
Abstract. The concept of stochastic resonance (SR) was intro-
duced in 1981 in the study of ice-age periodicity in the northern
hemisphere. To describe this phenomenon, a relaxation model
Ð an overdamped bistable oscillatorÐ is used. SR is caused by
the simultaneous action of a periodic signal and noise and
appears as a nonmonotone response to noise intensity varia-
tions. Since the subject of the study is actually the filter pass-
band width as a function of noise intensity, `stochastic filtering'
(SF) seems to be a more appropriate term to describe the
phenomenon. It is shown that when driven by a signal and
noise, a low-attenuation bistable oscillator also displays ordin-
ary SR when the signal frequency coincides with the effective
noise-intensity-dependent frequency of the oscillator. Thus the
possibility of the resonance being controlled by varying the
noise intensity arises.

1. Introduction

The new term `stochastic resonance' (SR) was introduced in
1981 ± 1982 in Refs [1 ± 3] dealing with the periodic advance of
glaciers on Earth. This effect consists in that when periodic
signal and noise are applied simultaneously to an input, the
system can be tuned into `resonance' owing to the nonmono-
tone dependence of the response of the system on the noise
intensity (for instance, the temperature).

Theoretical analysis of SR is usually based on the
relaxation model Ð an overdamped bistable oscillator.
`Overdamped' means that the coefficient of friction is much
greater than the characteristic eigenfrequency of the oscilla-
tor. The meaning of `resonance', however, is not quite
conventional. Here we mean the nonmonotone (`resonance')
response of the bistable element to an external force as
function of noise intensity.

An overdamped oscillator is a relaxation system, and
therefore there can be no resonance in the common physical
sense. The effect in question actually consists in the non-
monotone dependence of the filter passband width on noise
intensity, and so would be more appropriately referred to as
`stochastic filtering' (SF).

The imprecision of the term `resonance' with reference to
the process in an overdamped oscillator has been noted more
than once (see, for example, Refs [4, 5]). Still, the term SR in
the above sense continues to be used in the scientific literature.

The first two reviews of theoretical and experimental
studies of stochastic resonance [6, 7] came out in 1994; a
more detailed review appeared in January 1998 [8]. A most
up-to-date review on stochastic resonance is published in this
issue of Physics Uspekhi [9]. By no means does it duplicate
article [8]: new problems are discussed by the authors who
themselves have contributed much to their investigation and
solution.

Now what are the grounds for using the term `stochastic
resonance' in the context of an input periodic signal and noise
in an overdamped bistable oscillator?

Starting with the earliest studies (see Refs [8, 9]), the
concept of resonance has been framed as follows. The
`resonance' is assumed to occur in the overdamped bistable
oscillator when the frequency of the periodic signal coincides
with the frequency of switching between the two states of
bistable system Ð the Kramers frequency. As we shall see,
however, it is a different phenomenon that takes place in the

Yu L Klimontovich Department of Physics, M V Lomonosov Moscow

State University, Vorob'evy Gory, 119899 Moscow, Russia

Tel. (7-095) 939 38 25

Fax (7-095) 143 85 47

E-mail: ylklim@hklim.phys.msu.su

Received 18 March 1998, revised 22 September 1998

Uspekhi Fizicheskikh Nauk 169 (1) 39 ± 47 (1999)

Translated by A S Dobroslavski|̄; edited by A Radzig

METHODOLOGICAL NOTES PACS numbers: 02.50.Ey, 05.40.+j, 05.45.+b, 87.70.+c

What are stochastic filtering and stochastic resonance?

Yu L Klimontovich

Contents

1. Introduction 37
2. Generalized Fokker ± Planck equation for a bistable oscillator 38

2.1 General case; 2.2 Selection of the control parameter; 2.3. Equilibrium solution and diffusion coefficients

3. Diffusion approximation 39
3.1 Diffusion equation; 3.2 Three characteristic values of the control parameter; 3.3. Calculation of variance.

