
Abstract. The decoherence of a quantum system, i.e., its becom-
ing partly classical, results from its interaction with the envir-
onment and is well described in terms of continuous quantum
measurement theory. In the present paper, various approaches
to CQM theory are reviewed, of which that using effective
complex Hamiltonians is discussed in detail. The effective
complex Hamiltonian is obtained from the restricted path
integral, the latter highlighting the role of information in the
dynamics of the measured system, and is applied to the energy
measurement of a two-level system. For such a measurement,
quantum transition monitoring is shown to be possible and its
back-action on the transition probability analyzed. The perfor-
mance of such a measurement using a long series of soft obser-
vations is described.

1. Introduction

Continuous or repeated measurements of quantum systems
have been actively discussed over the past decade Ð in the
first place because this is where the intrinsic features of
quantum theory are manifested to the utmost, and secondly
because such measurements are steadily gaining practical
importance [1 ± 12]. Twenty years ago it was theoretically
demonstrated [13 ± 16], and later confirmed experimentally
[17] that repeated measurements of a discrete observable lead

to freezing of the system in the original state (the so-called
quantumZeno effect). If, however, the accuracy of each of the
repeated measurements is not high, then their effect on the
measured system is not as strong, and the continuously
measured system is not frozen [2, 9]. Recently it was
demonstrated [18, 19] that a soft continuous quantum
measurement (CQM) is capable of monitoring a quantum
transition, and an experiment was proposed in which the
transition between two atomic levels induced by resonant
radiation is monitored through observing a series of electron
scatterings by the atom. Actually, instead of electron
scattering one could use a series of short and weak interac-
tions of the atom with any auxiliary system. Other quantum
phenomena can be monitored in a similar way. Thus, soft
continuous quantum measurements offer a new tool for
experimental study of quantum processes, capable of giving
an insight deeper than previously seemed possible.

We shall outline these new possibilities at the end of this
review, and start it with a theoretical analysis of quantum
measurement in general, and CQM in particular. We are
going to give a thorough analysis of the phenomenon of
decoherence of a quantum system Ð the process through
which the system acquires classical features, and the environ-
ment stores information about the system [12]. The phenom-
enon of decoherence is associated with anymeasurement, and
plays a decisive role in the dynamics of a system subjected to
repeated or continuous quantum measurements.

Using a simple example we shall see how themeasurement
of a quantum system occurs in the process of interaction
between the system and its environment, and why this
interaction inevitably leads to decoherence of the measured
system. We shall briefly discuss two models of quantum
diffusion Ð that is, the continuous monitoring of the
coordinate of the quantum particle.

Then we are going to present different phenomenological
approaches to CQM, which can be studied without resorting
to particular models of the surrounding (measuring) medium.

In special detail we shall discuss the phenomenological
approach based on restricted integrals over paths (quantum
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corridors), which effectively reduces to the SchroÈ dinger
equation with a complex Hamiltonian. Subsequently we
shall use this approach for analyzing the continuous measure-
ment of the energy of a multilevel system and Ð in greater
detail Ð a two-level one. We shall prove that such a
measurement is capable of monitoring the quantum transi-
tion (the Rabi oscillations).

The relationship between quantum and classical descrip-
tions of physical processes has been actively discussed since
the early days of quantummechanics, and still is. This issue is
highly complicated because of the fundamental differences
between the quantum and classical representations of
physical systems and phenomena. The main distinction is
apparently the quantum theoretical principle of superposi-
tion for the states of `corpuscular' systems, for which in
classical physics superposition is not possible. Because of
this, it is not quite true that classical theory gives an
approximate description of something that is more precisely
rendered in terms of quantum theory. Niels Bohr believed
that a complete description of physical phenomena ought to
include classical elements in addition to a quantum represen-
tation.

Quantum mechanics assumes that, along with any two
states of a quantum system jc1i, jc2i, there exists also their
quantum mechanical (also known as coherent) superposition
jci � c1jc1i � c2jc2i. If, however, the states jc1i, jc2i differ
considerably Ð are said to be classically distinctive Ð for
example, relate to the states of an elementary particle
localized at points far from each other, then their super-
position is not observed under ordinary circumstances. Such
states may be referred to as non-coherent.

To be more precise, a superposition of macroscopically
distinctive states can be realized; but to have it survive for
some time the system must be completely isolated. Even a
very slight interaction with the environment will very quickly
reduce the superposition jci to one of the stable states, jc1i or
jc2i, with only the respective probabilities jc1j2 and jc2j2
known in advance. Such a conversion is the simplest example
of decoherence. The fathers of quantummechanics referred to
this process as reduction or collapse. Today its nature is well
understood, and the dynamics of this process are studied, the
development in time.

A couple of decades ago the process of decoherence was
mostly of academic interest. Currently, however, the experi-
mental techniques in the field of, for example, quantum optics
[20], have become so much refined that it has become possible
to observe the formation of a superposition of macroscopi-
cally distinctive states and the subsequent process of
decoherence [21, 22]. Moreover, the processes of decoher-
ence must necessarily be included into a correct description of
quantum systems interacting with the environment (open
systems).

In particular, the processes of decoherence are important
for the theory and practice of quantum computers [23, 24]. A
quantum computer is a device capable of performing parallel
computations by operating with a quantum superposition
involving an enormous number of terms.

In quantum computers (whose elements have already
been realized in practice) decoherence plays a dual role. In
the course of calculations, decoherence is a harmful process,
since the superposition has to be prevented from falling apart.
However, when the computation is complete, its result must
be retrieved from the computer and represented in the
classical (that is, stable and steady) form. This is accom-

plished by an appropriate measurement of the state of
computer as a quantum system. In other words, the
computer is made to interact with a special device which acts
as a measuring system. This device measures certain para-
meters of the state of the computer, thus causing the
decoherence of this state. In this case the decoherence is
brought about deliberately.

Hypothetical quantum computers are devices in which
decoherence plays a crucial role. It is of no less importance,
however, for many other quantum devices. The phenomenon
of decoherence occurs whenever the system interacts or is
made to interact with its environment, and the state of the
system has some impact on the state of the environment. By
observing the state of the environment one can then gain some
information regarding the state of the system. Accordingly,
the interaction of the system with its environment may be
interpreted as the measurement of the system. The informa-
tion about the system is recorded in the environment. Thenwe
say that a measurement of the quantum system has taken
place. The environment that performs this measurement can
be created on purpose (a measuring device or measuring
medium), although in many cases it exists beyond the
experimenter's discretion, and often plays an undesirable
role, leading to a special kind of dissipation.

It is important that such an interaction with the environ-
ment inevitably modifies the state of the quantum system,
causing decoherence. It turns out, however, that the behavior
of the quantum system being measured can be described with
due account for its decoherence, without the need for explicit
description of the measuring medium. The back effects of the
environment are taken into account implicitly. This means
that the system in question is treated as an open system, and
its evolution is described phenomenologically.

The phenomenological theory of continuously measured
quantum systems is an extension of conventional quantum
mechanics and much augments its capabilities. This theory is
closed and intrinsically elegant.

In this way, the answers to the questions ``How does a
quantum measurement occur?'', and ``How does a continu-
ously measured system behave?'' bring us to the theory of
open continuously measured quantum systems.

From the general course of quantum mechanics we know
that a measurement of a quantum system obeys von
Neumann's reduction postulate, which in the simplest case is
represented by the scheme

c1j1i � c2j2i ! j1i; p1 � jc1j2 ;
j2i ; p2 � jc2j2 :

(

In this scheme, j1i and j2i are states corresponding each to a
certain outcome of the measurement. According to the
reduction postulate, one or the other measurement output
are random quantities with respective probabilities p1 and p2,
and the system assumes the corresponding state. This
instantaneous transition, which cannot be described by the
SchroÈ dinger equation, is known as reduction or collapse of
the state of the system. Mathematically, the reduction can be
described as the projection of the initial state vector on to the
subspace of vectors proportional to either j1i or j2i.

In the more general case, the measurement is described by
a set of projectors Pi, where the subscript i numbers the
alternative outcomes of themeasurement. If themeasurement
results in the ith alternative, the initial state jci after the
measurement will go into state jcii � Pijci Ð that is, the
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reduction of state is described by the corresponding projector.
The probability that the measurement will result in the ith
alternative is{

pi � kcik2 � hcijcii � hcjPijci : �1�

This most simple scheme of description of measurement
raises a number of questions, the first of which is how andwhy
the collapse takes place. The answer to this question has been
sought bymany authors (see, for example, Refs [25, 26, 10, 11]
and an excellent review of the topical literature in the book
[12]). A very clear analysis of the mechanism leading to
collapse was done by Zurek [27, 28], where it was termed
environment-induced superselection. We shall briefly touch
upon this issue in Section 2.1.

Another question arises when we consider a series of
successive quantum measurements each of which is described
by von Neumann's reduction. How does a system behave
when subjected to a series of such instantaneous measure-
ments? How does this behavior change if the intervals
between successive measurements tend to zero, so that the
measurement becomes continuous? This paper for the most
part is devoted to the discussion of these questions.

The analysis of these problems reveals that repeated von
Neumann measurements of an observable with a discrete
spectrum (for example, measurement of the energy of a
multilevel system) lead to suppression of quantum transi-
tions. As a result of continuous measurement, the system is
completely frozen at one point of the spectrum. This
phenomenon has attracted much interest and became
known as the Zeno quantum paradox (or effect) [13 ± 16].

