnets (e.g., YFeO3,
Fe3BO6), the field-induced transitions occur under condi-
tions where the exchange energy substantially exceeds the
energy of magnetic anisotropy. Therefore, in such com-
pounds a classical situation is realized where the wjj=w? ratio
cannot be greater than unity. The value wjj=w? � 1 is attained
only at T � TN, i.e., when the compound passes into the
paramagnetic state. We have already mentioned this above
when considering experiments on YFeO3 and DyFeO3. The
same situation undoubtedly takes place in all the other
REOFs if we mean only the subsystem of iron ions.

It turns out that in ErFeO3 the opposite relationship
between the exchange and anisotropy energies can be
realized. This, in turn, gives the opportunity to induce a
kind of a metamagnetic transition in it, whose distinctive
property is the unusually high longitudinal susceptibility. Let
us consider the magnetoresonance and acoustic properties of
the erbium orthoferrite near this RPT.

2.3.1 Frequency (field) dependences of the energy gap upon the
metamagnetic transition in ErFeO3. The d ± d, d ± f, and f ± f
exchange interactions in ErFeO3 play different roles in the
formation of its static and dynamic properties in different
temperature ranges. The evolution of the magnetic structure
of this orthoferrite is well known. A whole number of
spontaneous RPTs are realized in it. Apart from the above-
mentioned G2 ±G24 ±G4 transition, there occurs one more
spontaneous reorientation at helium temperatures, namely,
G2�FxGz� ±G12�FxGzy�. In its structure, this transition is
combined: `order±order' in the subsystem of iron ions and
`disorder ± order' in the subsystem of erbium ions. At
T < TN2 � 4 K, a rotation of the antiferromagnetism vector
G of the iron subsystem in the bc plane starts and
simultaneously an antiferromagnetic ordering of erbium
spins along the c axis commences. Because of the large
single-ion anisotropy of erbium, which substantially exceeds
the energy of the exchange f ± f interaction, the rare-earth
subsystem can be regarded as a metamagnet. The field Hjjc
(i.e., directed along the axis of antiferromagnetism of the
subsystem of erbium ions) can cause a metamagnetic
transition consisting in the collapse of the magnetic moments
of erbium ions [35]. The dynamics of the erbium orthoferrite

near this transition is precisely what will interest us in what
follows. Figure 10 displays a fragment of the H ±T phase
diagram of ErFeO3 obtained by the dielectric resonance
method [36] on a spherical sample of diameter d � 1:8 mm,
which was diminished later to a diameter d � 0:9 mm and
used inmagnetoresonance experiments. Themain parameters
of the diagram are as follows: the ordering temperature of the
erbium subsystem TN2 � 3:9� 0:1 K; the tricritical-point
temperature Tt � 2:7� 0:1 K; and the tricritical-point field
Ht � 4:1� 0:1 kOe. Since the region of the PT-2 of interest, as
is known [35], can only be in the range of Tt ±TN2, it is
sufficient to conduct the investigations in the ranges of
temperatures T � 2:7ÿ4 K and fieldsH � 0ÿ4:1 kOe.

The temperature dependence of the soft-mode frequency
was established for the first time in Ref. [19]. To date, the
qualitative and quantitative characteristics of this depen-
dence and the nature of this mode have already been
determined. It was reliably established that it is caused by
the spin vibrations of erbium ions. Since in the context of this
paper we will only be interested in the temperature (field)
dependence of the gap, rather than the magnetoresonance
spectrum itself, we will not give it here once more. We will
only use the value of the energy gap in this spectrum,
nN2 � 26:1� 0:2 GHz, measured at the point of the sponta-
neous transition G2ÿG12 at TN2 � 3:9 K and trace what will
happen with this gap at the line of the metamagnetic
transition G24ÿG124.

As can be seen from Fig. 11, nN2 starts to increase rapidly
with the decrease in the temperature and the corresponding
increase in the field Hjjc [37]. At the line of the PT-2
transition, the gap increases from 26.1 GHz at T � TN2 to
38 GHz at the point T � Tt, passing through an insignificant
maximum. How can we explain the increase in the gap in this
induced transition? Note that the conditions of the realization
of this transition from the viewpoint of the relationship
between the temperatures of reorientation and ordering
differ substantially from those characteristic of all the
above-considered RPTs in REOFs. If for the subsystem of
iron ions in ErFeO3we haveT2=TN1 5 1, for erbium this ratio
changes from Tt=TN2 � 0:7 at the tricritical point to 1 at
T � TN2. In the subsystem of iron ions, this would corre-
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spond to the change in wjj=w? from 0.7 to 1 [5] and to a
noticeable increase in the magnitude of the gap. The fact that
at the line of the metamagnetic transition wjj=w? in reality
increases stimulated the conduction of corresponding mea-
surements of susceptibility.

A characteristic property of metamagnets is an extremely
high longitudinal susceptibility and a vanishing transverse
susceptibility. The purely formal resort to the model of Ref.
[4] gives grounds to expect a corresponding increase in the gap
value in this case. Although the metamagnetic transition in
the subsystem of erbium ions occurs against the background
of the spin reorientation of the iron sublattices, the long-
itudinal susceptibility here is mainly determined by the
erbium subsystem, since at helium temperatures the contribu-
tion of the iron subsystem to the magnetization of ErFeO3 is
insignificant [38, 39]. Therefore, all the results of measure-
ments that will be given below just characterize the sublattice
of erbium, whose longitudinal susceptibility can be measured
directly. The introduction of a field Hjjc transforms the
ferromagnetic structure of erbium into a ferrimagnetic one
and, in the final account, causes the collapse of its sublattices
when a field H � HIR is reached. Measurements of static
susceptibility in this transition were carried out in Ref. [34]. It
was established that the external susceptibility at the transi-
tion line increases with decreasing temperature and increasing
field, attaining its maximum value close to 3=4p (the inverse
value of the demagnetizing factor of the spherical sample) at
the point T � Tt (Fig. 12a). This fact by itself indicates the
existence of a relation (following from [4]) between the
longitudinal susceptibility and the gap width. But since in
this work we are investigating dynamic effects, it was more
logical to turn to the high-frequency susceptibility. The
measurements of the longitudinal (~wjj) and transverse (~w?)
high-frequency susceptibilities were carried out in magnetic
fields Hjjc, hjjc and Hjjc, hjja, respectively, using the
dielectric-resonance method [36] at frequencies of the milli-
meter wave range, i.e., substantially lower in comparison with
those characteristic of the corresponding experiments per-
formed by the magnetoresonance methods. The latter

circumstance permits us to identify the high-frequency
susceptibility measured in this way with the static suscept-
ibility w when performing a qualitative comparison of the
theory and experiment. It was found that at the transition line
~wjj increases monotonically, reaching amaximum atT � Tt as
well. However, in the temperature dependence of the ~wjj=~w?
ratio, a maximum appears at T � 3 K (Fig. 12a, 12b).

It can be seen from a comparison of Fig. 11 and 12b that
there is a clearly pronounced correlation between the
temperature dependences of ~wjj=~w? and the magnitude of the
gap nN2. Qualitatively, this corresponds to the model of Ref.
[4]. Note that here ~wjj=~w? reaches a value �7 (Fig. 12b),
whereas upon the conventional reorientation of iron sub-
lattices in theG2ÿG24 transition the limiting value of ~wjj=~w? by
definition cannot be greater than unity. This difference is
related to the specific difference between the induced
transitions G2ÿG24 and G24ÿG124. When the temperature
increases, at the pointTN1 there proceeds an `order ± disorder'
transition in the pure form, i.e., iron subsystem goes from a
weakly ferromagnetic state into a paramagnetic state. A
similar transition in the erbium subsystem is actually a
transition of the `antiferromagnet ± ferromagnet' type. This
causes the difference in the behavior of their susceptibilities:
the maximum value ~wjj=~w? � 1 in the iron subsystem is
attained at the ordering point TN1, whereas the ~wjj=~w? value
at the ordering point of the erbium subsystem TN2, on the
contrary, is minimum (� 3). If we assume that the magnetic
field, represented by the linear factor in the expression for the
gap (2.1), plays an equal role in the formation of both n2 and
nN2, then we may note the following. Whereas at the G2ÿG24

transition point the effect of the increase in the gap n2 has not
been found even at H � 10 kOe, upon the metamagnetic
transition this effect is clearly pronounced; already at as low a
field as H � 4 kOe, the gap increases by a factor of 1.5.
Therefore, upon the comparison of the dynamics of the
erbium orthoferrite near the above transitions the increase
in the energy gap in a magnetic field should be related to
precisely the magnitude of the longitudinal susceptibility. The
results obtained in this part of the work can be explained
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quantitatively by none of the above models. Apart from
already mentioned disadvantages, these models, naturally,
do not take into account the specificity of the G24ÿG124

transition, which is mainly based on its complex (combined)
character. The maximum in the temperature dependence
nN2�T� can be a result of both this specificity and the additive
summation of the partial contributions to the formation of
the gap from the mechanisms developed in Refs [5] and [15].
No correct explanation of this feature can now be made
quantitatively in terms of the existent theories. However, its
presence does not affect themain result of this experiment: the
conclusion that the magnitude of nN2�T� correlates with
~wjj=~w?�T�. This is the most convincing evidence of the fact
that the increment in the gap upon the metamagnetic
transition in ErFeO3 is mainly related to the longitudinal
vibrations of the magnetization of the erbium sublattices.
Comparing these experimental results with those presented in
Section 2.1.3, we may, using ErFeO3 as an example, draw an
important conclusion that the spin-wave and thermodynamic
approaches are not contradictory. Indeed, using the same
compound, a good agreement with experiment was demon-
strated for both the first and second approaches. At
temperatures T � T2 5TN1, the G2ÿG24 transition in a field
Hjja, typical of REOFs, agrees with the model of Ref. [15],
according to which the gap n2 is caused by the magnetoelastic
and dipole contributions. On the other hand, at the point of
the metamagnetic G24ÿG124 transition, the gap is formed as a
result of both transverse and longitudinal vibrations of
magnetization and is a result of the additive summation of
these partial contributions. The starting value of the gap nN2

can well be explained by the spin-wave theory [15], whereas
the increment in nN2 in a field Hjjc is, rather, caused by the
longitudinal vibrations of magnetization [5, 40].

2.3.2 Correlation between the high-frequency and acoustic
characteristics of ErFeO3 near the metamagnetic transition.
As was shown in review [1], in terms of the spin-wave
approximation the dominating interaction upon the forma-
tion of energy gaps can bemagnetoelastic coupling. However,
in the thermodynamic (exchange) approximation, when the
main role is played by the longitudinal vibrations, the energy
gap at the transition point can exceed the magnetoelastic
contribution by almost an order of magnitude [4]. This was
established in experiments [5] with YFeO3 and DyFeO3.
However, in contrast to these orthoferrites, in ErFeO3 the
magnetoelastic contribution to the formation of the gap nN2

proved to be comparable with the contribution from the
longitudinal vibrations. In this connection, we may expect a
corresponding response of the elastic subsystem to the
redistribution of the roles of the transverse and longitudinal
susceptibilities in the formation of the spin dynamics of
magnets near the metamagnetic transition. As a result,
because of the dynamic interaction of the spin and elastic
subsystems, their initial vibrational spectra should suffer
corresponding deformations due to not only transverse, but
also longitudinal vibrations of magnetization. Before we turn
to the results of acoustic experiments, we note the following.
It is known that the numerical values of Tt and TN2 are very
sensitive to impurities and to the technology of growing single
crystals. The samples that were used in high-frequency and
ultrasonic experiments were prepared from different batches
of the starting materials and differed somewhat in their
parameters: in the first case, they have TN2 � 3:9� 0:1 K,
Tt � 2:7� 0:1 K; in the second case, TN2 � 4:1� 0:1 K and

Tt � 2:6� 0:1 K. The magnetic fieldHt corresponding to the
tricritical point was 4.1� 0.1 kOe for the spherical sample
0.9 mm in diameter, on which magnetoresonance measure-
ments were conducted. For the samples that were used for
ultrasonic measurements (disks 4 mm in diameter, 1.9 mm
thick), this field was of the same order of magnitude:
6� 0:5 kOe. Therefore, we represent the set of the quantities
measured at the line of the metamagnetic transition as a
function of the dimensionless temperature

t � Tÿ Tt

TN2 ÿ Tt
: �2:2�

The resort to the dimensionless temperature permits one
to compare results obtained on samples prepared of different
raw materials. For convenience, the results of ultrasonic
measurements are given in Fig. 13 together with the high-
frequency characteristics shown in Figs 11, 12 [41]. For this
transition, the active mode, i.e., one that interacts with
magnons, is the transverse acoustic mode with a wave vector
qjjc and polarization of the vector of shear deformation ejjb
(either qjjb, ejjc). The anomalies of its velocity and absorption
were first revealed experimentally in [42] and later studied in
detail both experimentally [43, 44] and theoretically [15].
Their specific features are the giant decrease in the velocity
(Ds=s � 25%), asymmetric with respect to T and having a
resonance form, and increase in the sound absorption
DG � 100 dB cmÿ1), which have not been registered either
previously or later in any one REOF. In Fig. 13,
s � 3:98� 105 cm sÿ1 is the speed of the active transverse
sound far from the transition, which is virtually the same at
temperatures both greater and less than TN2. The figure
displays the temperature dependences of the decrease in the
velocity of the active sound wave and of the increase in the
attenuation of the longitudinal (inactive) sound mode at the
line of the PT-2. As is seen, the point of the spontaneous
transition (t � 1) corresponds to the maximum changes of
acoustic characteristics of both sound modes (Ds=s � 20%,
DG � 1:2 dB cmÿ1). The quantities Ds=s and DG were
qualitatively explained in [1], and on the whole the dynamics
of this spontaneous transition is satisfactorily described in
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terms of the spin-wave approach. We emphasize that in the
chosen geometry of the experiment the sound waves selected
are, respectively, transverse and longitudinal relative to not
only q, but also to the vector of antiferromagnetism of the
subsystem of erbium ions. This permits us to suggest that the
transverse and longitudinal vibrations of magnetization of
the erbium ions are related to the corresponding acoustic
excitations.

As previously, when turning to the induced RPT, we will
consider quantities measured at the point of the spontaneous
transition as the starting values. Then, the possible effects of
the manifestation of longitudinal vibrations of magnetization
should be sought among the temperature (field) gradients of
the parameters measured. Both models can be used in this
case. Indeed, although in the existent form the theory [10] was
developed for spontaneous transitions, it does not contain
any specific effects related to the magnetic field or restrictions
concerning induced transitions. In many cases, it successfully
describes the dynamics of both transitions, whereas in the
model of Ref. [5] the spontaneous transitions are not
considered at all, and the predicted effects are caused by the
presence of a magnetic field.

In what follows, we will not be interested in the numerical
values of the fields at each point in the dependences in Fig. 13.
It is only important to understand the general situation: that
the field at the line of the phase transition increases
monotonically with decreasing temperature (see Fig. 10).

Note a number of important circumstances that follow
from the dependences shown in Fig. 13. In addition to the
conclusions of Section 2.3.1 on the existence of a correlation
between the temperature dependences of nN2 and ~wjj=~w? at
Hjjc, we add that in the fieldHjja, when the induced transition
has the same structure as the spontaneous one (i.e., G2ÿG12),
the initial gap nN2 virtually does not alter (to be exact, it even
has a small tendency to decrease with decreasing tempera-
ture). Let us perform a comparative analysis of high-
frequency and acoustic characteristics.