Self-consistent approximation in the second moment; 3.4 Effective Gaussian approximation

4. Stochastic filtering 40
4.1 Relaxation of the first moment in the self-consistent approximation in the secondmoment; 4.2 Response to external

force. Stochastic filtering; 4.3 `Resonance' in the case of stochastic filtering

5. Kramers theory and stochastic filtering 41
5.1 Introductory remarks; 5.2 Response to an external force. Stochastic filtering

6. Stochastic resonance 42
7. Conclusions 43

References 44

Physics ±Uspekhi 42 (1) 37 ± 44 (1999) #1999 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



overdamped oscillator. Here we are dealing with a relaxation
process.Using an electromechanical analogy, wemay say that
we are dealing with an electric circuit consisting of a resistance
and capacitor (RCcircuit), where the capacitance is nonlinear.
This circuit may be regarded as an electric filter characterized
by its response to an external periodic input. The filter
passbandwidth depends on the noise intensity. It is important
that generally this dependence is nonmonotone, which makes
it possible to control the passband of the filter by varying the
noise intensity. It would be natural to call this process
`stochastic filtering' rather than `stochastic resonance'.

It is also interesting to analyze the effects of a periodic
signal and noise on the bistable oscillator in the other limiting
case, when the coefficient of friction is much less than the
characteristic eigenfrequency (the `effective frequency') of a
bistable oscillator. Resonance occurs when the frequency of
the signal coincides with the effective frequency. Since the
effective frequency depends on the intensity of noise, the
latter can be used for controlling the resonance. In such a case
the term `stochastic resonance' is appropriate.

In this paper we shall discuss the phenomena of both
stochastic filtering and stochastic resonance. The description
of SF is based on the Einstein ± Smoluchowski equation for
the distribution function of the values of generalized
coordinate and time [10 ± 13]. Stochastic resonance is
described with a more general equation Ð the Fokker ±
Planck equation for a distribution function of generalized
coordinate and velocity, and time as well [10 ± 13].

We also note that a unified description of SF and SR is
possible using the generalized Fokker ± Planck equation [12,
13].

BothSFandSRare described in twoalternativeways.One
is based on the self-consistent equations in first and second
moments of the coordinate and velocity of the oscillator. This
approximation was used [12 ± 14] for calculating the fluctua-
tions in autooscillatory systems (the van der Pol oscillator and
lasers), and in the theory of second-order phase transitions.
The other is close to the traditional approach, when the
Kramers transitions between the two states of a bistable
oscillator are important.

The conditions under which the two alternative descrip-
tions yield the same results up to a constant factor are
identified. This is possible when the height of the barrier
that separates the states of the bistable oscillator is low.When
the barrier is high, the twomethods give different results. The
suitability of one or the other much depends on the
circumstances of the experiment.

Stochastic filtering phenomenon (or stochastic resonance
in the traditional sense) has been discovered and studied in
many physical, chemical and biological systems. The results
of these studies were discussed in detail in the two recent
reviews [8, 9] on stochastic resonance (in its traditional sense).
It is worth noting that review [9] is entitled ``Stochastic
resonance: noise-enhanced order''. The discussion of this
most interesting aspect of the theory of stochastic resonance
calls for a separate treatment.

2. Generalized Fokker ±Planck equation
for a bistable oscillator

2.1 General case
Let us write the generalized Fokker ± Planck equation (see
Eqn (17.1.4) in Ref. [13]) for a one-dimensional bistable

oscillator (a Duffing oscillator) placed in a thermostat at the
temperature T:
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Here we assume that the mean velocity of the medium which
hosts the Brownian motion of the bistable oscillator is zero.

Let us explain the notation used in this equation.
The force is represented as a sum of two parts:

F�x; t� � ÿ qU�x�
qx

� F�t� ; �2�

where U�x� is the potential energy of the oscillator with
nonlinear rigidity:

U�x� � mo2
0x

2

2

�
1ÿ a� ab

4
x2
�
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Hereo0 is the eigenfrequency of a nonlinear oscillator; b is the
coefficient of nonlinearity, and a is the control parameter.

2.2 Selection of the control parameter
We distinguish two cases.

1. Switching system.Assume that the control parameter is
defined by the switching system: as a increases from 0 to 2, the
coefficient of linear rigidity decreases from its maximum
positive value mo2

0 to its largest negative value ÿmo2
0.

Under this condition, the values of the control parameter lie
between

04 a4 2 : �4�
Belowwe distinguish three characteristic values of the control
parameter: a � 0, a � 1, a � 2.