The Zeno paradox indicates that continuous measure-
ment may lead to trivialization, to the disappearance of
dynamics. But is it always the case? The answer is negative.
In the first place, the system is not frozen if the measured
observable has a continuous spectrum. Secondly, the
dynamics remain nontrivial even in the case of a discrete
spectrum as long as the measurement is soft (not too
accurate). From this standpoint, a too accurate measure-
ment of the quantum system is not advantageous, and this is a
manifestation of the paradoxical nature of quantum
mechanics.

The dynamics of a quantum system subjected to contin-
uous measurement is a new type of dynamics which is more
general than that described by the conventional SchroÈ dinger
equation. It includes dissipation due to the effects of the
environment. It is the dynamics of open quantum systems.

There are different approaches to the description of open
(continuously measured) quantum systems. Later on we are
going to discuss these in greater detail; at this point we shall
just enumerate some of them.

Ð The model of measurement which includes the
principal quantum system S, its environment (or measuring
device)M, and the interaction between them.

Ð The equation for the density matrix S of the system
(master equation), obtained after summation over the degrees
of freedom of the environment M (a special case of the
Lindblad equation).

Ð Restricted path integrals (quantum corridors), which
can be reduced to the SchroÈ dinger equation with a complex
Hamiltonian.

Ð The stochastic SchroÈ dinger equation.
Finally, let us make two conceptual remarks. The theory

of open continuously measured quantum systems throws new
light on the old question whether or not quantum mechanics
is a closed theory. The answer is affirmative if we are
considering the Feynman formulation of quantum mechan-
ics which is extremely rich in ideas. This ideological diversity
allows us not to introduce the theory of quantum measure-
ments as a special independent postulate, but rather derive it
from the Feynman formulation of quantum mechanics.

The phenomenology of continuously measured quantum
systems leads to the conclusion of the dynamic role of
information in the following sense. Of course, the dynamics
of the measured system are determined by the nature of the
measuringmedium and its interaction with the system. All the
essential features of the dynamics, however, can be recon-
structed using only the information about the system that is
recorded in the environment. It is information that deter-
mines the dynamics.

2. Measurement of a quantum system by its
environment

In this section we shall consider the physically more obvious
`straightforward' descriptions of the measurement of a
quantum system, leaving for the next section the more
abstract phenomenological approaches which have the
advantage of being universal and independent of the model
used.

2.1 Environment-induced superselection
As already mentioned, the behavior of a quantum system
subjected to measurement (idealized, of course) is described
by von Neumann's reduction postulate [29]. Let us consider
very schematically the physical nature of the reduction
(collapse) of state. To illustrate the main idea it will suffice
to analyze the simplest measurement amounting to the choice
between two alternatives. Assume, for example, that the
measured observable A may take on one of the two values
a 0, a 00. Then, as a result of the measurement, the system, with
the appropriate probability, will go over into one of the
eigenstates of the observable:

jci � c 0ja 0i � c 00ja 00i ! ja 0i; p1 � jc 0j2 ;
ja 00i; p2 � jc 00j2 :

(
�2�

The same change in terms of the density matrix is
expressed as the transition of the density matrix r0 � jcihcj
of the pure state into the density matrix of the mixed state:

r0 �
jc 0j2 c 0c 00�

c 0�c 00 jc 00j2
 !

! jc 0j2 0

0 jc 00j2
 !

� r : �3�

The resulting density matrix r contains the same information
as the right-hand side of Eqn (2), including information about
the transition probabilities.

The physical process leading to the transition (3) is called
decoherence. It results in the conversion of a superposition of
a set of states into a mixture of the same states. The mark of
decoherence is the disappearance of the nondiagonal elements

{Usually the state after the measurement is described in terms of a

normalized vector. We, however, prefer using the vector jcii, since the

reduction then is represented in a very straightforward manner, and the

norm of the resulting vector is equal to the probability of the respective

outcome of the measurement. This approach is especially convenient for

describing repeated measurements.
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of the density matrix:

ha 0jrja 00i � ha 00jrja 0i � 0 : �4�

After the measurement, the superposition of states ja 0i and
ja 00i is no longer possible, and only one of themmay exist with
no admixture of the other. We speak then of superselectionÐ
prohibition of the superposition of states from a given set of
subspaces (in our example it is two one-dimensional sub-
spaces).

Now let us consider the physical mechanism which leads
to decoherence and superselection. This mechanism consists
in the interaction of the measured system with its environ-
ment (measuring device) according to the scheme:

Interaction leads to entanglement, to quantum correlation of
the two systems, so that the state of one of them contains
information about the state of the other. This is how this
occurs.

As already mentioned, a situation equivalent to the
measurement of a quantum system is often encountered
even in case when the measurement was not aimed by the
experimenter. Nevertheless, for the sake of simplicity we shall
speak of a deviceM that measures the system S. Assume that
the device prior to the interaction is in the state jf0i.
Interaction between the two systems is referred to as
measurement when it results in a specific correlation between
these two systems, so that the information about one system is
recorded in the state of the other. In our case, the interaction
between the two subsystems must translate the state ja 0ijf0i
of the compound system into ja 0ijf 0i, and the state ja 00ijf0i
into ja 00ijf 00i. Then the state of the device after the
measurement will tell us about the state of the measured
system.

Assume that prior to the measurement the composite
system, comprising S and M as subsystems, occurs in the
state jC0i � jcijf0i, where jci is the state of the measured
system discussed above. Then the interaction between the two
subsystems will result in the following change of state of the
composite system:

jC0i � jcijf0i �
ÿ
c 0ja 0i � c 00ja 00i�jf0i

! c 0ja 0ijf 0i � c 00ja 00ijf 00i � jCi : �5�

Observe that, by contrast to the reduction of states (2) or
(3), the transition (5) occurs by way of conventional quantum
mechanical evolution, and can be described by the SchroÈ din-
ger equation. This evolution results in the state jCi of the
composite system, in which the subsystems S and M are
entangled or, in other words, a quantum correlation is
established between them.

Constructing the density matrix jCihCj of the compo-
site system after the measurement and calculating its trace
with respect to all degrees of freedom of the measuring
device, we obtain the density matrix of the measured
system:

r � TrfjCihCj � jc 0j2ja 0iha 0j � jc 00j2ja 00iha 00j

� hf 00jf 0ic 0c 00�ja 0iha 00j � hf 0jf 00ic 0�c 00ja 00iha 0j : �6�

In this expression the off-diagonal matrix elements are
nonzero. The following analysis indicates, however, that in
reality they are negligibly small, and condition (4) is satisfied
to a high degree of accuracy.

A large (macroscopic) number of degrees of freedom is a
prerequisite for any measuring device, as is the fact that its
states corresponding to different outcomes of the measure-
ment (in our case jf 0i and jf 00i) are `macroscopically
distinctive'. This means that the corresponding wave func-
tions depend on very many variables, and exhibit different
functional dependences on the large number of these
variables. The scalar product of such wave functions is
practically equal to zero (to be more precise, it is exponen-
tially small with an exponent of the order of 10ÿ23). The
reason is that the scalar product is an integral with respect to
an enormous (macroscopic) number of variables. Even if the
integral with respect to each separate variable is a little less
than one, the total multiple integral will be close to zero.
Hence, to a high degree of accuracy we have

hf 0jf 00i � hf 00jf 0i � 0 : �7�

As a result, the off-diagonal terms of the density matrix
vanish, and it becomes

r � TrfjCihCj � jc 0j2ja 0iha 0j � jc 00j2ja 00iha 00j �8�

in accordance with Eqn (4). In this way, the measurement
leads to decoherence or superselection. The nature of this
phenomenon has rather long been understood (see, for
example, the excellent papers [30 ± 32]). Zurek furthered the
analysis of this phenomenon and aptly christened it `environ-
ment-induced superselection' [28].

We did not go into the details of the interaction between
the measured system and its environment leading to transi-
tion (5). The analysis of relevant models (see book [12] and
references therein) reveals that decoherence arises (that is, the
off-diagonal terms vanish) exponentially fast in accordance
with the expression��ha 00jr�t�ja 0i��2 � exp

�ÿk�a 00 ÿ a 0�2t� : �9�

This occurs as more and more degrees of freedom of the
environment get entangled with the measured system. As
follows fromEqn (9), the characteristic time td of decoherence
is inversely proportional to the squared difference between
the measured values of the observable,

td � �a 00 ÿ a 0�ÿ2 : �10�

By the way, this explains why it is practically impossible to
realize a superposition of two states of a particle which are
localized at points far from each other. Even if such a
superposition were to arise, it would very quickly suffer
decoherence owing to the interaction with the environment
from which it cannot be completely isolated.

2.2 Models of continuous measurements
The physicallymost intelligible approach to the description of
quantum measurements, including continuous measure-
ments, relies on some model of the process of measurement
in accordance with the general scheme outlined in Section 2.1.
The model must include the principal quantum system S, its
environment M, and the interaction between them. If the

System $ Environment
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macroscopic number of degrees of freedom of the environ-
ment is explicitly taken into account, then the model becomes
rather complicated.