First of all, note that at the point of the spontaneous
transition all of the above characteristics and their gradients
with respect to temperature (field) are extremal. With
decreasing temperature and corresponding increasing field,
the gradients decrease monotonically (by the absolute values)
and all become softly sloped in the region of t � 0:3ÿ0:5. If
we ignore the insignificant decrease in nN2 and ~wjj=~w? upon the
decrease in temperature in the region of t � 0ÿ0:3, then we
can speak of the existence of a correlation between the
dynamic characteristics of the spin and elastic subsystems at
the line of the metamagnetic PT-2. This already suggests the
necessity of taking into account the magnetoelastic interac-
tion in the description of the dynamics of orthoferrites in the
region of RPTs induced by the field. Until a more perfect and
full theory arises, the experimental results given above could
only be explained qualitatively [41]. On the whole, they are
consistent with the concept of the redistribution of the roles of
the transverse and longitudinal magnetization vibrations in
the formation of the dynamics of orthoferrites in the
reorientation region.

We begin from a well-known fact. The anomaly of the
sound velocity upon the spontaneous transition is caused by
the coupling of the transverse sound wave with the transverse
magnetization vibrations at the natural frequency of the soft
magnetoresonance mode. The extent of this coupling is
shown in Ref. [15]. In the field Hjjc, the susceptibility of the
f subsystem substantially exceeds the transverse susceptibility

and increases with increasingH and decreasing T in the range
from TN2 to Tt. But the sound wave, which has a transverse
polarization, does not interact with longitudinal vibrations of
magnetization. Therefore, with decreasing temperature, the
anomaly of the velocity of this wave decreases in accordance
with the extent of the redistribution of the roles of transverse
and longitudinal vibrations in the formation of the spin
dynamics and, consequently, with decreasing the effect of
the spin subsystem on the acoustic subsystem through the
magnetoelastic coupling. For the iron subsystem, this
temperature range, undoubtedly, satisfies the spin-wave
approximation, since TN2 5TN1. Virtually no changes in
the longitudinal components of the vectors F,G are observed
here. At the same time their transverse components can take
part in the formation of the dynamics. The residual anomaly
of the sound velocity in the range t � 0ÿ0:3, which is � 4%
of the value of s, is most likely to be due to just transverse
vibration of iron spins. Indeed, on the order of magnitude it is
comparable with the change in the velocity of active sound in
the range of the `high-temperature' reorientation of the iron
subsystem at T � 90ÿ100 K, where Ds=s reaches � 1:5%
[44]. The reasons for which the anomaly in the velocity in the
last case may be less than for the `low-temperature' reorienta-
tion of iron G2ÿG12 have been analyzed in detail in [15]. But,
on the contrary, in TmFeO3, where the dynamics of the
G2ÿG4 transition is determined almost completely by the
iron sublattices, Ds=s reaches � 3% [45], which is even closer
to the value obtained here. To date, it has been established in
many experiments that acoustic waves suffer attenuation (the
longitudinal waves to a lesser degree and the transverse ones
to a greater) upon various spin-reorientation transitions in
REOFs. We in this case are interested in the longitudinal
wave with qjjHjjc. How can its attenuation be related to the
longitudinal susceptibility? At the point of the spontaneous
transition the attenuation of this wave is maximum. With
decreasing temperature and increasing field, G decreases.
With an appropriate choice of scales on the DG and Ds=s
axes, we can see that the dependences of DG and Ds=s on T
and H virtually coincide in general. The most evident reason
for the decrease in sound attenuation on approaching the
tricritical point is the increase in the rigidity of the magnetic
sublattices of erbium (as a result of both the spontaneous
saturation of magnetization as T! 0 and the effect of the
applied magnetic field Hjjc). Although the total longitudinal
susceptibility increases in this case, the attenuation of the
longitudinal sound is rather related to its fluctuating part. The
component of the longitudinal susceptibility can be repre-
sented as a sum of two terms: wLzz � wFzz, where wLzz is the
susceptibility jump at the point of the PT-2, predicted by the
Landau ±Lifshitz theory, and wFzz is the fluctuational increase
in the susceptibility. For ErFeO3, this is also justified by that
the RPT at hand is a combination of transitions of two types:
reorientation in the subsystem of iron ions and ordering in the
erbium subsystem. In this case, the first summand reflects the
`rigid' portion of the erbium susceptibility whose ordering
through the f ± d coupling causes the reorientation of the
vector G, and the second term is due to fluctuations of the
components of the vectors of ferromagnetism and antiferro-
magnetism of erbium. It was shown in Ref. [46] that on
approaching the tricritical point the relative contribution of
fluctuations to the magnitude of the longitudinal suscept-
ibility at the PT-2 line decreases: theoretically, we have
DwFzz=Dw

L
zz !0 as T!Tt, H! Ht. The absolute value of

DwLzz grows faster than DwFzz, which, in the final account, just
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causes the increase in the role of the longitudinal susceptibility
in the formation of the energy gap, as follows from the theory
of Refs. [4, 5]. Finally, it is expedient to note the following.
The field Hjjc, in contrast to Hjja, not only induces the
transition, but also changes the structure of the initial phase.
If in the second case the transition has, as was noted, the same
structure as the spontaneous transition has, then at Hjjc it
transforms into the G24ÿG124 type. In the structure of the
initial phases of both Fe and the RE sublattices, components
of the ferromagnetism vectors of iron and erbium that are
longitudinal with respect to H arise, which are characteristic
of the representationG4. Upon the introduction of amagnetic
fieldHjjc, erbium, which is spontaneously ordered to form an
antiferromagnetic structure, actually becomes a ferrimagnet
with a difference between the magnetizations of the sub-
lattices in the form of the z component of the ferromagnetism
vector of erbium. It is possible that it is the change in the
structure of the initial phases that causes the maximum
gradients of the characteristics shown in Fig. 13 just at the
point of such a transformation.

2.4 Summary of the results of experimental investigations
To close the presentation of the results of the experimental
investigation of the dynamics of REOFs near various RPTs,
we draw some general conclusions. They were obtained based
on a comparative analysis of the whole body of experimental
data both presented here and described in previous studies of
the low-energy dynamics of these compounds in the region of
reorientation transitions.

1. The dynamics of REOFs in the RPT region under real
experimental conditions is formed under the action of both
precessional and longitudinal vibrations of magnetization.
The relationship between these two contributions to the
magnitudes of the energy gaps depends on the properties
(mainly, static) of the particular compound.

2. The ratio of the temperature of the spontaneous
transition TSR to the temperature of ordering TN of a
corresponding spin subsystem can serve as a parameter that
characterizes the ratio of these contributions near the points
of spontaneous transitions; this ratio is individual for each
particular magnet. It was established that if this ratio tSR is
less than 0.15, the longitudinal vibrations introduce no
noticeable contribution to the experimentally observed
dynamics.

3. At tSR > 0:7, the contribution of longitudinal vibra-
tions of magnetization can even be revealed in weak fields. In
this case, the energy gap at the transition point can be a result
of additive and comparable in magnitude contributions from
both spin-wave and thermodynamic mechanisms.

4. In the presence of two spin subsystems in a magnet
(which is characteristic of the REOFs), the nature of the soft
mode at the transition point has no effect on the redistribu-
tion of the contributions of the precessional and longitudinal
motions of magnetization to themagnitude of the energy gap.

5. The starting gap (the value of the gap at T � TSR and
H � 0) at a sufficiently large magnitude of tSR (when the
effect of longitudinal vibrations is no longer masked by other
mechanisms of gap formation) always grows with increasing
field, but the corresponding temperaturemay in this case both
increase and decrease. This means that the thermodynamic
theory [3 ± 5] in the existent form can adequately describe the
results of only high-field experiments, when the gap is mainly
determined by the magnetic field and longitudinal suscept-
ibility.

6. The observed correlation of various dynamic character-
istics at the line of the metamagnetic transition in erbium
orthoferrite, i.e., of the high-frequency susceptibility, energy
gap, and the velocity and attenuation of sound, indicates the
necessity of taking into account the magnetoelastic coupling
in the thermodynamic description as well. The allowance for
this effect is also of great importance for the reason that the
reorientation inmost REOFs occurs in the temperature range
where neither spin-wave nor thermodynamic approximations
work rigorously.

7. The last conclusion suggests an actual necessity for the
creation of a new, more complete and universal, theory of the
dynamic properties of magnets near RPTs, which would be
suitable for arbitrary values of the temperature and field.
Then the existent spin-wave and thermodynamic models
could be its limiting cases at T! 0 and T! TN, respec-
tively. In this case, one should be forced to accept the unusual
statement that most experimentally observed soft modes can
be classified neither as purely relaxational, nor as being
caused by only precessional motion, or modes of solely spin
origin. Moreover, the soft magnetoresonance modes (in the
classical understanding) not only are never observed in real
experiments, but even in principle cannot be observed in view
of restrictions of a fundamental character (e.g., because of the
spontaneously broken symmetry [17]). The entire previous
review [1] is actually devoted to presenting experimental and
theoretical evidence that in reality (even without the allow-
ance for the longitudinal vibrations) a system of coupled
vibrations always persists. The role of longitudinal vibrations
of magnetization in the formation of the dynamics of magnets
in the spin-reorientation region was established in experi-
ments that are given here.

3. Theory

The experimental part of this review is devoted to the
investigation of the dynamic properties of magnets with a
complex many-sublattice structure. At the present time, the
theory that takes into account the effect of longitudinal
vibrations of sublattice magnetizations and their relaxation
on the spectrum of spin and coupled magnetoelastic waves
has only been developed for the simplestmagnetically ordered
substances, i.e., a ferromagnet and a two-sublattice antiferro-
magnet [6, 7]. However, as wewill see below, this theory is of a
more general character and proves to be sufficient for a
qualitative description of all the above-considered experi-
mental results for complex magnets such as REOFs and other
similar compounds.

3.1 Effect of magnetization relaxation on the spectrum
of spin and elastic vibrations of a ferromagnet
in the region of a reorientation phase transition
In ferromagnets in a ferromagnetically ordered state in the
dissipationless approximation, the vibrations of transverse
components of magnetization represent spin waves [47]. Spin
waves can be considered as the precession of magnetization
about the direction of the effective magnetic field. With
allowance for the dissipation in the magnetic subsystem, the
spin waves are damped. In this case, there also exist lon-
gitudinal vibrations of magnetization. They are relaxational.
Usually, the dissipation inmagnets is small and, therefore, the
spin waves are regarded to be weakly damped. This takes
place if the ferromagnet is in states far fromRPTpoints, when
the real parts of opr of spin wave frequency are much greater
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than the imaginary parts jorj: opr 4 jorj. However, as is
shown below, near an RPT (the RPT point is usually
determined by the condition opr ! 0) the real part of the
frequency of spin waves may become less than the imaginary
part, which, of course, will affect the frequency spectrum of
vibrations of the ferromagnet.

FollowingRefs [6, 48], we clarify how the relaxation of the
magnetization of a ferromagnet affects its magnetic and
elastic vibrations in the regions of an RPT and a magnetic
phase transition of the order±disorder type (Curie point).

3.1.1 The ground state, equations of motion, and dispersion
relation of a ferromagnet.As an example, we consider a biaxial
ferromagnet with isotropic elastic andmagnetoelastic proper-
ties, whose free-energy density is

F � 1

2
a
�
qM
qxi

�2

� 1

2
AM2 � 1

4
BM4 � 1

6
CM6 � 1

2
b1M

2
x

� 1

2
b2M

2
y �

1

2
b3M

2
z ÿMH� 1

2
b0M

2ull

� 1

2
b1MiMkuik � 1

2
lu2ll � mu2ik ; �3:1�

where a, A, B, C, b, and b are the exchange, anisotropy, and
magnetostriction constants, respectively;M is the magnetiza-
tion of the ferromagnet; H is the strength of the applied
magnetic field; û, the deformation tensor; and l and m, the
LameÂ constants.

Without restricting the generality, we now consider the
case ofHjjx and the ground state of the ferromagnet, in which
MjjH. This phase is stable at

b2 ÿ b1 �
H

M
5 0 ;

b3 ÿ b1 �
H

M
5 0 ;

2 eBM2 � 4CM4 � H

M
5 0 ; �3:2�

where the magnitude ofM is determined from the equation

�A� b� eBM2 � CM4�M � H ; �3:3�

and eB is the exchange constant renormalized by the
magnetoelastic interaction:

eB � Bÿ b0b1 � 3b20=2� b21�l� m�=�2m�
3l� 2m

: �3:4�

The tensor of equilibrium deformations u
�0�
ik in the phase

MjjHjjx has the form

u
�0�
ik � ÿ

2b0mÿ lb1
4m�3l� 2m�M

2dik ÿ b1
4m

MiMk : �3:5�

When studying the dynamics of the magnetic and elastic
subsystems, we proceed from the Landau ±Lifshitz equations
and the elasticity equation [47, 49, 50]

_M � g�M�Hef� � R ;

rui � qsik
qxk

; �3:6�

where r is the density of the material; u is the displacement
vector; Hef � ÿdF=dM is the effective magnetic field; and

sik � qF=quik is the stress tensor. Following Landau and
Khalatnikov and Hilbert, we write the relaxation term R in
the form

R � r1
M� _M

M
� r2gMHef : �3:7�

Here, r1;2 are the dimensionless attenuation constants. The
linearized set of equations of motion that determine the
dynamics of magnetization and the displacement vector of
the ferromagnet in the phase withMjjHjjx for magnetoelastic
waves propagating along the x axis is

�o� ir2o1k�mx ÿ gM2r2�b0 � b1�kux � 0 ;

1

r
ik�b0 � b1�Mmx � �o2 ÿ o2

l �ux � 0 ;

omy;z � �io3;2k � r1o�mz;y � 1

2
gM2b1kuz;y � 0 ;

1

2r
ikb1Mmy;z � �o2 ÿ o2

t �uy;z � 0 : �3:8�

Here, m and u are the Fourier components of the oscillatory
part of the magnetization and displacement vector of the
ferromagnet, respectively; k is the wave vector; o l;t � s l;t k;
and s2l � �l� 2m�=r and s2t � m=r are the squared velocities
of the longitudinal and transverse sound, respectively. The
characteristic frequencies of the magnetic subsystem are
expressed as

o1k � gM�ak2 � A� b1 � 3 eBM2 � 5CM4 � hl1� ;
o2;3k � gM

�
ak2 � b2;3 ÿ b1 �

H

M
� ht

�
; �3:9�

where

h l1 �M2 m�b0 � b1�2 � 2mb20 � lb21
m�3l� 2m� ; �3:10�

ht � b2M2

4m

are the dimensionless magnetoelastic fields.
Note that at the points of loss of the stability of the

phase with MjjHjjx, which are determined by the equality
signs in (3.2) and coincide with the points of anhysteretic
first-order RPTs and with the Curie point (at H � 0),
the o2k, o3k, and o1k frequencies, respectively, soften (at
hl1;t�0) or, otherwise, the precessionmodeopr � �o2ko3k�1=2
and one of the relaxation modes: (a) or2 � ÿir1o2k or
or3 � ÿir1o3k; (b) or1 � ÿir2o1k. The dispersion relation
for coupled vibrations has the form��1� r21�o6 �ir1o5�o2k � o3k�ÿ o4

�
2o2

t �1� r21�� o2ko3k

�
ÿ 2ir1o3o2

t �o2k � o3k ÿ ome t� � o2o2
t

�
o2

t �1� r21�
�o2sko3k � o3sko2k

�� ir1oo4
t �o2sk � o3sk�ÿ o4

to2sko3sk

	
� ��o2 ÿ o2

l ��o� ir2o1k� � r2o2
lome l

� � 0 ; �3:11�

where

o2;3sk � o2;3k ÿ ome t ; ome t � gMht ;

ome l � gMhl2 � gM3 �b0 � b1�2
l� 2m

: �3:12�
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The first factor on the left-hand side of this equation
describes the vibrations of the interacting transverse compo-
nents of the magnetization and of the displacement vector,
and the second factor describes the vibrations of the
longitudinal components of the magnetization and of the
displacement vector. We consider these vibrations sepa-
rately.