2. Temperature control.Rigidity depends on temperature.
At a certain `critical temperature' it becomes zero, and then
negative as the temperature further decreases. This behaviour
is possible if the bistability is caused, for example, by a phase
transition of the second order in the dielectric of the capacitor
in the electric circuit. For the purposes of a qualitative
treatment, the temperature dependence can be expressed as

1ÿ a � tanh
Tÿ Tc

DT
: �5�

The quantity DT characterizes the `width' of the critical
region in terms of temperature.

We see that in this case there are two possibilities of
controlling the bistable element: by varying the noise intensity
(temperature), and by varying the control parameter a.

2.3 Equilibrium solution and diffusion coefficients
Now let us return to the generalized kinetic equation (1). At
F�t� � 0, it has the equilibrium solution in the form of a
canonical Gibbs distribution (or combined Maxwell ± Boltz-
mann distribution) with the appropriate Hamilton function:

f�x; v� � C exp

�
ÿH�x; v�

kBT

�
; H�x; v� � mv2

2
�U�x� : �6�

The potential energy is given by Eqn (3).
The dissipation effect in Eqn (1) is caused by diffusion

with respect to both velocity and coordinate. In case of a
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linear (at a � 0) oscillator, the appropriate diffusion coeffi-
cients are given by the Einstein relations

D�v� � g
kBT

m
; D�x� � kBT

gm
: �7�

At F�t� � 0, the two diffusion terms describe evolution
towards equilibrium with respect to both velocity and
coordinate.

3. Diffusion approximation

3.1 Diffusion equation
For a � 0, the relaxation times t�v� and t�x� are expressed by

t�v� � 1

g
; t�x� � g

o2
0

� 1

G
; G � o2

0

g
: �8�

Hence it follows that, depending on the value of dimension-
less parameter g=o0, we may identify two limiting cases.

The first corresponds to the inequality

t�x�
t�v�
� g2

o2
0

4 1 for g4o0 : �9�

In this case, the volume diffusion is much slower than the
diffusion with respect to velocities.

This allows going over from the generalized Fokker ±
Planck equation to the Einstein ± Smoluchowski equation for
the distribution function f �x; t�:
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We shall call this limit `the diffusion approximation'. The
equilibrium solution of Eqn (10) is the Boltzmann distribu-
tion function.

3.2 Three characteristic values
of the control parameter
Three characteristic states may be identified depending on the
value of the control parameter:

(1) linear oscillator �a � 0�;
(2) critical point �a � 1�. At this value of the control

parameter the linear rigidity of an oscillator becomes zero,
and the potential energy is given by

U�x� � mo2
0

8
bx4 ; �11�

(3) bistable oscillator �14 a4 2�. When the negative
value of the linear rigidity reaches its maximum Ð that is,
when a � 2, the nonlinear potential takes the form

U�x� � mo2
0x

2

2
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2
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�12�

and the barrier separating two potential wells is the highest.
The height of the barrier depends on two parameters, o0 and
b. At F�t� � 0, the height of the barrier is expressed by

DU � U�xmax� ÿU�xmin� ; xmax � 0 ; xmin � �
���
1

b

r
:

�13�

In addition to the characteristic times (9), in the region of
bistability there appears another characteristic time Ð the
time taken by the transition between the two stable states.
This time is commonly referred to as the `Kramers time'.
When the noise intensity is not high (low temperatures), this
time depends exponentially on the height of the barrier, and is
much greater than the relaxation times for the linear
oscillator.

In measuring the response to a small external force (it is
only such perturbations that we are going to consider), the
identification of the stationary state requires that the
observation time be greater than any relaxation times,
including the Kramers time. Under this condition it is
possible to regard the transitions over the barrier in the
presence of noise (temperature) as a slow diffusion process.

Let us quote a few more characteristic parameters. They
are the amplitude of thermal displacements, and the dimen-
sionless parameter e:

x2T �
kBT

mo2
0

; e � x2T b < 1 : �14�

We can also evaluate the time of space diffusion at small
values of the control parameter:

tD�x� �
x2T
D�x�

� g
o2

0

� 1

G
� t�x� : �15�

As the control parameter a increases, we get yet another
characteristic time Ð the Kramers time, which characterizes
the process of switching between the states of the bistable
oscillator.

