Physics— Uspekhi 41 (9) 885-922 (1998)

©1998 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

REVIEWS OF TOPICAL PROBLEMS

PACS number: 03.65.Bz

Basic quantum mechanical concepts from the operational viewpoint

D N Klyshko
Contents

1. Introduction 885

2. Operational approach 887

3. Classical probabilities 888
3.1 Preparation of a classical state; 3.2 Measurement of a classical state; 3.3 Analogue of a mixed state and the
marginals; 3.4 Moments and probabilities

4. Quantum probabilities 889
4.1 Classical steps in quantum models; 4.2 A complete set of operators and the measurement of the wave function;
4.3 Quantum moments; 4.4 Schrédinger and Heisenberg representations; 4.5 Quantum problem of moments;
4.6 Nonclassical light; 4.7 Projection postulate and the wave function reduction; 4.8 Partial wave function reduction;
4.9 Wigner correlation functions; 4.10 Mixed states

5. Two-level systems 899
5.1 g-bits; 5.2 An example of quantum state preparation; 5.3 Polarization of light; 5.4 Measurement of photon
polarization; 5.5 Correlated photons; 5.6 Negative and complex ‘probabilities’; 5.7 Bell’s paradox for the Stokes
parameters; 5.8 Greenberger—Horne—Zeilinger paradox for the Stokes parameters; 5.9 ‘Teleportation’ of photon
polarization

6. A particle in one dimension 910
6.1 Coordinate or momentum measurement; 6.2 Time-of-flight experiment; 6.3 The uncertainty relation and
experiment; 6.4 Wigner’s distribution; 6.5 Model of alpha-decay; 6.6 Modulation of the wave function; 6.7. Quantum
magnetometers and the Aharonov—Bohm paradox

7. Conclusions 917

8. Appendices 919
1. Eigenvectors of the Stokes operators and the Greenberger — Horne — Zeilinger paradox; I1. On the theory of ‘quantum
teleportation’
References 921

Abstract. The physical meaning of the basic quantum mechan-
ical concepts (such as the wave function, reduction, state pre-
paration and measurement, the projection postulate, and the
uncertainty principle) is clarified using realistic experimental
procedures and employing classical analogies whenever possi-
ble. Photon polarization measurement and particle coordinate
and momentum measurement are considered as examples, as
also are Einstein — Podolsky — Rosen correlations, Aharonov—
Bohm effects, quantum teleportation, etc. Various nonclassi-
cality criteria of quantum models, including photon antibunch-
ing and the violation of the Bell inequality, are discussed.
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Theoretical cognition is speculative when it
relates to an object or certain conceptions of
an object which is not given and cannot be
discovered by means of experience.

I Kant “Critique of Pure Reason”

1. Introduction

About a hundred years ago, the Planck formula for thermal
radiation opened the list of victories of quantum physics. In
all known experiments, excellent agreement is observed
between the predictions of the quantum theory and the
corresponding experimental data. Paraphrasing the famous
words of Wigner, one can speak of ‘the inconceivable
efficiency of the quantum formalism’.

Unfortunately, the efficiency of the formalism is accom-
panied by difficulties in its interpretation, which have not yet
been overcome. In particular, there is still no common
viewpoint on the sense of the wave function (WF). Another
important notion of quantum mechanics, the WF reduction,
is also uncertain. Two basic types of understanding can be
distinguished among a variety of viewpoints. A group of
physicists following Bohr considers the WF to be a property
of'each isolated quantum system such as, for instance, a single
electron (the orthodox, or Copenhagen, interpretation). The
other group, following Einstein, assumes that the WF
describes an ensemble of similar systems (the statistical, or
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ensemble, interpretation). This question is discussed in more
detail in the exhaustive review by Home and Whittaker [1]. In
the remarkable textbook by Sudbery [2], there is a chapter
named “Quantum metaphysics’” where nine different inter-
pretations of the quantum formalism are considered. Among
many other studies devoted to methodological problems of
quantum physics, it is also worth mentioning Refs [3—7].

In the present notes, the sense of some basic notions in
nonrelativistic quantum physics is clarified using the opera-
tional approach, i.e., demonstrating how these notions
manifest themselves in experiments. For the quantum
models discussed here, the closest classical analogues are
considered where possible. The present consideration may
be entitled “Classical and quantum probabilities from the
viewpoint of an experimenter”. Using simple examples, we
show common features of quantum and classical probability
models and the principal differences between them. As far as
possible, a comprehensible style is used and bulky mathema-
tical expressions are avoided. Necessary algebra is given in
Appendices.

Four basic topics are considered in the paper: (1) the
logical structure of the quantum description; (2) the necessity
of distinguishing between a theory and its interpretation; (3)
the WF: its sense, preparation, modulation, measurement,
and reduction; (4) the ‘nonclassicality’ of quantum physics,
i.e., the impossibility of introducing joint probabilities for
non-commuting operators. In this connection, nonclassical
optical experiments are discussed.

The paper is organized as follows. In Section 2, the
operational approach in physics is described and its signifi-
cant role in the methodology of quantum physics is
emphasized. Further, in Section 3, using classical probability
models with dice or coins, we discuss several notions that are
important for further consideration and have close analogues
in quantum physics. In Section 4, general features of quantum
models are considered, basic notions and terms of quantum
physics are defined, and the general logical scheme of
quantum dynamical experiments on measuring various
observables, as well as the WF itself, are presented. Further,
in Sections 5 and 6, the general formalism is illustrated using
specific examples. These examples are two basic models of
quantum mechanics, namely, a two-level system and a
nonrelativistic point-like particle moving in one dimension.
The simplicity of these models and the existence of their
classical optical and mechanical analogues make them ideal
objects for introductory courses in quantum physics and for
discussing problems of methodology and terminology. Here
we only consider some essential aspects of these models that
are almost untouched in textbooks. A considerable part of
Section 5 is devoted to optical experiments related to photon
polarizations and demonstrating essential nonclassicality.

Here we mostly focus on dynamical experiments con-
nected with the evolution of quantum systems in space and
time. As a typical example, we consider the Stern—Gerlach
experiment where particles with magnetic moment M are
deflected in an inhomogeneous magnetic field (Fig. 1). Using
this example, one can clearly specify the basic elements of a
dynamical experiment: the source of particles S, the detectors
D (crystals of silver bromide contained in the photosensitive
film), the space between S and D where quantum evolution of
the particles takes place, and the filters F;, F». The source S
and the collimator F; (a screen with a pinhole for spatial
selection) form the preparation part of the setup. The magnet
F» provides the inhomogeneous magnetic field that couples
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Figure 1. Schematic plot of the Stern— Gerlach experiment. S is the source
of particles, F| is a screen with a pinhole (collimator), F» is a domain with
an inhomogeneous magnetic field, D is a photographic plate. The elements
F, and F» perform spatial and magnetic filtering and can be considered as
parts of the preparation and measurement sections of the setup, respec-
tively. If D contains a pinhole, then F, and D work as a filter, which
sometimes transmits particles in the state with definite spin projection.

the spin and kinetic degrees of freedom of a particle. Together
with the detectors D, the magnet can be considered as the
measurement part of the setup. In such a scheme, only the
evolution of a particle between the source and the detector is
described by the Schrodinger equation accounting for the
classical magnetic field. S, Fy, F,, and D are supposed to be
classical devices with known parameters.

In an idealized case, each individual particle is registered.
The parameter directly measured in this experiment, namely,
the classical coordinate x; of a black dot on the film, is
determined, for instance, with the help of a calibrated ruler.
The resulting dimensional value is assumed to be the a priori
coordinate of the particle, i.e., the coordinate of the particle
before it is absorbed by the film. (Of course the accuracy of
such a measurement is restricted, for instance, by the size of a
silver atom.) Thus, in this case, one can assume the coordinate
operator X to be the directly observable operator. (This
procedure is considered in more detail in Section 6.1.)
Hence, for given parameters one can calculate the a priori
projection of the particle moment m1, using the Schrédinger
equation and the initial WF of the particle. This is an example
of indirect measurement of the operator M.

If the photosensitive film D is replaced by a screen with a
pinhole, we obtain a device that prepares the particle in a state
with given moment projection m,. Note that in this case, the
operator M, is not measured, and the screen with a pinhole
plays the role of an additional filter. We see that the
procedures of measurement and preparation are not identi-
cal as is supposed in the framework of the orthodox approach
[2, 3]. However, in principle, it is possible that the particle is
detected at a certain point of the plane D without being
destroyed. This measurement gives information about the
operator M, of the moving particle. After that, one can
measure M, once more using a second set of devices and
observe the correlation between the signals from the two
detectors.

As a rule, capital letters A4, B, ..., denote operators (¢-
numbers) and small letters a, b, ..., denote their eigenvalues
and the parameters like mass m, charge e, time ¢ (c-numbers,
which correspond to classical observables). This rule will be
violated in some cases, in order to follow traditional notation;
for instance, the photon annihilation operator will be denoted
by a. In the description of experiments, capitals correspond to
registered values, such as, for instance, the coordinate of a
particle, X, and small letters correspond to fluctuating values
measured in various trials (x, xz, .. .).
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2. Operational approach

One of the most important, or maybe the most important tool
for establishing a clear universal terminology in physics is the
approach in which all basic notions are defined by means of
appropriate experimental operations (procedures), i.e., the
operational approach. Here we mean ‘moderate’ operation-
alism where only basic notions are defined via (more or less)
realistic experiments. In addition, it is possible to use
convenient notions that have only an indirect relation to
experiment.

As in any accomplished branch of physics, nonrelativistic
quantum physics includes four basic components.

(1) Mathematical models.

(2) Rules of correspondence between mathematical
formalism and experiment. The aim of the operational
approach, which forms the basis of the present paper, is
namely to establish a mapping between two sets: the set of
symbols and the set of experimental procedures.

(3) Experiments that either confirm or disprove a
mathematical model or the rules of correspondence (see the
epigraph to this paper). According to Popper, any scientific
statement should admit falsification (disproof). Many philo-
sophers reject this viewpoint; however, without such criteria it
is difficult to distinguish between science and pseudoscience
like parapsychology.

(4) Interpretation of the formalism and the experiment.
This includes verbal definitions of symbols and descriptions
of idealized models, explicit images and figures. This
component is closely related to philosophy, gnoseology,
semantics, etc. Here one can specify a group of metaphysical
notions, which are introduced without any necessity, in spite
of the principles laid by Ockham, Newton, and Kant. In our
opinion, an example of such a redundant notion, which is
useless for quantitative theory, is given by the partial
reduction of the field WF occurring as a result of detecting
one of two correlated photons (see Sections 5.5 and 5.7). This
subset of useless notions has no fixed boundaries: some time
ago, atoms could also be classified as a metaphysical notion.
Metaphysical notions and explicit models play an important
role in any theory at the initial stages of its development.

This extremely simplified structurization of physics (and
of the professional activity of physicists) is certainly not the
only one possible. A lot of efforts have been made in this
direction. An interesting approach, which emphasizes the
principal role of models, is being developed by Lipkin [7].

Let us consider the uncertainty relation for two arbitrary
Hermitian operators A and B,

AaAb > [l 8jv)] :

2

This inequality has purely mathematical origin and
therefore relates to the first component in the structure
introduced above. In the particular case where 4 and B are
the coordinate X and the momentum P of a particle, the
inequality takes the familiar form AxAp > 7i/2. Its opera-
tional sense and the corresponding experiments (components
2 and 3) will be considered below in Section 6.3. The fourth
component, which is connected with the uncertainty relation,
includes speculations on the ‘wave—particle’ dualism, the
complementarity principle, the role of the interaction
between the particle and the measurement device and so on.
A typical feature of such speculations is the absence of strict
unambiguous definitions and testable statements. In this

sense, they have much in common with art, which presents
an alternative way of reflecting reality.

The operational approach, in our opinion, is only aimed
at formulating the experimental sense of certain basic notions
and statements. Being defined this way, the operational
approach has no relation to philosophy. It consists only in
defining a set of basic symbols via appropriate (better
realistic) experimental procedures, which is necessary for the
comparison between theory and experiment. An operational
definition for terms and symbols implies certain instructions
given to an experimenter. A theorist who gives a task to an
experimenter should say in a language that they both
understand: “Do this, and you will obtain the following
result...”. Such a description should include realistic proce-
dures for preparation and measurement. A typical feature of
reliable scientific conclusions is their reproducibility in
different laboratories. This requires a possibility to exchange
information on the conditions of experiment, which means
the existence of the corresponding language.

This approach should be distinguished from the philo-
sophic operationalism. Similarly to various versions of
positivism, philosophic operationalism rejects all notions
that have no direct relation to experiment. In quantum
physics, most researchers share the so-called minimal view-
point (see Ref. [2]), according to which it is only the efficiency
of calculations that is essential. In fact, in this approach, one
neglects the necessity of interpretation. Extreme viewpoints
of this kind exaggerate the abilities of the axiomatic
approach. At the same time, they underestimate the impor-
tant role played by explicit models in young branches of
physics and the convenience of various metaphysical terms
for verbal communication and planning new experiments.

A ‘naive realist’ or a ‘metaphysicist’ is curious about ‘what
goes on there in reality?” A ‘pragmatist’ or an ‘instrumentalist’
considers this question to have no scientific sense because any
answer to it cannot be falsified. In his opinion, this question is
similar to the famous problem about the number of angels on
a needle point. According to a ‘pragmatist’, the only aim of a
physicist is to construct mathematical models (universal if
possible) that reflect some features of the real world (mostly,
its symmetry) and test them. In return, a metaphysicist
accuses his opponent of extended solipsism (see Ref. [2]). The
old philosophic problem about the relation between the
essence and the appearance is emphatically revealed in
quantum physics. If one defines scientific knowledge as a
projection of some part of nature onto another part, onto our
consciousness, then, clearly, this projection cannot be com-
plete or precise and the question “What actually goes on
there?”” makes no sense.

In the framework of the literary interpretation of the WF
[2], it is assumed that each quantum object can be
characterized by its ‘true’ WF. In the case of a single
particle, the WF replaces its classical kinematic parameters,
coordinate and velocity. It is often supposed that the WF
accompanies a particle as some (complex) field or ‘cloud’. In
the case of two individual particles, this ‘cloud’ exists in
eight-dimensional space—time and varies there according to
the Schrédinger equation. Correspondingly, each measure-
ment giving an observable result «; is supposed to ‘actually
change’ this individual WF, that is, to cause its immediate
reduction /) — |a;), see Sections 4.7, 4.8, 5.5—5.9. (Here a;
is the measured eigenvalue of the 4 operator.)

At present, the interpretation of the quantum formalism is
chosen according to one’s taste. However, in our opinion, one
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should still avoid redundant notions like immediate reduc-
tion, nonlocality (Section 5.7), teleportation (Section 5.9) at
least in order not to promote pseudosciences. On the other
hand, operational definitions for the main terms form the
basis of any physical theory. They are especially important for
teaching quantum physics.

3. Classical probabilities

In this section, we consider classical analogues of some
notions and procedures of quantum physics. Using simple
classical models, we try to present a clear interpretation of the
notion of a quantum state (pure and mixed) and of its
preparation and measurement. We also prove the following
two statements that also seem to be valid in the quantum case.

(1) Ascribing a set of probabilities (which will be called ‘a
state’, in analogy with the quantum notation) to an individual
system with random properties has clear operational sense in
some ideal cases.

(2) There is no principal, qualitative difference between a
single trial and an arbitrarily large finite number of uniform
trials; in both cases, the experiment does not give reliable
result.