3.1.2 Effect of the transverse relaxation of the magnetization on
the spectrum of spin waves. We first investigate in more detail
the vibration spectrum of transverse components of the
magnetization of the ferromagnet in the absence of magne-
toelastic coupling (ht � 0). In this case, the dispersion
equation takes on the form

�1� r21�o2 � ir1o�o2sk � o3sk� ÿ o2sko3sk � 0 : �3:13�

Its solution (at r1 5 1) has the form

o1;2 � ÿ 1

2
ir1�o2sk � o3sk�

�
�
o2sko3sk ÿ 1

4
r21�o2sk ÿ o3sk�2

�1=2
: �3:14�

It can be seen that far from the RPT points, in which,
according to (3.2), (3.9), and (3.12) we have o2s0 � 0
(transition Mx !Mx;My) or o3s0 � 0 (transition
Mx !Mx;Mz), when o2sko3sk 4 r2�o2sk ÿ o3sk�2, the entire
effect of the relaxation of magnetization on the precessional
vibrations of its transverse components reduces to that the
spin waves become weakly damped. As to the points near an
RPT, e.g., those at which o2s0 ! 0 (in this case o2sk 5o3sk if
k! 0), the situation can change dramatically. Thus, in the
case where o2sko3sk 5 r2�o2sk ÿ o3sk�2, the solution to (3.14)
represents purely relaxational vibrations:

o1 � ÿi o2sko3sk

r1�o3sk ÿ o2sk� ; o2 � ÿir1o3sk : �3:15�

These frequencies determine the inverse relaxation times of
the transverse components of the magnetization of the
ferromagnet. The relaxation mode o1 is soft; its frequency
tends to zero at the boundary of stability of the phase as
k! 0. In the RPT region where o3s0 ! 0, the solution is
expressed by the formulas (3.15) in the right-hand sides of
which the indices 3 should be replaced by 2 and vice versa.

Thus, in the absence of magnetoelastic coupling, far from
an RPT, the vibrations of the transverse components of
magnetization represent weakly decaying spin waves,
whereas near the RPT, the precessional character of motion
of these components can change to become purely relaxa-
tional. In this last case, the soft mode is the relaxational
transverse mode (its frequency is zero at the transition point
itself at k � 0), and the RPT itself in this case occurs just
through this mode.

3.1.3 Effect of the transverse relaxation of magnetization on the
spectrum of magnetoelastic waves. Now, we introduce a
magnetoelastic interaction. For definiteness, we investigate
the spectrum of coupled vibrations near the RPT where
o2s0 ! 0. By equating the first braces in (3.11) to zero, we
obtain the dispersion relation for the transverse components
of the magnetization and of the displacement vector. First, we
write its solution at k � 0:

o1;2 � �
�
o20o30 ÿ 1

4
r21�o20 ÿ o30�2

�1=2
ÿ 1

2
ir1�o20 � o30� ; �3:16�

o3;4;5;6 � 0 :

At the RPT point (o2s0 � 0), it follows from (3.2), (3.9), and
(3.12) that o20 � ome t. So, it can be seen that with allowance
for themagnetoelastic coupling the solutiono1;2 describes the
damped precessional motion of magnetization both far from
the RPT and near it, since the condition
ome t o30 > r21�ome t ÿ o30�2 is fulfilled virtually always if
r1 5 1. The other four frequencies can describe both relaxa-
tional and elastic vibrations. In order to clarify their origin,
we find the solution to the dispersion equation (3.11) at k 6� 0
(but k! 0). This solution is as follows:

o1;2 � �
�
o2ko3k ÿ 1

4
r21�o2k ÿ o3k�2

�1=2
ÿ 1

2
ir1�o2k � o3k� ;
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o3k

�1=2

ÿ 1

2
ir1o2

t

2o3k � ome t

o2
3k

;

o5;6 � ot � �4o2ko2sk ÿ r21o
2
t �1=2 ÿ ir1ot

2o2k
: �3:17�

Formulas (3.17) were obtained atot 5o2k,o3k and r1 5 1. It
follows from these formulas that the spectrum of coupled
vibrations of the ferromagnet near the RPT at k 6� 0 consists
of a weakly damped quasispin branch o1;2, a weakly damped
transverse quasielastic brancho3;4, and ano5;6 branch whose
character is determined by the relationship between the
quantities o2ko2sk and r21o

2
t . At o2ko2sk 4 r21o

2
t , the o5;6

branch represents a weakly damped transverse quasielastic
branch of vibration with a quadratic dispersion law (because
it follows from (3.2), (3.9), (3.12) that o2sk � gMak2 at the
RPT point):

o5;6 � �ot

�
o2sk

o2k

�1=2

ÿ 1

2
ir1

o2
t

o2k
: �3:18�

For o2ko2sk 5 r21o
2
t , the o5;6 branches represent relaxation

vibrations (quasimagnetic and quasielastic) with a quadratic
dependence on the absolute value of the wave vector:

o5 � ÿio2sk

r1
; o6 � ÿir1 o2

t

o2k
: �3:19�

Theo1;2 branch at k! 0 is activational, with a gap that is
determined according to (3.17) by the magnetoelastic cou-
pling and magnetization relaxation. The other branches are
activationless. One of the quasielastic branches of vibrations
(o3;4) near the RPT has a linear dispersion law at k! 0 with a
small dispersion of the propagation velocity [the factor
�1ÿ ome t=o3k�1=2 in Eqn (3.17)]. The allowance for the
magnetization relaxation leads to a decay of this elastic
branch. The interaction between the magnetic and elastic
vibrations exerts the strongest effect on the dispersion law of
the second activationless branch of coupled vibrations o5;6.
This branch can be both quasielastic and quasimagnetic. In
both cases, the dispersion law of this branch is quadratic. At
o2ko2sk 4 r21o

2
t , the o5;6 is quasielastic. At o2ko2sk 5 r21o

2
t ,

the o5;6 branches describe purely relaxational vibrations
(quasispin and quasielastic, respectively). It is these two
modes that become softened on approaching an RPT.
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Note that near the RPT the condition o2ko2sk 5 r21o
2
t

actually reduces to the condition imposed on the parameters
of the problem. Since at k! 0 and near the RPT we have
o2k � ome t ando2sk � gM0ak2, this condition can be written
as gM0aome t 5 r21s

2
t , i.e., it reduces to the condition imposed

on the attenuation parameter. At typical values of the
ferromagnet parameters, e.g., g � 107 Oeÿ1 sÿ1,M0 � 102 G,
a � 10ÿ12 cmÿ2, st � 105 cm sÿ1, b1 � 102, m � 1012 erg cmÿ3,
the following restriction on the decay parameter is obtained:
r1 4 10ÿ4. This condition can well be fulfilled near the RPT,
since it is known that the attenuation of spin waves increases
strongly with approaching the RPT [51].

Near an RPT with o3s0 ! 0, the expressions for the
spectrum can be obtained from (3.16) ± (3.19) by replacing 2
by 3.

Thus, in the RPT region all types of transverse motions in
a ferromagnet (of both magnetization and lattice) can be
reduced to purely relaxational vibrations. In this case, the
transition occurs precisely through relaxational soft modes.
With allowance for magnetoelastic coupling, the spectrum of
coupled vibrations of the ferromagnet always contains a
weakly damped quasispin mode. The transformation of the
softening quasielastic branch of vibrations near the RPT into
a purely relaxational mode may serve as an explanation to
why neither its 100% decrease at the RPT point predicted by
the previous theory [2] nor its dispersion on approaching the
RPT point were observed in experiments on sound velocity
measurements in the RPT region [43, 52].

3.1.4 Interaction of longitudinal vibrations of the magnetization
and the elastic subsystem. It is known that the allowance for
the magnetoelastic interaction in magnets in the RPT region
leads, along with the effect of the formation of a magneto-
elastic gap in the spectrum of spin waves, to a quadratic
dispersion law for at least one of transverse elastic waves [17].
The propagation velocity of such waves in the theoretical
limit tends to zero at the RPT point as k! 0. Under real
experimental conditions, this shows up in the anomalous
decrease of the velocity of the transverse sound (to 50% or
even greater) on approaching theRPT [52]. Near theRPT, the
minimum theoretical value of the transverse sound velocity is
given as ~sl � sl�1ÿ s2t =s

2
l �1=2, where st and sl are the velocities

of the noninteracting transverse and longitudinal elastic
waves, respectively [17]. According to this formula, the
maximum theoretical value of the change in the velocity of
longitudinal sound Dsl=sl cannot exceed 25% (at st � sl

���
2
p

[50]). The experimentally observed decrease in the velocity of
longitudinal sound near the RPT and Curie points [53 ± 55]
did not exceed this theoretical limit.

In Refs [48, 56], it was theoretically predicted that in the
region of magnetic phase transitions the velocity of lon-
gitudinal sound can decrease anomalously (down to zero)
due to the interaction of elastic longitudinal vibrations with
longitudinal relaxational vibrations of magnetization. These
coupled vibrations are described by a dispersion equation
that is obtained by equating the second factor in Eqn (3.11)
(in square brackets) to zero. The solution to this dispersion
equation can approximately be written as follows. If the
condition o2

l 5 r22o1k�o1k ÿ ome l� (or sl 5 nmin, where nmin is
the minimum phase velocity of relaxational modes) is
fulfilled, we have

o1;2� �ol�o1k ÿ ome l�
o1k

ÿ io2
l

2r2o1k
; o3�ÿir2o1k : �3:20�

At r22o
2
1k 4o2

l 4 r22o1k�o1k ÿ ome l�, we obtain

o1 � ÿir2�o1k ÿ ome l� ; o2 � ÿ io2
l

r2o1k
; o3 � ÿir2o1k :

�3:21�
And, finally, when ol 4 r2o1k, then

o1;2 � �
�
o2

l ÿ
1

4
r22o

2
1k

�1=2
ÿ 1

2
ir2o1k ;

o3 � ir2�o1k ÿ ome l� : �3:22�

We see, thus, that the o1;2 branches in (3.20) and (3.22)
describe progressive (weakly damped) quasielastic longitudi-
nal waves. The solutions (3.21) are purely relaxational. No
progressive waves exist in this region of wave numbers.

Now, we consider the behavior of weakly damped
branches o1;2 near the magnetic phase transition (Curie
point), which is determined by the equality sign in the third
condition for the stability of the phase with MjjHjjx in (3.2).
Depending on the sign of the constant eB, at H � 0 this
transition is either a second-order transition � eB > 0� or a
first-order transition � eB < 0� [57]. At the Curie point, we have
M! 0 in the first case, whereas M remains finite in the
second case. Because of the different behavior of the
magnetization at the Curie point upon the phase transitions
of the first and second order, we consider the vibrational
spectrum of the ferromagnet in these cases separately.

Let first eB < 0 be negative. At the Curie point itself, at
H � 0 and in the long-wavelength limit ak2 5 hl1, the o1;2

branches are written as

o1;2 � �ol�ak2 � hl 1 ÿ hl 2�
hl 1

: �3:23�

This implies that the anomalous decrease in the velocity of
longitudinal quasielastic waves ~sl � jo1;2j=k will take place
only when hl 1 � hl 2, i.e., the relation

2mb0 � lb1 ; �3:24�

is fulfilled between the magnetostriction and elasticity
constants.

If (3.24) is fulfilled, the dispersion law for the quasielastic
longitudinal vibrations becomes cubic:

o1;2 � �sla k3

hl 1
�3:25�

(for transverse elastic waves at the RPT points, we have
ot / ak2 [17]). The velocity ~sl in this case depends on k
quadratically:

~sl � sla
k2

hl 1
�3:26�

and tends to zero as k! 0.
Note that, under the restriction that relation (3.24) is

fulfilled, the conditiono2
l 5 r22o1k�o1k ÿ ome l� at the point of

the transition becomes the condition imposed on the para-
meters of the ferromagnet:

s2l 5 r22gMaome l � n2min : �3:27�
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This condition, in principle, can be fulfilled either at the
expense of an increase in the damping parameter r2 near the
Curie point or at the expense of themagnetostriction constant
b0, which enters into the frequency ome l and usually is very
large near the transition.

When the condition opposite to (3.27) is fulfilled, the
vibrational spectrum of the ferromagnet will be determined
by formulas (3.21) and (3.22). In this case, as k! 0, all the
vibrations are purely relaxational, with a quadratic depen-
dence of the frequency on k. In the range of wave numbers
k4 r2ome l=sl, the o1;2 branch (3.22) describes weakly
damped longitudinal quasielastic vibrations with a linear
dispersion law.

Note also the fact that one of the relaxational o3

branches, namely, that that corresponds to the noninter-
acting relaxational mode of longitudinal vibrations of
magnetization at the transition point, becomes, as k! 0
and with allowance for the magnetoelastic interaction,
activational with an activation proportional to r2ome.
This suggests that at the Curie point the relaxation time
of the longitudinal vibrations of magnetization t / jo3jÿ1
remains finite.

With allowance for the magnetic field, the first-order
phase transition is retained at small H and is absent at large
H [59]. Thus, we should expect that the anomalous decrease in
the sound velocity (down to zero) would occur only at small
fields.

Let now consider the case of eB > 0. At H � 0, the phase
transition is a second-order phase transition; on approaching
the transition point, we have M! 0. Consequently, accord-
ing to (3.20) ± (3.22), only either purely relaxational vibra-
tions (3.21) or longitudinal elastic waves (3.22) can exist near
this point, since the condition o2

l < r22o1k�o1k ÿ ome l�
(which, if (3.24) is fulfilled, goes into (3.27) at the transition
point itself) may not be fulfilled asM! 0. IfH 6� 0, the phase
transition is absent [60]. Nevertheless, here we may expect a
significant decrease in the velocity of longitudinal sound at
small fields, when the susceptibility of the ferromagnet is
small. Indeed, if the magnetic field is such that conditions
(3.24) and (3.27) are fulfilled, then the dispersion law for the
o1;2 branches in the long-wavelength limit ak2 5 hl 1 can be
written in the following form:

o1;2 � �ol�1� wak2�
1� whl 1

; �3:28�

where w � �A� b1 � 4 eBM2 � 5CM4�ÿ1 is the differential
susceptibility of the ferromagnet. AtH! 0, we have w!1
at the Curie point. The velocity of the quasielastic lon-
gitudinal waves as k! 0 is expressed as

~sl � sl
1� whl 1

: �3:29�

From this, it follows that at whl1 4 1 we can observe a
significant decrease in the velocity of longitudinal sound
also near the second-order phase transition. However, no
theoretical limit ~sl ! 0 (similar to that observed in first-order
phase transitions at eB < 0) exists in this case.

Thus, the allowance for longitudinal vibrations of the
ferromagnet magnetization leads to the following results.
First, far from the Curie point, in a certain range of wave
numbers, all vibrations can become nonpropagating. Second,
at the point of a phase transition of the first order (at the Curie

point at eB < 0), the velocity of the longitudinal quasielastic
waves under a certain condition imposed on the elastic and
magnetoelastic constants (3.24) can drop to zero as k! 0.
Third, the magnetoelastic interaction leads to the appearance
of activation in the spectrum of the relaxational branch at the
Curie point.

Note that here we did not consider the role of
fluctuations in the immediate vicinity of the Curie point.
Therefore, all the results obtained above are valid for that
region near the Curie point in which the fluctuations can be
ignored. However, in analogy with relaxation in liquid
helium, the effect of the anomalous decrease in the velocity
of longitudinal sound had to occur in the fluctuational
region as well (see, e.g., [60]).