3.3 Calculation of variance.
Self-consistent approximation in the second moment
The exact value of the variance at equilibrium is given by


x2
� � � x2f0�x� dx ; �16�

where f0�x� is the Boltzmann distribution with a bistable
potential (9). For the purposes of physical analysis, we once
again select three values of the control parameter and
consider the self-consistent approximation in the second
moment. This approximation was used for calculating the
fluctuations in a van der Pol oscillator and in lasers, as well as
in the theory of phase transitions of the second order [12 ± 14].

Assume that at F�t� � 0 we have an ensemble of non-
interacting bistable oscillators. Then the occupancy of the
two potential wells is equiprobable, and therefore the first
moment is zero, xh i � 0. Accordingly, we must turn to the
equation in the second moment.

We denote the square of displacement by x2 � E, and use
the self-consistent approximation in the second moment of
variable x:


x4
� � 
E 2

�! 

E
�

E
�
: �17�

Then from the diffusion equation we get a closed equation in
hEi:

dhEi
dt
� 2

�
D�x� ÿ G

�
1ÿ a� ab

2
bhEi

�
hEi
�
: �18�

Observe that relaxation of the second moment to the steady
state at a � 0 occurs over a time characteristic of space
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diffusion [see Eqn (15)]. Let us demonstrate that in the
presence of an external force, when the mean displacement
hxi is no longer equal to zero, its relaxation time can be much
greater than that for the second moment. This allows us to
neglect the time derivative in the equation for hEi and rewrite
it in the form

hEi
�
�1ÿ a� � ab

2
hEi
�
� D�x�

G
� x2T ; hEi � 
x2� : �19�

The values of variance from this equation for three
selected values of the control parameter are close to those
given by the exact expression (16).

3.4 Effective Gaussian approximation
An analytical solution of the diffusion equation (10) for a
bistable oscillator for arbitrary values of the control para-
meter is not feasible. The simplified model equations are
therefore useful.

We shall treat the transitions over the potential barrier in
the presence of noise as a diffusion process with the Einstein
relation hx2i � D�x�t�x�. Then in place of Eqn (10) we get a
simpler model equation
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x2
� � D�x�t�x� :
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Its equilibrium solution for F�t� � 0 is the Gaussian distribu-
tion function
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��������������
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�
: �21�

The variance hx2i in the self-consistent approximation in the
secondmoment is given byEqn (19) for arbitrary values of the
control parameter. Another parameter is the temperature
(noise intensity). The model diffusion equation (20) is valid
for arbitrary values of these two parameters. It will be
convenient to represent the Gaussian distribution (21) in the
more customary form of a Boltzmann distribution for the
effective linear oscillator
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The effects of nonlinearity are taken into account by
introducing the effective frequency oeff. Comparing the
distributions (21), (22), we get the following relation between
the effective frequency squared and variance:

o2
eff � o2

0

x2T
hx2i ; x2T �

kBT

mo2
0

: �23�

Using the above formulae, we find o2
eff for the three selected

values of the control parameter.

4. Stochastic filtering

4.1 Relaxation of the first moment in the self-consistent
approximation in the second moment
In order to obtain the equation for describing the evolution of
the first moment under a small external force, we shall use the

approximate diffusion equation (20). As a result, for a
bistable oscillator at the largest arbitrary value of the control
parameter and in the presence of a weak external field, we get
the following equation in hxi:
dhxi
dt
� 1

t�x�
hxi � F�t�

mg
� f�t� ; 1

t�x�
� Do�x� �

D�x�
hx2i : �24�

The variance hx2i (for low strengths of the external force) at
all values of the control parameter is determined by the
solution of Eqn (19).

In this way, we have a closed system of equations for the
first and the second moments. Recall that the time depen-
dence is neglected in Eqn (19). This is justified when the
control parameter is in the range 14 a4 2.

4.2 Response to external force. Stochastic filtering
Equation for the first moment accounts for the nonlinearity
of the initial equation for an overdamped oscillator through
the definition of relaxation time.

Let us write the expression for the response to the external
force:

hxio � w�o� F�o�
gm

; w�o� � 1

ÿio� 1=t�x�
: �25�

The real part of the susceptibility is an example of the
Rayleigh spectral line

Re w�o� � 1=t�x�
o2 � �1=t�x��2

;
1

t�x�
� D�x�
hx2i : �26�

The above formulae define the linewidth when the control
parameter is in the range 04 a4 2.