3.1 Preparation of a classical state
Throwing an ordinary die, one can get one of six possible
outcomes, or elementary events: the figure on the upper side
may be n=1,2,3,4,5, or 6. (Here we mean a ‘fair’, i.e.,
sufficiently random throwing of dice with unpredictable
results). Let the set of these six possibilities be called the
space of elementary events. This space consists of discrete
numbered points n = 1,..., N (N = 6). To each one of these
events, we ascribe, from some physical or other considera-
tions, some probability p,. Next, we assume Kolmogorov’s
axioms of non-negativity, p, > 0, normalization, }_p, =1,
and additivity (see, for instance, Ref. [8]). The set of
probabilities will be called the szate of this individual die and
denoted as ¥ = (p1,p2,P3, P4, P5,06) = {pu}. If the die is
made of homogeneous material and has ideal symmetry, it is
natural to assume all probabilities to be equal, p, = 1/6.
However, in the general case this is not correct. One can
prepare a die with shifted center of mass or some more
complicated model like a roulette wheel that has, for instance,

¥ = (0.01, 0.01, 0.01, 0.01, 0.01, 0.95). (3.1.1)

Clearly, each die or each roulette wheel can be characterized
by a certain state V¥, i.e., by six numbers that contain complete
probability information about this die and about its asym-
metry. The state (the set of probabilities) of this die is
determined by its form, construction, the position of its
center of mass, and other physical parameters. This state
practically does not vary with time. (Hence, according to our
definition, the state of the die does not contain information
about the throwing procedure; the results of throwing are
supposed to be almost completely random and unpredict-
able.)

The state is often characterized by the set of moments
{1}, i.e., numbers generated by the state according to the
rule

e = (n*)y = anpn.
n

Combining the first and the second moments, we obtain the
variance (n?) — (n)2 = An?. Tts square root, An, called the

standard deviation or the uncertainty, characterizes deviations
from the mean value, i.e., fluctuations. For instance, for a
regular die, (n) = 3.5 and An = 1.7, while for state (3.1.1),
(ny = 5.85and An = 0.73. Having the full set of moments, one
can, in principle, reconstruct the state, i.c., the probabilities.
(In quantum models, this is not always true, see Sections 4.5,
5.6-58,64.)

Any possible state of the die can be depicted as a point in
the six-dimensional space of states. The frame of reference for
this space should be given by the axes p, or ¢, = /p,. In the
last case, the depicting point belongs, due to the normal-
ization condition, to the multi-dimensional sphere S 3 and the
state vector can be written as ¥ = {c¢,} (for comparison with
the Poincaré sphere S2, see Sections 5.3, 5.4).

Now let N=2. One can imagine a coin made of
magnetized iron. Due to the magnetic field of the Earth, the
probabilities of the heads, p,, or tails, p_ =1 — p,, depend
on the value and direction of magnetization. Each individual
coin can be characterized by a state ¥ = (p, p_).

3.2 Measurement of a classical state

For a state ¥, which is prepared by means of a certain
procedure and therefore known, one can predict the out-
comes of individual trials. However, these predictions only
relate to probabilities, with the exception for the case where
one of the components of ¥ equals 1. One can pose the inverse
problem of measuring the state V.

Clearly, it is impossible to measure ¥ for a given coin in a
single trial. (Speaking of a trial, we mean a ‘fair’ throw of the
coin with the initial toss being sufficiently chaotic.) For
instance, ‘tails’ can correspond to any initial state except
¥, = (0, 1), where the index of ¥ denotes the number of trials
M. One should either throw one and the same coin many
times or make a large number of identically prepared coins, a
uniform ensemble. If the coins remain the same, are not
damaged in the course of trials, then all these ways to
measure the state are equivalent (the probability model is
ergodic).

From the viewpoint of measurement, the only way to
define the probability is to connect it with the rate of
corresponding outcome. Throwing a coin 10 times and
discovering ‘heads’ each time, one can state, with a certain
extent of confidence, that ¥ ~ ¥,y = (1,0). However, it is
possible that the next 90 trials the coin will show ‘tails’. This
time, we will be more or less confident that ¥ =
Y100 = (0.1, 0.9), — and still we can be mistaken, since the
actual state might be, say, ¥ = (0.5, 0.5). This example of
exclusive bad luck shows that an actual (prepared) state ¥
cannot be measured with full reliability. One can only hope
that as M increases, the probability of a large mistake falls
and ¥,s approaches the actual value ¥. In other words,
relative rates of different outcomes almost always manifest
regularity for increasing M.

Hence, for the case of known ideal preparation procedure,
the state ¥ (the set of probabilities) can be associated with the
chosen individual object. Here the state is understood as the
information about the object allowing the prediction of the
probabilities of different events. At the same time, for the case
of known measurement results, the state can be only
associated with an ensemble of similarly prepared objects,
always with some finite reliability. There is no principal
difference between a single trial and a number of trials: the
results of experiments are always probabilistic. Similar
conclusions can be made in the quantum case.
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3.3. Analogue of a mixed state and the marginals

Consider two sets of coins prepared in the states
V' = (pL,pl)and ¥" = (p!, p"). The numbers of coins in
the sets are denoted by N/ and N” (N’ + N” = N). If the
coins are randomly chosen from both sets and then thrown,
the ‘heads’ and ‘tails’ will evidently occur with weighted

probabilities
p/ N/ +p/lN// p/ Nl +pl/Nl/
e N e s =" ' rF-70

. I s P v ;o (33.0)

which are determined by both the properties of the coins and
the relative numbers of coins in the sets, N'/N and N”/N. In
this case, double stochasticity appears: due to the random
choice of the coins and due to the random occurring of ‘heads’
and ‘tails’. This is the simplest classical analogue of a mixed
state in quantum theory (in its first definition, see Section
4.10). Clearly, such a mixed state cannot be associated with an
individual system; it is a property of the ensemble containing
two sorts of coins. In quantum theory, this corresponds to a
classical ensemble of similar systems being in various states
with some probabilities.

In quantum theory, there also exists another definition of
a mixed state. This definition characterizes a part of the
degrees of freedom for a quantum object, see Section 4.10;
in the classical theory, it corresponds to marginal probability
distributions, or marginals. Marginal distributions are
obtained by summing elementary probabilities, in accor-
dance with Kolmogorov’s additivity theorem. Hence, they
can be also considered as a property of an individual object.
For instance, for a die, one can determine the marginal
probabilities of odd and even numbers, p, and p_. For the
state (3.1.1), we obtain p, = 0.97 and p_ = 0.03.

3.4. Moments and probabilities

Now let two coins from different sets be thrown simulta-
neously. We introduce two random variables S, S, taking
values s1,5, = =1 for ‘heads’ or ‘tails’, respectively. The
system is described by a set of probabilities p(s;, s2) of four
different combinations (41, +1). If the coins do not interact
and are thrown independently, then the ‘two-dimensional’
probabilities p(sy, s;) are determined by the products of the
corresponding one-dimensional probabilities, p(si,s2) =
pi(s1)p2(s2).

However, let the peculiarities of the throw or the
interaction between the magnetic moments of the coins lead
to some correlation between the results of the trials. Then the
state of the two coins is determined by the set of four
elementary probabilities p(s1, s2). The marginal probabilities
and the moments are obtained by summing,

pk(S/() :p(Sk,+1) +p(s/€7_1)7
(Sk) =pe(+1) —pe(=1) =2p(+1) = 1 (k=1,2),

<SlSZ> Ep(+1,+]) er(_]v_l) _p(+17_1) —p(—],Jrl).
(3.4.1)

Hence, |(Sk)| < 1,[(S1S2)| < 1.In the simple case considered
here, one can easily solve the inverse problem, which is called
the problem of moments. In other words, one can easily
express the probabilities in terms of moments,

pi(si) =27 (14 5(Sk)) (3.4.2)
p(Sl,Sz) = 2_2(1 +S1<Sl> +S2<S2> +51S2<S1S2>) . (343)

(S1S2) 0

—1 0 1
(S1)

Figure 2. Connection between the correlator (S}S>) and the first moments
(S1), (S2) (in the case (S;) = (S>)) for two random variables S; and S,
taking the values s; = £1. In the shaded ‘prohibited’ area, the probabil-
ities corresponding to the moments take negative values. The dotted line
shows the case of independent variables where (S1.S;) = (Sl>2. The circle
with coordinates (0.71,0) corresponds to the quantum moments for the
Stokes parameters in the case of a photon polarized linearly at an angle
22.5° to the x axis (see Section 5.6).

From Eqn (3.4.3) and the condition p(si,s2) =0, it
follows that the moments are not independent; they must
satisfy certain inequalities. Provided that the first moments
(Sk) are given, the correlator (S;S,) cannot be arbitrarily
large or small,

fmin < <S1S2> <fmax . (344)

Here

frmin = max(—1 = (S1) = (S2), =1+ (S1) + (S2))
fmax = l’nll’l(l + <S1> - <S2>7 1 - <S1> + <S2>) .

For instance, for (S;) = (S,), we have the limitation
2|(S1)| = 1 < (S182) < 1 (Fig. 2). In particular, the correla-
tor cannot equal zero for (S;) > 1/2 (i.e., for p > 3/4).

In the quantum theory, analogous inequalities for
quantum moments (F), which are obtained by averaging
with respect to the WF, (F)= (y|F|y), are sometimes
violated. Paradoxes of this kind will be discussed in Sections
4.5, 4.6, 5.5-5.8. Note that in such cases, the notion of
elementary probabilities has no sense, and the quantum
probability model can be called non-Kolmogorovian.

4. Quantum probabilities

The classical models described above have little connection
with quantum physics. The ‘state’ of a die can include not only
the properties of this die, as we supposed above, but also the
parameters of the initial toss. (According to classical
dynamics, these parameters unambiguously determine the
outcome.) Stochasticity appears here as a result of variations
in the value and direction of the initial force. (Under certain
additional conditions, such models manifest dynamical
chaos.) Quantum stochasticity is believed to have a funda-
mental nature; it is not caused by some unknown hidden
variables, though Einstein could never admit that “God plays
dice”.

Itis an astonishing feature of quantum probability models
that in some cases, there exist marginals but there are no
elementary probabilities. This feature can be called the non-
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Kolmogorovianness of the quantum theory; in the general
case, it corresponds to the absence of a priori values of the
observables, see Sections 4.5, 5.5-5.8, 6.4. For instance, one
can measure (or calculate using ) coordinate and momen-
tum distributions for a particle at some time moment, but
their joint distribution cannot be measured. Reconstruction
of the joint distribution from the marginals is ambiguous and
sometimes leads to negative probabilities. Therefore, it is
natural to assume that a particle has no a priori coordinates
and momenta.

It is also important that classical models have no concept
of complex probability amplitudes and hence, do not describe
quantum interference and complex vector spaces of states.
There is no classical analogue of non-commuting variables,
which do not admit joint probability distributions.

Quantum physics presents extremely special procedures
for preparation and observation. From the operational
viewpoint, a pure state y, is a detailed coded description of
an ideal preparation procedure (history) for a given indivi-
dual quantum object. However, one can use or check the
information contained in the WF only under the condition
that there exist several objects prepared similarly. It is only in
some special cases that knowing the state of a single particle,
one can make (almost) unambiguous predictions concerning
the result of a single trial (see the example in Section 6.6).
Almost all real experiments result in the preparation of mixed
states where additional classical uncertainty is present in the
parameters of the pure states. For instance, the coherent state
of the field prepared with the help of an ideal laser has a
random phase.

An interesting question is: “‘in what cases is the quantum
theory really necessary?” It is often supposed that the
quantum theory is necessary for describing microscopic
objects, in contrast to macroscopic ones. However, in some
cases, macroscopic objects also require a quantum theoretical
description. For instance, recent experiments on Bose
condensation involve hundreds of thousands of atoms
(lithium, sodium, or rubidium) [9—12]. The atoms are stored
in a magnetooptical trap and cooled, using laser radiation and
other methods, to 107°—10"7 K. At the same time, the
motion of the centers of mass for all atoms is described by a
joint WF. This WF describes the collective localization of
atoms in a small spatial domain at the center of the trap. Note
that here, one can ignore the ‘frozen’ degrees of freedom
relating to atom electrons and the internal structure of the
nuclei, nucleons, and quarks. This illustrates the idea of a
phenomenological approach in quantum physics and, more
generally, the idea of reductionism, a hierarchic description of
reality.

At present, considerable interest is also attracted to
experiments on the interference of composite particles such
as atoms and molecules. The interference is determined by the
de Broglie wavelength of such particles, A = 1/ Mv (see Refs
[13, 14]). For instance, the interference pattern observed for
sodium molecules Na, has an oscillation period half that of
sodium atoms [15]. Here again the effect is described by a WF
relating to the center of mass of the molecule, although the
actual sizes of the particles can be much larger than /.
Recently, interference of this type was observed between two
groups of Bose-condensed atoms, each group containing 10°
atoms [12]. This experiment proves that both groups can be
described in terms of a two-component WF containing some
phase difference. [In this connection, the concept of an atom
laser has been suggested (see Ref. [12]).]

There are well-known examples of macroscopic quantum
phenomena, such as the effects of superfluidity, superconduc-
tivity, and the Josephson effect. The wave packet of an
electron can occupy macroscopic volume, and an electron
manifests itself as a ‘point-like’ particle only when it is
registered, see Section 6.1. In modern optical experiments,
the coherence lengths of the fields sometimes exceed several
kilometers. In such cases, it is quite sufficient to use a
phenomenological description with a small number of
parameters and the single-mode approximation for the field,
with the atom variables excluded by introducing the linear
and nonlinear susceptibilities of matter ¥, n =1,2,..., and
so on. For instance, with the help of the quadratic non-
linearity ¥®, it is convenient to describe the preparation of
‘two-photon’ or ‘squeezed’ light by means of coherent
nonelastic scattering of ordinary light in transparent piezo-
electric crystals (the effect of parametric scattering, or
spontaneous parametric down-conversion).

Apparently, all sufficiently cooled and isolated objects
can be and should be described by phenomenological
quantum equations ignoring the ‘frozen’ degrees of freedom.

4.1 Classical stages in quantum models
Several crucial problems can be pointed out in the quantum
measurement theory. First, this is the fundamental problem
of unifying quantum and classical physics, the development
of a universal approach to the description of a quantum
object and the preparation and measurement devices. This
global task is still unsolved. Probably, it cannot be treated in
the framework of the standard quantum formalism and
requires the creation of some metatheory. Recently, a
number of interesting dynamical models have been devel-
oped describing reduction and measurement of the WF (for
recent results and references, see Refs [13, 16, 17]). However,
these models are so far not connected with real experiments,
and we will not touch upon this problem. Another important
group of problems includes the development, in the frame-
work of the standard quantum theory, of the optimal
methods of precise measurements for various applications
and methods of suppressing quantum noise [18, 19].
Formally, quantum theoretical description operates only
with the WF ¥ of an isolated system that should include both
the subsystem under study and the preparation and measure-
ment devices interacting with it. In some considerations, the
isolated system also includes the experimenters, their brains,
or even the whole Universe. In this sense, a purely quantum
model is a thing in itself; it leaves no space for an external
observer. Predictions of such models cannot be tested, and
therefore, as Bohr has mentioned, one has to use hybrid
models including both quantum and classical components.
In order to compare theoretical results with experiment,
one should somehow, taking into account additional con-
siderations, restrict the number of degrees of freedom. A
correspondence should be postulated between the symbols of
the quantum formalism describing the system and the
parameters of real classical devices used for preparation and
measurement. The terms ‘observable’ and ‘operator’ are
usually identified; however, for any quantum model, compar-
ison with experiment requires setting certain boundaries
between the quantum system and the classical environment.
In the chain of interacting subsystems described by the
operators By, By, ..., some operator B, (or set of operators
B,.B,, ...) should be chosen as ‘the most observable’ (the
readout observable). It is assumed that the ‘measurement’
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subsystem interacting with B,, manifests classical properties;
it has many degrees of freedom and a continuous spectrum
(an open system). For a particular model of measurement,
calculation with the help of the Schrédinger equation allows
the readout observable to be changed, B,, — B,,_;. Inthe case
of a formal consideration, the choice of the readout
observable is not unique, and the boundary between the two
worlds can be set arbitrarily (see Ref. [2]). But formal models
of this kind, as we have already mentioned, do not admit
quantitative comparison with real experiments, and there-
fore, for comparison with the experiment one should still
choose some readout observable B,,.