3.2 Effect of longitudinal susceptibility and relaxation
on the spectrum of spin and elastic waves
in an antiferromagnet upon spin reorientation
When describing static and dynamic properties of antiferro-
magnets, the conditions of the constancy and equality to one
another of the absolute values of sublattice magnetizations
are frequently used [17]. For an antiferromagnet consisting of
two sublattices, these conditions are written as (1.1), or in an
equivalent form

ML � 0 ;

M2 � L2 � 4M2
0 ; �3:30�

where M �M1 �M2, L �M1 ÿM2 are the vectors of
ferromagnetism and antiferromagnetism, respectively; Mi is
the magnetization of the ith sublattice; and M0 is the
saturation magnetization of the sublattices. The first condi-
tion in (3.30) is fulfilled in all the phases of the antiferro-
magnet in the absence of an applied magnetic field H. In
antiferromagnets placed in a magnetic field, the first condi-
tion of (3.30) can be fulfilled only for those phases in which
H ? L [61]. At the same time, this condition is not satisfied in
those phases in which the antiferromagnetism vector L is not
perpendicular to themagnetic field. Inmost antiferromagnets
placed in an arbitrary magnetic field, there exists at least one
phase in which ML 6� 0. In this case, the fulfillment of the
conditionML � 0 can be attained by letting the coefficient at
the invariant �ML�2 tend to infinity in the expansion of the
free-energy density of the antiferromagnet in powers of M
andL. In this case, in the ground state of the antiferromagnet,
those phases in which ML 6� 0 either vanish or become
distorted so that the first of the conditions (3.30) becomes
valid in them. This approximation is equivalent to the
vanishing of the longitudinal magnetic susceptibility wjj.
Strictly speaking, the longitudinal susceptibility of the
antiferromagnet is equal to zero only at absolute zero
(T � 0), but there are magnets in which wjj�T � 0� 6� 0 [8].
Thus, in the general case, when describing the statics and
dynamics of an antiferromagnet, we should discard condition
(3.30).

Now, let us investigate the ground state and the spectrum
of spin and coupled magnetoelastic waves in an antiferro-
magnet without allowance for conditions (3.30).

3.2.1 Choice of object for investigation, the ground state, and
the equations of motion of an antiferromagnet. Without
restricting the generality, we consider a two-sublattice
antiferromagnet with isotropic elastic and magnetoelastic
properties. The density of free energy is written as
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F � 1

2
AL2 � 1

4
BL4 � 1

2
aM2 � 1

2
D�ML�2 � 1

2
D 0M2L2

� 1

2
a
�
qL
qxi

�2

� 1

2
b1L

2
z �

1

2
b2L

2
y �

1

2
b3L

2
x ÿMH

� 1

2
bLiLkuik � 1

2
lu2ll � mu2ik : �3:31�

Here, the first six terms represent the energy of the exchange
interaction. The next three terms are related to the anisotropy
energy. The term that contains the magnetic field describes
the energy of the antiferromagnet in an applied magnetic field
(the Zeeman energy). Note that for simplicity we omitted the
energy of the Dzyaloshinskii interaction in (3.31). The effect
of this interaction on the static and dynamic properties of
antiferromagnets will be discussed below.

At Hjjx, the following magnetic phases can exist in the
ground state of the ferromagnet:

1: Ljjx ; Mjjx ; M � wjjH � w?�1ÿ Z�H ;

A� b3 � �D�D 0�M2 � BL2 � 0 ; a�D 0L2 5 0 ;

a� �D�D 0�L2 5 0 ; �b3 ÿ b1�L2 � w?ZH
2 4 0 ;

A� b3 � �D�D 0�M2
�
1� 2�D�D 0�wjjL2

�
4 0 ;

2: Ljjy ; Mjjx ; M � w?H ; A� b2 �D 0M2 � BL2 � 0 ;

a�D 0L2 5 0 ; a� �D�D 0�L2 5 0 ;

�b3 ÿ b2�L2 � Zw?H
2 5 0 ; b1 ÿ b2 5 0 ;

A� b2 �D 0M2�1� 2D 0w?L
2�4 0 ;

3: Ljjz ; Mjjx ; M � w?H ; A� b1 �D 0M2 � BL2 � 0 ;

a�D 0L2 5 0 ; a� �D�D 0�L2 5 0 ;

�b3 ÿ b1�L2 � Zw?H
2 5 0 ; b1 ÿ b2 4 0 ;

A� b1 �D 0M2�1� 2D 0w?L
2�4 0 ;

4: L � 0 ; Mjjx ; M � wH ; a5 0 ;

A� b3 � �D�D 0�M2 5 0 ; A� b2 �D 0M2 5 0 ;

A� b1 �D 0M2 5 0 : �3:32�
Here, wÿ1? � a�D 0L2, wÿ1jj � wÿ1? �DL2, Z � 1ÿ wjj=w?, and
w � 1=a. The equilibrium deformations in phases 1±4 are as
follows:

u
�0�
ik � ÿ

b

4m
LiLk � lbL2

4m�3l� 2m� dik :

The imposition of the condition ML � 0, as was already
noted above, is equivalent to the zero longitudinal suscept-
ibility of the antiferromagnet: wjj � 0 (as D!1). In this
case, we have Z � 1. Thus, the parameter Z is as if ameasure of
the departure from the conditionML � 0. Note also that the
parameter Z enters into the phase equilibrium in the product
with the magnitude of the magnetic field H. Therefore, at
H � 0 the condition ML � 0 is fulfilled for all phases (3.32).
It also follows from (3.32) that in the general case we have
ML 6� 0 in the first phase andML � 0 in the other phases.

At the lines that are determined from the condition of
equality of phase energies, phase transitions can occur

between the phases. Since we are interested in the dynamics
of the antiferromagnet, for simplicity we will not give
expressions for the phase energies and lines of phase
transitions here. When considering the dynamics of mag-
nets, it is only important to know the lines of phase stability,
since it is at these lines that softening of the magnetic
vibration frequency occurs [17]. Note only that in their
character the 1$ 2 and 1$ 3 transitions are hysteretic
first-order phase transitions; the 2$ 3 transition also is a
first-order phase transition, but is anhysteretic; the transfor-
mations 2$ 4 and 3$ 4, which occur in strong fields (of the
order of the exchange one), are second-order phase transi-
tions; and the 1$ 4 transition also refers to second-order
phase transitions.

When describing the dynamics of the antiferromagnet, we
proceed from the coupled set of equations of elasticity and
Landau ±Lifshitz equations:

r�ui � q�qF=quik�
qxk

;

_M � g�M�HM � L�HL � ~r1M0HM� ;
_L � g�M�HL � L�HM � ~r2M0HL� ; �3:33�

where g is the gyromagnetic ratio, Hx � dF=dx �x �M;L�
are the effective magnetic fields, and ~ri are the dimensionless
relaxation parameters. Note that the allowance for the
relaxational terms in the Landau ± Lifshitz equations is
equivalent to the rejection of conditions (3.30) in the
dynamics of the antiferromagnet [11].

3.2.2 Spectrum of spin waves in a two-sublattice antiferro-
magnet. Here, we investigate the vibrational spectrum of the
antiferromagnet. To this end, we representM, L, and u in the
forms M�0� �m, L�0� � l, and u�0� � ~u, where m, l, and ~u are
small deviations from equilibrium values given by (3.32).
Once again, for simplicity we only consider the propagation
of waves along the z axis (wave vector kjjz). The set of
equations (3.33) linearized in this way is solved by the
Fourier method.

First, we write down the spectrum of spin waves without
allowance for the magnetoelastic coupling �b � 0�. Consider
each of the phases of (3.32) separately. The set of equations
(3.33) and the vibrational spectrum in them are as follows.

1. Phase LjjMjjx. The linearized set of equations (3.33) in
this phase is�

r1oE

1ÿ Z
ÿ io

�
mx � 2r1oH�D�D 0�wjjL2lx � 0 ;

�r2oB ÿ io�lx � 2r2oH�D�D 0�wjjL2mx � 0 ;

�r1oE ÿ io�mz;y � oHmy;z �
�
o2;13 � Zo2

H

oE

�
ly;z

� r1ZoHlz; y � 0 ;�
r2

�
o1;23 � Z2o2

H

oE

�
ÿ io

�
lz; y

� oH

�
Z� �1ÿ Z�o2;13

oE
� Z2�1ÿ Z�o

2
H

o2
E

�
ly;z

�
�
oE � Z�1ÿ Z�o

2
H

oE

�
my;z � r2ZoHmz;y � 0 ; �3:34�
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where

oE � gLwÿ1? ; oB � 2gL3B ;

oij � gL�ak2 � bi ÿ bj� ÿ Z
o2

H

oE
;

oH � gH ; ri � ~ri
M0

L
: �3:34a�

The dispersion equations for the waves that propagate in
this phase can be written as

�1ÿ Z�o2 � io
�
r1oE � r2oB�1ÿ Z��ÿ r1r2oE ~oB � 0 ;

o4 � 2ir1oEo3 ÿ o2
�
oE�o13 � o23� � o2

H�1� Z�2�
ÿ ir1oo2

E�o13 � o23� � o2
Eo13o23 � 0 ; �3:35�

where ~oB � 2gL3�Bÿ 2�D�D 0�2w3jjH2�. The last equation
here has been written in the following approximation:
oE 4oH, oij, and ri 5 1. This equation is given in the full
form in the Appendix (formula A.1). The solutions to
equations (3.35) have the form

o1;2 � 1

2�1ÿ Z�
�
ÿ i
�
r1oE � r2oB�1ÿ Z��

� �4r1r2oE ~oB�1ÿ Z� ÿ �r1oE � r2oB�1ÿ Z��2	1=2� :
�3:36a�

At oEr
2
1 5o13o23=�o13 � o23�, we obtain

o2
3;4 � o2

� ÿ ir1oEDo� ;

o2
5;6 � o2

ÿ ÿ ir1oEDoÿ ; �3:36b�

where

o2
� �

1

2

�
oE�o13 � o23� � o2

H�1� Z�2�

� ��oE�o13� o23�� o2
H�1� Z�2�2ÿ 4o2

Eo13o23

	1=2�
;

Do��1� o2
H�1�Z�2n�

oE�o13�o23��o2
H�1� Z�2�2ÿ4o2

Eo13o23

o1=2
:

At oEr
2
1 4o13o23=�o13 � o23�, we have

o3 � ÿio13o23

r1�o13 � o23� ;

o4 � ÿir1o2
E�o13 � o23�

oE�o13 � o23� � o2
H�1� Z�2 : �3:36c�

Note that the o2 and o1 branches describe the longitudinal
relaxational vibrations of the vectors L and M, respectively,
and the o3 and o4 branches correspond at
oEr

2
1 4o13o23=�o13 � o23� to the transverse relaxation of

these vectors.
It follows from the two first equations of the set (3.34) that

at low temperatures, when we can neglect the longitudinal
susceptibility (Z! 1), the x components of the vectors of
ferromagnetism and antiferromagnetism vanish (m � 0,
l � 0). This situation corresponds to the absence of lon-
gitudinal vibrations of these vectors and the fulfillment of
the second of the conditions (3.30) in the dynamics of the
antiferromagnet. From the set of equations (3.34), it also

follows that the longitudinal and transverse vibrations of the
vectors of ferromagnetism and antiferromagnetism in the
phase at hand can be separated. As is seen from (3.32) and
(3.34) ± (3.36), the effect of the longitudinal susceptibility on
the ground state and the spectrum of the transverse
components of the M and L vectors reduces not only to the
displacement of the point of phase transition (point of phase
stability in the first-order phase transition) in the statics. In
the dynamics, the longitudinal susceptibility gives an additive
contribution to the activation of precessional branches of
vibrations in the product with the magnetic field (3.36b),
(3.36c). It is seen from (3.36) that in the dynamics also,
relaxation should be taken into account upon the considera-
tion of the vibrations of transverse components of the above
vectors. The allowance for the relaxation has an especially
strong effect near the phase transitions 1! 2 �o23�0� ! 0�
and 1! 3 �o13�0� ! 0�, where a single precessional branch
(with activation o5;6) exists, and the soft branch at the point
of phase transition is the relaxational branch o3 (3.36c).

2. Phase Ljjy,Mjjx. The linearized set of equations (3.33)
in this phase has the form�

r1oE ÿ i�1ÿ Z�o�my ÿ �1ÿ Z�oHmz � r1ZoHlx � 0 ;

�r1oE ÿ io�mz ÿ
�
o32 ÿ Zo2

H

oE

�
lx � oHmy � 0 ;�

r2

�
o32�1ÿ Z� � Z2o2

H

oE

�
ÿ i�1ÿ Z�o

�
lx

� �1ÿ Z�oEmz � r2ZoHmy � 0 ;

�r1oE ÿ io�mx � o12lz � 2r1oHw?D
0L2ly � 0 ;

�r2oB ÿ io�ly ÿ o12oH
lz
oE
� 2r2oHw?D

0L2mx � 0 ;

�r2o12 ÿ io�lz � oH�oB ÿ 2oEw?D
0L2� ly

oE

ÿ
�
oE ÿ 2o2

Hw?D
0L2

oE

�
mx � 0 ;

�3:37�
where

o32 � gL�ak2 � b3 ÿ b2� �
Zo2

H

oE
;

o12 � gL�ak2 � b1 ÿ b2� : �3:37a�
The set of equations (3.37) in the approximation oE 4oH,
gak2=L, and oij and ri 5 1 corresponds to the following
dispersion equations:

�1ÿ Z�o3 ÿ r1�2ÿ Z�oEo2

ÿ io
n
r21o

2
E��1ÿ Z��oEo32 � o2

H�1ÿ Z��o� r1o32o2
E� 0;

io3 ÿ o2
�
r1oE � r2�oB � o12�

�ÿ io
�
r1r2oE�o12 � o0B�

� r22oBo12 � o12o0E
�� o12oEo0B � 0 ; �3:38�

where

o0B � 2gL3�Bÿ 2D 02w3?H
2� ;

o0E � oE

�
1� 2w3?H

2�Bÿ 2D 0�� : �3:38a�
The complete dispersion equations for this phase are given in
the Appendix (formulas (A.2 and A.3, respectively).
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Note that the formal equating of the quantity Z to unity
(i.e., the vanishing of the longitudinal susceptibility) in
equations (3.37) leads to the fulfillment of the condition
ML � 0 in the dynamics of the antiferromagnet.

Let us first investigate the first dispersion equation in
(3.38). At low temperatures and small fields, far from the
2! 1 RPT point, this equation only contains three small
parameters: 1ÿ Z, r1, and oH�1ÿ Z�. Near the transition
point, the frequency o32 is also small. The presence of several
small parameters makes the analysis of the dispersion
equation more complex. Therefore, we only consider those
cases that can be realized under the conditions of the above
indicated experiments.

At the point of the o32�0� � 0 RPT, this dispersion
equation has the following solutions:

o1 � 0 ; o2;3 � 1

2�1ÿ Z�
n
ÿ ir1�2ÿ Z�oE

� �ÿ r21Z
2o2

E � 4�1ÿ Z�3o2
H

�1=2o
: �3:39�

It is seen that in small fields, when �1ÿ Z�3o2
H < r21Z

2o2
E, the

o2;3 branches are purely relaxational; in the opposite case,
they are precessional, with an activation that is determined by
the magnetic field and longitudinal magnetic susceptibility.

At o32�0� 6� 0, the approximate solutions to the first
dispersion equation of those given by (3.38) are as follows in
some limiting cases:

(i) r1oE 4 �o32oE�1=2, ~o32�1ÿ Z�1=2. Under this condi-
tion, we obtain

o1 � ÿio32

r1
; o2 � ÿir1oE ; o3 � ÿir1 oE

1ÿ Z
: �3:40�

This approximation is fulfilled near the RPT (o32�0� ! 0), at
small magnetic fields, or low temperatures, when Z! 1. It
can be seen that, as in the previous cases, all three branches
here are relaxational. At the point of the o32�0� ! 0 RPT, a
softening of the relaxational mode o1 occurs.