A large variety of models of quantummeasurements have
been proposed (see, for example, Refs [33, 34, 30, 31, 35, 28,
36 ± 38, 4, 3, 39, 7, 40, 12]). Without going into the details, we
are going to describe and compare two models of one and the
same continuous measurement which consists in monitoring
the coordinate of a pointlike particle. The first of thesemodels
was proposed as part of a theory of quantum diffusion [36].
Consider a pointlike quantum particle interacting with the
atoms in crystal lattice as shown in the following diagram of
decoherence by crystal modes:

Decoherence by crystal modes
(Caldeira & Leggett, 1983)

The `particle' in our context is the measured system S,
and the `crystal' is its environment M. Such interaction
results in a correlation between the coordinate of the
particle and the state of the crystal (in other words, the
state of the phonons that represent the motion of crystal
atoms). The particle then suffers decoherence, its state is
described by the density matrix, and the time evolution is
described by equation{

_r � ÿ i

�h
�H; r� ÿ 1

2
k
�
r; �r; r�� ; �11�

where the coefficient

k � 2ZkBT

�h2
�12�

depends on the temperature of the crystal T and the damping
coefficient Z, the same as enters the classic equation of motion
of particle in a medium

m�r� Z_r� V 0�r� � F�t� : �13�

Another model of motion of a particle through a
medium was specially designed for describing the contin-
uous measurement of the particle's coordinate [40, 41]. This
model assumes that the interaction with the particle excites
the internal degrees of freedom of the atom, and the
decoherence occurs through interaction with these degrees
of freedom rather than with the modes corresponding to the
displacement of atoms. This model can be schematically
represented by the following diagram of decoherence by the

internal structure of atoms:

Decoherence by the internal structure of atoms
(Konetchnyi, Mensky & Namiot, 1993)

This model also leads to an equation of the form of Eqn
(11), but the coefficient

k � 2

l2t
�14�

in this case will depend on the distance l at which the atom
reacts to the particle, and the relaxation time t of the atom
excited by the passage of the particle. Under certain
conditions, this second mechanism of decoherence will
prevail.

For our future discussion it is important that both models
lead to Eqn (11) for the density matrix, in which the effect of
decoherence is represented by the double commutator of the
density matrix with the measured observable (which in our
case is the position of the particle). As will be demonstrated in
Section 3, such an equation, which represents the phenomen-
ological description of a continuous quantum measurement,
can be derived without using the model of interaction.

3. Phenomenology of continuously measured
systems

As demonstrated in Section 2, the behavior of a quantum
system subjected to continuous measurement can be derived
by considering the model of the environment. It is possible,
however, to do without such a model, taking the effects of the
environment into account implicitly in accordance with the
scheme

We shall discuss different approaches to this phenomen-
ological description of continuous quantum measurements
(CQM), paying special attention to the method of restricted
path integrals.

3.1 Approaches to describing continuous measurements
A continuous quantum measurement can be approximated
by a series of repeated instantaneous measurements, each of
which is described by the von Neumann projector. Evolution
of the system between two measurements is described by the
SchroÈ dinger equation, or (which is equivalent) by the unitary
evolution operator. This gives us the following law of
evolution between the times t0 and t � tN:��c�t�� � U�tN; tNÿ1�PiNÿ1U�tNÿ1; tNÿ2� . . .

. . .U�t3; t2�Pi2U�t2; t1�Pi1U�t1; t0�
��c�t0�� : �15�{A more general equation can be found in Ref. [36]. We give a simplified

expression whose validity is subject to certain restrictions on the para-

meters of the system.

System $
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The result of a series of measurements is represented by a
sequence of numbers fi1; i2; . . . ; iNÿ1g. We see that the
evolution of the measured system depends on these numbers
Ð that is, on the result of the series of measurements. The
description can be made more realistic if we represent the
instantaneous measurement not by the von Neumann
projectors, but rather by their generalizations Ð positive
operators. The spectrum of possible measurement outputs
can then be made continuous.

Passing to the limit from this formalism for repeated
measurements, one can obtain a tool for studying continuous
quantum measurements (see, for example, Refs [42, 2, 43]).
The resulting approach is phenomenological and does not
require an explicit model of the measuring medium. The
continuously measured system is then assumed to be open,
and the effects of the environment are taken into account in
an implicit way.

There are quite a few phenomenological approaches that
lead straight to the continuous measurement, without first
representing it as a repeated measurement with subsequent
passage to the limit. Let us list the main ones.

1. The equation for the density matrix (master equation)
of a continuously measured system S can be represented in
the form

_r � ÿ i

�h
�H; r� ÿ 1

2
k
�
A; �A; r�� ; �16�

where H is the Hamiltonian of the measured system, A is the
continuously measured observable of the system Ð that is,
the observable whose information is `recorded' in the state of
the environment, and the constant k characterizes the
strength of interaction between the measured system and its
environment. Equation (16) is a special case of the Lindblad
equation [44] which describes a more general class of open
systems. In Section 2.2 we saw that an equation of this form
can be derived from the model of interaction between the
system and its environment. In Ref. [44], however, the
Lindblad equation was derived without using any particular
model, under the assumption of the Markovian nature of the
process. Interpretation of the special case (16) of the Lindblad
equation as describing a continuousmeasurement can only be
corroborated either by the models of measurement, or with
the aid of restricted path integrals (see the next paragraph).

2. Restricted path integrals or quantum corridors [9]
reduce the description of continuously measured system S to
the SchroÈ dinger equation with a complex Hamiltonian,

j _ci �
�
ÿ i

�h
Hÿ k

ÿ
Aÿ a�t��2�jci : �17�

By a�t� here we denote the value of observable A at the time
t found in the course of continuous measurement. Thus,
unlike the Lindblad equation, this description of continuous
measurement is selective: it takes into account the result of
the measurement Ð that is, the information recorded in the
environment (despite the fact that this approach does not
rely on any model of the environment). This is the
information approach, which assumes that the dynamics of
the measured system are determined not by the particulars
of the environment, but rather by the information recorded
in the environment. Equation (16) can be derived from Eqn
(17) by carrying out a summation over all possible curves
a�t� in a certain way. This approach will be discussed in
detail in Section 3.2.

3.The stochastic SchroÈ dinger equation for a continuously
measured system

djci �
�
ÿ i

�h
Hÿ k

ÿ
Aÿ hAi�2�jci dt� ���

k
p ÿ

Aÿ hAi�jci dw
�18�

can be derived [45] from the equation with a complex
Hamiltonian (17). In the stochastic equation, w is a random
variable of the type of a Brownian walk (white noise), which
characterizes the effects of the environment. The differential
of this variable, which enters this equation, satisfies the
condition dw2 � dt, which reflects the properties of Brow-
nianmotion (the mean deviation is proportional to the square
root of the time interval). Other stochastic equations have
also been proposed [46 ± 48] leading to the Lindblad equation
(16). The problem is that the stochastic equation cannot be
unambiguously derived from the Lindblad equation. The
advantage of Eqn (18) is that it follows from the equation
with a complex Hamiltonian (17), which can be derived from
first principles. In Ref. [49] and subsequent publications of
the same authors, the noise in the stochastic equation was
interpreted in a different fashion Ð not as an effect of the
environment, but rather as an independent fundamental
physical process called spontaneous localization.

The relationship between different phenomenological
approaches to continuous quantum measurements can be
illustrated by the following table:

In this table we emphasize the distinction between
selective and nonselective descriptions of continuous quan-
tummeasurements. The selective description is more detailed.
It portrays the evolution of the measured system for only one
out of many alternative results of measurement. In this
description the state of the measured system remains pure
(if, of course, it was pure prior to the measurement). In the
equation with a complexHamiltonian, the alternative is given
by the function a�t�, which has a straightforward physical
meaning Ð it is the result of monitoring the observable A. In
the stochastic equation, the alternative is given by the random
function w.

Quantum mechanics of open measured systems

Selective description Nonselective description
+ +

Feynman quantum mechanics:
Feynman 1948 &

#
Restricted path integrals:
Mensky 1979

! Inêuence functional:
Feynman & Vernon 1963

#
Complex Hamiltonians:
Golubtsova & Mensky 1989;
Mensky, Onotrio & Presilla 1991

& #

#
Stochastic equations:
Diosi 1989;
Gisin 1989
Belavkin 1989
Onofrio, Presilla & Tarmbini 1996

! Master equation:
Lindblad 1976
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Nonselective description represents evolution of the
measured system irrespective of the measurement readout.
This description takes into account all possible measurement
readouts, and the actual measurement readout is assumed not
to be known. Accordingly, the nonselective description
(equation for the density matrix) can be derived from the
selective description by carrying out the summation with
respect to the alternatives (see, for example, Ref. [50]). The
transition back from a nonselective (less detailed) to a
selective (more detailed) description is ambiguous and
requires additional assumptions for removing the uncer-
tainty. The logical links between the approaches, and the
possibilities for deriving one approach from another, are
shown on the diagram by arrows (see also Section 3.3).

3.2 Restricted path integrals (quantum corridors)
Let us consider in greater detail the method of restricted path
integrals (RPI) for describing continuous quantum measure-
ments. In this approach, an open continuously measured
system is described (as opposed to a closed system) not by a
single unitary evolution operator, but rather by a whole
family of partial evolution operators (propagators), in
accordance with the numerous alternative measurement
readouts. Each result of measurement defines one channel of
quantum evolution with the aid of the relevant partial
propagator. And it is all these channels taken together that
give a complete description of the dynamics of the open
continuously measured system.

3.2.1 Main principles. The starting point for constructing the
method of restricted path integrals is the Feynman formula-
tion of quantum mechanics based on the formalism of path
integrals. The Feynman path integrals are convenient for
developing the main principles of the approach, being an
excellent tool for conceptual analysis. Having formulated the
basics of the theory, however, it will be easy to switch to the
mathematically more simple formalism of SchroÈ dinger
equation with a complex Hamiltonian. The SchroÈ dinger
equation can then be used for practical calculations, without
using the path integrals.