At the next stage, the Born postulate should be included in
the consideration. This postulate sets a relation between the
probabilities of observable events p(b,,) and the WF and
therefore, ‘legalizes’ stochasticity in quantum models (see
Section 4.7). This ‘measurement’ postulate is so far the only
‘bridge’ connecting the mathematical formalism and the
experimental results.

In most modern experiments, the observed ‘elementary’
quantum events are photocurrent pulses at the output of the
detector, a droplet appearing in the Wilson chamber, etc. The
‘invisible’ world of individual quantum objects seems to
reveal itself only by means of such ‘clicks’. Observing such
an event, one can assign some a priori coordinates to the
particle that caused the ‘click’. The particle is ‘localized’ in a
certain space—time domain, which is determined by the
classical dimensions of the detecting device. These dimen-
sions are measured by usual methods, with the help of rulers
and clocks.

In the well-known model of photodetection suggested by
Glauber [20], the observable event is defined as the transition
of one of the atoms of the detector from the ground state |g)
into the excited state |e). This event corresponds to the
projection operator |e){e| = B,,, which plays the role of the
readout observable. Due to the amplification in the detector,
the event is supposed to manifest itself as a macroscopic
current pulse at the output of the detector. In order to
describe fast detection, one assumes that the spectrum of the
atoms constituting the detector is sufficiently broad. (Prob-
ably, it is necessary to use the assumption about the relaxation
of the density matrix off-diagonal elements.) Calculating the
evolution of the system ‘field +atoms’ via the Schrodinger
equation, one can show that the statistics of the photocurrent
pulses i(7) are determined by the correlation functions of the
free field E(r, ¢). Further, one can assume the field E(ry, #;) at
the center of the detector to be the readout observable instead
of |e){e|. Here (ry, t;) are the classical coordinates in space—
time, and they are measured using rulers and clocks. The
coordinate r; of the center of mass of the detected atom and
the time moment of the pulse ¢, are supposed to be c-numbers.

Similarly, in the model of a particle counter (see Section
6.1), the role of the readout observable is played by the
potential of the interaction between the detector and the
particle, V(R — r;), which depends on the coordinate opera-
tor for the particle R. However, note that for justifying some
choice of B,,, one should use some particular model of the
detector. Certainly, the adequacy of the model should be
tested experimentally.

Actually, when describing dynamical experiments (see
Fig. 1), one should use the ‘semiclassical’ approach consist-
ing of two stages. In other words, two boundaries should be
set: at the ‘input’, where one determines the initial state of the
quantum system y, in terms of the classical forces, and at the

p(a, b) = }‘P(aa b)

‘output’, where one chooses the operator B,,, which influ-
ences the classical measurement device. Between the input
and the output, the system develops by itself, and its WF
evolves according to the Schrédinger equation: Y, — .
[Here, classical fields should be taken into account (see
Fig. 1).] By choosing ¥, and B,,, we exclude the operators of
the preparation and measurement devices, respectively. If the
preparation of the WF is described in the framework of the
classical theory, one can consider the ground (bottom) state
Yoo, Which is achieved due to relaxation or cooling, and to
describe its transformation Y, — ¥, by including the
classical field in the Hamiltonian (see the example in Section
5.2). A bright example are the experiments on the Bose
condensation of atoms in traps [9— 12] where a localized WF
is prepared by means of cooling and applying classical fields.

The effect of various filters, such as diaphragms, magnetic
filters, monochromators, etc., is also described classically. As
arule, it can be included into the preparation or measurement
stages. (Still, it is reasonable to distinguish between these
procedures.) In quantum optics, spectral filters, beam
splitters, polarizers, lenses, etc. are described in terms of
classical phenomenological Green’s functions, which trans-
form the state of the field (in the Schrédinger approach) or
field operators (in the Heisenberg approach) [21]. One can
also point out various modulators, which change the WF of a
prepared system via time-dependent classical fields (see
Section 6.6). For instance, in a detector of gravity waves, the
WF of a quantum object (a macroscopic oscillator) is
modulated by an alternating gravitational field [19]. In the
description of parametric scattering, the laser (‘pump’) field
modulating the dielectric function of the crystal can be
considered as classical. At the same time, the effect of the
pump transforms the scattered field from the vacuum state
into a superposition of Fock states with even photon
numbers: [Woo) = 10) — |Wg) = col0) + c2|2) +cald) + ...
Note that in the general case, filtration and modulation are
described by a nonunitary transformation converting the
system into a mixed state [21].

Let us consider once more how the measurement
procedure is described in the framework of the standard
quantum formalism (for more detail, see Refs [18, 19]).
There exist models of direct and indirect quantum measure-
ment [5, 18, 19]. In the first case, the consideration includes a
single quantum object A, which is characterized by the WF
Y(a). (For simplicity, we assert that the state is pure and that
its WF has a single argument.) In order to describe the
interaction with the external world, some operator A4 is
assumed to be the observable. The experimental data are
compared with the distribution p(a) = |w(a)|2 or with its
moments {a*).

In the models of indirect measurement, in addition to the
object under study, one introduces at least one more ‘sample
body’ B interacting with A and acting as an interface between
A and the macroscopic world. One considers the WF y/(a, b)
of the system A + B, and the correlation between ¢ and b
resulting from the interaction of A with B is calculated using
the Schrodinger equation. This time, the role of the ‘readout
observable’ is played by the operator B relating to B. As a
result of this theory, one gets a joint probability distribution
}2. The correlation between a and b is
described by the function p(a,b) and allows one to learn
about b from the analysis of a. After classical summation over
the probabilities of non-observable events, one obtains the
marginal distribution p(b) = )", p(a, b), which can be mea-
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sured experimentally and contains information about p(a). A
description of quantum correlations can be found in Section
4.8.

The operators A and B can relate to different degrees of
freedom for one and the same object. For example, in the
Stern— Gerlach experiment (see Fig. 1), 4 = M, and B=X
are operators of angular momentum projection and trans-
verse coordinate for a single particle; these operators become
correlated if the particle moves in inhomogeneous magnetic
field [22]. As a result, from the transverse coordinate of the
particle, x;, which is directly observable, for instance, as a
spot on the film, one can obtain the spin projection
my, = my(x;) onto the transverse direction for the chosen
particle. This projection is obtained indirectly, by means of a
theoretical model that describes the influence of the inhomo-
geneous magnetic field on the WF evolution for a spin
particle. The density of spots on the film (Fig. 1) gives a two-
peak distribution p(x) containing information about p(my).

One can consider a chain of interacting objects A, By,
B,,...,B,,, which are described by the operators A4, By,
By, ...,B,. The quantum formalism allows calculation of
the total WF V(a,by, by, ...,b,) and the joint probability
distribution:

ba)|

pla,by,ba, ..., by) = |¥(a,by, by, ...
The last operator in the chain, B, is declared to be the
observable. After that, one applies the classical probability
theory. The marginal distribution p(a,b,,) is obtained by
summing the elementary distribution p(a,by1,by,...,by)
with respect to the ‘redundant’ variables by, by, ..., b,-1. In
the Heisenberg representation, the ‘output’ operators B(7) are
expressed via the ‘input’ ones, B(f). Using the relation
between them, one can easily calculate the transformation of
correlation functions due to the interaction.

Note that the interaction between quantum subsystems,
which is described by the Schrédinger equation in the
framework of the standard quantum formalism and causes
correlations between the subsystems, should be distinguished
from the ‘real’ measurement process. In the description of real
measurement, it is necessary to consider the interaction
between classical and quantum systems, which is not
included in the standard formalism.

4.2 A complete set of operators and the measurement of
the wave function
Consider free one-dimensional motion of a nonrelativistic
spinless particle. Its observable statistical properties at a fixed
time moment are fully described by the state vector |) in
some representation. For instance, in the coordinate repre-
sentation, (x[y) = y(x). In other words, a single coordinate
operator X forms a complete set of operators that is necessary
for specifying the state. The same relates to the momentum 7K
(sometimes we put /i = 1), and a state can be given by the state
vector in the momentum representation (k[y) = y(k), i.e., by
the Fourier transform of y/(x). At the same time, the energy
operator H = K?/2m does not form a complete set, since it
leaves uncertainty in the sign of the momentum. In other
words, the energy levels are doubly degenerate, and a
complete set can be formed by H and by the operator of the
momentum sign.

In order to specify a state, it is sufficient to give
eigenvalues for all the operators forming a complete set. For
instance, the information k = k; fully determines the WF:

W (x) = exp(ik;x). For the case of operators with discrete
spectra, a state is fixed by specifying the quantum numbers that
enumerate the eigenstates and the eigenvalues. It is known
that the states of an electron in a hydrogen atom are
conveniently described using spherical coordinates,
Y =y(r,0,¢), and the quantum numbers n, /, m, s, which
determine the eigenvalues of the energy, angular momentum,
its projection, and the spin projection.

Consider now the measurement of a state. Repeated
measurement of the coordinate by means of an ideal detector
gives the WF’s absolute value (the envelope) |1p(x)| (see
Section 6.1). At the same time, the phase of the WF
¢(x) = arg[y(x)] cannot be observed directly; therefore,
such an experiment does not provide a complete measure-
ment of the WF, in spite of the fact that X forms a complete
set. For complete determination of the WF, additional
measurements are required, such as, for instance, measure-
ment of the WF envelope in the momentum representation,
‘1//(1() | (Section 6.1). In real experiments, a state is measured in
a set of experiments where different combinations of X and K
are measured [23—-27, 99].

It is often mentioned that the phase of the WF has no
physical sense, is not observable. Here one means the
constant global phase ¢,, which does not depend on the
coordinate. At the same time, the /ocal phase ¢(x) has a
considerable effect on the observed function |y(k)|. Obser-
vable effects caused by the time dependence of the WF phase
¢ (1) are discussed in Section 6.6.

Thus, one should distinguish between specifying the WF
in theory, where it is introduced as an eigenfunction for some
complete set of operators such as, for instance, X or K, and
measuring it in experiment where one has to study, for
instance, both coordinate and momentum distributions, i.e.,
to deal with more than one complete set. Thus, a complete set
of operators is incomplete from the viewpoint of measure-
ment.

Another example: for fixing the polarization of a photon,
it is sufficient to state, for instance, that it has right circular
polarization. In this case, the field has fixed angular
momentum 7. But in order to check this statement, it is not
enough to measure m. Such an experiment should consist of
several series of measurements for non-commuting observa-
bles (the Stokes parameters) (see Section 5.4).

At present, various methods of preparation and recon-
struction of the states of optical fields, atoms, and molecules
are attracting considerable attention [23 — 34].

4.3 Quantum moments

In the classical probability theory, the moments of a random
variable A4 are defined via the probability distribution
function p(a): p, = (A") = [dap(a)a" (the integrals are
supposed to converge for all n=0,1,...). For a discrete
random variable, the integral is replaced by the sum (see
Sections 3.1, 3.4). In the case of several random variables
A, B, ..., the moments are given by multi-dimensional
integrals

U = (A"B™..) = J . J(da db..)pla,b,...)(a"b"...).
(4.3.1)

In quantum theory, the moments are defined not via the
distribution function p(a, b, ...) but via the WF,

L. = (A"B"™ ..) = (Y|4"B" ... |}). (4.3.2)
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It is essential that moments composed from non-commut-
ing operators depend on the ordering of the operators.
Consider two non-commuting Hermitian operators,
[4,B] #0. A question arises: “which moments composed
from A and B manifest themselves in an experiment?”’
Even if we add the requirement that the moments should
be real, there still remain many possibilities:
((4B) + (BA))/2, ((AB) — (BA))/2i, (ABA), (BAB), and so
on. The answer depends on the particular experimental device
and on the parameters measured in the experiment. This
problem is especially interesting in the case where non-
commuting observables are measured at various time
moments (see below). So far, we assume for simplicity that
all operators relate to the same moment.

As an example, consider quantum-optical experiments
where one measures the energy of the field. Sometimes, it is
possible to take into account only a single mode of the field. In
this case, the field has the same description as a harmonic
oscillator, and the energy operator has the form
H(X,P) = (P*+ »?X?)/2, where o is the mode frequency.
It is convenient to pass from the operators X, P to the
operators a, a!, which are called photon creation and
annihilation operators. (Here we use the traditional notation
in small letters.) By definition,

a= (2ho) (X +iP), df = ko) (X - iP).

From [X, P] =ii, we find |a, aﬂ =1 and obtain several
equivalent forms for the Hamiltonian:

H(a7aT) = hw (de + %) = hw (aaT — %)

= o [oc (aTa + %) + l?(anr - %)} , (4.3.3)

where o is an arbitrary number and f = 1 — a.

From the models of photodetection, it follows that in the
first approximation, the probability of energy transfer from
the field to a detecting atom in the ground state is determined
not by the whole energy operator but only by its normally
ordered part, H—hw/2 = hwala. (This probability also
depends on the antinormally ordered operator of the
detector DDT, where D is the positive-frequency part of the
atom dipole moment [35].) In other words, the probability of
stimulated one-photon ‘up’ transition for the atom is
determined, in the linear approximation, by the photon
number operator N = ala. Choosing N as the observable
operator ensures that the term 7w /2 gives no contribution to
the excitation probability for the atom. Similarly, the
probability of a k-photon ‘up’ transition for an atom is
determined by the operator

@Yak =NN-1)...(N—k+1)=:NF:.  (43.4)
Here colons denote normal ordering, :(ana)k: = (aT)kak .

At the same time, for a correct description of the
observable fluctuations of energy near its average value, one
should use the non-ordered operator H = (hwN)>, which
contains the term X2P? 4 P2X? and is proportional to the
operator

N? = atadta = atataa + afa= . N?: 4N, (4.3.5)

Hence, the observable variance of the energy is determined by
the non-ordered moment

(AN?) = (N) + (:AN%) . (4.3.6)

Here the term (N), which is typical for the variance of a
Poissonian random process, describes quantum fluctuations
for the energy measurement. They manifest themselves in
experiment in the form of shot (or photon) noise [36].
Normally ordered variance (:AN2:), also called the excess
noise, describes the deviation of the variance from the
Poissonian level. For the cases of Fock, coherent, and
chaotic states, the variance (AN?) is equal to 0, (N), and
(N)* + (N), respectively. At (AN2) < (N), the statistics are
called sub-Poissonian, and at (AN?) > (N), super-Poissonian.
(One also uses the terms antibunching and bunching, respec-
tively.) Note that for sub-Poissonian states of the field, the
excess noise (: AN2:) is negative. Distinguishing between the
quantum noise and the excess fluctuations has an operational
sense: the quantum noise has a ‘white’ spectrum, while the
spectrum of excess noise is determined by the dynamics of the
radiation source [36].