(ii) �o32oE�1=2 4 r1oE 4 �1ÿ Z�1=2 ~o32. This condition
corresponds to the representative points far from the RPT,
to small magnetic fields, or low temperatures �Z! 1�. One of
the solutions in this approximation is a purely relaxational
mode

o1 � ÿio32

r1
: �3:41a�

The second solution may be represented in the form of an
expansion in powers of the parameter 1ÿ Z, which is small at
low temperatures:

o2;3 � �
�
o0��1ÿ Z�o1 � �1ÿ Z�2o2 � . . .

�� io00 ;
�3:41b�

where

o0 �
�
o32oE

2ÿ Z

�1=2

; o1 � �3Zÿ 1�
�

o32oE

�2ÿ Z�5
�1=2

;

o00 �
r1oE

2�2ÿ Z� ;

o2 � �3Zÿ 1��7ÿ 3Z�
�

o32oE

16�2ÿ Z�9
�1=2

ÿ o2
H

�16�2ÿ Z�3o32oE�1=2
:

It is seen that the dependence on the magnetic field here
arises only in terms that are proportional to the second
power of the small parameter 1ÿ Z. Thus, at low tempera-
tures, when the longitudinal magnetic susceptibility is small,
far from the RPT the dependence of the frequency of
precessional vibrations on the magnitude of the magnetic
field is weak.

(iii) �1ÿ Z�1=2 ~o32 4 r1oE. This inequality is fulfilled far
from the RPT, at large magnetic fields, or at high tempera-
tures, when the parameter 1ÿ Z is not small. The frequencies
of the vibrations are determined by the formulas

o1 � ÿir1 o32o2
E

�1ÿ Z��o32oE � �1ÿ Z�o2
H�
; �3:42a�

o2
2;3 � o32oE � �1ÿ Z�o2

H

� r21o
2
E

��6ÿ 6Z� Z2��o32oE � �1ÿ Z�o2
H�2 ÿ o2

32o
2
E

	
2�1ÿ Z�2�o32oE � �1ÿ Z�o2

H

�2
ÿ ir1oE

�
2o32oE � �2ÿ Z�o2

H

��
o32oE � �1ÿ Z�o2

H

�1=2 : �3:42b�

Note that the condition imposed on the parameter Z is
related to expression (3.42b) on the whole, rather than
referring to its first term. The precessional contribution to
the magnitude of the gap of spin vibrations exists at any
values of Z. It follows from (3.42b) that at high tempera-
tures far from the RPT [like at the RPT point, see (3.39)],
the effect of the magnetic field (at sufficiently large
magnitude) on the activation of the o2 branch can be
decisive. Here, we also give the relaxational contribution
to the gap of the precessional spin branch o2;3, which is
caused by the interaction of spin and relaxation vibrations,
in order to illustrate that this contribution always enters
into the activation of the precessional branch along with the
contributions from other interactions.

Now, we turn to the second dispersion equation in (3.38).
Its solutions are the frequencies

o4 � ÿ io12oEo0Br2
r1r2oEo0B � o12

�
r1r2oE � r22oB � o0E

� ; �3:43a�
o5;6 � 1

2

�
ÿ i
�
r1oE � r2�oB � o12�

�
� �4�r1r2oE�o12 � o0B� � r22oBo12 � o12o0E

�
ÿ �r1oE � r2�oB � o12�

�2	1=2�
: �3:43b�

In (3.39) ± (3.43), the o1 and o4 branches correspond to the
transverse relaxation of the components of the vector L. The
transverse relaxation of the vector M affects the branches o2

and o3, and the longitudinal relaxation of the vectors M and
L exerts influence on the branches o5 and o6.

3.PhaseLjjz,Mjjx. Expressions for the frequencies of spin
waves oi �i � 1ÿ6� can be obtained by replacing the
frequencies o12 and o32 by the frequencies o21 and o31

with the corresponding replacement of the indices at the
constants b.

Thus, it follows from the above results that if condition
(3.30) is abandoned both in statics and dynamics and if
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relaxation is taken into account, the spectrumof spinwaves of
an antiferromagnet consists of six branches. All vibrational
frequencies are complex. The imaginary parts of the frequen-
cies damp the vibrations. The purely imaginary frequencies
describe the relaxation vibrations of the vectorsM and L; the
frequencies that have a nonzero real part correspond to
damped spin waves of the antiferromagnet (damped preces-
sional vibrations of the vectorsM and L). In the last case, the
attenuation of spin waves is caused by their interaction with
relaxational vibrations. The extent of damping of spin waves
depends on the relationship between the imaginary part of the
relaxational mode (Imor) and the real part of the preces-
sional mode (Reopr). If Reopr 4 Imor, then the preces-
sional mode represents a slightly damped spin wave. At
Reopr 5 Imor, the precessional motion goes into relaxa-
tional motion. In ferromagnets, the first condition is usually
fulfilled. However, if the magnet is in the region of the RPT
where opr ! 0, the second condition can also be fulfilled. A
similar situation can take place in the case of vibrations of a
paramagnetic subsystem which is under the field of a
magnetized subsystem, when damping in the first of these is
very large (e.g., vibrations of the RE subsystem at high
temperatures in rare-earth orthoferrites).

In our case, the RPT points are determined by the equality
signs in the stability conditions for the phases of the antiferro-
magnet (3.32). Based on the designations (3.34a) and (3.37a),
the RPT points can also be determined from the condition of
vanishing of the corresponding frequencies oij at k � 0, i.e.,
oij�k � 0� � 0. We consider the behavior of the vibrational
spectrum of the antiferromagnet separately for the states of
far from and close to the RPT points.

Far from the RPT, when we can assume that
r1;2 5 �oij=oE�1=2 for all i and j, the spectrum of vibrations
of the antiferromagnet in each phase consists of two
relaxational branches (o1;2 in phase 1, o1;4 in phases 2 and
3), two slightly damped precessional branches (o3;4 in phase
1, o2;3 in phases 2 and 3), and o5;6 branches (only positive
values of the frequencies are physically meaningful). In the
RPT region, the spectrum of vibrations depends on the
particular type of the RPT point. Near the RPTs of types
1! 2 �o23�0� ! 0�, 1! 3 �o13�0� ! 0�, and 2$ 3
�o12;21�0� ! 0� in the case where r1;2 4 �oij=oE�1=2
�ij � 23; 13; 12; 21 for RPTs of types 1! 2, 1! 3, and
2$ 3, respectively), the spectrum of vibrations in each
phase of the antiferromagnet consists of four relaxational
branches (o1;2;3;4 for phase 1 ando1;4,o5;6 for phases 2 and 3;
two of them correspond to the longitudinal relaxation, and
the two others to the transverse relaxation of the vectors M
and L) and one slightly damped precessional branch (o5;6 in
phase 1 and o2;3 in phases 2 and 3). For the latter branch, the
condition r1;2 5 �oij=oE�1=2, where ij � 13; 23, and 31 for the
1! 2, 1! 3, and 2$ 3 RPTs, respectively, is expected to be
fulfilled. With respect to these modes, the antiferromagnet is
far from the RPT. One of the above relaxational branches
near the RPT is soft, and its frequency becomes zero at the
transition point itself as k! 0. This is the frequency o3 in
phase 1 near the 1! 2 and 1! 3 RPTs and the frequencyo4

in phases 2 and 3 near the 2! 3 and 3! 2 transitions,
respectively:

o3;4 � igak2=�r1L� ! 0 ; k! 0 : �3:44�

The precessional branch at the above points of the RPTs at
k! 0 is activational. Its activation (in the zeroth approxima-

tion in powers of r and 1ÿ Z) is determined by exchange,
anisotropy, and the magnetic field [see, also, (3.37a)]:

Reo2
5;6 � oEo23;13�0� � o2

H�1� Z�2 ;
phase 1; RPTs 1! 2 ; 1! 3 ;

Reo2
3;4 � oEo32;31�0� ; phases 2; 3; RPTs 2$ 3: �3:45�

Similar behavior is shown by the spectrum of vibrations
of the antiferromagnet in the region of the RPT 2! 1
(o32�0�!0) and in the region of the RPT 3!1
(o31�0� ! 0) at r4oH�1ÿ Z�3=2=�oZ�4 �oij=oE�1=2, where
ij � 32; 31 for the 2! 1 and 3! 1 RPTs, respectively [see,
e.g., formulas (3.40) and (3.43)], as well as at r1 5 �oij=oE�
[see formulas (3.41a) and (3.41b)]. AtoH �1ÿ Z�3=2=�oEZ�4
r1 4 �oij=oE�1=2, the spectrum of vibrations, just as for
regions far from RPT, consists of two relaxational (o1;4) and
two slightly damped (o2;3 and o5;6) precessional branches (it
is assumed, as above, that the modes that are not involved in
the RPTs obey the condition r1;2 5 �oij=oE�1=2, where
ij � 12; 21 for phases 2 and 3, respectively). The relaxational
branch o1 is soft near the RPT at hand, and its frequency
becomes zero at the transition points as k! 0:

o1 � igak2r1o2
E

r21o
2
E � �1ÿ Z�2o2

H

! 0 ; k! 0 : �3:46�

The o2
2;3 branch at r1 4oH�1ÿ Z�3=2=�oEZ�4 �oij=oE�1=2 is

relaxational; and at �oij=oE�1=2 5 r1 5oH�1ÿ Z�3=2=�oEZ�,
it is precessional with an activation that is mainly determined
by themagnitude of themagnetic field and by the longitudinal
susceptibility [see formula (3.42b)]:

Reo2
2;3�0� � o2

H�1ÿ Z� : �3:47�

The activation of the precessional branch o5;6 is determined
by the anisotropy and exchange:

Reo2
5;6�0� � o12;21�0�o0E � o12;21�0�oE : �3:48�

Note that at H � 0 none of the vibrational branch suffers
significant softening in phase 1. This is explained by the fact
that at the point H � 0 the mode that should become soft is
the o2 mode, corresponding to the longitudinal relaxation of
the vector L. Its complete softening can proceed only at the
NeÂ el point, when L! 0. At the same time, as H! 0 a
narrowing (in the attenuation parameter) of the region of
existence of the slightly damped precessional vibrations of the
o2;3 mode occurs in phases 2 and 3.

Thus, on discarding condition (i) in the statics and
dynamics, the spectrum of magnetic vibrations of the
antiferromagnet near the RPT and in the range of small
fields consists of one precessional and four relaxational
branches. The precessional branch at the RPT point has an
activation that is determined by the exchange, anisotropy,
and the magnetic field. One of the relaxational branches is
soft (its frequency becomes zero as k! 0 at the RPT point
itself). In large fields, two precessional branches arise in the
spectrum of vibrations of the antiferromagnet in phases with
ML � 0 (phases 2 and 3) near the reorientation transition
into a phase with ML 6� 0 (phase 1). However, in this case
again the soft mode in the RPT region is a relaxational mode.
The last case with the discarded condition ML � 0 (with
allowance for the condition L2 � const) was investigated
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theoretically and experimentally [4, 25] in rare-earth ortho-
ferrites. The results that were obtained in these works
correspond to the case
oH�1ÿ Z�3=2=�oZ�4 r1;2 4 �oij=oE�1=2.

3.2.3 Spectrum of coupled magnetoelastic waves in a two-
sublattice antiferromagnet. Now, we introduce a magneto-
elastic interaction (b 6� 0). An analysis of the coupled set of
equations (3.33) shows that the main features of the spectrum
of magnetoelastic vibrations are the same in all phases (3.32).
Therefore, we restrict ourselves to consideration of the
spectrum behavior in phase 3 in the region of the 3! 1
RPT. In this case, the magnetic branches o1 and o2;3 only
interact with another transverse elastic branch with a
polarization along the x axis. The other transverse branch
(with the polarization along the y axis) and the longitudinal
sound interact with the magnetic branches o4 and o5;6. The
interaction of the latter in the region of the 3! 1 RPT can be
neglected. The linearized set of equations (3.33) for the
interacting magnetic and elastic vibrations has the form�

r1oE ÿ i�1ÿ Z�o�mz � �1ÿ Z�oHmy � r1ZoHlx � 0 ;

�r1oE ÿ io�my �
�
o31 � ome ÿ Zo2

H

oE

�
lx

ÿ oHmz � i

2
kgbL2~ux � 0 ;

�
r2

�
�o32 � ome��1ÿ Z� � Z2o2

H

oE

�
ÿ i�1ÿ Z�o

�
lx

ÿ �1ÿ Z�oEmy � r2ZoHmz � i

2
r2kgbL

2~ux � 0 ;

�o2 ÿ o2
tk�~ux �

i

2r
kbLlz � 0 ; �3:49�

where otk � stk, s2t � m=r.
The dispersion equation of the set of equations (3.49) in

the approximation oE 4o31, oH and r1 � r2 5 1 can be
written as

�1ÿ Z�io5 ÿ r1oE�2ÿ Z�o4 ÿ i
n
�1ÿ Z��o2

1k

� �1ÿ Z�o2
H � o2

tk

�� r21o
2
E

o
o3

� r1oE

�
o2

1k � o2
tk�2ÿ Z��o2

� io2
tk

n
�1ÿ Z��o2

1k�1ÿ xtk� � �1ÿ Z�o2
H

�
� r21o

2
E

o
oÿ r1o2

tko
2
1koE�1ÿ xtk� � 0 ; �3:50�

where

o2
1k � o2

sk � oEome ; o2
sk � o31oE ;

ome � gb2M3
0

m
; xtk �

oEome

o2
1k

: �3:50a�

First, let us consider the spectrum of coupled magneto-
elastic waves in the antiferromagnet at k � 0. In this case, the
dispersion equation is divided into two equations. A solution
to the first of these are two zero frequencies

o4;5 � 0 ; �3:51�

and the other three frequencies (o1;2;3) are determined from
the cubic equation

�1ÿ Z�io3 ÿ r1oE�2ÿ Z�o2 ÿ i
n
�1ÿ Z��o2

10

� �1ÿ Z�o2
H

�� r21o
2
E

o
o� r1oEo2

10 � 0 : �3:52�

This equation coincides with equation (3.38) in which o32 is
replaced by o2

10=oE. With allowance for the magnetoelastic
interaction at the point of the 3! 1 RPT �o31�0� � 0�, the
frequency o10 does not vanish (o2

10�0� � oEome is the
magnetoelastic gap in the spectrum of quasispin waves).
Therefore, both at the RPT point and near it and even far
from it, the approximate solutions to the dispersion equation
(3.52) will be expressed by formulas (3.40) ± (3.42) in which,
again, o32 is replaced by o2

10=oE.
Thus, at the point of the RPT where o31�0� � 0 at k � 0,

as well as at large attenuation in the magnetic subsystem and
in small fields (or low temperatures, Z! 1), the spectrum of
coupled magnetoelastic vibrations consists of three activa-
tional branches o1;2;3 (3.40) and two activationless branches
o4;5 (3.51). All three activational branches are relaxational.
The o1 mode, which in the absence of a magnetoelastic
coupling was soft, with the allowance for the magnetoelastic
interaction becomes activational, with an activation that is
determined by this interaction.

In the case when at the RPT point the relaxation
frequency in the magnetic subsystem is small in comparison
with the magnetoelastic gap (o10 4 r1oE) and the magnetic
field is small or the RPT occurs at low temperatures, the
frequency o1 (3.41a) remains, as before, relaxational with an
activation that is determined by the magnetoelastic coupling.
The other two frequencies o2;3 (3.41b) describe weakly
damped precessional vibrations, i.e., quasispin waves (only
positive frequencies are physically meaningful). It follows
from (3.41b) that if the RPT occurs at low temperatures and
in relatively low magnetic fields, then the dependence of the
activation of the quasispin waves on the magnetic field is
weak; it shows up only in the second order in the expansion of
the frequencyo2;3 in powers of the small parameter 1ÿ Z. The
activation of the quasispin waves upon changes in the
magnetic field remains in this case virtually unaltered and is
determined by the magnetoelastic interaction.