In Feynman's formulation of quantum mechanics, the
amplitude of transition of the system from one point of the
configuration space to another (the propagator of the system)
is represented by the path integral

UT�q 00; q 0� �
�
d�q� exp

�
i

�h
S�q�

�

�
�
d� p� d�q� exp

�
i

�h

�T
0

ÿ
p _qÿH�p; q; t��� : �19�

Here S�q� is the classical action of the system in question,
which may be expressed as the integral of the Lagrangian
along the path,

S�q� �
�T
0

dt L�q; _q; t� ; �20�

and H is its Hamiltonian. The first integral in Eqn (19) is the
path integral in the configuration space (which may be multi-
dimensional), and the second is the path integral in the
corresponding phase space. The integrals are equal to each
other, and any of them can be used for describing a closed
system. For describing a continuously measured system,

however, one generally needs the path integral in the phase
space.

The operatorUt with the kernel (19) Ð that is, one whose
matrix elements are

hq 00jUtjq 0i � Ut�q 00; q 0� ; �21�

is the evolution operator, and describes the evolution of the
system in accordance with the equations

jcti � Utjc0i ; r 0 � Ut r0U
y
t : �22�

We know that the vector jcti can be found by solving the
SchroÈ dinger equation with the initial condition jc0i. The
classical Hamiltonian H of the system is real, and the
corresponding quantum operator is Hermitian. Therefore,
the evolution operator Ut is unitary,

U
y
t Ut � 1 ; �23�

and the vector jcti has a unit norm (provided, of course, that
the initial vector jc0i is normalized to unity).

To go over to the description of continuous measurement,
we must first recall the conceptual basis of Feynman's
representation (19) of the propagator. According to Feyn-
man's ideology, the exponential under the path integral is the
amplitude of probability of transition of the system from the
starting point to the end point along the given path (which
may be a path in the configuration space or phase space).
Since the path the transition takes is not known, the total
amplitude of the transition probability is found by carrying
out a summation (integration) over all possible paths, which
leads to expression (19).

The latter argument only holds, however, if it is really not
possible in principle to find out along which path the system
propagates. Such is indeed the case when the system is closed.
The situation is different if the system is openÐ that is, if the
system interacts with the environment in some way or other.
In this case the state of the environment is modified by the
interaction, and this change will depend on the state of the
system. Monitoring the change of the state of the environ-
ment, one can gain certain information about the evolution of
the system that has caused this change. In particular, some
knowledge can be obtained about the path of propagation of
the system. In such a case the path integral must be restricted
to those paths which comply with the information obtained.

This is how the restricted path integral (RPI) arises. The
idea of its application to continuous measurements was
briefly formulated by Feynman in his original paper [51].
This approach was developed technically and conceptually in
the author's papers [52, 53, 2, 9] (see also Refs [54, 55, 42, 56]).
In two directions it has been possible to advance Feynman's
ideas much further: (1) the RPI formalism has been extended
to arbitrary continuous measurements, not limited to the
continuous monitoring of the coordinates of the system; and
(2) it has been proved that the calculation of RPI not only
gives the probability distribution of different results of
measurement, but also describes the evolution of the
measured system (which in turn allows the refinement of the
first conclusions concerning the probability distribution).

Now the easiest way to proceed is to use the most simple
example of continuous measurement. Assume that the
measurement consists in monitoring the position of the
system in the configuration space (for definiteness, we may
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speak of monitoring the coordinate of a moving particle).
Then at any time t the measurement gives an estimate of the
position Ð that is, point a�t� in the configuration space. In
total, the result of the measurement is represented by the
curve �a� � fa�t�j 04 t4Tg. Since the accuracy of measure-
ment cannot be infinite, the resulting curve �a� only gives
limited information about the position of the system at any
time. Namely, it tells us that at the time t the system was in a
certain vicinity of point a�t�. The size of this vicinity depends
on the error Da of measurement. Accordingly, the result of
continuous measurement as a whole defines a corridor in the
configuration space, centered around the curve �a� and having
a width Da (Fig. 1). In view of this, the path integral in the
calculation of propagator ought to be restricted to this
corridor.

In more general terms, if the readout of continuous
measurement a implies that path �q� belongs to the family of
paths Ia, then the propagator of the systemmust be calculated
by the formula

U a
T�q 00; q 0� �

�
Ia

d�q� exp
�
i

�h
S�q�

�
: �24�

Similarly, if the readout of continuous measurement a implies
that path � p; q� in the phase space belongs to the family Ja of
paths in the phase space, then the expression for the
propagator of the system is

U a
T�q 00; q 0� �

�
Ja

d�p� d�q� exp
�
i

�h

�T
0

ÿ
p _qÿH�p; q; t���: �25�

Thus, we find the propagator as the integral over the
corridor of paths. By analogy with Carmichael's quantum
trajectory [6], we may refer to Ia or Ja as the quantum corridor.

The corridor Ia in the configuration space may be
regarded as a particular case of the corridor Ja in the phase
space. This special case is realized when the information
gained from the measurement is adequately expressed in
terms of coordinates and does not require the involvement
of momentum. Such is the case, for example, when the
measurement consists in monitoring the coordinate{.

Usually the information supplied by the measurement
does not allow the corridor of paths to be defined with clear-
cut limits. Amore adequate description of themeasurement is
based on the weight functional

U a
T�q 00; q 0� �

�
d�q�wa�q� exp

�
i

�h
S�q�

�
�26�

or, in the general case,

U a
T�q 00; q 0� �

�
d�p� d�q�wa� p; q� exp

�
i

�h

�T
0

ÿ
p _qÿH�p; q; t���:

�27�

In such a situation we may also speak of a quantum corridor,
but the boundaries of this corridor are blurred. If, for
example, the coordinate q is measured continuously, and the
measurement readout is represented by curve a � �a�, then the
functional wa�q�must be equal to one for paths �q� lying close
to curve �a�, and become zero for paths straying far from this
curve.

Remark 1. A still more realistic description of the
measurement requires using a complex-valued functional
wa� p; q� in place of the real-valued one. This means that the
measurement involves not only projecting the system on to
the subspace corresponding to the measurement readout, but
also a change of phase of the wave function depending on the
measurement readout. Such measurement is not minimal
because the same information can be obtained without
distortion of phase (while the projection is absolutely
necessary). Real devices, however, may realize such nonmini-
mal measurements. Besides, for some purposes, nonminimal
measurement may be advantageous.

Having expressed in one way or another the propagator
U a

T�q 00; q 0� and passing to the relevant evolution operatorU a
T

using a formula similar to Eqn (21), we get the law of
evolution in the form

jca
Ti � U a

Tjc0i ; raT � U a
T r0�U a

T�y �28�

(provided that the continuous measurement in question is
performed and yields the desired result). Now we have a
whole family of partial evolution operators U a

T, and these
operators are not unitary. Vector jca

Ti produced by the
application of such an operator has a norm of less than one
(even if the initial vector is normalized). The trace of the
density matrix raT is less than one, even if the initial density
matrix has a unit trace. This circumstance is not accidental,
because the new norms give us the probability distribution of
different measurement readouts. Namely, the quantity

P�a� � TrraT � Tr
ÿ
U a

T r0�U a
T�y
� �29�

is the density of the probability that the measurement will
yield the result a. The distribution is normalized with respect
to a certain measure da, so that�

daP�a� � 1 : �30�

Carrying out summation (using this measure) over all
possible outcomes of measurement a, we may go over to the
nonselective description of continuous measurement:

rT �
�
da raT �

�
daU a

T r0�U a
T�y : �31�

�a�

0 T t

Figure 1.Corridor restricting the path integration in the case of continuous

monitoring of coordinate.

{Note that the information about the path �q� obtained from the

measurement allows certain conclusions to be made concerning the

velocity � _q�, but this does not yet automatically give the momentum, since

the classical relation p � m _q does not hold in the quantum regime (see Refs

[57, 9]).
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Then the measurement readout is assumed to be unknown,
and the evolution of the measured system is described by the
density matrix. The trace of the density matrix rT is unity for
any initial state r0 of the system, as long as the condition of
generalized unitarity�

da �U a
T�yU a

T � 1 �32�

is satisfied. This condition ensures preservation of probability
(30), and therefore is mandatory for the family of partial
evolution operators.

3.2.2Monitoring of an arbitrary observable.Embarking on the
construction of the RPI formalism, we selected the monitor-
ing of coordinate as our working example of continuous
measurement. Let us now consider a more general case of
monitoring of an arbitrary observable which may be a
function of coordinates, momenta and time, A � A�p; q; t�.
The result of monitoring this observable is represented by the
function

�a� � fa�t�j 04 t4Tg : �33�

This result implies that the observable A at any time t is close
to a�t�. In other words, curve �A�, as determined by its values

A�t� � A
ÿ
p�t�; q�t�; t� �34�

is generally close to curve �a�. The word `close' is rather loose
and ought to be given a definition. For the criterion of
closeness of two curves we shall select the mean square
distance between them,


�Aÿ a�2�
T
� 1

T

�T
0

�
A�t� ÿ a�t��2 dt : �35�

Now we define the weight functional in Eqn (27) as

w�a�� p; q� � exp
�
ÿk
�Aÿ a�2�

T

�
� exp

�
ÿk
�T
0

�
A�t� ÿ a�t��2 dt�: �36�

Thus we have in a certain way concretized the concept of
the quantum corridor which describes our measurement
(monitoring of the observable A). We may say that for the
description of monitoring we are using a Gaussian corridor.

The measure of closeness of the two curves and the weight
functional can be chosen in different ways, and the resulting
description of themeasurement will to a certain extent depend
on this choice. Having decided in favor of a particular choice,
we solidify the theory. Selecting different options, we shall be
getting a somewhat different description for the measurement
which we have called the monitoring of observable A. This
uncertainty has a straightforward physical interpretationÐ it
is related to the freedom of physical realization of the
monitoring.