Normally ordered moments are also convenient for the
description of optical elements with linear absorption. Let 5
be the transmission coefficient of such an element, then the
moments at its input and output are connected by the simple
relation:

<:Nk:>out = nk<:Nk:>in . (437)
For example, putting k = 1 and 2 here, we find
(AN?) g = (1= )(N) gy + T(AN?),,, . (4.3.8)

This formula describes the ‘poissonization’ of intensity
fluctuations as a result of absorption: at n — 0, there is only
Poissonian noise at the output, regardless of the fluctuations
at the input. Assuming # in Eqn (4.3.7) to be the quantum
efficiency of a photon counter, we obtain the relation between
the statistics of photons and photocounts.

From these examples, it is obvious that the choice of
ordering of the operators in quantum moments depends on
the particular measurement procedure, which is to be
described by these moments. This fact becomes essential for
the description of time-of-flight experiments with high time
resolution (see Sections 4.9 and 6.2).

4.4 Schrodinger and Heisenberg representations
Let us consider moments as functions of time. The dynamics
of a quantum system can be described by means of two
mathematically equivalent methods called the Schrodinger
and the Heisenberg representations. The solution to the
nonstationary Schrédinger equation /10y /0t = Hi, with the
energy operator H independent of time, can be represented as
V(1) = U()(0). Here we introduced the evolution operator
U(t) = exp(—iHt/h). According to the Born postulate, the
mean value (A(t)) of some observable 4 at the moment 7 has
the form (4(1)) = (W(1)| Ay (1)) = (Y(O)U(1)" 14| U()(0)).
Let us introduce the operator A in the Heisenberg
representation, A(7) = U(¢)" AU(t), then the mean value can
also be written as (A(1)) = (¥(0)[4(1)}(0)). In the case of
two commuting operators measured simultaneously, we also
have two equivalent calculation algorithms:

(A(0)B(1)) = (W) AB (1)) = (Y (0)|A(1)B(1)[(0)) .
(4.4.1)
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However, multitemporal moments (correlation functions)
are defined only in the Heisenberg representation. For
example, a correlation function of two observables has the
form

(A0)B(t")) = ((0)[A()B(¢")[(0)). (44.2)
In order to calculate this function in terms of the Schrédinger
parameters for ¢ # ¢/, one needs additionally the evolution
operator,

(A(t)B(1")) = (p()|AU(t — t")Bly (")) . (4.4.3)

In some simple cases, operators in the Heisenberg
representation depend on time in the same way as classical
variables. For instance, for a free nonrelativistic particle,
H=P?/2m and [X,P]=iki; it follows that X(f)=
X + (P/m)t, P(t) = P. In addition, the Heisenberg represen-
tation admits an explicitly covariant formulation of the
theory [2].

In quantum optics, calculations are usually more simple in
the Heisenberg representation, where the field operators E(¢),
H(t) in linear problems depend on time in the same way as
classical fields. This allows one to exploit useful classical
analogues and to use classical Green’s functions for the
description of optical elements, such as diaphragms, lenses,
mirrors, etc. As a result, the quantum description of the field
evolution in a linear optical tract, including the relation
between the observable correlation functions at the input
and at the output, coincides with the classical description. The
only difference is contained in the procedure of averaging
with respect to the initial state, which can be quantum or
classical [37].

For our consideration, it is essential that the evolution of a
system can be equivalently described both in terms of varying
operators A(¢) and in terms of varying WF (7). Therefore,
the evident representation of a quantum object in terms of
some propagating ‘field’ y(z) accompanying it or as a vector
in the configuration space is not the only one possible. Here
again we have a senseless question: “what actually does take
place there, is it the WF or the operators that vary?”” Note that
possible observable manifestations of the projection postu-
late and the WF reduction should be described in the
Heisenberg representation [see Wigner’s formula (4.9.1)].

4.5 Quantum problem of moments

In Section 3.4, we obtained a formula that expressed the
probabilities via the moments and imposed certain restric-
tions on the moments (see Fig. 2). In the case of
continuous variables, this inverse problem in mathematics
is called the problem of moments. A well-known example
of a restriction imposed on the moments due to the non-
negativity of probability is the Cauchy—Schwarz inequality
() < (f)igg).

For a set of quantum moments g, it is natural to pose the
problem of constructing the corresponding probability
distribution p. But in the case of non-commuting operators,
this procedure, first, is ambiguous and second, gives functions
taking negative or complex values. Such functions are called
quasi-probabilities or quasi-distributions. Well-known exam-
ples are the Wigner function W(x,p) (Section 6.4) and the
Glauber —Sudarshan function P(o) (a is the complex ampli-
tude of oscillations in a single mode, see Section 4.6). Thus,
the quantum problem of moments in some cases has no

solutions. One can say that quantum probability models are
in the general case non-Kolmogorovian [38]. The absence of a
non-negative joint distribution for non-commuting observa-
bles can be naturally interpreted as the impossibility of these
observables having a priori values. In other words, it is not
reasonable to suppose that each particle ‘actually’ has some
fixed coordinate and momentum before the measurement but
our rough devices spoil everything and do not allow their
simultaneous observation.

In some models, the incompatibility of classical and
quantum viewpoints can be demonstrated experimentally.
Bell’s inequalities [39, 40] and the Kochen — Specker theorem
[41] relate to such models. As a rule, such models include
several observables with discrete spectra (for example, spin
projections or photon numbers in different modes). Non-
commuting variables are measured in different trials. Such
experiments with polarization-correlated photon pairs and
triples will be considered in Sections 5.7, 5.8.

In several experiments, mostly optical, predictions of
quantum models for the moments have been confirmed and
violation of the Bell classical inequalities has been demon-
strated. However, there still remain ‘loopholes’ in the
interpretation of experimental results. These ‘loopholes’
initiate further theoretical and experimental research in this
direction [42].

The statement about the incompatibility of certain
classical and quantum probability models is sometimes
called Bell’s theorem or Bell’s paradox. It is commonly
supposed that Bell’s paradox demonstrates ‘quantum non-
locality’, since one usually speaks about the correlation
between events separated by spacelike intervals (photo-
counts in two remote detectors). However, the term quantum
nonlocality, which implies some mysterious, telepathy-like
connection between remote devices, cannot be considered
helpful for the solution of Bell’s paradox.

It seems more consistent to assume that the quantum
mechanics is non-Kolmogorovian: it admits the absence of
joint distributions and a priori values for non-commuting
observables [38]. For example, the quantum theory allows
calculation of moments of the form (xp); however, in the
general case, there exists no corresponding joint non-negative
distribution w(x, p). Therefore, there is no sense in introdu-
cing a priori values for non-commuting observables. The
absence of elementary probabilities in combination with the
existence of marginal probabilities and moments (i.e., the
absence of the solution to the problem of moments) can be
considered as a characteristic feature of a non-Kolmogor-
ovian probability model. Such a classification gives a general
approach to various ‘nonclassical’ effects and quantum
paradoxes [38].

4.6 Nonclassical light

Bell’s inequalities and other similar constructions are in fact
restrictions (similar to the Cauchy-—Schwarz inequality)
imposed on the moments by the non-negativity of the joint
distribution. In other words, they follow from rather general
mathematical considerations. In quantum optics, there exists
another model, which is less general but also demonstrates
that classical probability concepts cannot be applied to
electromagnetic waves. This model is based on the well-
known Mandel formula, which gives a relation between
measured probabilities of photocounts and the Glauber—
Sudarshan quasi-distribution P(a). The function P(x) plays
the role of a classical distribution function for the complex



September, 1998

Basic quantum mechanical concepts from the operational viewpoint 895

amplitude of a monochromatic field o = x + ip; there is a one-
to-one correspondence between this function and the WF of
the field. However, for all pure states except the coherent one,
P(o) takes negative values or is irregular [43]. For instance,
for the Fock n-photon states, P(«) is given by a combination
of nth-order derivatives of the J-function. Such states of the
field are called nonclassical.

For nonclassical fields, observable values like moments
and probabilities of photocounts do not satisfy certain
restrictions that follow from the non-negativity of P(«)
[44, 45]. Similar nonclassical optical effects have been
observed in numerous experiments. This confirms the
adequacy of simple phenomenological models in quantum
optics and shows that the concept of a probability distribu-
tion cannot be applied to a wave amplitude. As the most well-
known and important example, one can mention the effect of
photon antibunching, which consists in the decrease of
photocurrent fluctuations below the shot-noise (photon)
level [46, 47]. This level is called the standard quantum limit
[18, 19]. Another ‘nonclassical’ optical effect, two-photon
interference, can be classified as intensity interference with
the visibility exceeding 50% (see Section 5.5 and Ref. [37]).
Such a high visibility also contradicts the description of a light
field in terms of a non-negative regular distribution.

The concept of nonclassical light is closely connected with
the attempts to describe photodetection within the frame-
work of the semiclassical theory of radiation, in which the field
is described classically and the substance, which interacts with
the field, is considered as quantum. Let monochromatic light
with fixed intensity 7 (an ideal laser in the classical approx-
imation) be incident on a detector . It is natural to assume that
the excitation probability dp; for any atom of the detector
photocathode during a small time interval dz is independent
of time and proportional to I: dp;/d¢ = kI. (The factor k
characterizes the quantum efficiency of the detector.) This
model adds stochasticity to the dynamical theory: any
number of pulses m (m=0,1,2,...) can appear during
some finite time 7, and the probability of this event is given
by the Poisson distribution, p,(I) = u™exp(—p)/m!,
w=kTI

Let us take into account that the intensity of light can be
stochastic. Let 7" be much less than the characteristic time of
intensity variation. Additional averaging of p,(I) with
respect to the intensity distribution p(7) results in the Mandel
formula:

Pm = L'J dIp(H)(kTD)" exp(—kTI) .
m: Jo

(4.6.1)
In the quantum theory, one can obtain a similar expression,
with the only difference that the function p([) is expressed in
terms of the Glauber—Sudarshan function, p(f) «x P(|a),
where |o|* ~ I, and can therefore take negative values.

It follows from Eqn (4.6.1) that m!p,, can be considered as
moments of some distribution p(7) exp(—kTT). The condition
p(I) = 0leads to certain restrictions on the set of probabilities
{pm} [44]. For example,

mp? < (M4 Dppt1 pmp1 (m=1,2,...). (4.6.2)

This inequality is violated for some states of the field. In
particular, for the case of ‘two-photon light’ consisting of
photon pairs and for 100% efficiency of the detector,
p1 =p3 =0, py # 0, so that Eqn (4.6.2) is violated for m = 2.

Further, it follows from Eqn (4.6.1) that the factorial
moments of photocounts

Gr=(mm—1)...(m—k+1))

are given by the relation
G = | "arptnkrn,
Jo

i.e., Gy are proportional to ordinary moments for the intensity
(I*). Hence, we obtain another set of nonclassicality criteria
for the light [45],

G} <G 1Gry  (k=1,2,..)). (4.6.3)
In particular, putting k=1, we obtain G} <G, or
(Am?) = (m). Thus, the sub-Poissonian statistics of photo-
counts contradicts the semiclassical theory. Note that the
criteria of nonclassicality (4.6.2), (4.6.3) have a clear geo-
metric interpretation: for example, In(Gy) plotted versus &,
according to inequality (4.6.3), has a concave form [44]. There
also exist other observable criteria of light ‘nonclassicality’
[44, 45].

Hence, the semiclassical Mandel formula (4.6.1) for the
statistics of photocounts gives several observable criteria of
nonclassicality for the light. Nonclassical light cannot be
considered as a variety of waves whose random intensities
obey some non-negative distribution P(/). The observable
criteria of nonclassicality are directly related to the well-
known mathematical problem of moments.

Let us trace once again the initial controversies between
quantum and semiclassical descriptions of photodetection. In
quantum models, the energy transfer from an excited system
to a nonexcited one is determined by normally ordered
moments relating to the first system (or by antinormally
ordered moments relating to the second system). Normally
ordered moments are not ‘true’ moments of some non-
negative distribution; therefore, in contrast to ordinary
moments, they do not obey general relations like the
Cauchy —Schwarz inequality. It is this difference that allows
one to point out a class of states that have no classical
analogues.

4.7 Projection postulate and the wave function reduction
One should distinguish between the two meanings associated
with the terms projection postulate and reduction. They are
connected, respectively, with the postulates of Born (1926)
and Dirac (1930).

(1) The Born postulate. In order to calculate the
probability of observing a certain eigenvalue «@; of an
operator 4 at the moment ¢, one should find the projection
of the vector |i)(11)) on the vector (a;| and take the square of
its absolute value,

plar,n) = [{a ()" = [{ar, 11 |o)
= <‘//0’P(alaf1)’lpo> .

|2
(4.7.1a)

The last two equalities were obtained using the Heisenberg
representation. Here P(a,?) = |a,t){a,t| is the projection
operator (projector), |a,ty = Ul(t)|a) is an eigenvector of
the operator A(t), U = exp(—iHt/#) is the evolution opera-
tor, and H is time-independent Hamiltonian. The Born
postulate in the Heisenberg representation is also valid for



896 D N Klyshko

Physics— Uspekhi 41 (9)

the case where several commuting operators are measured
simultaneously at arbitrary time moments,

pla,t;b,1) = (Wo| P(a, 1) P(b, 12) [hy)
= (Yo| P(b, 12) P(a, 11) o) - (4.7.1b)

Symmetric correlation functions of this kind can be called
Born correlation functions. In contrast to Wigner correlation
functions, they do not depend on the sign of 7, — 7, (see
Section 4.9).

Thus, Eqns (4.7.1) give an algorithm for the comparison
between theory and experiment but does not tell us what
happens to a quantum object as a result of its interaction with
the measurement devices. One can imagine that as soon as a
particle is registered at a point ry, its WF ‘collapses’ from the
whole space to this point. However, this picture has no
operational sense unless one can repeat the experiment with
the same particle, see below. Here, the idea of a collapse is an
interpretation of the quantum formalism. It is an attempt to
describe the events that ‘actually’ take place in the system.

(2) The Dirac, or projection, postulate (also ascribed to
von Neumann) states that registering a value a; results in the
reduction: the WF of the system {1//(t1)> is projected onto the
vector |a; ),

(1)) = [W(n)) = Plar, 0)o) o |ar, 1) (47.2)
(the vector zp(t)>, is not normalized). Here, in contrast to
Eqns (4.7.1), the relation does not describe how the measure-
ment results can be calculated. Instead, it describes what
happens to the WF as a result of the observation. According
to Eqn (4.7.2), a measurement is at the same time the
preparation of a new WF |lp’(z)>, which allows, with the
help of Eqn (4.7.1b), calculation of the result of a repeated
measurement carried out at ¢ > ¢;. (Therefore, the Dirac
postulate violates the symmetry of the quantum formalism
with respect to time inversion.)

In what follows, the terms ‘reduction’ and ‘projection
postulate’ will be understood according to the second, ‘active’
definition (4.7.2). (The first definition, which is given by the
Born postulate (4.7.1) can be called the ‘passive’ one.)
According to von Neumann, there are two ways of WF
variation with time: a ‘legal’ one, given by the Schrédinger
equation, and some other, special way, which is not described
by the equations of the standard quantum theory. It is
supposed that the reduction is caused by the interaction
between the quantum system and the macroscopic measure-
ment device.