And, finally, if the RPT occurs at high temperatures
and in high magnetic fields, then the activational branches
are expressed by formulas (3.42). The first of these, as
before, remains relaxational, while the others describe
quasispin vibrations. According to (3.42), the activation of
quasispin branches in this case can completely be deter-
mined by the magnetic field and the longitudinal suscept-
ibility (if this contribution dominates over the magnetoe-
lastic one).

At k 6� 0 in the long-wavelength approximation
(o2

tk 5oEome) the spectrum of coupled magnetoelastic
waves also consists of five branches. Three branches o1;2;3 as
before are activational, but now their dispersion law depends
on thewave vectork. The dispersion laws for these branches in
the zeroth approximation in the small parametero2

tk=�oEome�
are expressed by formulas analogous to (3.40) ± (3.42) at
k 6� 0. In the first approximation, additions will appear in
formulas (3.40) ± (3.42), which are proportional to this small
parameter [7]. The dispersion laws for the last two branches of
coupled vibrations in the long-wavelength approximation and
at �1ÿ Z�otkO1k�O2

1k � oEome�1=2=o2
1k 5 r1oE are expressed
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by the formulas

o4;5� 1

2

�
�
�
4o2

tk�1ÿ xtk� ÿ
o4

tk

��1ÿ Z�O2
1k � r21o

2
E

�2
r21o

2
Eo

4
1k

�1=2

ÿ i
o2

tk

��1ÿ Z�O2
1k � r21o

2
E

�
r1oEo2

1k

�
; �3:53�

where O2
1k � o2

sk � �1ÿ Z�o2
H. This means that at

r1oEo2
1k�1ÿ xtk�1=2=��1ÿ Z�O2

1k � r21o
2
E�4otk these bran-

ches are weakly damped quasielastic branches with a
quadratic law of dispersion

o4;5� �otk

�
gaLk2

oEome

�1=2

ÿ i
o2

tk

��1ÿ Z�O2
1k � r21o

2
E

�
2r1oEo2

1k

: �3:54�

In the opposite case, the o4;5 branches become purely
relaxational with a quadratic dependence on k:

o4 � ÿi
o2

tk

��1ÿ Z�O2
1k � r21o

2
E

�
r1oEo2

1k

;

o5 � ÿir1 oEo2
1k�1ÿ xtk�

�1ÿ Z�O2
1k � r21o

2
E

: �3:55�

The first of these branches is quasielastic and the second is
quasirelaxational.

At �1ÿ Z�otkO1k�O2
1k � oEome�1=2=o2

1k 4 r1oE, the o4;5

branches describe weakly damped quasielastic branches of
vibrations with a linear dispersion law at the RPT point:

o4;5 � � otkO1k�
o2

1k � �1ÿ Z�o2
H

�1=2
ÿ 1

2
ir1oEo2

1k

xtk�1ÿ Z�o2
H ÿ �1ÿ xtk�o2

tk

�1ÿ Z�O2
1k

�
o2

1k � �1ÿ Z�o2
H

� : �3:56�
In the range of large k �o2

tk 4oEome�, the spectrum of
coupled vibrations again will consist of weakly damped
quasispin (precessional) and quasielastic and quasirelaxa-
tional branches. The dispersion law for the quasielastic
vibrations in this case will only slightly deviate from linearity.

Note that the condition r1oEo2
1k�1ÿxtk�1=2=��1ÿ Z�O2

1k�
r21o

2
E�5otk imposed on the magnitude of the wave vector

k goes into the inequality imposed on the parameters of the
antiferromagnet. Indeed, using the above-introduced desig-
nations for the frequencies that enter into this inequality,
we obtain o31�0� � 0 at the RPT point and a new
condition �gaLome�1=2 5 ~r1st, where ~r1 � r1f1� �1ÿ Z�2�
�oH=�r1oE��2g, instead of the above-written condition, at
k! 0. This new condition is actually imposed on the
attenuation parameter ~r1. At typical values of the antiferro-
magnet parameters, e.g., g � 1:8� 107 Oeÿ1 sÿ1,
a � 10ÿ12 cm2, L � 102 G, bL2�107 erg cmÿ3, and
st � 3� 105 cm sÿ1, we obtain that the activationless
branches will be purely relaxational for the damping para-
meter ~r1 4 10ÿ4. As in the case of ferromagnets, in the RPT
region this condition can be fulfilled here with a high
probability. As a result of the fulfillment of this condition
and, thereby, of the transformation of the quasielastic branch
into a purely relaxational one, a 100%decrease in the velocity
of the transverse quasielastic waves at the RPT points may
take place, which was not observed in experiments and in
antiferromagnets.

With allowance for the Dzyaloshinski|̄ interaction in the
equilibrium state of the antiferromagnet in a fieldHjjx, again
three magnetic phases will exist: (1) Mx, Mz, Lx, Lz; (2) Mx,
Ly, Lz; and (3) Mx, Lz. The first two phases are canted. The
condition ML � 0 is fulfilled only for phases 2 and 3. An
analysis of the equations of motion (3.33) shows that the
spectrum of coupled vibrations in phase 3 will be determined
by formulas analogous to (3.39) ± (3.43) and (3.53) but with
new expressions for the characteristic frequencies entering
into these formulas. The behavior of the branches of coupled
vibrations of the antiferromagnet near the second-order
3! 1 and 3! 2 RPTs in this phase remains the same as in
the absence of the Dzyaloshinski|̄ interaction. The spectrum
of vibrations in the canted phases 1 and 2 is expressed bymore
complex formulas than (3.40) ± (3.42). However, in these
phases too, the behavior of the spectrum near the second-
order 1! 3 and 2! 3 RPTs and near the first-order 1! 2
RPT will be analogous to that for phases 1 and 2 of an
antiferromagnet without allowance for the Dzyaloshinski|̄
interaction.

Thus, the investigation of the vibrational spectrum of an
antiferromagnet on discarding the condition of the constancy
and the equality of the absolute values of the sublattice
magnetizations in statics and dynamics, performed in this
section, makes it possible to arrive at the following conclu-
sions.

The abandonment of the condition ML � 0 in statics
leads to the appearance in the antiferromagnet located in a
magnetic field of a phase in which MjjL and, consequently,
ML 6� 0.

The abandonment of the conditions ML � 0 and
M2 � L2 � const in the dynamics of the antiferromagnet
also leads to the situation when, apart from a precessional
motions of the M and L vectors, their transverse and
longitudinal relaxational motions become possible. In this
case, in the absence of a magnetoelastic interaction, the soft
mode near the RPT is the relaxational mode corresponding to
the transverse relaxation of the antiferromagnetism vector.
With allowance for the magnetoelastic coupling, the soft
relaxational mode becomes activational near the RPT, with
the activation determined by the magnetoelastic interaction.
In this case, the soft mode is the quasielastic vibrational mode
with a quadratic dispersion law at the RPT point. At a
sufficiently large value of the attenuation parameter of the
antiferromagnet, the quasielastic branch can become purely
relaxational.

4. Discussion of results

4.1 Ferromagnet. Main features of the vibrational
spectrum
As the above theoretical results show, in calculations of the
spectrum of vibrations of a ferromagnet, as well as of an
antiferromagnet, allowance for the relaxation is necessary.
The effect of relaxational vibrations on the precessional
vibrations especially increases near the points of phase
transitions. Thus, in neglect of the magnetoelastic interac-
tion, the spectrum of vibrations of transverse components of
magnetization in a ferromagnet far from an RPT represents
weakly damped spin waves (3.14), whereas near the RPT the
precessional character of motion of these components
changes to become purely relaxational (3.15); the soft mode
in this case is the relaxational transverse mode (at the
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transition point at k � 0 its frequency becomes zero). The
longitudinal frequencies in a ferromagnet are always relaxa-
tional.

With allowance for the magnetoelastic interaction, in the
ground state of the ferromagnet selected in Section 3.1, the
vibrations of the transverse components of the magnetization
interact with the transverse elastic vibrations and the lon-
gitudinal vibrations of the magnetization interact with the
longitudinal elastic waves.

The spectrum of transverse magnetoelastic waves consists
of six branches (only positive frequencies are physically
meaningful). The o1;2 branch is activational, with a gap
magnitude that is determined according to (3.17) by the
magnetoelastic coupling and magnetization relaxation. The
other branches are activationless. One of the quasielastic
branches of vibrations (o3;4) near the RPT has a linear
dispersion law (3.17). The allowance for the magnetization
relaxation leads to the attenuation of this elastic branch. The
second activationless branch of coupled vibrations [o5;6

(3.18), (3.19)] may be both quasielastic and quasimagnetic.
In both cases the dispersion law for this branch is quadratic
in k. At o2ko2sk 4 r21o

2
t , the o5;6 branch is quasielastic. At

o2ko2sk 5 r21o
2
t , the o5;6 branches describe purely relaxa-

tional vibrations Ð quasispin and quasielastic, respectively.
It is these two modes that become softened on approaching
the RPT point.

Thus, near the RPT all types of transverse motion of both
magnetization and lattice can become relaxational. Note that
at the RPT point itself, the soft mode is relaxational (the
transition itself occurs through a relaxational soft mode).

With allowance for the magnetoelastic interaction, the
spectrum of coupled vibrations of a ferromagnet always
contains a weakly damped activational quasispin mode with
an activation that is determined by the extent of the
magnetoelastic coupling. The mode that becomes soft at the
RPT point is the quasielastic branch, which may become
purely relaxational.

The spectrumof longitudinalmagnetoelastic vibrations of
a ferromagnet consists of three branches (3.20) ± (3.22).

Far from the Curie point, in the case where the minimum
phase velocity of relaxational modes nmin is less than the
velocity of the longitudinal sound sl, there exists a range of
wave numbers (3.21) where all vibrations are nonpropagat-
ing.

If the phase transition at the Curie point is of the first
order (this is possible if the exchange constant eB is negative),
then at nmin 4 sl and k! 0 the dispersion law of quasielastic
waves is cubic in k (3.25) and the velocity of these waves tends
to zero as k! 0 (3.26). This behavior of longitudinal
quasisound is observed at a certain relationship between the
elasticity and magnetoelasticity constants of the ferromagnet
(3.24).

An anomalous decrease in the velocity of the longitudinal
sound is also possible (at eB > 0) near a second-order phase
transition (3.29), but its velocity in this case cannot reach the
theoretical limit equal to zero, in contrast to the first-order
phase transition at eB < 0.

One of the relaxational branches (3.20), corresponding to
the relaxation ofmagnetization, has an activation at the Curie
point that is determined by the magnetoelastic interaction.
This suggests that the time of the longitudinal relaxation of
magnetization at the Curie point remains finite rather than
tends to infinity, in contrast to the case where the magneto-
elastic coupling is absent.

4.2 Antiferromagnet. Main features of the spectrum near
phase transitions
The review of experimental and theoretical works on the
dynamics of magnets in the region of magnetic phase
transitions that was given in this paper and in Ref. [1] shows
that the gap at the points of phase transitions in the spectrum
of precessional spin vibrations is formed at the expense of a
whole number of contributions, such as magnetoelastic,
relaxational and dipolar contributions, as well as contribu-
tions from other magnetic subsystems if the magnet contains
magnetic ions of other atoms. The role of all contributions,
except for relaxational, was considered in detail in Ref. [1].
Therefore, here we will discuss the role of the longitudinal
susceptibility and relaxation in the dynamics of magnets.

First, we consider how the spectrum of magnetic vibra-
tions changes with the allowance for only the longitudinal
susceptibility and relaxational contribution, i.e., we neglect
the magnetoelastic and dipole contributions and the effects of
other magnetic subsystems. This will permit us to clarify
which of the magnetic vibrational branches is softened at the
point of phase transition.

1. Phase MjjLjjx. Near the point of the first-order
reorientation phase transition of type 1! 2 �o23�0� � 0�,
the spectrum of spin vibrations consists, according to (3.36),
of four relaxational branches o1;2;3;4 and one precessional
branch o5;6 (only positive frequencies are physically mean-
ingful). The soft mode for this transition is the relaxational
brancho3 that corresponds to the transverse vibrations of the
ferromagnetism and antiferromagnetism vectors. At the
transition point itself it vanishes. The precessional branch
o5;6 is activational. At the transition point, its activation is
determined by the anisotropy, magnetic field, and lon-
gitudinal susceptibility (3.36c). A more exact calculation
using the complete dispersion equation [see Appendix, Eqn
(A.1)] leads to the appearance of a relaxational contribution
in the activation of this branch at the point of the 1! 2
transition:

Reo2
5;6 � oEo13 � o2

H�1� Z�2 � r1r2oEo13 : �4:1�
Note that the anisotropy contribution to the activation of this
branch is caused by the interaction of the vibrations of the
transverse components of the ferromagnetism and antiferro-
magnetism vectors and by the choice of the model of the
antiferromagnet as a biaxial magnet. In the case of a uniaxial
antiferromagnet (b1 � b3), this contribution in (4.1) will be
absent and the gap in the precessional branch will be
determined by the magnetic field, longitudinal susceptibility,
and relaxational contribution [second and third terms in
(4.1)]. Note that even in the case of a uniaxial crystal and
spontaneous RPT (i.e., at H � 0� the gap in the spectrum of
the precessional branch is not equal to zero. In this case, it is
determined by the purely relaxational contribution [third
term in (4.1)].

In the region of the phase transition 1! 3 �o13�0� � 0�,
the vibrational spectrum behaves in a similar way and is
described by the same formulas that were considered above,
with the replacement of o23 by o13.

An analysis of the linearized Landau ±Lifshitz equations
(3.34) and of the complete dispersion equation (A.1) shows
that in the region of the second-order phase transition 1! 4
the spectrum of magnetic vibrations consists of two relaxa-
tional branches

o1 � ÿir1oE ; o2 � ÿir2�oB ÿ ~oB� ; �4:2a�
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and four precessional branches

o3;4�1

2

�
�
�
4o2

Ho13o23

o2
E

ÿ r22�o13�o23�2
�1=2
ÿ ir2�o13�o23�

�
;

o5;6 � �oH ÿ ir1oE : �4:2b�

Directly at the phase transition point (oB � 0, Z � 0, since
L � 0), softening of the relaxational branch o2, which
corresponds to longitudinal vibrations of the antiferromag-
netism vector, occurs. Note that near the NeÂ el point the
o3;4;5;6 branches can also become relaxational, since in this
case the transition occurs in small magnetic fields.

2. Phase Mjjx, Ljjy. Near the first-order phase transition
2! 1 �o32�0� � 0�, the spectrum of magnetic vibrations in
the case of small magnetic fields consists of four relaxational
brancheso1;2;3;4 and two precessional brancheso5;6 [formulas
(3.40) and (3.43)]. Far from the phase transition and in large
magnetic fields, the vibrational spectrum consists of two
relaxational branches (o1, o4) and two precessional
branches (o2;3, o5;6) [formulas (3.41) ± (3.43)]. It follows
from the linearized set of equations (3.37) that the vibrations
of the transverse components of the ferromagnetism and
antiferromagnetism vectors are separated. Therefore, at the
point of the RPT at large magnetic fields the activation of the
precessional branch o2;3 (3.39) is determined only by the
magnetic field and is not masked by the anisotropy contribu-
tion from the frequencies of the o12 branch, as took place in
the previous phase. Since the phase transitions 1! 2 and
2! 1 are first-order phase transitions, the activations of the
precessional branch o2;3 do not coincide on the phase 1 and 2
sides, i.e., a jump of the activation of this precessional branch
occurs at the transition point. The activation of the second
precessional branch o5;6 near the transition at hand is always
mainly determined by anisotropy. The soft mode in the region
of the 2! 1 RPT is the relaxational mode o1.