Mathematically, our definition of the weight functional
(36) is the simplest. At the same time, it can be proved that this
functional correctly describes the behavior of the system
when the monitoring is realized in the form of frequent and
short (almost instantaneous) observations of the system Ð
that is, as a series of weak interactions with the measuring

system. In principle, however, one can select a different
weight functional, thus describing a different class of
measuring devices (see Remark 1 above).

Coefficient k in Eqn (36) characterizes the `force of
measurement', its accuracy. To better understand the
physical meaning of this parameter, we may represent it in
the form

k � 1

TDa2T
: �37�

Substituting this expression for k into Eqn (36), we see that
DaT is the error of the continuousmeasurement that lasts for a
timeT. Indeed, the weight functional (36) is designed so that a
substantial contribution to the RPI comes only from those
paths which correspond to functionsA�t�whose mean square
deviation from a�t� is not greater than DaT.

If the parameter k remains constant with time, then DaT
falls,

Da2T �
1

T
; �38�

that is, the resolution of continuous measurement improves
as its duration increases.We shall return to this effect later on,
in connection with the continuous measurement of energy. At
this point we just note that it leads to exponentially fast
decoherence of the type of Eqn (9).

Using the Gaussian definition (36) of a quantum corridor,
we may rewrite the restricted path integral (27) in the form

U
�a�
T �q 00; q 0� �

�
d� p� d�q� exp

�
i

�h

�T
0

ÿ
p _qÿH�p; q; t��dt

ÿ k
�T
0

ÿ
A�p; q; t� ÿ a�t��2 dt� : �39�

This integral will coincide with the conventional (nonres-
tricted) Feynman integral (19) if we replace the Hamiltonian
H by the effective complex Hamiltonian

H�a� �p; q; t� � H�p; q; t� ÿ ik�h
ÿ
A�p; q; t� ÿ a�t��2 : �40�

This means that the evolution described by the partial
evolution operator (28) can equivalently be described by the
SchroÈ dinger equation with the Hamiltonian (40):

j _ci � ÿ i

�h
H�a�jci �

�
ÿ i

�h
Hÿ k

ÿ
Aÿ a�t��2�jci : �41�

This equation describes the evolution of the measured
system in a selective way Ð that is, with due account for the
readout of measurement �a�. If we go over to nonselective
description, carrying out integration over all �a� in accordance
with Eqn (31), then the resulting densitymatrix will satisfy the
Lindblad equation (16) [50].

Remark 2. The arguments developed above hold if the
time in the course of monitoring of the observable A is
measured with absolute precision (that is, if the finite
accuracy of timing can be neglected). Of course, in reality
the quantity a�t�, derived in the course of monitoring,
characterizes the value of the observable over a certain time
interval, whose length characterizes the accuracy of time
measuring or, looking from a different angle, the inertial
properties of the measuring device. The general scheme
outlined in Section 3.2.1 was extended to this case in Ref.
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[41]. It was demonstrated that, in the case of finite time
resolution, the evolution of the system cannot be described
by a SchroÈ dinger-type differential equation, and the measure-
ment is `time-integral'. The RPI technique of representation
of propagators remains workable in this case as well.

3.2.3 *Uncertainties in continuous measurements. A contin-
uous measurement is completely described by the set of
partial propagators (27), each of which can be found by
calculating the RPI or by solving the SchroÈ dinger equation
with a complex Hamiltonian. This, however, is not so easy to
do. A natural question is whether it might be possible to use
simpler procedures (like the uncertainty relations) for solving
at least some of the problems related to continuous measure-
ment. This can indeed be done. Namely, there are rather
simple methods that give an approximate answer to the
question as to which the measurement readouts �a� occur
with a high enough probability.

This answer is expressed by an inequality which is called
the principle of uncertainty of action [58 ± 60], since it shows
how the classical action change when the path is varied within
one and the same quantum corridor �a�.

The condition that the probability of measurement read-
out �a� be high is formulated in terms of one of the paths � p; q�
reconciled with this result Ð that is, satisfying the condition

A�t� � a�t� ;

where{

A�t� � A�p�t�; q�t�; t� :

Apart from this perfectly matching path, we consider a path
� p� Dp; q� Dq� which differs from the latter by the incre-
ment �Dp;Dq� (where Dp � Dp�t�,Dq � Dq�t� are functions of
time). Then the function A�t� has an increment of DA�t�. We
only consider increments of the path such that the increment
DA�t� remains less than the error Da�t� of the measurement.
This means that the new path �p� Dp; q� Dq� within the
accuracy Da of measurement still agrees with the measure-
ment readout �a�. To simplify the terminology, we shall say
that the new path lies within the corridor �a� Ð that is, the
increment of the path does not lead beyond this corridor.

Now we find the classical action for the path � p; q� by the
formula

S� p; q� �
�T
0

ÿ
p _qÿH�p; q; t�� dt �42�

and look at the increment DS upon transition to the new path
� p� Dp; q� Dq�. The magnitude of the increments of action
found in this way is the criterion of how probable is the
measurement readout �a�. It turns out that the corridor �a� is
probable if the increment DS of action does not exceed the
quantum �h of action until the path lies within the corridor
�a�{.

This condition ensures that the measurement readout �a�
occurs with a high enough probability. It can be written in the
following compact form:

max
jDA�t�j4Da�t�

�����X
i

�T
0

dt

�
Dpi

�
_qi ÿ qH

qpi

�
ÿ Dqi

�
_pi � qH

qqi

�������9�h :

�43�
The parentheses under the integral enclose expressions that
enter theHamilton equations; accordingly, this inequality can
be interpreted in terms of a `fictitious force'. Namely, the
measurement readout �a� is probable if the corresponding
path � p; q� satisfies the modified Hamilton equations

_qi ÿ qH
qpi
� ÿdF�t� qA�p; q; t�

qpi
; �44�

_pi � qH
qqi
� dF�t� qA�p; q; t�

qqi
�45�

with the `fictitious force' dF�t� subject to the restriction�T
0

dt
��dF�t���Da�t�9�h : �46�

Alternatively, condition (43) can be written as the
restriction on the area in the phase space defined by the two
paths � p; q� and � p� Dp; q� Dq� (Fig. 2):

max
jDA�t�j4Da�t�

����X
i

�T
0

dt dsi

����9�h ; �47�

where

dsi�t� � Dpi�t�dqi�t� ÿ Dqi�t�dpi�t� ;

dqi � dqi ÿ 1

m
pi dt ; dpi � dpi ÿ Fi dt : �48�

Inequality (47) must hold for all paths that belong to this
corridor. This implies that for some of the paths the equality
(by order of magnitude) will be attained. For a one-
dimensional system we then have������Dp dqÿ Dq dp�

���� � �h : �49�

{ It can be demonstrated that the proof does not depend on which path

� p; q� reconciled with the measurement readout �a� is selected.
{The background of this criterion is obvious. If variation of the path

within the corridor results in large variations of action, the imaginary

exponential of action in integral (39) exhibits fast oscillations, and the

integral is small. Since this integral defines the probability density for the

measurement readout �a�, the probability is also small.

a

p

S�D; d�

D � �Dp;Dq�

d � �dp; dq�

q

p

bq

d

D

Figure 2. (a) Area of a parallelogram in a phase space built on two vectors.

(b) Area in a phase space defined by two paths � p; q� and � p� Dp; q� Dq�,
lying within the corridor �a�. If this area is less than �h for each such pair of

paths, then �a� will occur as the measurement readout with a sufficiently

high probability.
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If the measurement is very short, we may write���Dp dqÿ Dq dp��� � �h : �50�

Consider a measurement of momentum with accuracy Dp
over a time intervalDt. If the coordinate is notmeasured, then
Dq is very large, and at first sight it may seem that the second
term in Eqn (50) dominates. In this case, however, dpmust be
exactly equal to zero, since otherwise inequality (47) would
not be satisfied. Thus, the second term vanishes, and we have

Dpjdqj � Dp

�����q 00 ÿ q 0� ÿ p

m
Dt

���� � �h ; �51�

where q 0, q 00 are the coordinates before and after the
measurement. We see that the effect of measurement may
consist in that the velocity �q 00 ÿ q 0�=Dt differs from the
classical expression p=m by an amount of the order of
�h=�DpDt�. This is an alternative formulation of the well-
known uncertainty relation [61]

Dpjv 00 ÿ v 0jDt � �h ; �52�

which is deduced from a thought experiment. Relation (47),
however, is much more general.

3.2.4 Features of the RPI-based approach. Let us discuss some
important features of the approach based on a restricted path
integral. We saw that this approach is deduced from first
principlesÐ namely, from quantummechanics in Feynman's
formulation. At the same time, it can be given an independent
substantiation based on concrete models of measurement (see
Section 4.3 below). Validation of this phenomenological
approach with models makes it more reliable, while the
derivability from first principles points to the fundamentality
of the theory.

According to the RPI approach, the continuously
measured system is described as an open system, but the
description is selective. Evolution of the measured (open)
system is described by the state vector rather than by the
density matrix. Such a description is applicable to an
individual system, and not only to the statistical ensemble of
systems corresponding to all possible states of the measuring
medium. The RPI approach reveals a very important feature
of the interaction between the measured system and the
measuring system: the reciprocal effect of the measurement
on the measured system depends only on the information
obtained from the measurement (and recorded in the state of
the environment). In this sense the RPI approach to
continuous measurements may be called the information
approach [62].