Now we define the input signal as

F�t� � A cosOt ; F�o� � pA
�
d�o� O� � d�oÿ O�� : �27�

Then the response


x�t�� at frequency O is given by


x�t��O � ARe w�O� cosOt : �28�

Upon averaging over the period 2p=O, we arrive at�����������������������������D

x�t��2OE2p=O

r
� A���

2
p Re w�O� : �29�

The linewidthRe w�O� (filter passbandDohxi � D�x�=hx2i)
through the values of hx2i depends both on the control
parameter a and on the noise intensity (temperature). The
mean value hEi � hx2i is found by solving Eqn (19). Let us
consider three characteristic values of the control parameter.

1. Linear oscillator �a � 0�. Then

hEi � x2T ;
1

thxi
� D�x�

x2T
� G : �30�

Naturally, in this case the relaxation time for the first moment
coincides with the corresponding time for a linear oscillator.
Important changes occur at the critical point.

2. Critical point �a � 1�. Then the solution of Eqn (19) is

hEi � x2T
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We see that at the critical point the relaxation time of the
first moment becomes a function of the noise intensity
(temperature). As the temperature decreases, the filter
passband width narrows, and the relaxation time increases.

3. Bistable oscillator at the largest value of the control
parameter �a � 2�. The solution of Eqn (19) is

hEi � 1

b
;

1

thxi
� Dohxi � Gx2Tb5G : �32�

We see that in our self-consistent approximation in the
second moment the filter passband width decreases linearly
with falling temperature.

Calculations of this section used the Einstein relation
hx2i � D�x�thxi for the bistable oscillator as well. This is
natural for a critical region, where the barrier separating the
two possible states is low. To allow for high barriers, we shall
also use another approximation based on the definition of
relaxation time as the time of overcoming the barrier. This
will bring us to the known Kramers formula. First, however,
we want to discuss the `resonance' response to a periodic
disturbance and features of the spectral density of fluctua-
tions as functions of noise intensity.

4.3 `Resonance' in the case of stochastic filtering
Let us return to Eqn (25) which defines the response to a
periodic external force. The same function also defines the
spectral density of fluctuations dx at F�t� � 0:

�dxdx�o �
2=t�x�

o2 � �1=t�x��2
hx2i � 2Re w�o�hx2i : �33�

Let us consider by way of example the dependence of Re w�o�
on noise intensity in the case of bistable behaviour at a � 2.
Using Eqn (19), we find

hx2i � 1

b
and Re w�o� � Gx2Tb

o2 � �Gx2Tb�2
; x2T �

kBT

mo2
0

: �34�

We see that with fixed frequency o the temperature
dependence (dependence on the noise intensity) is nonmono-
tone. The maximum value is observed when

kBTres

mo2
0

� o2 : �35�

Since the response to a periodic perturbation is expressed via
the function Re w�o� too, it also exhibits a `resonance'
dependence on the noise intensity. This effect could be aptly
termed `stochastic filtering', since we are actually dealing with
the dependence of the filter passbandwidth on the intensity of
noise. The term `stochastic resonance' in this case is rather
conventional, and ought to be reserved for the description of
oscillation rather than relaxation processes in a bistable
oscillator placed in a `thermostat'.

Observe that the dependence of the above characteristics
on the noise intensity in the neighborhood of `resonance' is
asymmetrical.With fixed frequencyo � O themean response
is proportional to T for low noise intensities, and to 1=T 2

when the intensity of noise is high. This agrees qualitatively
with the results of numerical experiments quoted in the review
[8].

So far the phenomenon of stochastic filtering has been
treated using the self-consistent approximation in the second
moment. Let us now consider the approximation based on the

Kramers theory Ð it is this approximation that is used in the
conventional theory of `stochastic resonance'.

5. Kramers theory and stochastic filtering

5.1 Introductory remarks
The Kramers problem is the subject of many papers and
several reviews. A comprehensive review [15] was published to
mark the 50th anniversary of Kramers' classic paper [16]. For
the sake of justice we ought to mention here that the seminal
work in this field was co-authored by L Pontryagin, A
Andronov and A Vitt in 1933 [17], long before the paper by
Kramers.