In the vicinity of the RPT 2! 3 �o12�0� � 0�, the
spectrum of magnetic vibrations at r1oE 4 �o12oE�1=2 also
consists of four relaxational branches (o1, o4;5;6) and two
precessional branches (o2;3). In the opposite case, at
r1oE 5 �o12oE�1=2, there are two relaxational branches (o1,
o4) and four precessional branches (o2;3,o5;6). The soft mode
in the region of this transition is the relaxational mode o4.
Note that in its nature the 2! 3 RPT is the spontaneous
reorientation transition, since according to (3.32) this transi-
tion is accompanied by the replacement of the sign of the
difference of the anisotropy constants b1 ÿ b2. From this and
from (3.43) it follows that the activation of the o5;6 branch is
always determined only by anisotropy.

From the linearized set of Landau ±Lifshitz equations
(3.37) and the complete dispersion equations (A.2) and (A.3),
it follows that in the region of the second-order phase
transition 2! 4 the spectrum of magnetic vibrations con-
sists of four relaxational branches

o1 � ÿir1oE ; o2 � ÿir2o12 ; o3 � ÿir2o32 ;

o4 � ÿio0B
o2

H

r1o2
E

�4:3a�

and two precessional branches

o5;6 � �oH ÿ ir1oE : �4:3b�
At the phase transition point (o0B � 0), softening of the
relaxational branch o4 that corresponds to longitudinal

vibrations of the antiferromagnetism vector occurs. Near
the NeÂ el point, as in the region of the 1! 4 transition, all
branches can become relaxational.

3. Phase Mjjx, Ljjz. All features of the spectrum of
magnetic vibrations follow from the results obtained for the
previous phase with the replacement of the index 1 by 2 at the
characteristic frequencies and constants.

With allowance for the magnetoelastic interaction in the
region of the 2! 1 RPT, in the case of large attenuation in
the magnetic subsystem r1oE 4 �omeoE�1=2 (or small value of
the parameter of magnetoelastic coupling), the spectrum of
the interacting magnetic and elastic vibrations consists of
three quasimagnetic relaxational branches (3.52) and two
quasielastic branches (3.53). However, the magnetoelastic
interaction leads to the appearance of a magnetoelastic gap
in the dispersion law of soft relaxational modes of vibrations
[the frequency o1 ato32 � ome (3.40)]. The soft modes in this
case are themagnetoelastic modeswith a quadratic dispersion
law at the transition point (3.54), (3.55). These modes in the
case of large attenuation in the magnetic subsystem can also
become purely relaxational.

In the opposite case, at r1oE 5 �omeoE�1=2, the spectrum
of coupled vibrations consists of one relaxational branch with
a gap determined by the magnetoelastic interaction, two
precessional quasispin branches [o1 and o2;3 at o32 � ome

(3.41) and (3.42)], and two quasielastic branches. The latter
are, as before, softening at the RPT point.

Similar behavior is exhibited by the spectrum of coupled
magnetoelastic vibration in the RPT region in other phases at
hand.

With the allowance for the interaction of magnetoelastic
vibrations with electromagnetic waves, a contribution caused
by this interaction can additively enter into the activational
branches of vibrations. As was shown in Ref. [1], in this case
the frequency of the magnetoelastic gap ome in the expres-
sions for the frequencies of quasimagnetic vibrations should
be replaced by ome � odip, where the latter term is just that
term that describes the interaction between the magnetoelas-
tic and electromagnetic waves.

If the antiferromagnet contains one more subsystem of
magnetic ions (e.g., a rare-earth subsystem in orthoferrites),
then the activation of the quasimagnetic branches also can
contain an additive contribution from this subsystem (see
Ref. [1]).

4.3 Antiferromagnet. Comparison of theory
and experiment
Let us compare theoretical results on the magnitude of the
activation in the spectra of quasimagnetic vibrations with the
results of the above experiments.

1. G2ÿG24 and G4ÿG24 phase transitions in the orthofer-
rites YbFeO3 and TmFeO3 and the G2ÿG24 phase transition
in ErFeO3. To estimate the gaps in the spectrum of quasispin
waves, we will use formulas (3.41b) and (3.42). As follows
from the experimental results (see Fig. 2, 5, and 6), the
magnitude of the gap in the spectrum of quasispin branches
of vibrations at the points of these transitions is independent
of the magnetic field up to fields of 10 kOe. According to the
experimental data of Refs [25, 37], the magnitude of Z in the
region of these transitions is approximately 0.9. Using the
experimental value of the gap in the spectrum of quasispin
vibrations 2pn � �o32oE�1=2 � 126 GHz (the smallest value
from all the results in the figures considered) and the value
1.8 GHz kOeÿ1 for the gyromagnetic ratio g, we obtain the
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following value for the contribution from the magnetic field
to the gap of quasispin waves at the maximum value of the
magnetic field H � 10 kOe: 2pDnH � 0:6 GHz according to
(3.41b) and 2pDnH � 55:7 GHz according to (3.42b). The last
value is at least twice as large as the experimental error. This
suggests that, near these transitions, the condition
�o32oE�1=2 4 r1oE 4 �1ÿ Z�1=2 ~o32 should be fulfilled in
phase 2 and the gap width should be described by formula
(3.41b). In this case, the activation is virtually independent of
the magnitude of the magnetic field. In reality, under the
experimental conditions, a situation which is intermediate
between those described by formulas (3.41b) and (3.42b) can
arise, since, according to estimates [1], the exchange frequency
is oE � 2:5� 1014 sÿ1, and the parameter of relaxation is
r1 � 10ÿ4. In this case, the quantities r1oE and �1ÿ Z�1=2 ~o32

are of the same order of magnitude, and it is this circumstance
that leads to the intermediate result. An estimate of the
relaxation parameter r1 in Ref. [1] is very rough; therefore, it
is difficult to expect better agreement between the experiment
and the theory. Nevertheless, the existence in the theory of an
interval of parameters [formula (3.41b)] in which at low
temperatures a weak dependence on the magnetic field is
revealed suggests good qualitative agreement between the
theory and experiment.

2. G2ÿG24 and G4ÿG24 phase transitions in Fe3BO6.
According to experimental data (see Section 2.2.2), the
magnitude of Z in Fe3BO6 in the region of the phase
transitions at hand is 0.7. Assuming that in Fe3BO6 the
magnitude of the gap in the spectrum of quasispin waves in
a zero magnetic field is 2pn � 94 GHz (see Fig. 9) and taking
the same values of the exchange frequency and relaxation
parameter as those used for the orthoferrites of ytterbium,
thulium and erbium, we obtain that for this antiferromagnet
conditions (iii) and formulas (3.42) should be valid in phase 2.
Thus, a strong dependence of the gap magnitude on the
magnetic field should be observed for Fe3BO6, which indeed
was observed in experiments (see Fig. 9). The estimation of
the gap increment from formula (3.42) at g � 1:8 GHz kOeÿ1

in a field of 10 kOe yields a frequency n � 10GHz. This result
agrees well with the experimental value n � 7 GHz.

In calculations performed inRefs [30, 34] and in the works
cited therein, the effect of the magnetoelastic and dipolar
interaction on the spectrum of spin vibrations was ignored,
although it is known [1, 2, 6, 7] that the influence of these
interactions in the region of phase transitions on the spectrum
of spin waves can even become decisive. This statement is
valid for both first- and second-order phase transitions. The
spectra of quasispin vibrations in REOFs and in the region of
spontaneous first-order phase transitions were calculated in
Ref. [2]. It is natural to compare the results obtained in [2] for
resonance frequencies with the experimental results of Refs.
[31, 32]. In order that such a comparison of theoretical and
experimental results in the case of phase transitions induced
by a magnetic field could be possible, we should combine the
expressions for the resonance frequencies obtained in Ref. [2]
for spontaneous phase transitions with those obtained in
Refs. [30, 34] for induced transitions. Here, we only give a
formula for the ferromagnetic s mode. In the G2 phase, the
activation for this mode is

n210�
�

g

2p

�2�
HEK1

M0
�HE�Hme5 �Hdip1��H�H�HD1�

�
;

�4:4�

and in the G4 phase, it will be as follows:

n210 �
�

g

2p

�2�
ÿHE�K1 � 2K2�

M0
�HE�Hme5 �Hdip2�

�H�H�HD2�
�
: �4:5�

Here, HE, Hme5, HD, and Hdip are the fields of the uniform
exchange, magnetostriction, Dzyaloshinski|̄ interaction, and
dipole interaction, respectively; and K1;2 are the effective
second- and fourth-order anisotropy constants of REOFs [2,
30]. Formulas (4.4) and (4.5) correspond to the cases where no
longitudinal vibrations exist (Z � 0), since the exact expres-
sions for the frequencies of vibrations of the spin subsystem of
antiferromagnets with allowance for the Dzyaloshinski|̄
interaction and longitudinal susceptibility are absent in the
literature. As below we will mainly be interested in the
behavior of the frequency of the quasiferromagnetic mode at
H � 0 and in the region of weak fields and since, according to
formulas (3.42), the parameter Z enters into the expression for
the frequencies of spin vibrations mainly in combination with
the magnetic field, the neglect of the longitudinal suscept-
ibility in weak fields seems to be justified.

The point of the first-order spontaneous G2ÿG4 RPT is
determined by the condition K1 � K2 � 0 (a first-order phase
transition is only possible at K2 < 0). From this, it follows
that, at H � 0 and in neglect of the magnetoelastic and
dipolar interactions (Hme5 � 0 and Hdip � 0) at the point of
the phase transition, the activations in the spectrum of spin
waves on both the G2 and G4 phase sides are the same and are
determined as

n210 �
�

g

2p

�2�
ÿHEK2

M0

�
: �4:6�

Thus, in this case no frequency jump arises at the point of the
phase transition. Just this result was obtained in [30, 34]. In
reality, as follows from the exact formulas (4.4) and (4.5), this
jump does exist and is determined in the zeromagnetic field by
the dipole contribution:

Dn � g

2p

�
HE�Hdip2 ÿHdip1�

�1=2
: �4:7�

Now,we estimate themagnitude of the jumpat thepoint of the
spontaneous phase transition. To this end, we will use the
following values of the exchange and dipole fields:
HE � 5� 106 Oe and Hdip2 ÿHdip1 � 1 Oe [2, 30, 34]. Then,
we obtain a numerical value of the frequency jumpat the point
of the spontaneous RPT equal to Dn � 7 GHz. This value
agrees well with the experimental value Dn � 5:7 GHz (see
Fig. 8). Thus, the allowance for the dipole interaction permits
us to satisfactorily describe the experimentally observed
frequency jump at the point of the spontaneous RPT.
Allowing for the longitudinal vibrations, the expressions for
the frequencies of quasispin waves (4.4) and (4.5) will also
contain a gap of relaxational origin, similar to that given by
formula (3.42). In principle, given the anisotropic character of
this gap, it also can yield a contribution to the frequency jump
upon the spontaneous RPT. Along with the dipole contribu-
tion, a relaxation contribution to the gap in formula (3.42),
caused by the interaction of precessional and relaxational
vibrations,may lead to discrepancies between the values of the
gap at the RPT points for gaps obtained from formula (3.42)
atH � 0 and the extrapolation of the spectrum toH � 0 from
the region of greater values of the magnetic field (see Fig. 9).
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Note that the modified formulas (4.4) and (4.5) also
permit us to explain the nonzero value of the frequency
derivative with respect to field at H! 0. As follows from
these formulas, this fact was caused by the allowance for the
Dzyaloshinski|̄ interaction (terms linear in field in (4.4) and
(4.5)).

3. G124ÿG24 phase transition in ErFeO3. In its nature, this
transition is an antiferromagnet ± ferromagnet transition in
the subsystem of rare-earth erbium ions and simultaneously a
reorientation phase transition in the subsystem of iron ions. If
we could separately describe the phase transition in the RE
subsystem, then the spectrum of magnetic vibrations in the
region of this transition would be described by formulas
(4.2a) and (4.2b) and the gap in the activational branches of
vibrations at the point of the transition would grow
proportionally to the magnitude of the magnetic field.
However, because of the presence of the iron subsystem, the
parameter Z at the point of this transition is not zero and,
consequently, the magnitude of the gap should also depend
on the ratio between the longitudinal and transverse magnetic
susceptibilities. Since the wjj=w? ratio and, consequently, the
parameter Z in the region of this RPT is much greater than
unity, the gap magnitude and its dependence on the magnetic
field will be described by a formula analogous to (3.42b) or
(4.1). According to these formulas, the magnitude of the
activation in the spectrum of the quasispin branch is
proportional to the parameter Z. This fact agrees well with
the experimental dependence of the gap magnitude in the
spectrum ofmagnetic vibrations at the point of the considered
phase transition (see Figs 11 and 12b). It follows from a
comparison of these figures that the dependence of the gap
magnitude on the temperature completely duplicates the
temperature dependence of the wjj=w? ratio. Note that here
we can only speak of a qualitative agreement between the
theory and experiment, since the theory was developed for the
case of a single magnetic subsystem.

4.4 Comparative analysis of various contributions
to the spectrum of quasispin waves
It follows from the expressions for the gap magnitude at the
RPT point [see, e.g., (3.41), (3.42)] that it is formed by the
precessional contribution [first terms in (3.41b), (3.42b)],
external magnetic field, and longitudinal susceptibility
[second and third terms in (3.41b) and second term in
(3.42b)], and by the relaxational contribution [third term in
(3.42b)]. Since the corresponding contributions to the gap
magnitude are additive, we may set a goal to experimentally
separate them. This section will mainly be devoted to this
problem. We will not consider any results of new measure-
ments in it; the conclusions will be deduced from a
comparative analysis of the whole body of experimental
data given above and those obtained previously.

It has already been reliably established that the dynamics,
caused mainly by the interaction of various vibrational
subsystems of a magnet with precessional vibrations of the
spin subsystem [first terms in (3.41b) and (3.42b)], can only be
observed at moderately low temperatures and in weak (or
zero) magnetic fields. In the corresponding magnets, the
spontaneous RPTs should occur at relatively low tempera-
tures. The theory and experimental data that satisfy these
conditions were presented in review [1].

The separation of the field and temperature contributions
to the dynamics caused by the second term in (3.42b) can be
realized as follows. In order to separate the field contribution,

the experiments should be performed at low temperatures
(where wjj is relatively small) but in a strong magnetic field.
For example, to carry out corresponding measurements in
REOFs, fields as high as 70 ± 100 kOe are required. To
separate the contribution which is mainly caused by the
longitudinal susceptibility wjj, the measurements, on the
contrary, should be conducted in a minimum magnetic field
but at a sufficiently high temperature. Below, we give a
comparative analysis of experiments performed in weak
magnetic fields, but over a wide range of reorientation
temperatures that satisfy the last condition. The role of the
longitudinal susceptibility in the formation of energy gaps
may be established on the basis of a series of experiments
carried out over a wide range of values of the parameter tSR.
In this case, the contribution of the longitudinal vibrations of
magnetization to the dynamics of REOFs in the region of
spontaneous reorientation is actually separated. The above-
described experiments permit one to trace the evolution of
this contribution over the range of tSR from 0.01 to 1.