The projection postulate (4.7.2) is sometimes derived from
the repeatability principle (see Refs [2, 48]): a repeated
measurement of 4 in a rather short time interval should give
the same value a;. Otherwise, the concept of measurement
would only relate to the past, to a priori properties of the
object under measurement. Various dynamic models of
reduction have been proposed in order to take into account
that the macroscopic device has a large (or infinite) number of
degrees of freedom [2, 13, 16, 17]. However, so far these
models are not confirmed experimentally.

In many textbooks and monographs, reduction is claimed
to be the basic postulate of quantum physics (see, for
example, Ref. [2]). Reduction is often treated as a ‘real’
event [2, 18, 19, 49]. One can imagine the state vector of a
particle or other quantum object to turn spasmodically (at the
‘instance’ of the measurement 7;) in some hypothetic complex

multi-dimensional space of states. As a rule, an explicit
qualitative description of quantum correlation effects such
as the Einstein—Podolsky — Rosen (EPR) paradox or ‘quan-
tum teleportation’ (see below) is based on this idea. However,
postulate (4.7.2) is actually not necessarys; it is never used for
the quantitative description of observable effects (for excep-
tions, see Sections 4.9, 6.2). In some papers, the concept of
reduction and its necessity is considered to be doubtful [50 -
54]. For example, according to Ref. [53], p. 351, “... Von
Neumann’s projection rule is to be considered as purely
mathematical and no physical meaning should be ascribed
to it.” In Ref. [2], on p. 294, it is noted that the projection
postulate is not needed if one sets a careful distinction
between the preparation and measurement procedures.

In accordance with Eqn (4.7.2), it is often stated that a
measurement is at the same time the preparation of a new WF
(see, for instance, Refs [2, 3, 18, 19]). However, in real
quantum experiments, completely different procedures are
used for the preparation of a WF and for its measurement (see
examples in Sections 5 and 6). It is reasonable to distinguish
between measurement and filtering (using a screen with a
pinhole or a polaroid). Filters allow some measurement only
with the help of a detector (see Fig. 1). Here detection is
understood as an evidence of the particle existence, such as a
click in a Geiger counter or a track in Wilson’s chamber [55].

4.8 Partial wave function reduction

Consider the general scheme of an experiment on observing
quantum correlations. Two dispersing particles A and B are
prepared in the state

o ‘a17b]> + |a27b2>
|l//> - \/i 9

(4.8.1)
where a;, b; are eigenvalues of the operators 4 and B.
Nonfactorable states of this kind are called entangled states.
They form the basis for the famous EPR paradox. Observable
events, such as the measurement of 4 at time ¢ yielding the
result @;, and the measurement of B at time ¢’ yielding the
result b;, can be separated by a spacelike interval. Therefore,
[4, B] = 0, the sequence of measurements plays no role, and
one can apply the Born postulate. According to Eqns (4.7.1)
and (4.8.1), signals from remote detectors show exact
correlation,

1
p(anubn) = <P(am)P(bn)> = ‘<amvbn|l//>’2 = E 5mn

(myn=1,2). (4.8.2)

In order to explain this correlation effect, one often
assumes that at the moment of observing the result a,,
partial reduction of the WF takes place: |f/) — v2(an|) =
|bm). Similarly, from the viewpoint of the second observer,
W) = V2bulWh) = am).

However, two questions arise here: “in which one of two
equivalent detectors does the reduction take place and how
does the second detector ‘know’ about this event?”” One has to
speak about mysterious ‘quantum nonlocality’, which implies
some superluminal interaction of a new type. Reduction and
nonlocal interaction between remote devices are not neces-
sary for the quantitative calculation of EPR experiments.
These notions are introduced ad hoc in the attempts to find a
clear interpretation for quantum correlations (and also, in
connection with Bell’s paradox, Section 5.7). Similar correla-
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tions exist in classical models, Section 5.5; a working setup of
this kind is used for teaching students in one of the
laboratories of the Department of Physics in Moscow State
University [56]. This paradox of a ‘superluminal telegraph’ is
often resolved with the help of the operational approach: if
one considers the actual experimental procedure, it becomes
clear that observation of the correlation requires a normal
classical information channel introduced between the obser-
vers [56, 57].
It is natural to generalize Eqn (4.8.1) in the form

|lp> = Z Cmn|an17 bn> . (483)
mn
Hence, we obtain the joint distribution
P(@m, bn) = ‘Cmn|2- (4.8.4)

One can also define the conditional probability to discover
the observable 4 to be equal to a,, provided that Bis equal to
bn?

Plamby) el

p(bn) N Z|C/m|2 '
k

For instance, for the state (4.8.1), we obtain p(b,) = 1/2, and
it follows from (4.8.2), (4.8.5) that p(a,|b,) = O, i.€., the
conditional probabilities for entangled states are equal to 1
or 0. This is another feature of full (ideal) correlation.

The verbal description of this correlation, “if I observed
B =b;, then I know immediately that 4 = &, is often
understood as a proof of the ‘nonlocality’ of quantum
phenomena. (Another proof can be found in Section 6.7.)
However, such a correlation is also possible in classical
models. An even more delicate property of EPR correla-
tions, their controllability, is not a specific feature of quantum
models [56]. (The EPR correlations can be controlled, that is,
they depend on the parameters of measurement devices in A
and B, such as the orientations of the polaroids, Section 5.5.)
Principal differences between quantum and classical correla-
tions can be observed only in special cases, see Sections 4.5,
5.5-5.8.

Consider once again the description of measurement and
reduction according to the common viewpoint (see Ref. [2]
and Section 4.1). An entangled state of the form (4.8.3)
appears as a result of the interaction between any two
initially independent quantum systems, A and B. Suppose
that A is the observed system and B is a macroscopic
measurement device, which is also described by the quantum
theory. Let A4 be the operator of the measured quantum value
and B correspond to the macroscopic observed value, such as
the position of a voltmeter pointer. In addition, let ¢,,, = 0y,
then Eqn (4.8.3) describes a one-to-one EPR correlation
between the observed value and the measured one. How-
ever, in each separate trial, the pointer shows at a fixed value
(let us denote it by the subscript 1). Therefore, we have to
postulate the following transformation [for comparison, see
Eqn (4.7.2)]:

|lp> = Zcmm‘amabm> - Clllalabl> = cll|al> ® |bl>>

P(am|bn)

(4.8.5)

i.e., all coefficients c,,;,, except one for some unknown reason
turn to zero. The coefficient ¢;; should turn to unity due to the
normalization of the new WF. This stage can be called

transformation of the possible into the real, and it is one of
the most difficult problems in the quantum measurement
theory. As a result, the WF of the whole system factors, and
the system again becomes independent of the device, so that
they can be considered separately. It is commonly assumed
that such reasoning justifies the Dirac postulate (4.7.2), i.e.,
proves that the WF reduction exists as a result of measure-
ment.

4.9 Wigner correlation functions

Consider the case where the observable Heisenberg operators
in Eqn (4.7.1b) do not commute, [P(11), P(t2)] # 0. One can
easily see that in this case, the standard algorithms of the
quantum theory are not valid for -calculating
p(t1, 1) = pla,t1;b,12). The point is that the operator
P(11)P5(t2) is not Hermitian and the Born correlation
function (Y|P (t1)P>(t2)|Wy) contains an imaginary term,
equal to (W|[P1(11), P2(12)][g)/2i, and therefore cannot be
used for calculating p(7;,1,). The standard formula for the
transition probability based on the Born postulate is also
useless since it operates with a single time moment ¢, which is a
parameter of the WF ,, and it cannot give the two-time
function p(t1,1,). We also recall that the ‘pure’ quantum
dynamics, similarly to the classical dynamics, is invariant with
respect to the sign of #; — #,. It does not reflect causality and
irreversibility, which should be introduced additionally, by
setting the rules of going around the poles and taking into
account dissipation.

In order to improve this situation, let us start from the
Dirac projection postulate (4.7.2), i.e., let us assume that the
first (in time) measurement of the observable P(a, t;) causes
the reduction

W () — [¥'(0)) = Plar, 1)) -

Hence, the second measurement device ‘sees’ a changed WF
|'(11)), and the averaging of P(b,1,) in the Born postulate
should be done with respect to this new WF. Thus, using first
Eqn (4.7.2) and then (4.7.1), we obtain the Wigner formula
for the joint distribution of two variables [3],

pla,ti;b, 1) = (' (11)|P(b, )|y (1))

= (o| P(a, 1) P(b, 12) P(a, 1) o) . (4.9.1a)

It is supposed that 7y <t} < fp, i.e., a ‘time arrow’ is
introduced. This correlation function is asymmetric with
respect to the sign of #; — t,; such functions can be called
Wigner correlation functions. Sometimes, equations like Eqn
(4.9.1a) require additional summation over the non-observa-
ble variables. Evidently, Eqn (4.9.1a) can be generalized to the
case where an arbitrary number of operators Py, ..., P, are
observed in a sequence [3],

p(tlwu’tm) = <¢0‘P1 ---melemel Pl’lp0>

m=1,2,...; t<ti<ty...<tm). (4.9.10)

From the operational viewpoint, this formula can be
compared with experiment only as a whole, the reduction
itself cannot be observed. Therefore Eqn (4.9.1b) can be
assumed as the basic measurement postulate. In fact, it is a
generalization of the Born postulate (4.7.1) to the measure-
ment of non-commuting operators. If all operators in Eqn
(4.9.1b) commute, then, due to the property P,121 = P, this
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formula coincides with Born’s definition (4.7.1b) of multi-
time correlation functions (Y| P1 ... Pulhy)-

For a mixed initial state described by the density operator
P> Eqn (4.9.1b) takes the form

p(ll,...,tm) = Sp(Pm'--Plp()Pl ...Pm)

(hh<ti<h<...<tm). (4.9.2)

Although the concept of reduction is quite convenient for
the verbal description of certain experiments, there is no sense
in the question: “whether reduction actually takes place or
not?”” (Of course, the appearance of new facts may change this
situation.) For clarity, one can admit that a track in the
Wilson chamber appears due to a chain of reductions: each
‘seeding’ atom starting a droplet of water prepares a new WF
for the next atom. In such a model, each droplet should
correspond to a pair of projectors P, in Eqn (4.9.1b). It
should be stressed, however, that this is nothing but a possible
interpretation. Actually, the concept of reduction is not
necessary for the quantitative description of a track (see the
calculation based on the Born postulate in Ref. [55]). The
same relates to the most part of observed quantum effects,
including the EPR effects and quantum teleportation
(Sections 4.8, 5.5—5.9). All of them are actually described by
Born’s correlations.

Still, the projection postulate in the form (4.9.1) seems to
be indeed necessary for the quantitative description of some
narrow class of experiments [58]. (Here we mean practical
calculations that can be compared with experiment, in
contrast to the abstract models of the quantum measurement
theory or speculations about the WF of the whole setup or the
whole Universe.) Such experiments should satisfy three
conditions: each trial contains measurements of two or more
operators in sequence; these operators do not commute for
some f7; and f, in the Heisenberg representation; and the
measurements are carried out with sufficiently fine time
resolution. The last condition is not satisfied for the case of
the Wilson chamber. The second condition is not satisfied in
EPR experiments and experiments on quantum teleportation,
therefore, one does not need reduction for their description,
and the observed effects can be explained in terms of ordinary
correlation functions. Examples of using the Wigner formula
will be given in Sections 6.2 and 6.3.

Thus, one should distinguish between two types of
correlation effects, depending on whether the corresponding
Heisenberg operators 4(¢) and B(¢') commute or not. In the
first case, one can use standard (‘Born’) symmetrical correla-
tion functions

(A(t)B(1")) = (B(t")A(1)), (4.9.3)
while in the second case, the time sequence of measurements is
essential, and the “Wigner’ correlation functions of the form

(A()B(t")A(1))0(t" — 1) + (B(1")A(1)B(t"))0(t — t')
(4.9.4)

should be used. These correlation functions can be interpreted
in terms of reduction.

4.10 Mixed states

As a rule, a system cannot be prepared in a pure state,i.e.,in a
state described by some WF . In each trial, different WFs
are prepared, and one can only give probabilities

P1,DP2,--.Dj, ... of preparing the system in different pure
states from the set Y, ¥, ... §;, ... (This set is not necessarily
complete or orthogonal.) For comparison with experiment,
quantum moments and distributions obtained for all ;
should be additionally averaged with respect to the classical
distribution p;. As a result, we obtain a combination of
classical and quantum probability models with double
stochasticity: (4) = > p;(y;|4;). For instance, it seems
reasonable to assume that a macroscopic source of particles
heated to temperature 7 emits particles in pure states |v;) with
definite momenta muj; the corresponding probabilities p; are
given by the Maxwell distribution with temperature 7.

It is convenient to introduce the density operator
p =2 pil;) (W Let {|n)} be some complete set of vectors,
i.e., I =>"|n)(n|, then we can define the density matrix in the
n-basis, p,,, = >_;pi(m|y;)(¥;n). The mean value can be
written as (4) =Y, Py Ann. In the invariant form (regard-
less of the basis), (4) = Sp(pA), where Sp denotes the sum of
diagonal elements. If the initial set {;} forms a complete
orthogonal basis, the density matrix in this basis has a
diagonal form: p; = p;é;. In the particular case of a pure
state, |) = |k), the density operator has the form p = |k)(k|,
and the density matrix has a single nonzero element equal to
1: e = SmiOui- In this case, p? = p.

Additional classical averaging of >~ p;(y/;|4|y;) can be
performed at the very end of the calculation; however,
classical stochasticity is usually introduced at the beginning.
Then the state of the system is understood as an element in the
corresponding extended space of states, i.e., a set of
Hermitian non-negative normalized matrices p,,,. Such
states are called mixed states. The time dependence of the
density operator can be obtained by replacing the basis |n, 7))
by |n, t). Taking into account the Schrodinger equation, we
come to the von Neumann equation:

d
= Hp).

Let us mention another model where the notions of a
mixed state and the density matrix p are very helpful. Let a
system described by two independent operators 4 and B be in
an arbitrary pure state y(a,b) = (a,bl{y), p = [{)(¥|. Here
|a, b) = |ay|b) is the direct product of two vector spaces where
A and B are defined ([4,B]=0). Suppose that we are
interested only in the operator B or in its functions f{(B).
One can easily check that the ‘marginal’ moments
(f(B)) = (Y|f(B)|¥) can be represented as (f(B)) =
Sp {p,/(B)}. This is done by introducing the following
definition for the density operator p,, which relates only to
the system B:

pp=SPdp} =) (aly)(Wla).

a

i

The operator p,, is defined only in the space of the operator B;
unnecessary variables a are excluded beforehand. (This
definition is analogous to the definition of marginal prob-
abilities in probability theory, Section 3.3.) In the general
case, the operator p, is not diagonal.

As a rule, the second definition of the density operator is
used in cases where the operators 4 and B relate to two
different objects, for instance, to interacting subsystems in the
models of measurement or to correlated particles in EPR
experiments. In the general case, the state of the whole system
Y is not factorable [see Eqn (4.8.1)], and each separate system
cannot be described by an individual WF; a correlation
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between the observable parameters of the two systems can
exist even for a large distance between them.