The problem of the time of transition over the barrier can
be solved in two ways: by solving the time-domain equation
(10) for a bistable oscillator, or by solving the stationary
diffusion equation with an appropriate `source' and `sink'
that give a constant flow of Brownian particles. A relatively
simple technique for solving the stationary problem was used
in Section 17.6 of the book [13]. Let us quote the pertinent
results.

We use Eqn (10) for the stationary state. In this equation
we carry out one integration and define the constant flux of
particles by j0 � 1=ttr. The flux has the dimension of inverse
time; ttr denotes the transition time. As a result, we get a first-
order equation

D�x�
df

dx
� 1

gm
dU�x�
dx

f � 1

ttr
; �36�

where, as before, D�x� � kBT=mg is the coefficient of space
diffusion, and ttr is the time of passing over the barrier. The
solution of this equation brings us to the following definition
of the transition time

ttr � 1

D�x�

�0
ÿ1

exp

�
ÿU�x�

kBT

���0
x

exp
U�x 0�
kBT

dx 0
�
dx : �37�

Let us consider again three characteristic cases.
1. Linear oscillator �a � 0�
U�x�
kBT

� x2

2x2T
; ttr � x2T

D�x�
: �38�

Comparing this result with Eqn (37), we get the following
limit for the transition time

ttr � x2T
D�x�

� g
o2

0

� 1

G
� tD�x� � t�x� : �39�

We see that in the limit of monostable oscillator, the
transition time coincides with the above-defined diffusion
time [see Eqn (15)].

2. Critical point �a � 1�

U�x� � mo2
0

8
bx4 ; ttr �

��������
1

x2Tb

s
x2T
D�x�

: �40�

We see that the transition time at the critical point is of the
same order as the diffusion time (31) in the self-consistent
approximation with respect to the second moment. As we go
deeper into the bistable region (as a! 2), however, the
discrepancy between the two differently calculated relaxa-
tion times increases exponentially.
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3. Bistable oscillator at the maximum value of the control
parameter �a � 2�. Then Eqn (37) can be reduced to

ttr �
���
2
p

p
x2T
D�x�

exp
1

4x2Tb
: �41�

The corresponding expression for the transition time is
written as

ttr �
���
2
p

p
G

exp
1

4x2Tb
4

1

G
: �42�

Let us apply these results to the formulation of the model
equation of spatial diffusion.

5.2 Response to an external force. Stochastic filtering
The equation in the first moment in the Kramers theory is

dhxi
dt
� 1

ttr
hxi � F�t�

gm
: �43�

It differs from Eqn (24) by the replacement

1

t�x�
� D�x�
hx2i !

1

ttr
: �44�

Recall that, in the self-consistent approximation with respect
to the second moment, the quantity hx2i for all values of the
control parameter is given by the solution of Eqn (19).

Equation (43) takes into account the nonlinearity of the
initial equation for an overdamped oscillator through the
Kramers time, the calculation of which depends essentially on
the nonlinearity of the bistable oscillator.

Now we apply substitution (44) to Eqns (25), (26), getting
as a result the desired formulae for describing stochastic
filtering in the Kramers theory language:

hxio � w�o� F�o�
gm

; w�o� � 1

ÿio� 1=ttr
: �45�

Hence follows the expression for the real part of the
susceptibility, which is an example of the Rayleigh spectral
line:

Re w�o� � 1=ttr
o2 � �1=ttr�2

: �46�

Formulae (38) ± (41) define the filter passband and the shape
of the `resonance curve' of the overdamped oscillator for all
values of the control parameter in the range 04 a4 2.

The filter passband and the shape of the `resonance
curve' depend on both the control parameter a and the
noise intensity (temperature). With a fixed noise intensity,
the filter passband narrows down as the control parameter
increases. Alternatively, if the control parameter is fixed,
the filter passband narrows down as the temperature
decreases.

In the region of bistability at the largest value of the
control parameter a � 2, the difference between the results
derived by the above two distinctive approaches depends only
on the value of one dimensionless parameter x2Tb that defines
the height of the barrier in the Kramers formula

U�xmax� ÿU�xmin�
D�x�

� 1

4x2Tb
: �47�

When this dimensionless parameter is 4x2Tb5 1 (`high
temperatures'), both methods of describing stochastic filter-
ing yield close results. When the temperatures are `low',
4x2Tb5 1, we get into the range of frequencies so low that
flicker noise becomes an important factor.