It follows from (3.42b) that the gap increases only if both
related gradients (in both the field and temperature) are
positive simultaneously. However, as can be seen from, e.g.,
Fig. 1, the simultaneous increase in wjj and H is only
characteristic of the G24ÿG2 transition. In the G24ÿG4

transition, an increase in field is associated with a decrease
in wjj. This circumstance does not imply, of course, that the
increase in H is necessarily compensated by a corresponding
decrease in wjj and that the theoretically predicted [4] effect (an
increase of the gap with increasing applied field) will be
suppressed. In the general case, the longitudinal suscept-
ibility and the field may affect the magnitude of the gap with
different efficiencies. But below, for definiteness, we will take
into account a model situation, where the growth of the field
upon the transition is associated with the growth of the
longitudinal susceptibility as well, i.e., a situation character-
istic of the G24ÿG2 transition in a field Hjja. Correspond-
ingly, wewill only be interested in themagnitude of the energy
gap n02 in the vicinity of the temperature T � T2. It is just on
the example of such a transition in YFeO3 that the thermo-
dynamic theory of Ref. [4] has been developed and tested for
the first time. In YFeO3, no spontaneous reorientation
occurs; therefore, only a G24ÿG2 transition can occur there
in the presence of a magnetic field. The HÿT phase diagram
of YFeO3 in a fieldHjja is such [62] that this transition in the
temperature region accessible for experiments can only be
induced in fields of 70 ± 80 kOe. It is clear that it is impossible
to do without field when considering the formation of the gap
in the case of YFeO3. However, this proves to be possible if
reorientation of a similar type can occur spontaneously.
Then, the entire magnitude of the gap can be ascribed to the
precessional contribution. This could be checked using
DyFeO3, which was employed to test the thermodynamic
theory inRef. [5]. In this REOF, a spontaneousG1ÿG4 Morin
transition occurs at T � 40 K. Near this temperature, the
G24ÿG2 transition can be induced by a relatively small field
Hjja. Such an experiment has not, unfortunately, been
performed. But already at temperatures T > 100 K, as
follows from [5], this transition can be induced only by a
sufficiently strong field of at least 60 kOe. At such values of
the field and temperature, the contribution of longitudinal
vibrations and magnetic field to the magnitude of the energy
gap is already sufficiently large. Although the thermody-
namic theory of Ref. [4] was developed for transitions
induced by an external field, it can be concluded from general
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considerations that the longitudinal vibrations of magnetiza-
tion will also contribute to the dynamics of REOFs in the
reorientation region upon induced transitions close in nature
to spontaneous transitions if the latter are realized at
sufficiently high temperatures. Let us substantiate this
assumption proceeding from the results of experiments on
compounds with various values of the parameter tSR.

Since the thermodynamic theory of Ref. [4] ignores the
above-considered mechanisms of gap formation (at the
expense of the interaction of various vibrational subsys-
tems), it follows that as H! 0 the gap also tends to zero.
Since this is not the case in reality (significant gaps were
observed in all REOFs even at H � 0), it is logical to search
for the manifestation of effects of longitudinal vibrations in
the form of an increment in the initial gap on `switching-on' of
the field. Therefore, the general methodical technique that
was used in the experiments described above consisted in the
following. First, the energy gap was measured upon a
corresponding spontaneous transition and then the tempera-
ture (field) dependence of this gap was restored in a relatively
small field (less than 10 ± 12 kOe) that was rigorously oriented
along the crystal axis. The sought effect was estimated by the
magnitude of the derivatives qn0=qT and qn0=qH. The latter of
these should always be positive (according to [4, 5]); but for
the G24ÿG2 transition the derivative qn0=qT also is always
positive. If the temperature (field) dependence of the gap is
such that qn02=qT, qn02=qH 6� 0 as T! T2, H! 0, then we
can estimate which contribution come from the longitudinal
vibrations to the dynamics of REOFs in the region of the
field-induced transition close to the spontaneous transition.
Since the transition field can be sufficiently small in this case,
it is clear that at a certain value the prevailing contribution to
the effect will be determined only by the longitudinal
susceptibility. It is natural that the `fieldless' situation has
not been considered in [4, 5], and the results that were
obtained upon the testing of this model using YFeO3 and
DyFeO3 [5] look rather like the `effect of a strong field.'
Therefore, it is unlikely that a detailed comparison of the
actually observed dynamics of REOFs upon spontaneous
RPTs with this theory is correct. Here, we only use its
principal conclusion (and experimental test): the fact that
longitudinal vibrations of magnetization contribute to the
dynamics of REOFs in the reorientation region is confirmed
by the increase in the magnitude of the gap with increasing
field. As was shown experimentally [32, 34], this contribution

can grow not only with increasing, but also with decreasing
temperature. As was already noted, we will restrict ourselves
to the first case. Let us analyze all the experiments in the
sequence corresponding to the increase in the parameter tSR.
For convenience, the main results and the data on the REOFs
and Fe3BO6 obtained in experiments are listed in the table.

It can be seen from this table that in the orthoferrites with
relatively low temperatures of spontaneous reorientation
transition G24ÿG2 (tSR < 0:15), the gradient qn02=qH
vanishes. Moreover, in the orthoferrites of ytterbium,
thulium and erbium, this gradient vanishes not only at
H � 0, but even in fields of up to 6 ± 10 kOe. This is seen
from the field dependences of the energy gaps shown in
Fig. 14.

The general result of measurements consists in that in
YbFeO3, TmFeO3, and ErFeO3 the gap n02 inherent in the
spontaneous G24ÿG2 transition does not change upon the
`switching-on' of a field and upon the corresponding increase
in the reorientation temperature. This means that in these
orthoferrites the energy gaps at the points of the above
spontaneous transition are mainly formed by the preces-
sional mechanisms. They can be explained in terms of the
spin-wave approximation [1]. At tSR < 0:15, the contribution
of the longitudinal vibrations of magnetization and magnetic
field to the gap is hardly noticeable against this background
and has not shown up itself in the limits of the experimental
accuracy in experiments.

For fullness of the picture, we should mention measure-
ments performed on NdFeO3, which is closest to the above
`low-temperature' REOFs in the magnitude of tSR. It follows
from magnetoresistance measurements performed on this
compound [63] that the width of the region of the canted
phase and the magnitude of the energy gap in this orthoferrite
are very sensitive to the quality of the starting materials used
for the preparation of its samples. Therefore, the experiments
required for the purposes of this workwould have too large an
error. But the corresponding measurements on NdFeO3 have
not been carried out mainly for the reason that it was clear in
advance that they could not give qualitatively new results in
comparison with those already known from experiments
performed on ErFeO3. Indeed, in NdFeO3 tSR � 0:17, i.e.,
in this parameter the neodymium and erbium orthoferrites
are very close to one another. Therefore, it was hopeless to
expect that we could find an increase in the gap in NdFeO3

with increasing field and temperature.

Table. Experimental results for rare-earth orthoferrites and Fe3BO6. For ErFeO3(2), TSR, TN, and T2 should be replaced by TN2, and n02 should be
replaced by n0N2. Asterisks mark expected values.

Compound YbFeO3 TmFeO3 ErFeO3 (1) NdFeO3 SmFeO3 Fe3BO6 ErFeO3 (2)

Transition

Parameters

G24ÿG2 G24ÿG2 G24ÿG2 G24ÿG2 G24ÿG2 G24ÿG2 G124ÿG24

TSR � �T1 � T2�=2, K 7.4 88 95 123 463 415 3.9

Energy gap upon spontaneous
transition at point T � T2,
GHz

37.5 20 26.2 56 35 17.5 26.1

tSR � TSR=TN 0.01 0.14 0.15 0.17 0.7 0.8 1

qn02=qT at T! T2, GHz Kÿ1 0 0 0 0* 0.3* 0.5 60

qn02=qH at
H! 0, GHz kOeÿ1

0 0 0 0* 0.7 4
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Of much more interest is SmFeO3 with its record (among
the REOFs) value of tSR of about 0.7. However, for the
reasons that were indicated in Section 2.2, the traditional
magnetoresonancemeasurements on this compound have not
given information required for an analysis. Only measure-
ments on Fe3BO6 and ErFeO3 in the region of the ordering of
erbium ions yield the clearly pronounced sought effects. In
these compounds, the gradients of the energy gapwith respect
to the field and temperature significantly exceed the measure-
ment error even near the spontaneous RPTs.

Note the unusually large increase in the gradients of the
gapwith respect to the field and temperature at the point of the
spontaneousmetamagnetic transition in ErFeO3 as compared
to Fe3BO6. Indeed, with increasing tSR from 0.8 at Fe3BO6 to
1.0 at ErFeO3(2) (see table), the gradient of the gap with
respect to the temperature increased by a factor of 120 and
with respect to the field, by a factor of about 6. However, it
cannot be stated that the existence of such great gradients of
the gap nearT � TN2 is evidence for an adequate contribution
of longitudinal vibrations into its `starting' value n0N2. These
gradients are most likely to arise only in the field and are
caused by the specificity of this metamagnetic transition
shown in Section 2.3.2, i.e., by the changes in the structure of
the initial phases. As for the contribution of longitudinal
vibrations to the magnitude of the gap at the point of the
spontaneous RPT, it should correspond to the value of
~wjj=~w? � 1 at the point TSR � TN2, according to the logic of
the theory of Refs [4, 5]. Measurements of the high-frequency
susceptibility (Fig. 12b) yield a value ~wjj=~w? � 3 at this point.

Figure 15 displays an aggregate two-dimensional diagram
that characterizes the evolution of qn0=qH as H! 0 on
changing the parameter tSR, which in its meaning is a
dimensionless temperature. It is evident that this diagram
can be supplemented with a third coordinate, which char-
acterizes the dependence of qn0=qH on field. However, to do
this, high-field measurements of the gap should be performed
on the REOFs under study, using the method that was
realized in Refs [4, 5] for YFeO3 and DyFeO3.

The smooth line that runs through the `experimental'
points in Fig. 15 gives an idea of the magnitudes of qn0=qH

at H! 0 that may be expected for some other REOFs
proceeding from the known values of tSR (e.g., for DyFeO3,
NdFeO3, SmFeO3). In DyFeO3 and NdFeO3, the situation is
most likely to be the same as in the orthoferrites of Yb, Tm,
and Er, i.e., qn02=qH � 0. As for the samarium orthoferrite,
here the contribution of the longitudinal vibrations to the
dynamics of the magnet in the spontaneous reorientation
region should already be sufficiently noticeable, e.g.,
qn02=qH � 0:3GHz kOeÿ1. This is understandable, since the
G24ÿG2 transition here occurs at a relatively large value of
wjj=w?. From the temperature dependence of wjj=w? obtained
in Ref. [5] and from the magnitude tSR � 0:8 in SnFeO3, it
follows that here the susceptibility ratio is equal to 0.7.
Unfortunately, among the REOFs, there are no compounds
suitable for filling the range between NdFeO3 and SmFeO3 in
the diagramof Fig. 15. In principle, this could bemade if there
existed suitable isomorphic compounds of other groups. The
most evident and most accessible way of obtaining a
continuous set of magnets for this purpose is mutual
substitution of rare-earth ions in the REOF with the same
nature of the soft mode but with substantially different
temperatures of spontaneous reorientation (e.g., Sm3+ for
Tm3+). Even without resorting to additional experiments, we
may state with a certain degree of surety that, at the modern
level of the measurement accuracy and quality of starting
materials, the contribution of longitudinal vibrations to the
dynamics of REOFs in the spontaneous reorientation region
should be sought at tSR > 0:5. On the other hand, the
corresponding effects should show up themselves in all the
`low-temperature' orthoferrites that were considered here, in
which the transitions are induced by a sufficiently high
magnetic field. Such transitions have already been revealed
in DyFeO3 [5], but they may also be expected with a large
degree of certainty for the orthoferrites of Yb, Tm, Er, and
Nd. Proceeding from an HÿT phase diagram of a corre-
sponding compound, we may even estimate the magnitude of
the required magnetic field. Thus, for example, for the
G24ÿG2 transition in ErFeO3, this field should be at least
60 ± 70 kOe (see theHÿT phase diagram given in Ref. [38]). It
is only for such a field one can expect that tIR � TIR=TN will
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Figure 14.Field dependences of the energy gaps for variousmagnets: at the

line of the G24ÿG2 transition induced by the field Hjja in TmFeO3 (4),

ErFeO3 (�), YbFeO3 (~), and Fe3BO6 (&); and at the line of the

metamagnetic G124ÿG24 transition induced by the fieldHjjc in the erbium

subsystem of ErFeO3 (�). Dashed line corresponds to the linear extrapola-

tion of the field dependence of the gap in Fe3BO6 from the region of fields

H > 8 kOe.
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be equal to 0.5 (TIR is the temperature of the induced
reorientation transition). And, finally, as follows from the
table and Figs 14 and 15, it is by no means necessary that the
greater value of the energy gap upon the spontaneous
transition corresponded to a greater contribution to the
dynamics of reorientation from longitudinal vibrations. No
such correlation could be found for this in the results
presented. This once more confirms that the `starting' value
of the gap and its increment in a magnetic field are caused by
different mechanisms. They give additive contributions to the
dynamics. The competition of these contributions in a certain
transition region ofT andHmay lead to a situation where one
of the contributions becomes intangible against the back-
ground of the other, which, on the contrary, becomes
prevalent. We have already noted in Section 2.1.1 that
evidence for such competition was observed previously in
experiments [5] on YFeO3 and DyFeO3 at T < 100 K. The
experimental values of the wjj=w? and gaps here become
virtually independent of T, whereas a calculation based on
the thermodynamic model of Ref. [4] predicts their further
decrease with decreasing temperature in the rangeT < 100K.
In reality, at these temperatures the decisive factors for the
formation of the gap apparently become spin-wave mechan-
isms [1], while the contribution of longitudinal vibrations is
insensible on this background. This agrees with the experi-
mental results of this work obtained on ytterbium, thulium,
and erbium orthoferrites, in which the gap is also independent
of the temperature in the region of T < 100 K.

5. Conclusion

The review of the experimental and theoretical work on the
dynamics of magnets near magnetic phase transitions given in
this paper and in Ref. [1] shows that the gap at the points of
phase transitions in the spectrum of precessional spin
vibrations is formed by many factors. These are magneto-
elastic and dipole interactions, the interactions between the
subsystems of various magnetic ions, the interaction with
relaxational vibrations, and the effect of the longitudinal
susceptibility, especially in the case of phase transitions
induced by a magnetic field. The contributions caused by
each of the above factors enter additively into the expressions
for the frequencies of precessional quasispin vibrations. They
manifest themselves differently at different values of the
external parameters, e.g., temperature and magnetic field.
At low temperatures and in weak magnetic fields, the
magnetoelastic and dipole contributions are prevalent, as
well as the contribution from the interaction between the
subsystems of various magnetic ions. At high temperatures or
in strong magnetic fields, the effect of the magnetic field and
longitudinal susceptibility become decisive. All these features
are observed in experiments that have been reviewed in this
paper. The theory presented in this paper, which takes into
account all these interactions, permits one qualitatively and,
in some cases, even quantitatively to explain all the experi-
mentally observed peculiarities in the behavior of the gap in
the spectra of quasispin branches both near the spontaneous
and field-induced reorientation phase transitions.

Unfortunately, most experiments were performed on
rare-earth orthoferrites, in which there is an ordered sub-
system of iron ions and a paramagnetic (or also an ordered)
subsystem of rare-earth ions, whereas the theory that takes
into account the relaxation and the longitudinal susceptibility
was developed only for the case of magnets with a single

ordered magnetic subsystem. However, allowing for the fact
that the different contributions enter additively to the
activation of quasispin branches, the theory considered
above, along with the theory of Ref. [1], permit one to
qualitatively explain experimental results in the case of the
orthoferrites as well.

The problem of finding the spectrum of vibrations in rare-
earth orthoferrites with allowance for all factors that can
determine the activation of quasispin branches is very
laborious (especially, at low temperatures, where the sub-
system of rare-earth ions can also become ordered). We hope
that our review will stimulate new works on the experimental
and theoretical study of coupled vibrations in complex
magnets such as rare-earth orthoferrites.

6. Appendix

The complete dispersion equation for the vibrations of
transverse components of the vectors of ferromagnetism and
antiferromagnetism in the phase with MjjLjjx of a two-
sublattice antiferromagnet has the form
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The complete dispersion equations that describe the
vibrations of the magnetic subsystem in the phase with
Mjjx, Ljjy in an antiferromagnet look as follows:
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