5. Two-level systems

5.1 q-bits
Sometimes, the interaction of an atom with resonant
monochromatic radiation can be described taking into
account only two nondegenerate energy levels of the atom.
In this case, an arbitrary state of the atom can be represented
as a combination of two base vectors: |[/) = a|g) + fle),
where the letters g and e relate to the ground and excited
states, respectively. Hence, an arbitrary state of a two-level
atom is given by a pair of complex numbers (o, f3). Taking into
account the normalization |«|* 4 |f|* = 1 and ignoring the
common phase of « and f§, we obtain that a state is given by
two real parameters. For instance, these may be the spherical
coordinates (0, ¢) of a point on the Bloch sphere (see, for
instance, Ref. [35]). The polarization state of a classical
monochromatic wave or of a photon can be analogously
depicted on the Poincaré sphere. A single-mode polarized field
in a cavity interacting with a two-level atom [59 — 62] can exist
in a superposition of vacuum and single-photon states. This
means that the space of states for the cavity has the same
structure, |y} = «|0) + B|1). Analogous geometry is typical
for the space of spin states for a particle with spin 1/2. In
terms of group theory, such a space is called SU(2) space.
During the last few years, considerable interest has been
attracted to the idea of quantum computers (see Refs [13, 17,
59, 60]), where electronic cells with a dichotomous spectrum
of states (0,1) could be replaced by systems described by
vectors in SU(2) space (correlated two-level atoms, photons).
All cells of the computer should be in a joint pure entangled
state ¥. Such a device is supposed to increase drastically the
computing rate for some classes of problems. The informa-
tion contained in the numbers (o, f§) or (0, ¢) is called a g-bit.
If an atom interacts with a single-mode field in a cavity, an
inverse exchange of g-bits can take place:

|¥) = («lg) + Ble))|0) — [¥7) = [g)(«/0) + B|1)) . (5.1.1)
This process, as well as further transfer of a g-bit from the
field to the second atom, has been recently observed in
Ref. [61]. Moreover, an entangled EPR state of two atoms

has been prepared using the interaction between the atoms via
the field [61]:

o 0) — (le1,0) + lg1,1))[g2) _ (le1, g2) + lea, £1))[0)
1,825 \/§ \/5 .
(5.1.2)

In the process of quantum teleportation (Section 5.9), a q-bit is
irreversibly transferred from one photon to another.

5.2 An example of quantum state preparation

With the help of modern laboratory equipment, a single atom
can be confined in a limited spatial domain (magneto-optical
trap) and cooled to superlow temperatures of about 10~7 K.
In this case, one knows for sure that the atom gets into the
ground state |g). Let a short laser pulse with definite
amplitude and duration 7 (a m-pulse, see Ref. [35]) be incident
on the atom at time 7y = —. Intense laser radiation to a good
approximation can be considered as classical. Let the laser

frequency coincide with the Bohr frequency
we = (E. — Eg)/h of the transition between the ground state
|g) and one of the excited states |e). According to semiclassical
theory, a laser pulse drives the atom into the state
[¥) = a|g) + Ble), where the coefficients «, 8 are determined
by the phase of optical oscillations and the ‘square’ of the
laser pulse, i.e., the product of the amplitude Ey and the
duration 7. This method is used in modern experiments [61].

Thus, at 7y = 0, an atom is prepared in a given quantum
state, similarly to a coin or a die (Section 3.1). Further, this
state varies in time in accordance with the Schrédinger
equation,

;) = alg) + Ble) exp(—iwet) .

Because of the inevitable fluctuations of the laser amplitude
and phase, in a series of repeated measurements the state of
the ensemble of atoms should be considered as a mixed state.

Note that no properties of the quantum object are
measured in the course of this procedure. In other words,
preparation does not necessarily coincide with measurement,
as it is traditionally supposed [2, 3, 18, 19]. It is essential here
that the laser field, which plays the role of a given external
force, is described classically, and the atom is supposed to be
prepared in the ground state |g) due to relaxation. Similarly to
the measurement stage, the preparation stage should be
described after introducing a physically reasonable bound-
ary between the classical and quantum worlds. A lot of
successful previous experiments make one confident that
this heuristic model is correct.

Up to now, we have neglected the interaction of the atom
with nonexcited (vacuum) modes of the field. This assertion
holds true only at sufficiently short time intervals. Taking into
account the interaction between the atom and the vacuum
field modes, one comes to the spontaneous emission of a
photon (more accurately, an exponential wave packet with
central frequency w. and duration 7. = 1/wg, which is
determined by the probability of spontaneous transition per
unit time, wge). The point on the Bloch sphere, which depicts
the state of the atom, spirals from the north pole to the south
pole [35]. In a time much larger than t., the atom, with high
probability, gets to the south pole, into the ground state, while
the field gets into the one-photon state |1). Thus, the model
suggests an example where both the atom and the field are
prepared in a definite state.

One can see that modern equipment provides rather
reliable methods for preparing given states of atoms and
fields. This possibility of “WF engineering’ is widely used for
the experimental verification of many interesting effects in the
interaction of a field with matter predicted by the quantum
theory [13, 14, 62]. As we have already mentioned, this
technique also attracts attention in connection with the idea
of quantum computing.

5.3 Polarization of light

Let us recall the classical description of polarization (see
Ref. [63]). The field of a plane quasi-monochromatic wave in
vacuum can be represented as

E(z, 1) = 2Re[Eq exp(ikz — iwt)]
where the complex vector Eg = XE, + yE, gives the intensity

and polarization properties of the wave; and E, and E, are
projections of the field onto the directions x,y. For an ideal
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monochromatic wave, the vector Eg is constant; however, in
real experiments it always varies, Eg = E(¢). (Of course, this
variation is slow in comparison with wt.)

The ‘instant’ (nonaveraged) Stokes parameters are intro-
duced as

So=|EP+IEL,  Si=|EL-|EP,

S» =2Re(ElE,), S; =2Im(EJE)). (5.3.1)
The parameter Sy(7) gives the total intensity of the wave at
fixed time and the direction of the vector S(z) = (S, Sz, S3)
characterizes the instant %)olarization. The norm of the vector
S(1) = (S? + S2 + §2)/2, by virtue of Eqns (5.3.1), is equal
to So(7). The parameter S3(¢) is proportional to the angular
momentum of the wave.

Let us introduce a unit vector ¢ = S/S. The set of vectors
o belongs to the Poincaré sphere. Each point of the sphere
corresponds to a definite type of polarization. It is convenient
to introduce the spherical coordinates

g, =sinfcos¢p, o3 =sin0sin¢

¢=0-2n).

o1 = cos0,

@=0-m, (5.3.2)
We also define a unit complex polarization vector
e = (a, f§) (the Jones vector) with the components
E. 0
=cos =,

Vs %2

... 0
= exp i¢sin =

_E
b= 2

o= —
VSo

(5.3.3)

(this vector is defined up to an arbitrary phase multiplier).
The inverse transformations have the form

2 2

o1 = lof” =[],

gy =2Re("f), o3 =2Im(«*p).

(5.3.4)

Thus, an instant polarization state can be given either by
spherical coordinates (0, ¢)) on the Poincaré sphere or by a
pair of complex numbers (o, ). For instance, the vectors
¢ = (+1,0,0), e=x=(1,0), e=y=(0,1) correspond to
linear polarization along x or y, while ¢ = (0,0,+£1),
e = e. = (1,+i)/+/2 describe right and left circular polariza-
tion.

In the case of partially polarized light, all these parameters
vary slowly and the depicted point 6 (7) moves on the Poincaré
sphere. The statistics of the field are assumed to be stationary
and ergodic; therefore, time and ensemble averaging are
equivalent. In terms of the ensemble approach, the Poincaré
sphere represents the space of random events, and the space of
states consists of various distribution functions p(0, ¢), which
satisfy the conditions of normalization and non-negativity.
One can imagine that the Poincaré sphere is covered by points
representing members of the ensemble. The ‘density’ of points
determines the function p(6,¢). Averaging the definitions
(5.3.1) gives the ordinary Stokes parameters (S,)
(n=0,1,2,3). The ratio ({(S1)>+ (S2)*+ (S3)°)/(So) = P is
called the degree of polarization.

The effect of ideal polarization transformers (phase
plates, or retardation plates) can be represented as a rotation
of the Stokes vector S described by the Miiller matrix M, or as
a linear transformation of the polarization vector e = («, f§)
by means of the Jones matrix T,

o =t*a+r*B,

B = —ro+1f. (5.3.5)

D,

Figure 3. Schematic plot of the measurement of the Stokes parameters. S is
the light source, P is a Nicol prism, y denotes its orientation with respect to
the x axis: 0°, for measuring S; and 45°, for measuring S,. T is an
additional quarter-wave plate for the measurement of S3, D, and D, are
photodetectors, Ai is the difference of their currents.

In vector notation, S’ =M - S, e’ = T - e. Here, absorption
and reflections are neglected, therefore, Sy and P do not vary.
These parameters are the invariants of the transformation.

Consider measurement of the functions S,(z) and the
Stokes parameters (S,). Let the photodetectors and the
registering electronics be sufficiently fast, i.e., their transmis-
sion bands be much broader than the spectrum of the field. In
this case, one can measure instant values of all parameters. In
order to observe all four Stokes parameters simultaneously,
one can divide the initial light beam among three detecting
devices, see Fig. 3. In the first device, a prism separates the x-
and y-polarized components of the beam (y = 0, there is no
retardation plate), so that the difference between the currents
from the two detectors, Ai(¢), is proportional to S;(¢):
Ai = kS,. In the second device, the prism is rotated by the
angle y = 45°, so that Ai’ =kS,. In the third device, a
quarter-wave plate oriented at 45° is placed before the
prism, and Ai” = kS;. (The proportionality coefficients k
are assumed to be equal for all three devices.) The sum of the
two currents in each device is proportional to the total
intensity of the beam: i +i =kSy. For an arbitrary
polarization transformer T inserted before the prism, the
difference between the currents is proportional to the
projection of the vector S onto a fixed direction in the
Poincaré space [63].

Such a device enables one to observe fluctuations of the
Stokes parameters S,(¢) near their mean values (S,). The
mean values of photocurrents give the ordinary Stokes
parameters (S,). They can be measured in turn using a single
detector, since the field is supposed to be stationary.

The ultimate accuracy of this measurement is limited by
the quantum (photon, shot) noise, (ASZ)uun = (So). How-
ever, for some states of the field, called polarization-squeezed
states [64], this noise can be reduced, (AS?) < (Sp). Let us
mention here the effect of hidden polarization [63], where
P =0 but the current fluctuations and the correlation
between them depend on the parameters of the polarization
transformers. These effects can be described phenomenologi-
cally in terms of the higher-order Stokes parameters intro-
duced in Ref. [63].

5.4 Measurement of photon polarization

Let us consider the polarization properties of a single photon
and their measurement in the optical range. For the
description of real experiments, one should use quasi-
stationary states, i.e., superpositions of Fock one-photon
states with close energies,

W(n) = [dk (k) exp(—ioxt)a) |0) .
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An obvious classical counterpart of such a state is a single-
photon wave packet, that is, a quasi-monochromatic field with
the spectrum f{k), which is localized in space and time [37].
However, for simplicity, here we speak about photons and use
the single-mode description.

As was shown for the example in Section 5.2, modern laser
technique permits rather reliable preparation of the field in a
one-photon state, i.e, generation of a single photon with a
fixed polarization. In the general case, this state is given by the
vector

[W) = a|x) + Bly) = «[1,0) + B|0,1). (5.4.1)

Here, |a|> +|f]* =1, and |x) = [1,0) = |1), ® |0), denotes
the state with a single photon polarized along the x direction.
The second mode y is in the vacuum state. The state |y), up to
the phase, can be described by two real parameters 0, ¢, which
are the spherical coordinates of the point on the Poincaré

sphere [for comparison, see Eqn (5.3.3)],

0 .. 0
o= C0s 5 ﬁzexpnqﬁsmi
O@=0-m, ¢=0-2n). (5.4.2)

The parameters «, § and 0, ¢ play the same role as in the case
of a classical polarized wave. For o = § = 1/+/2, the photon
is polarized at an angle 45° to the x axis, and for
a = if = 1/+/2, it has right circular polarization.

Let the photon be polarized linearly in the plane (x,y) at
the angle 0/2 to the x axis, i.e., « = cos 0, f = sin 6. (This can
also be written as [i/) = |0).) Let the photon be detected by an
ideal photon counter with 100% quantum efficiency regard-
less of the photon polarization. Then a current pulse (a
photocount) appears at the output of the detector with
probability equal to unity. There is no stochasticity here, the
probability of photon detection is p = 1. (Here we pay no
attention to the stochasticity at the moment #; of appearance
of the photocurrent pulse; it is only essential that the pulse
appears within the wave packet duration.)

Stochasticity appears only in the case where some
polarizing device is inserted before the detector. This can be,
for instance, a polarizing beam splitter (see Fig. 3). Let the
prism axis be directed along x (y = 0), and the two output
beams of the prism be fed into a pair of ideal detectors
(photon counters). Then the counters ‘click’ with probabil-
ities p; = cos? 0 and p, = sin? 0. (This is analogous to the
space of states for a magnetized coin, see Section 3.1.) Each
trial results in only a single photocount observed in one of the
two detectors. Rotation of the prism by the angle y = 0/2
restores the regularity, p; = 1, po = 0. Note that the angle 0
can be determined from the measured dependencies p,(y)
with a certain ambiguity, and it is necessary to repeat the
measurement for a different position of the prism.

To consider a more general case, let us define the Stokes
operators in terms of photon creation and annihilation
operators a'!, a in two polarization modes, by analogy with
Eqn (5.3.1):

So = alax + a;[ay , S| = aia\ — aIay R

t t

axay — Axdy
S, = aia}, + axaJr S3=——— .

I, S= i (5.4.3)

Note that the operators Si, S, S3 do not commute, for
instance, [S}, S»] = 2iS3. Performing the averaging with the

help of Eqn (5.4.1), we obtain

(So)y =1,

(S1) = [o® = |BI* = cosb,

(S2) = 2Re(a*f) =sinlcos ¢,

(S3) =2Im(«*f) = sinfsin ¢ (5.4.4)
[for comparison, see Eqn (5.3.2)]. Now, <Sz =

((S1), (S), (S3)) is a unit vector: (S1)° + (S2)° + (S3)° =
(S)o = 1. Hence, P = 1, and a one-photon single-mode field
in a pure state is completely polarized, like a classical
monochromatic field. Note that (S;)*# (S})=1 and
(SE) + (S3)+ (S?) = 3. The Stokes vector of a photon (S)
can be depicted as a point on the Poincaré sphere. Like the
polarization vector e = (o, f§), it characterizes the degree of
polarization of the photon. In other words, (Sy) characterizes
correlations between the properties of the field in two modes.
Therefore, Sj can be called correlation operators.

Using retardation plates, one can change the polarization
parameters and turn the initial photon with fixed polarization
(5.4.1) into a photon with any given polarization: linear,
circular, or elliptic. Such transformations can be conveniently
described in terms of the Jones matrices T acting on a two-
dimensional polarization vector e = (o, f§) [see Eqn (5.3.5)].

Consider the operators Sy acting on the vector (5.4.1).
With the help of Eqns (5.4.3), we obtain

Soly) = alx) + Bly),  Sily) = alx) = Bly),

Saolp) = Blx) +alyy,  Solyy) = —iflx) +ialy).

(5.4.5)

It follows that the action of the operators S; on the state
vector of a photon, |{), is equivalent to the action of the 2 x 2
Pauli matrices on the photon polarization vector, e, so that
S| ~ 0,8 ~ 0y, S3 ~ 0,. In experiments, such transforma-
tions can be performed using retardation plates. This
demonstrates that observables in physics have a dual
character: they describe both the values being measured and
the transformations of the states.