From the arguments developed above it follows that the
widely held belief in the concept of `stochastic resonance' in
an overdamped bistable oscillator in the presence of noise is
not well grounded. The traditional concept of `resonance' as
typical of oscillatory systems is used here for describing the
nonmonotone dependence of the response on the intensity of
noise in a relaxing system. This does not mean of course that
there is no stochastic resonance as such. It is only that
stochastic resonance occurs under conditions opposite to
those described above. Namely, we ought to consider a low-
friction oscillator rather than the overdamped bistable
oscillator. With this purpose, in place of the diffusion
equation we shall use the Fokker ± Planck equation for the
distribution function f �x; v; t�.

6. Stochastic resonance

For describing the actual stochastic resonance we shall use the
Fokker ± Planck equation

qf
qt
� v qf

qx
� F�x; t�

m

qf
qv
� q

qv

�
D�v�

qf
qv

�
� q
qv

�
gv f

�
: �48�

Under the condition F�t� � 0, the first moments are zero;
in the weak field the equations for the first moments are

dhxi
dt
� hvi ; dhvi

dt
� ghvi � o2

effhxi �
F�t�
m

: �49�

Here we again use the notation for the effective frequency (or
effective rigidity). In the self-consistent approximation with
respect to the second moment for the arbitrary value of the
control parameter the quantity o2

eff is given by

o2
eff � o2

0

�
1ÿ a� ab

2
hEi
�
: �50�

The set of equations in hxi, hvi is not closed, since the
effective frequency depends on hEi � hx2i. Let us show how
these equations can be closed in the weak-field approxima-
tion, when the products of the first moments hxi, hvi may be
regarded as negligibly small.

Using the Fokker ± Planck equation (48) we write a set of
two equations

dhx2i
dt
� 2hxihvi ; hx2i � hEi ; �51�

dhxihvi
dt

ÿ hv2i � o2
0

�
1ÿ a� ab

2
hEi
�
hEi ÿ ghxihvi

� hxiF�t�
m

: �52�

The right-hand side of the former equation is small in the
second order, which is negligible in our current approxima-
tion. Accordingly, the derivative of the secondmoment hx2i is
also negligibly small. In the same approximation, in the
second equation we may drop all terms containing the first
moments hxi, hvi. Then, given that hv2i � kBT=m, we get the
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following equation�
1ÿ a� ab

2
hEi
�
hEi � x2T : �53�

Wehave arrived at an equationwhich coincideswithEqn (19).
Now equations (49), (50), (53) comprise a closed set of

equations. Let us consider again the solution of Eqn (53), as
we did earlier with Eqn (19), for three characteristic values of
the control parameter, and find the corresponding values for
the square of effective frequency o2

eff.
1. Linear oscillator �a � 0�. Then
hEi � x2T ; o2

eff � o2
0 : �54�

2. Critical point �a � 1�. One has

hEi � x2T

��������
2

x2Tb

s
; o2

eff � o2
0

��������
x2Tb

2

r
: �55�

3. Bistable oscillator at the maximum value of the control
parameter �a � 2�. Then the solution is

o2
eff � o2

0x
2
Tb ; x2T �

kBT

mo2
0

: �56�

As a result, we get the following equation for the bistable
oscillator:

d2hxi
dx2

� g
dhxi
dt
� o2

0x
2
Tbhxi �

F�t�
m

: �57�

Now we find the expression for the corresponding
complex susceptibility, which we define as

hxio � w�o� F�o�
m

: �58�

As a result we find

w�o� � 1

o2
0x

2
Tbÿ o2 ÿ iog

: �59�

From the above formulae it follows that tuning-in to
resonance may be effected by adjusting the temperature
(noise intensity). By Tres we denote the temperature corre-
sponding to the point of resonance:

o2 � o2
eff�Tres� : �60�

In particular, at a � 2 the condition of resonance is expressed
as

o2 � o2
0x

2
Tres

b ; x2Tres
� kBTres

mo2
0

: �61�

At temperatures above or below Tres, the condition of
resonance is not satisfied. This allows us to speak of the
condition of stochastic resonance.