The dynamics of themeasured system, described by the set
of partial propagators (39) or by the SchroÈ dinger equation
with an effective complex Hamiltonian (41), depends only on
the information recorded by the measuring medium, but not
on the particulars of the interaction of the system with the
environment. This is a manifestation of the dynamic role of
information. A complete description of the open (measured)
system does not require a completemodel of the environment.
The information model is quite sufficient.

As a matter of fact, the dynamic role of information is
already clear from von Neumann's reduction postulate,
which holds that the final state of the measured system only
depends on the outcome of themeasurement. In the reduction

postulate, however, the change of the system caused by the
measurement and the evolution of the system owing to its own
dynamic properties are time-separated [cf. Eqn (15)].

By contrast, the two dynamic aspects are inseparable in
the evolution of the continuously measured system. Such
systems exhibit a new type of dynamics which involves both
classical and quantum features at the same time. The
dynamics are completely determined by fixing (1) the
Hamiltonian of the system, and (2) the information about
the system that flows (dissipates) into the environment.

The RPI approach proves that the theory of measure-
ments can be incorporated into quantummechanics, contrary
to the common opinion that it ought to be postulated
independently of quantum mechanics. One only has to
understand quantum mechanics the way it was formulated
by Feynman. This indicates that Feynman's formulation of
quantum mechanics is essentially broader and deeper than its
conventional operator form. The added depth arises from the
fact that a physical interpretation is given not only to the full
amplitude of propagation of the system, but also to the
amplitude of propagation along the given path. This formula-
tion of quantum mechanics is closed because it naturally
incorporates the quantum theory of measurements.

In Section 4 we shall discuss in detail an important
application of the RPI method to the continuous measure-
ment of the energy of a multilevel system. At this point we
shall just mention some other applications of this method in
nonrelativistic and relativistic quantum theories.

In the nonrelativistic theory this method has been applied
to the analysis ofmeasurement of the coordinates of oscillator
and a system of oscillators [52, 53, 2], and to quantum
nondemolishing measurements [63, 60, 64]. The relativistic
applications include:

Ð quantum restrictions on the measurability of an
electromagnetic field [66],

Ð quantum restrictions on the measurability of a
gravitational field [66],

Ð the appearance of classical geometry in quantum
gravitation [67],

Ð the measurement of the position of relativistic particle
[68],

Ð the analysis of Unruh and Hawking thermal effects
[69].

3.3 *Derivation of the stochastic equation
The SchroÈ dinger equation with a complex Hamiltonian (41)
can be written as the stochastic SchroÈ dinger equation [45]. To
do this, in place of the function a�t� and the state vector c�t�
we introduce new variables

a � c� x������
2k
p ; C�t� � exp

�
1

2

�t
0

dt x2
�
c�t� ; �53�

where c�t� will be defined later. Then Eqn (41) can be
rewritten as

j _Ci �
�
ÿ i

�h
Hÿ k�Aÿ c�2 �

������
2k
p

�Aÿ c�x
�
jCi �54�

or, if we define a new variable w as dw � x dt,

djCi �
�
ÿ i

�h
Hÿ k�Aÿ c�2

�
jCi dt�

������
2k
p

�Aÿ c�jCi dw :
�55�
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In order to have the norm of vector jCi conserved,ÿhCj � hdCj�ÿjCi � jdCi� � hCjCi ; �56�

it is sufficient to require that

dw2 � dt ; c � hCjAjCi : �57�

Equation (55) with the additional conditions (57) is
known as the stochastic SchroÈ dinger equation. The quantity
w here is a random function (white noise), which describes the
impact of the measuring medium on the measured system.
The statistics of this noise is determined by the probability
distribution

P�w� � hcjci � exp

�
ÿ 1

2

�t
0

_w2�t� dt
�
: �58�

This is the so-called white noise or Brownian motion. In the
case of suchmotion, the change ofw over a small time interval
Dt is described by the distribution

P�Dw� � 1����������
2pDt
p exp

�
ÿ 1

2

Dw2

Dt

�
; �59�

and, as a consequence, the mean square displacement is
proportional to the time:

Dw2 �
�
P�Dw�Dw2 dDw � Dt : �60�

This last formula offers a physical interpretation of the
unusual relation dw2 � dt, which is adopted in the stochastic
theory in the framework of the so-called Ito formalism [70].

In this way, the stochastic equation (55) is derived from
the theory of continuous measurements based on a restricted
path integral or on the SchroÈ dinger equation with a complex
Hamiltonian. Other stochastic equations have also been
proposed for describing continuous quantum measurements
[46, 71, 47]. The necessary condition is that the densitymatrix,
which describes the same system in a nonselective manner,
satisfies the Lindblad equation (16). This holds for Eqn (55)
because the Lindblad equation is an implication of the RPI
approach [50].

3.4 *Consistent histories
A new direction of research in quantum mechanics, started a
few years ago, is based on the concept of consistent histories
[72 ± 75]. This research is concerned with the emergence of
classical features in quantum systems Ð that is, the effect of
decoherence.

The approach based on consistent histories bears some
technical semblance to the RPI method, although it is
radically different. The difference is that consistent histories
are used for describing a closed quantum system (with the
purpose of revealing classical features), whereas the RPI
method deals from the start with an open system, while the
effects of the environment are taken into account implicitly.
Let us briefly discuss the method of consistent histories,
following the paper by Gell-Mann and Hartle [74].

A history a � fi1; i2; . . . ; iNÿ1g is defined in Ref. [74] as a
chain of projectors that specify the state of the system at
successive times. These projectors define the evolution
operator

Ua � U�tN; tNÿ1�PiNÿ1U�tNÿ1; tNÿ2� . . .

. . .U�t3; t2�Pi2U�t2; t1�Pi1U�t1; t0� ; �61�

which is similar to that used in Eqn (15) for describing a series
of instantaneous measurements. In the method of consistent
histories, however, the projectors are used not for describing
real measurements, but rather for analyzing the free evolution
of the systemwithout any external influence. The operatorUa

is just one quantum alternative out of many that contribute to
the evolution of the quantum system. The total evolution
operator is the sum

U �
X
a

Ua �62�

over all possible historiesÐ that is, over all possible selections
of the projector for each moment of time{.

Histories in the sense of Gell-Mann and Hartle are
straightforward analogs of Feynman's paths, which deter-
mine the evolution of a closed system only when taken
together. By contrast to individual paths, histories are
coarser alternatives, each of which includes many paths.

According to Gell-Mann and Hartle, each history is
associated with the `probability'

Pa � Tr �Ua rU ya � : �63�

The interpretation of this quantity as a probability is not
necessarily correct, and the further analysis is concerned with
the question of when exactly such an interpretation is
justified.

Along with a certain selected set of histories fag, the
authors also consider sets of histories which follow from the
selected set by applying the procedure of coarse-graining Ð
when the projections are made onto more extensive sub-
spaces, or are less frequent (not at every selected moment of
time). Each history from the coarser set can be represented as
a sum of histories from the finer set (a coarse history includes
fine histories as alternatives). The corresponding evolution
operators are bound by the summation

b �
X
a2b

a ; Ub �
X
a2b

Ua : �64�

At the same time, the corresponding `probabilities' of the
coarser histories

Pb � Tr �Ub rU
y
b� �65�

are not necessarily representable as sums of `probabilities' of
the finer histories.

The key to the entire approach is found in the following
argument which leads to the `condition of consistency' as the
necessary criterion that the description of the system in terms
of alternatives fag is classical. A sufficiently coarse-grained
description of a quantum system loses its quantum features
and becomes purely classical. The alternatives fag give a
coarse-grained description of the system, and if the descrip-
tion is coarse enough, these alternatives may be regarded as
classical. In this case, the quantities (63) indeed ought to be

{By contrast, if operator (61) describes a real measurement, as has been

assumed in Eqn (15), it corresponds to the classical alternative, and the

summation of such operators is meaningless.
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considered as probabilities complying with the conventional
rule of summation.

Now if the alternatives from the set fag can be regarded as
classical alternatives, then any coarser set fbg of alternatives
is also classical, and therefore the rule of summation of
probabilities holds:

Pb �
X
a2b

Pa : �66�

Thus, if the alternatives fag are classical, then the
transition to the coarser alternatives fbg complies not only
with the rule of summation of amplitudes (64), but also with
the rule of summation of probabilities (66). A straightforward
mathematical analysis proves that condition (66) is satisfied if
the functional of decoherence

Caa 0 � Tr �Ua rU
y
a 0 � �67�

satisfies the condition of consistency

Caa 0 � C �aa 0 � 0 for a 6� a 0 : �68�

We see that the condition of consistency (68) is necessary for
the set of histories fag to be interpreted as a set of classical
alternatives.

It was demonstrated that the condition of consistency
holds approximately for the `situation of measurement' Ð
that is, when the system under consideration consists of two
parts which interact like the measuring device and the
measured subsystem (see Section 2.1). At the same time, the
condition of consistency of histories is not sufficient for
ensuring the predictability of the quantum system Ð a
criterion that the given degree of coarsening ensures that the
description is indeed classical [76]. We see that the theory of
consistent histories, certainly being a step forward in the
study of decoherence, does not yet give a complete solution of
the problem.

Drawing a comparison once again between the two
approaches, the methods of RPI and consistent histories, we
duly note that the condition of consistency is not a necessary
condition in the RPI approach. This is because the RPI
approach is concerned with an open system that interacts
with its environment (although there is no explicit model of
this environment). The RPI-based analysis of the system
involves only one family fag of histories Ð the family that
describes the effects of the environment. There is no need to
use the coarser sets of histories, and to provide consistency of
descriptions at different levels of coarse-graining.