The state of a one-photon field can be measured in three
stages described above: for y = 0, for y = 45°, and inserting
an additional quarter-wave plate. In these stages, the
operators S;, S», and S3 are measured in turn. Therefore,
the operators S; can be considered as observables. Their
eigenvalues are s = £1. In each trial, it is assumed that a
‘click’ in the upper or lower detector indicates that s;; = +1 or
—1. (For comparison, one can recall the classical case where sy
are determined by the photocurrent differences Ai and have
continuous spectrum.) Naturally, the Nicol prism and the
retardation plates are described classically. It is also assumed,
according to the model of photodetection, that the prob-
ability of a photocount is proportional to (t//|a’Ta’|1//>, where
the operators a/J[, a' relate to the field on the detector. In a
large number of trials N, one can measure the mean value of
one of the Stokes parameters for the state
(Sk) &~ N~'>" ;. Further, with the help of Eqns (5.4.2) one
can determine the parameters of the state «, f§ [or, equiva-
lently, the components of the photon polarization vector
e = (o, )]. With a proper choice of retardation plates, one
can measure the projection of the Stokes vector (S - n) on any
given direction n with respect to the Poincaré sphere [63].

Measurements according to the scheme shown in Fig. 3
enable one to find out whether the initial state of the field is a
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one-photon state or not. In the first case, each trial gives
exactly one photocount registered by one of the two detectors.
(For simplicity, the detectors are assumed to be ideal.)

Note that it is better to consider the polaroid (the Nicol
prism) inserted into the path of the photon as a filter and not
as a detector. To measure the photon polarization, the
polaroid (the Nicol prism) should be completed by a detector
in combination with a retardation plate, and the procedure
should be repeated many times for different positions of the
polaroid and the plate. With no detector inserted, the
polaroid only prepares photons with certain polarization
and uncertain time of birth 7y. Formally, the action of a
polaroid (unlike the Nicol prism) is described as a nonunitary
transformation of the WF or the field operators [21]. This
transformation leads to additional stochasticity, and the
photons at the output of a polaroid should be described in
terms of mixed states.

Thus, once again a certain state s [or polarization vector
e = (@, §)] determined by the preparation devices is ascribed
to an individual quantum object (the field in a given trial).
Again, in order to check this information, one needs a large
number of repeated measurements, see Section 3.2. In other
words, one cannot measure the a priori polarization of a given
photon, since a photocount in the detector with, say, x-
polarization can be caused by a photon with any kind of
polarization [with the exception for the set e = (0, 1) with zero
measure]. Even if a measurement does not destroy the photon
(this could be done using non-destructive measurements
suggested by V B Braginsky with collaborators [19]), it
would vary the initial polarization, according to the Wigner
formula (4.9.1). Thus, repeated measurements of a single
photon polarization are useless.

Recently, this feature of quantum measurements found a
surprising application in cryptography where it can be used to
discover ‘eavesdroppers’ [16, 17, 65—69]. In quantum crypto-
graphy, one sends coded messages using polarization mod-
ulation of very weak (better, single-photon) light flashes. One
can also use frequency modulation and take advantage of the
impossibility of measuring the a priori ‘color of a photon’, i.e.,
the spectrum of a one-photon wave packet [69].

The properties of photon polarization demonstrate that
quantum probability models have a specific feature (are ‘non-
Kolmogorovian®’). Namely, there are no elementary joint
probabilities for non-commuting variables, while there exist
marginal probabilities (see Sections 5.6—5.8).

Analyzing photon polarization, we observe another
principal feature of quantum stochasticity: it depends on
the parameters of the measurement devices and vanishes
for some particular cases. In the case of linear polariza-
tion, this occurs if the axis of the polarizing prism is
parallel to the initial polarization of the photon, y = 0/2.
This means that the system (the optical field) is prepared
in the eigenstate |£) of the operator under measurement.
In terms of projecting operators, in this case, one measures
the operator |/)(y|.

Let us briefly consider the polarization of two-photon
states |y/),, which are generated in the process of parametric
scattering [70]. In the general case, |}), =[|2,0)+
BI1,1) +7]0,2), where |a*+ |]> + |y|* = 1. Now, the polar-
ization vector e = (o, f§,y) has three components and the
projective space is a sphere S° in four-dimensional space.
One can also define the fourth-order Stokes parameters and
the degree of polarization P4 characterizing this state [63]. For
f = 1, the field is nonpolarized in the usual sense (P, = 0) but

there is hidden polarization (P4 = 1). In addition, the state
|1, 1) is polarization-squeezed [63, 64].

5.5 Correlated photons

Consider two light beams A and B, each one containing a
single photon. The beams can differ in frequency and/or
directions. In the general case, the state of such a four-mode
field can be represented as |y) =3, c;|Ai, Bj), see for
comparison Eqn (4.7.5). Here the subscripts 7,j = x, y denote
polarization, |4i, Bj) = |a) ,; ® |1) is the state with one
photon in the mode Ai and one photon in the mode Bj. If
two or more coefficients ¢; are nonzero, the WF does not
factor (Y # Y A¥g) and no WF exists for a single photon. In
other words, the separate photons do not have definite
polarization but there is a correlation in their polarizations.
Nonfactorable states of this kind, also called entangled states,
demonstrate the EPR —Bohm paradox [22, 38 —40, 56].

Let, for instance,

_ |Ax, By) — |Ay, Bx)
7 .

W) (5.5.1)

In a more detailed notation, this state can be represented in
the form (]10,01) — (01, 10)) /v/2.

Consider the experimental scheme in Fig. 4. Unlike the
scheme in Fig. 3, it includes an additional detector for the
measurement of the Stokes parameters and a two-photon
source. This scheme allows one to measure the Stokes
parameters Sz for two photons (Z = A4, B; k = 0—3). From
Eqn (5.5.1), it follows that (Sz) = 1, (Sz) =0, P =0, i.e.,
the photons are completely depolarized, and in each beam,
repeated trials give photocounts randomly in one of the two
detectors, no matter what polarization transformers T4 and
Tg are installed before the polarization prisms.

At the same time, from Eqn (5.5.1) it follows that
SaSpc|Y) = —|¢), ie., |y¥) is an eigenvector for all three
products of operators S 4. Sgr. Hence,

(SuSp) = -1 (k=1,2,3). (5.5.2)

The form of Eqn (5.5.1) and the property (5.5.2) are invariant
in any basis; for instance, in a circular basis,
W) = (4", B~) — |4~,B*)) /2. According to Eqn (5.5.2),

T ==
s Das
— e
L >=>

Figure 4. Schematic plot of an experiment demonstrating the absence of a
priori polarization for single photons. The source S sends pairs of
polarization-correlated photons to two detecting devices, A and B. In
each trial, one of the two detectors in each device gives a photocount with
equal probabilities. Photocounts in the two devices manifest a certain
correlation. This correlation cannot be quantitatively described in terms of
classical probability models.
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there is complete (anti)correlation: if some component of the
Stokes vector is measured in both beams, i.e., the polarization
transformers are identical, Ta = Tp, then s4r = —spi. For
instance, if observer A measures Sa; and obtains sa; = +1,
i.e., a photocount occurs in the upper detector in Fig. 3, then
observer B surely obtains sg; = —1. Opposite detectors, the
upper one in A and the lower one in B, and vice versa, always
‘click’ simultaneously, regardless of the basis where the
Stokes vector is defined. In other words, the corresponding
conditional probabilities are equal to unity (see Section 4.8).

It is often supposed that this correlation demonstrates
‘action at a distance’ or ‘nonlocality’ in quantum phenomena.
According to the hypothesis of partial reduction (Section 4.8)
and the concept ‘measurement is preparation’, if a photon is
registered by detector A, which measures the x-polarization,
then the state of the field (5.5.1) is projected onto the vector
(Ax|, so that photon B is instantaneously put into a state with
a certain polarization |By). At the same time, if detector A
measures right circular polarization, then photon B instanta-
neously gets left-polarized, i.e., the vector [i) = (|4, B~)—
|A=,B*))/V2 is projected onto (A*|. We stress that this is
nothing but an explicit interpretation of the property (5.5.2),
which can be neither verified nor disproved experimentally.
Note that in order to observe the correlation, one needs an
additional information channel between A and B, therefore,
the correlation cannot be used for information exchange.

Now, let observer A measure S; and B measure S,.
According to  Eqn  (L1), SaiSe2l¥) = (|4x, Bx)+
|4y, By))/v/2. This vector is orthogonal to |i)), therefore,
(Sa1SB2) = 0. There is no correlation in the signals from the
detectors; the upper and lower detectors in Fig. 4 ‘click’
independently. Similarly, (Sa>Sgi) =0. Thus, both obser-
vers can control the correlation if they independently change
the parameters of Ta and Tg. This result seems at first sight
unusual: how can rotation of a plate at point A influence the
signal at point B?

However, classical models can give qualitatively similar
controlled correlations. The difference between classical and
quantum analogues is only quantitative [56]. Recall that the
classical description of a nonpolarized wave (Section 5.3)
implies that the wave can be considered as completely
polarized over short time intervals. At short intervals, the
Stokes vector S(7) has definite directions, and it is time
averaging that makes <S(z)> = 0. Let us consider for clarity
that both photons in Fig. 4 are emitted with certain
polarizations, described by the Stokes vectors S, or by the
polarization vectors ez, and these polarizations change
chaotically from trial to trial. Since, in accordance with Eqn
(5.5.2), all three components of the Stokes vector have
opposite signs for the beams A and B, the two Stokes vectors
are oppositely directed, S, = —Sg, and the polarization
vectors are orthogonal, (ex -eg) =0. The two depicting
points on the Poincaré sphere are placed oppositely, i.e., if
the A photon is x-polarized, then the B photon is y-polarized,
and so on.

Radiation with similar properties can be obtained by
means of two ideal lasers A and B generating polarized
beams with equal intensities. Both beams pass through
polarization transformers, which are controlled by a com-
mon random number generator, in a way that provides
orthogonality: eg(7) L ec(z). As a result, the points depicting
polarization cover the whole Poincaré sphere; any polariza-
tion of the beams A or B has equal probability, but the Stokes
vectors for A and B are oppositely directed, Sy = —Sg. There

is complete ‘anticorrelation’ of random polarizations. Thus,
we obtained a classical analogue for the property (5.5.2) of the
state (5.5.1). (Here, instead of averaging over |i}), we used
classical time or ensemble averaging.)

However, this classical statistical model with the a priori
photon polarization is inconsistent with quantitative predic-
tions of the quantum theory and with interference experi-
ments. Consider a simplified version of the scheme in Fig. 4,
where polarization prisms are replaced by polaroids (analy-
zers) completely absorbing light with a certain polarization.
The photons are registered by two detectors with polaroids at
their inputs. Both polaroids are oriented at the same angle
%A = xp =  to the x axis. From (e} - eg) = 0, it follows that
each time, only one of the detectors ‘clicks’, A or B, i.e., the
probability of a photocount coincidence pap(ya,xp) =
paB(y) = (mamsg) is equal to zero for any y. (The parameter
m is set to unity if a photocount occurs and zero if there is no
photocount.)

At the same time, a complete absence of coincidences
contradicts the classical principles. Indeed, let, for instance,
7a = yp = 0, then, from time to time, photons with polariza-
tions 0x/2 = 445° and 0p/2 = —45° should both pass
through the polaroids. This paradox can be considered as a
consequence of our assertion that each photon has a priori
polarization; as a result, the probability of a photon passing
through a polaroid obeys the classical Malus law p, =
cos?(0a/2 — 7).

Now let 7 — 7 = ¢. From {mamp) = |{1a, z5l¥)|* and
lx) = cosy|x) +siny|y), it follows that in the state (5.5.1),
(mamg) = (1/2)sin* ¢ = (1/4)(1 — cos 2¢). This is an exam-
ple of polarization two-photon interference with the visibility
V equal to 100%. In particular, for ¢ =0 we obtain
(mamp) = 0, i.e., coincidences are completely absent.

On the other hand, analogous classical models for
intensity interference lead to a photocurrent correlation of
the form (iaip) ~ 1 — Viias €08 2¢p, where |Veps| < 1/2. The
point is that the interference visibility 7 is determined by the
relation between the moments Gy, G,,, and G,, at the input
of the interferometer [37]. In the classical theory,
Gy = (a*2d?), G,y = (b*?b%), Gy, = (a*ab*b), and the exis-
tence of the joint probability distribution for the field
amplitudes a, b leads to the Cauchy—Schwarz inequality
(Gx),)2 < GGy, limiting the maximal visibility V. In the
quantum case, one should operate with the normally ordered
moments G, E(lHaTaTaaN/), Gy = (zp\aTbTabW), which
cannot be put into correspondence with some joint prob-
ability distribution. In particular, for the state (5.5.1), the
corresponding inequality for quantum moments is violated,
Gy =1 and G =Gy, =0. In this case, one speaks of
nonclassical light (Section 4.6). Thus, the paradox of
coincidence suppression, similarly to many other quantum
paradoxes, is caused by the absence of joint probabilities for
non-commuting operators.

In Section 5.4, we came to the conclusion that a single
photon can be considered as having a certain polarization,
i.e., for the case of pure one-photon state preparation, the
concept of a priori polarization has an operational sense
(although it is impossible to measure the polarization of a
single photon). For the experiment with two polarization-
correlated photons, this is not so. Here, only the whole two-
wave field is in the pure state (5.5.1); the polarization of
a single wave is described in terms of a mixed state (of
the second type, see Section 4.10). In each beam, all
three observable Stokes parameters are equal to zero,
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(Sz1) = (Sz2) = (Sz3) = 0, i.e., the radiation is completely
depolarized. In the case of a ordinary mixed one-photon state,
this could be explained by random variations of the polariza-
tion parameters from trial to trial; however, a 100% visibility
of the interference pattern contradicts this explanation. Here,
the concept of a priori polarizations of two photons has no
sense.

One can also prepare photon pairs correlated in frequency
and wavefront structure [57, 71, 72]. In this case, it makes no
sense to speak about the a priori spatiotemporal form of the
wave packets corresponding to separate photons. Thus, an
evident concept of a photon as a ‘real” wave packet with a
certain form and polarization contradicts the quantum theory
in the case of ‘nonclassical’ light.

5.6 Negative and complex ‘probabilities’

Let us return to Fig. 3. Let the input field be periodically
prepared in some one-photon state. The prism is oriented at
the angle y = 0 to the x axis, i.e., one measures the first Stokes
parameter S. In each trial, there is a ‘click’ in the upper or
lower detector. Let the random variable S take the value
s1 = +1 for a ‘click’ in the upper detector and the value
sy = —1 for a ‘click’ in the lower one. One can imagine a
colored lamp that is governed by the output pulses of the
detectors and flashes green ats; = +1andred ats; = —1. Let
us forget about the photons and polarizations and try to make
a phenomenological description of the events. The detector is
considered as a ‘black box’ with an input aperture and a lamp.
A sender generates a sequence of signals with stationary
statistics characterized by some probability p;(s;). For a set
of trials, the result can be written as a sequence of bits of the
form (++ —+ — — —+...). From this sequence, one can
determine the probabilities p; (+1), pi(=1) =1 — p;(+1) and
the Stokes parameter (S1) = pi(+1)— pi(—1) =2p;(+1) — 1.

According to the theories of hidden variables, there is no
actual stochasticity in reality. Therefore, each signal contains
information about the forthcoming value of s; and about the
detector that should ‘click’ in this trial. Similarly, the
trajectory of a Brownian particle is considered as pre-defined
by the initial conditions and the dynamic equations of motion
for separate molecules. Since the variables are ‘hidden’, we
only can introduce some probability p;(s;), which ‘actually’
results from averaging over a variety of hidden variables.
[One can also assume the hidden variables to be random, then
p1(s1) plays the role of a marginal distribution given by
summation over the multi-dimensional distributions for the
hidden variables [38].] Thus, we suppose that the signals have
some a priori property Sy, which randomly varies from trial to
trial. Let us call this assumption the postulate of a priori
existing observables.