Observe that formally the effects of Kramers diffusion on
the stochastic resonance may be taken into account by
making the substitution

x2Tb,
1���
2
p

p
exp

�
ÿ 1

4x2Tb

�
� 1

Gttr
�62�

in the last of the above formulae. Then the condition of
stochastic resonance at the largest value of the control
parameter �a � 2�may be written as

o2 � 1

Gttr
: �63�

Notice also that the condition of stochastic resonance for
the model of an overdamped oscillator is set (without
sufficient grounds) as

o � 1

ttr
: �64�

Usually it is assumed that stochastic resonance occurs when
the signal frequency is of the order of the frequency of
Kramers transitions. In the theory of stochastic resonance
under consideration [when the Kramers theory is formally
included through substitution (62)], the phenomenon of
stochastic resonance takes place when

o � o0

��������
1

Gttr

r
�

�����
g
ttr

r
4

1

ttr
: �65�

This condition is different from Eqn (64). Stochastic
resonance occurs at frequencies much higher than the
Kramers frequency.

Although the reviews [8, 9] draw a comparison between
theory and experiment for numerous physical, chemical and
biological systems, it would be useful to extend this compar-
ison with due account for the alternative descriptions of
stochastic filtering and stochastic resonance as described
above.

7. Conclusions

More than two decades have passed since the introduction of
the concept of `stochastic resonance' for describing the
periodic motion of glaciers in the northern hemisphere of
the Earth. The meaning of this term, as we have seen, is that
the response of the system to the combined action of
harmonic signal and noise exhibits a nonmonotone depen-
dence on the noise intensity. The `resonance' response to the
noise gave rise to the term `stochastic resonance'. The
example of an overdamped bistable oscillator was used for
formulating the `oscillatory' interpretation of such `reso-
nance' Ð this takes place when the signal frequency
coincides with the Kramers frequency (the frequency of
transitions over the barrier separating the two minima of
potential energy of the bistable oscillator).

Such a theory, however, has more to do with the
imagination than with physical reality. As a matter of fact,
an overdamped oscillator is a pure relaxation system that has
no natural frequencies and, as a result, cannot exhibit
resonance in the traditional sense.

Since, as we have seen, the electromechanical analog of
the overdamped bistable oscillator is an RC circuit with a
nonlinear capacitance Ð that is, a nonlinear filter, the
phenomenon that has become known as stochastic reso-
nance would be more appropriately termed `stochastic
filtering'. This term implies that the response of an over-
damped bistable oscillator in the presence of signal and noise
depends nonmonotonically on the intensity of noise. Then the
stochastic filtering can be controlled by varying two indepen-
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dent parameters Ð the intensity of external noise and the
temperature (for example, of the ferroelectric capacitor). The
latter control is especially efficient in the temperature range
adjacent to the point of phase transition in the dielectric
substance filling the capacitor.

By contrast, stochastic resonance is only possible in a
situation opposite to that of an overdamped bistable
oscillator Ð that is, when the coefficient of friction is much
less than the effective frequency of the oscillator. It was shown
that the effective frequency is noise-dependent. This opens the
possibility of tuning to resonance by varying the intensity of
noise. This is the phenomenon that is referred to here as
`stochastic resonance'.

This commentary touches upon just one Ð even though
important Ð aspect of the theory of controlling nonlinear
systems by varying the noise intensity. In the reviews [8, 9], the
reader will find a lot of interesting experimental and
theoretical material illustrating the wealth of phenomena
related to the simultaneous action of signal and noise in
nonlinear systems of diverse nature. One of the most
intriguing certainly is the phenomenon of noise-enhanced
order at stochastic synchronization.

This paper has emerged from the discussions of stochastic
resonance phenomena with V S Anishchenko and A B
Ne|̄man, to whom the author is grateful for their stimulating
critical remarks.

Note added in proof
The special issue of Chaos magazine (September 1998) is to a
large extent devoted to the problem of stochastic resonance.
The original papers are preceded with a brief review entitled
``The Constructive Role of Noise in Fluctuation Driven
Transport and Stochastic Resonance'' by R Dean Astumian
and Frank Moss. Frank Moss is one of the authors of the
review published in this issue of Physics ±Uspekhi.
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