4. Continuous measurement of discrete energy

An important achievement of recent years is the analysis of
continuous energy measurement in a system with discrete
energy levels. Firstly, the measurement of the energy of an
atom is of much practical importance. Secondly, all impor-
tant features of continuous quantum measurement in this
case can be transferred to the continuous measurement of any
discrete observable. We are going to consider the continuous
energy measurement in a multilevel (especially a two-level)
system, and prove that this process allows themonitoring of a
quantum transition from one level to another. First we shall
analyze the measurement using the SchroÈ dinger equation
with a complex Hamiltonian, and then consider a concrete
scheme of such measurement using conventional quantum

mechanical methods. We shall also show the way of
implementing this measurement.

The approach based on RPI and complex Hamiltonians
was first applied to the measurement of energy in a two-level
system in Refs [77, 78]. It was demonstrated that if the energy
is measured with a high enough accuracy, then the system
becomes frozen, and transitions between the levels are no
longer possible (the Zeno effect). Alternative regimes of
measurement have not been (and could not have been)
studied in these works because of a serious methodological
error. The authors assumed that the result of a continuous
measurement is expressed by the function E�t�, which does
not change and coincides with one of the energy levels of the
system.

At first sight, such an assumption seems natural for a
system with a discrete spectrum. However, it is not correct,
since the accuracy of the measurement is finite. The function
�E � which represents the measurement readout can be
arbitrary in the approach based on RPI or on the SchroÈ din-
ger equation with a complex Hamiltonian. By solving the
SchroÈ dinger equation [similar to Eqn (41)] with the �E �-
dependent Hamiltonian, one can find the probability density
P�E � of the given measurement readout. It is only then (and
by no means a priori) that one can decide which functions �E �
may arise as the measurement readout. It turns out that in the
regime of a very accurate measurement, only those results
that correspond to functions �E � which are constant and
coincide with the energy levels are probable. This is not true,
however, when the accuracy of the measurement is relatively
poor. But it is exactly those imprecise or soft measurements
that are of special interest, since they do not modify the
measured system too much.

This error was corrected in Ref. [18], which has made it
possible to carry out a detailed analysis of a moderately
accurate continuous quantum measurement of the energy,
and propose an entirely new type of measurement Ð
monitoring of a quantum transition. The results that could
be anticipated from such measurement were thoroughly
analyzed in Ref. [19], and a concrete scheme of continuous
quantum measurement of the energy of the atom was
proposed.

4.1 Energy measurement in a multilevel system
Consider a system with a Hamiltonian H � H0 � V, where
H0 is the `free' Hamiltonian of the multilevel system, and V is
the perturbation that may induce a transition between the
levels. Assume that the observable H0 is continuously
measured in such a system. In accordance with the scheme
outlined in Section 3.2, we shall describe such a measurement
with the functional

w�E �� p; q� � exp

�
ÿk
�T
0

�
H0

ÿ
p�t�; q�t�; t�ÿ E�t��2 dt� ; �69�

that is, with a Gaussian corridor centered around curve �E�.
Then the effective Hamiltonian is

H�E � � H0 � Vÿ ik�h
ÿ
H0 ÿ E�t��2 ; �70�

and the effective SchroÈ dinger equation with the complex
Hamiltonian is

q
qt
jcti �

�
ÿ i

�h
Hÿ k

ÿ
H0 ÿ E�t��2�jcti : �71�
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Solving this equation, we can find the vector jcti at any time.
In accordance with the general formula (29), the norm of this
vector at the end time of the continuous measurement gives
the density of the probability that the measurement readout
�E � will be realized:

P�E� � kcTk2 : �72�

Using the expansion of the state vector with respect to the
basis��jn�t�

� � exp

�
ÿ iEnt

�h

�
jni ; �73�

we get the following set of equations for the expansion
coefficients,

_Cn � ÿk
ÿ
En ÿ E�t��2Cn ÿ i

�h

X
n 0
hjnjVjjn 0 iCn 0 ; �74�

and the formula for the probability distribution of the
measurement readout:

P�E� �
X
n

��Cn�T�
��2 : �75�

For a free multilevel system, V � 0, the solution has a
simple form:

Cn�T� � Cn�0� exp
�
ÿk
�T
0

dt
ÿ
En ÿ E�t��2�

� Cn�0� exp
�
ÿ T

Tlr


�En ÿ E�2�
T

DE 2

�
; �76�

where

Tlr � 1

kDE 2
�77�

is the timelike parameter which characterizes the accuracy of
measurement. It is expressed in terms of the `typical energy
difference' DE in the part of the spectrum we are concerned
with.

From Eqn (76) we see that if T4Tlr (that is, the duration
of measurement is large enough compared to the character-
istic parameter Tlr), then the regime of measurement is
realized that resolves (separates) the energy levels. Its
characteristic features are:

Ð �E � is a function which is close to one of the energy
levels, E�t� ' En;

Ð the system after the measurement occurs at the level n;
Ð the probability of �E � close to En is jCn�0�j2.

Indeed, if the function �E � is close [in the mean square sense,
cf. Eqn (35)] to one of the levels En, then the coefficient Cn

with the relevant number remains the same after the
measurement (at t � T) as it was before the measurement,
while all the other coefficients are exponentially small.
According to Eqn (75), the probability density of each such
function is jCn�0�j2.

If function �E �, however, does not satisfy this condition
(does not remain close to one and the same level in the course
of the entire measurement), then all the coefficients Cn at the
time T are exponentially small. The probability density of
each of these functions is negligibly small.

So we have to conclude that only those results of
measurement with a reasonable probability are realized

which are represented by functions close to one of the levels.
The probability that the measurement readout is close toEn is
proportional to jCn�0�j2. From considerations of normal-
ization we deduce that this probability is equal to jCn�0�j2
(which can be proved more rigorously). It is easy to see that
these results are in perfect agreement with the way the von
Neumann energy measurement is described.

If the measurement is not long enough, T5Tlr, then the
regime of measurement is not capable of resolving the energy
levels:

Ð Variation Emax ÿ Emin of curve �E � is less than
DE

������������
Tlr=T

p
, but can be much greater than DE;

Ð Cn�T� ' Cn�0� for levels between Emin and Emax;
Ð Cn�T� are exponentially small outside of �Emin;Emax�.
Thus, by the time T all energy levels vanish outside the

interval of width DE
������������
Tlr=T

p
. As T increases, this interval

narrows, and by the timeT � Tlr there is only one energy level
Ð that is, the system occurs in the state with definite energy
En. Curve �E� by this time is very close to the level En{. The
probability that level number n will survive is jCn�0�j2.

We see that when the time of measurement is not yet long
enough, T5Tlr, the energy cannot be measured with
sufficient precision, and the system still occurs in a state that
is a superposition of a number of levels. When the duration of
continuous measurement becomes greater than Tlr, the result
of the continuous measurement fixes on one of the levels, and
the system goes into this level. Accordingly, the time
parameter Tlr may be interpreted as the level resolution time.

From the arguments developed above it is clear that the
continuous measurement of energy as realized in the method
of quantum corridors is amodel of the process of decoherence
for the von Neumann `instantaneous' measurement [18]. By
this we mean the following. The von Neumann scheme
assumes that the measurement of energy in a multilevel
system occurs instantaneously, yielding (with the relevant
probability jCn�0�j2) one of the values of En, and the system
after the measurement occurs in the nth level. In reality, all
this takes some finite time which is neglected when the
measurement is described in accordance with the von
Neumann scheme. The continuous measurement reveals the
time structure of this transition Ð that is, describes what we
call the process of decoherence.

Let us now consider a two-level system under a resonant
force. LetH0 be the Hamiltonian of the two-level system, and
the potential V defined by its matrix elements

hj1jVjj2i � hj2jVjj1i� � V0 : �78�

If we go over from basis (73) to basis jni, then the matrix
elements of operator V will be harmonic functions of
frequency o � DE=�h Ð that is, the potential V will describe
the resonant action. The set of equations (74) becomes

_C1 � ÿivC2 ÿ k
ÿ
E1 ÿ E�t��2C1 ;

_C2 � ÿivC1 ÿ k
ÿ
E2 ÿ E�t��2C2 ; �79�

where v � V0=�h.
If the measurement does not take place �k � 0�, these

equations describe the Rabi oscillations, C1�t� � R1�t�,

{Closeness is understood in the sense of mean square deviation, so the

deviation can actually be very large for a very short time.
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C2�t� � R2�t�, where
R1�t� � C1�0� cos vtÿ iC2�0� sin vt ; �80�
R2�t� � C2�0� cos vtÿ iC1�0� sin vt : �81�

When the measurement does take place, the nature of the
process will depend on the relative values of three parameters
of the dimension of time: the duration T of measurement, the
level resolution time Tlr, and the Rabi period TR � p=v. One
can distinguish three characteristic regimes of measurement
[18]:

(1) Zeno regime (Tlr 5TR 5T).
Ð The measurement readout is E�t� ' E1 or E�t� ' E2.
Ð The probability that E�t� is close to En is jCn�0�j2.
Ð If �E � is close toEn, the system after the measurement is

found at level n.
Ð The Rabi oscillations are completely suppressed.
(2) Rabi regime (TR 5T5Tlr).
Ð The Rabi oscillations remain unchanged.
Ð �E � is arbitrary in the band of widthDET �DE

������������
Tlr=T

p
.

(3) Intermediate regime (TR � Tlr � T).
Ð The period of oscillations is slightly increased.
Ð �E � occurs in the band oscillating between the levels.
Ð Oscillations of �E � correspond to Rabi oscillations.
The last regime is the most interesting, since it offers the

possibility (with a certain degree of accuracy) of monitoring
the quantum transition. We shall consider this regime in
greater detail in Section 4.2.

4.2 Monitoring a quantum transition
The set of equations (79) was used in Ref. [19] for analyzing
the continuous energy measurement in a two-level system

occurring under the resonant force during the time interval
�T1;T2� TR=2 � p=�2v� (p-pulse). Outside this interval the
potential (78), as well as the coefficient v in Eqn (79), were
assumed to be zero. In the absence of measurement, the
resonant action would have led to the transition of the
system from level 1 to level 2 with probability 1. One could
expect that the measurement somewhat reduces the prob-
ability of transition, but allows continuous monitoring of the
state of the system in the course of transition.

The set of equations (79) has been solved numerically for
many functions E�t� selected at random. For each function
E�t� the relevant functions C1�t� and C2�t� were calculated,
and also the probability density P�E� � jC1�T�j2 � jC2�T�j2
of the measurement readout �E �. The probability distribution
of different measurement readouts was obtained, and the
behavior of the system depending on the measurement
readout analyzed. The behavior of the system is graphically
represented by the function

P2�t� �
��c2�t���2 � ��C2�t�

��2��C1�t�
��2 � ��C2�t�

��2 :
In the absence of measurement this curve would go from zero
to one over the duration of the p-pulse. In the presence of
measurement the curve may behave differently depending on
the measurement readout �E �.

Figure 3 shows the results of a numerical calculation
based on the set of equations (79) for a moderately hard
measurement. The density diagrams for curves �E � (upper
row) and �P2� (lower row) indicate clearly which of these
curves are more probable. It is very important to remember
that the curves �E � have been smoothed before putting them
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Figure 3.Monitoring of a quantum transition with a moderately hard continuous measurement.
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on the diagram. Smoothing was performed in the time scale
slightly smaller than the transition time TR=2. It is because of
such smoothing that the curves correctly represent the process
of transition: curves without smoothing exhibit fast oscilla-
tions, and the information they carry is concealed.

The left-hand pair of diagrams in Fig. 3 represents all
possible measurement readouts. We see that they are clearly
split into two classes, in one of which the measurement
readouts point to the presence of a transition, while in the
other the results indicate that the transition does not take
place. The middle and right-hand pairs of diagrams represent
these two classes of results separately. From these diagrams
we see that there is a correlation between the curves �E � and
�P2�Ð that is, the behavior of the system with a reasonable
probability corresponds to the result obtained, although there
is some probability of error (the measurement noise).

The general conclusions can be formulated as follows:
ÐThe smoothedmeasurement readout �E � gives a correct

description of the evolution of the system with a probability
of 80%.

Ð In the presence of measurement, the probability of
transition decreases, and is close to 1=2 in the intermediate
regime of measurement.

4.3 Realization of continuous measurement of energy
A practical implementation of continuous energy measure-
ment in a two-level system was proposed in Ref. [19]. We take
an isolated polarized atom, apply a p-pulse of resonant
radiation to induce a transition between the levels, and
measure the energy by shooting electrons one by one and
examiningwhether the electron is deflected or continues in the
initial direction. Scattering is caused by the dipole moment of
the atom, which in turn depends on which level the atom
occupies at the time. If the state of the atom is a superposition
of states with a definite energy, the probability of scattering
depends on the coefficients in the superposition, and thus on
the mean energy of the atom in the given state. This in
principle allows an estimate of the energy of the atom,
whereas the back effect of the electrons on the atom results
in the evolution of the atom described by the complex
Hamiltonian (see Section 4.2).

This scheme of continuous measurement can be consider-
ably generalized (this will be done in our subsequent paper
[79]). In place of scattering of electrons by the atom, it is
sufficient to arrange a long series of observations of a two-
level system with an auxiliary measuring system (Fig. 4). The
interaction involved in the observation must be weak, so as
not to modify the state of the system to any considerable
extent. Then the information gained through each observa-
tion in the series is also small, but a long series of observations
will give informationwhich is adequately represented with the
aid of an RPI or the SchroÈ dinger equation with a complex
Hamiltonian (79). The function E�t�, which represents the
measurement readout in this equation, is constructed from
experimental data in the following fashion.

Each observation may give either of two possible results:
positive, if the state of the measuring device after the
interaction differs considerably from its initial state, or
negative, if the end state of the measuring device is close to
the initial state. A long series of observations is split into
shorter (but still long enough) chains ofN observations each.
For each of these N-series we find the ratio n � N�=N of
positive outcomes of scattering (number of deflected elec-
trons) to the total number of electrons directed at the atom.

This ratio is the experimental evaluation of the probability of
scattering for the N-series in question. Since the probability
depends on the mean energy, a simple calculation will also
give an estimate for the mean energyE. As a result, we get one
point on the curve �E �. Performing the same procedure for
each of the N-series, we obtain a curve E�t� which represents
the result of continuous measurement and enters the equation
with the complex Hamiltonian (79).

This train of argument more or less supports the
conclusion that a series of electron scatterings by the atom
leads to a pattern predicted by the theory of continuous
measurements Ð that is, to the behavior represented by the
solution of Eqn (79). As a matter of fact, however, one can
give a complete quantum mechanical treatment of this
measuring configuration, and prove that there is full agree-
ment between the predictions of the conventional quantum
mechanical analysis and the results of the phenomenological
RPI approach. This will be done in the forthcoming
publication [79].

It is very interesting that a broad class of realizations
results in behavior of the system described by the same
effective Hamiltonian with the additional quadratic imagin-
ary term. The behavior of the measured system does not
depend on the particulars of the measuring procedure Ð it
only depends on the single constant k (or Tlr, which is
equivalent) that appears as a certain combination of the
parameters of the measuring system. This proves that the
simple equation with the effective complex Hamiltonian,
obtained through the RPI approach, is not a bad approxima-
tion. The behavior described by this equation is indeed
characteristic of real measuring systems.

5. Conclusion

In this paper we have considered the continuous measure-
ment of a quantum system, which is a special dissipative
process. The continuous measurement can be intentional (as
in the case of repeated soft observations, Section 4.3), or
spontaneous (as in the case of the diffusion of particle, Section
2.2). In any case, the continuous measurement is accompa-
nied by gradual decoherence Ð destruction of quantum

E2

E1

jFÿi
jF�i

jF0i

D1

D
2

Figure 4. Short soft observation, repeated to implement the continuous

energy measurement in a two-level system: F0 is the state of the device

before measurement, F� �Fÿ� is the state of the device after a positive

(negative) result of observation, and D1, D2 are detectors.

938 M BMensky Physics ±Uspekhi 41 (9)



superpositions of those states that are distinguished
(resolved) by the measuring environment.

In addition, the continuous measurement may serve as a
model of the process of decoherence associated with the
measurement of a discrete variable (Section 4.1). If the
description of such measurement disregards its finite dura-
tion, the process is adequately described by the vonNeumann
reduction postulate: instantaneous decoherence. When it is
desirable to monitor the time evolution of decoherence,
however, we come to deal with continuous measurement
and gradual decoherence.

The continuous measurement of a quantum system gives
specific features to its evolution, primarily the appearance of
classical elements in addition to the quantum ones. Mathe-
matically, such evolution can be described in different ways:
using the Lindblad master equation, the stochastic SchroÈ din-
ger equation, or the equation with the complex Hamiltonian
for the state vector (see Section 3). In the last case, the
imaginary constituent of the Hamiltonian, which accounts
for the effects of the measuring medium, depends on the
information obtained in the course of continuous measure-
ment. This is of utmost importance, being a demonstration of
the dynamic role of information [62].

The continuous measurement can be softer or harder,
depending on the strength of interaction with the measuring
medium (mathematically, this is determined by themagnitude
of the imaginary term in the Hamiltonian). Soft measurement
has little effect on the dynamics of the measuring system, but
the information about the system is small. Hardmeasurement
gives more information but considerably modifies the
dynamics. In the limit of very hard measurement of the
discrete observable we are dealing with the Zeno effect: the
system is frozen, the transitions between the states with
different values of the observable become unlikely (Section
4.1).

The most interesting is the intermediate regime of
measurement, when the measurement is not hard enough to
freeze the dynamics of the system completely, but is
sufficiently hard to gain a reasonable amount of informa-
tion. In this regime it becomes possible to monitor the
quantum transition, although such information is gained at
the expense of reducing the probability of transition (Section
4.2). The continuous measurement permitting the monitoring
of a quantum transition can be realized as a series of soft short
interactions of the two-level system with some auxiliary
system (Section 4.3). One possible realization employs a
series of electron scatterings by the atom.

Disputes on conceptual matters have never ceased since
the early days of quantum mechanics. The root of these
problems is the incompatibility of the classical and quantum
descriptions of physical systems and processes. This incom-
patibility is most dramatically manifested in the measure-
ments aimed at obtaining classical information about a
quantum system. Today we are able to study in detail the
behavior of themeasured system (and themeasuring system if
necessary) in the course of measurement, and this is the
subject of this paper (see also the excellent review [12]). The
conceptual problems of the theory of measurement, however,
remain essentially unresolved.

Simplifying the situation to the utmost, we may say the
following. The measurement is associated with the selection
of one out of many alternatives. We know well what happens
when a particular alternative is selected, and can calculate the
probability of each alternative. This gives answers to all

questions that may arise in practice. How and why the
selection is made, however, remains obscure. This question
is hard to answer because this requires reconciling the
quantum and the classical visions of the world. The attempts
at solving this problem lead to very unusual constructions, the
many-worlds interpretation of quantummechanics being one
example [80]. This scope of problems that may be regarded as
the conceptual aspect of decoherence has been left out
completely from the present paper.
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