Let us now rotate the prism in Fig. 3 by 45°, i.e., let us
measure Sy. A set of trials gives a new distribution ps(s2),
which, evidently, also characterizes the signals sent to the
detector. Indeed, the parameters of the sending device did not
vary while we rotated the prism. (In principle, the prism can
be rotated after the signal leaves the sender. This is the well-
known method of delayed choice suggested by Wheeler.)
From the viewpoint of hidden variables theory, the signals
have at least two a priori properties S; and S;. These
properties determine which detector ‘clicks’ in each of the
two options in Fig. 3. (Each polarization transformer should
be characterized by its own random value but for our
purposes, two variables are enough.) The signals should
carry information about the outcome of any possible trial.

For instance, the source can send the command (4—). This
command makes a type-1 detector (measuring S;) to give a
green flash, and a type-2 detector (measuring S»), a red flash.
A series of signals is a sequence of commands of the form
(++), (+=), (=+), or (=—). For a stationary source, these
commands should occur with certain probabilities p(s;,s2)
(for comparison, see the model with two coins in Section 3.4).
Both variables, s; and s,, have certain values +1 or —1 no
matter whether they are observed or not.

However, this joint distribution cannot be measured: in
each trial, only a single polarization transformer is inserted
before the detector, and one of the two commands is ignored.
If the signals were not single-photon ones, they could be
‘cloned’, i.e., divided between two channels and measured by
two independent setups. It is also impossible to perform
repeated measurements on a single photon: according to the
projection postulate (4.7.2) or the Wigner formula (4.9.1), the
first measurement changes the state of the field, so that one
cannot observe the a priori values s, and s, in a single trial.
Similarly, the spin projections ;. of a single particle cannot be
measured simultaneously.

Thus, with the help of an experiment with two types of
detectors, one can formally introduce the concept of a
nonmeasurable joint distribution p(s;,s;) for two random
variables S, S, observed in turn. This corresponds to the
common classical viewpoint, which implies that all observa-
ble properties of objects exist a priori, i.e., before the
measurement.

Itis also impossible to calculate four probabilities p(sy, s2)
in the framework of the quantum theory: there is no
appropriate algorithm for such a calculation. The operators
Sy and S, do not commute; hence, they have no common
eigenstates and the Born postulate (4.7.1) is not valid.
However, one can first calculate the averaged products of
non-commuting operators (quantum moments) and then
express the probabilities in terms of moments using the
algorithms of classical probability theory [38, 56]. It should
be noted that the product of two non-commuting Hermitian
operators is non-Hermitian; therefore, the moments and the
‘probabilities’ calculated via the moments can take complex
values.

This procedure can be illustrated by a simple example. Let
the field be prepared in a one-photon state with arbitrary
polarization, [y} = a|x) + f|y). Suppose that in each trial, a
photon has a priori components of the Stokes vector sy, 53,
equal to +1 or —1. Let us introduce two random variables S,
S, taking these values with some probabilities p(sy, s5). In the
classical theory, elementary probabilities are related to the
moments by Eqn (3.4.3), which leads to the constraint (3.4.4).
In particular, the following inequality should be satisfied:

(8152) = (S1) +(S2) — 1. (5.6.1)

Using (I.1), we find the nonzero moments in the state |i):
(8283) = (8352)" = (515283) = (818382)" = i(S1),
(S381) = (S153)" = (528581) = ($251S3)" = i(S5),
(S18) = ($281)" = (535155) = (S35,51)" =i(S3). (5.6.2)

Here, the Stokes parameters (S ) are defined in Eqn (5.3.4) in
terms of o, . For instance, let ¢ = 0, 6 = 45° (the light is
polarized linearly at an angle 22.5° to the x axis). Then
(S1) = (Sh) = 1/v/2, (S1S,) = (S3) =0 (see Fig. 2). As a
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result, inequality (5.6.1) is not satisfied and the probability
p(—=1,—1), according to Eqn (3.4.3), is negative, p(—1,—1) =
(1/4)(1 — v2) = —0.1.

In the general case, a question arises: “which sequence of
operators in quantum moments gives a proper correspon-
dence with the classical theory?”” According to Eqn (5.6.2),
the symmetrized expression turns to zero,

1
3 ((S152) + (S281)) = Re((S152)) = 0.

The normally ordered moment (:SS,:) = (S1S2) —i(S3) is
also equal to zero. As a result, Eqn (3.4.3) takes the form

P(Shsz) = 1 (1 +S1<Sl> +.S‘2<Sz>) .

; (5.6.3)

Then the probability of the event (s; = s, = —1) in the state
[y) should be

p(=1,=1) =2 (1 = (S1) = (S2))

=—(1—cos0 —sinbcos o). (5.6.4)

N N

This expression takes negative values for certain types of
photon polarization; therefore, it cannot be considered as a
probability.

If we choose the antisymmetrized expression

w =1Im((S152)) = (S3),

Eqn (3.4.3) takes the form

1

Z (1 + 51 <S1> + S2<S2> + S1SQ<S3>) . (565)

p(S17S2) =

This expression also takes negative values for some polariza-
tions. Generalization of this result to the case of two or more
photons belonging to several beams gives a general approach
and a ‘minimal solution’ to certain paradoxes known in
quantum optics [38].

According to this example, it makes no sense to suppose
that in each trial, a one-photon field contains information
about the outcomes of any possible experiments of measuring
its polarization, and about the detector in Fig. 3 that would
‘click’ in this trial. Such a viewpoint contradicts the quantum
theory since it leads to negative probabilities. In the general
case, quantum moments do not correspond to any elementary
probability distribution; in this sense, they are not ‘proper’
moments and the model is non-Kolmogorovian. Recall that
the operator S| has the sense of the photon number difference
and the operator S,, for the case of one-photon states,
corresponds to the cosine of the phase difference for the
amplitudes of fields in polarization modes. Therefore, these
properties of the fields cannot be assumed to have a priori
values. If the state of a photon is given by the polarization
vector (a, ) or by the Stokes vector ((S1), (S2), (S3)), i.c., the
preparation procedure is known, this does not mean that one
knows the properties of the photon. It is only possible to
predict the statistics of future experiments with a large
number of identically prepared photons. These statistics
cannot be described in terms of joint probabilities p(sy,s2)
OYP(SuSL 53)-

However, one cannot confirm this conclusion experimen-
tally since non-Hermitian operators are non-observable. In
the forthcoming sections, it will be shown that for 4-mode and
6-mode models, a similar controversy between the classical
concepts and the quantum theory can be formulated in terms
of Hermitian operators and observable moments.

5.7 Bell’s paradox for the Stokes parameters
With the help of the experimental setup shown in Fig. 4,
violation of the famous Bell inequality [38 —40, 42] can be
demonstrated. The source simultaneously sends photons to
two remote detectors A and B. At each trial, the field is
prepared in the two-photon state (5.5.1), so that there exists a
correlation between the properties of the photons from each
pair [see Eqn (5.5.2)].

Let the detector A measure either 4 = Sa; (x=0) or
A’ =8Sp, (y=45°), and the detector B either B=
2712(Sp; + Spa)  (y=22.5°) or B'=2""2(Sg — Sp)
(y = —22.5°). Four series of experiments are carried out,
each one containing N trials. In each trial, one measures one
of the four pairs (4, B), (4’,B), (4,B’), and (4',B’). Each
trial yields a pair of numbers (a;, b;), where a;, b; = +1. From
the 4N numbers obtained in this experiment, one calculates
the following N numbers:

1
Ji= B (@ibi+ ay, byyi + @vsibay = Qiy by ) - (5.7.1)

Further, one finds the arithmetic mean,
N
(F)y=N - Z Ji
=1

The measurement procedure and a computer simulation of it
are described in detail in Ref. [56]; real optical experiments are
described and analysed in Ref. [42].

For N — oo, one can assume (F), — (F), where

1
=3(AB+A'B+4B'—4'B)

= % [A(B+B')+ 4'(B— B")]

=2712(Sx1S81 + Sa2Sm2) s (5.7.2)
and the angular brackets denote averaging either with respect
to the WF (5.5.1) or with respect to some classical set of
probabilities p(a,b,a’,b’).

In the quantum case, from Eqns (5.5.2) and (5.7.2) it
follows directly that

(F) %(¢|AB+A’B+AB/—A’B’W):—\/5.(5.7.3)

quant —
Note that in the quantum theory, (Y|F|y) does not
correspond to the standard definition of an observable mean
value given by the Born postulate (4.7.1), since the operator F
contains non-commuting variables that can be only measured
in different trials.

According to the classical hypothesis of hidden variables,
it is assumed that there exist 2% = 16 elementary probabilities
pla,b,a’,b") determined by the properties of the light source.
The mean value of a random variable F can be expressed in
terms of the elementary probabilities as

<F>clas: p(a,b,a/,b')f(a,b,a/,b').

a,bya’,b'=+1

(5.7.4)
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Here

1

fla,b,a’ b’y ==(ab+a'b+ab’ —a'b’)

N —

la(b+b") +a'(b—b")]. (5.7.5)

This function of four arguments takes only the values +1: for
b=0>b', f=ab==*1, and for b = —b’, also f=a'b = =£1.
Therefore, the random variable f(a,b,a’,b’) can only take
values fimin = —1 or fnax = +1, in contrast to the measured
variable f; = 0, £1, +2. For any classical random variable F,
the mean value lies within the interval [fmin, £, ], i-€.,
Jmin < (Fgas < fmax. This leads to the Bell inequality in the
form suggested by Clauser and Horne [40]: |[(F)g, | < 1.
(Indeed, the modulus of a sum cannot exceed the sum of the
moduli, and hence, it follows from f= £1,p > 0and > p =1
that [(F)y,| < Xplfl=Xp=1)

The quantum value [(F)g.q| = [(W[F|¥)| = V2 in the
state (5.5.1) exceeds the classical limit (unity) by 41%. This
result can be formulated in a more general form: for some
quantum models, certain combinations of moments
(F) = (Y|F |) violate inequalities of the form [see Eqn

quant —

(3.3.4)]

Smin < (F)quant < fmax (5.7.6)

where [fmin, fmax] 18 the interval of values taken by the
corresponding classical variable. The Bell inequality

[(F)aw] = 31(4B) + (4'B) + (4B") — (4'B) | <1

is one of the classical restrictions imposed on the moments by
the requirement that the elementary probabilities correspond-
ing to the chosen set of moments should be non-negative [for
comparison, see Eqns (3.4.4), (5.6.4)]. For the conditions
(5.7.5) to be violated, the operator function Fcan be chosen in
several different forms, apart from Eqn (5.7.2) [38 —40]. In all
versions, violation of Bell inequalities demonstrates that the
quantum description is incompatible with the classical one.
This paradox is sometimes called Bell’s theorem. In the next
section, another example of restrictions imposed on the ‘true’
moments in the quantum model is considered.

How can one solve Bell’s paradox? Let us consider the
following three possibilities.

(1) One rejects the assertion that non-commuting opera-
tors have a priori values. In this case, the elementary
probabilities p(a,b,a’,b’) and the mean value }, pf have no
physical sense. At the same time, there exist marginals of the
form p(a, b), which indicates that the quantum model is non-
Kolmogorovian.

(2) One can admit the existence of negative probabilities.
This removes the restriction fmin < (F), < fmax- The prob-
abilities p(a,b,a’,b’) can be formally expressed via the set of
quantum moments in the state (5.5.1) by means of classical
algorithms like (3.4.3) [38, 56]. Some of the probabilities
obtained this way indeed turn out to be negative, for
instance, p(+1,+1,—1,—1) = —2-7/2. However, negative
probabilities have no operational sense.

(3) One can assume that the orientation of the prism at
point A influences the photocounts at detector B, and vice
versa. It is often supposed, in accordance with a popular
approach to EPR correlations (see Sections 4.8 and 5.5), that
detecting a photon at point A causes the reduction of the WF,

so that the resulting state depends on the position of the
prism. The reduction is supposed to be equivalent to changing
the properties of the photon B. This nonlocality assumption
doubles the number of arguments of F. Now, F should be
written in the form F=(1/2)(4B+ A'B'+A"B"—
A"™B"™). In this case, [f=0,£1,4£2, so that
—2 < (F)yas < +2, and the quantum mean value
(F) quant = —+/2 lies within the classical interval [~2, +2].

The ‘minimal’, i.e., the least speculative interpretation
may be the first possibility (see above). From this viewpoint,
violation of Bell inequalities indicates that both the notion of
elementary probabilities p(sai, Sp1, Sa2, SB2) and the notion of
a priori values for the Stokes operators in four modes 4., 4,
B,, B, have no physical sense. In contrast to the two-mode
case (Section 5.6), here the violation of the Bell inequality can
be demonstrated experimentally.

5.8 Greenberger — Horne — Zeilinger paradox
for the Stokes parameters
Let us add a third channel to the scheme in Fig. 4. The setup
demonstrates the well-known Greenberger — Horne — Zeilin-
ger (GHZ) paradox [73] (see also Refs [38, 74]). In each trial,
the source simultaneously sends a photon to each one of the
three remote detectors A, B, and C. The detectors measure
either S1 (y = 0) or Sy (x = 45°). Let A = Sa;, A’ = Saz, and
similarly for the channels B, C. Each trial results in the
registration of three values. For instance, for measuring
(4,B',C") = (Sa1, Sp2, Sc2), i.€., for y5 =0, yg= yc= 45°,
the result of the trial may be (a,b’,¢’) = (+ + —), so that the
product ab’c’ is equal to —1. Note that the operators Sz, and
S, do not commute and are measured in different trials.

Let the field be prepared in a three-photon state [for
comparison, see Eqn (5.5.1)],

) = B alH)sl+)c +1=)al=)sl-)c
\/—2' )
then the quantum theory (see Appendix I) predicts the
following correlation:

(5.8.1)

ab'c’'=—-1, a'bc’'=-1, a'blc=-1, abc=+1.

(5.8.2)

At the same time, all the first moments (S;) are equal to zero,
i.e., separate photons are not polarized. Equations (5.8.2)
describe full correlation between the triples of measured
values. This means, for instance, that the observable
AB'C’ = S1aS>8S>c does not fluctuate, i.e., in each trial,
the product of three numbers ab’c’ is always equal to —1.
Repeated measurements with the same positions of the prisms
always give even numbers of ‘pluses’ (even numbers of green
flashes), i.e., the following triples occur with equal probabil-
ities:

(@b',c") = (++ =), (+=+), (= ++),(—— ).

The same is observed for trials where one measures A’, B, C’
and A’, B/, C. On the other hand, when measuring 4ABC (for
all three detectors measuring S;), one always obtains an odd
number of ‘pluses’,

(a';b'sc") = (= =+4),(=+ =), (+ = =), (+++).

Let us try to describe this experiment, which has not been
carried out as yet, from the viewpoint of ‘common sense’, i.¢.,
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in the framework of the classical probability model, with the
properties of the signals existing a priori. According to this
model, there exist six random dichotomous variables A4, 4’,
B, B', C, C’, which take the values a,a’,b,b’, ¢, ¢’ = 1. The
symbol {...) denotes classical averaging with respect to some
six-dimensional probability distribution p(a,b,c,a’,b’ c’).
In each trial, the source sends full information, i.c., a set of
six numbers +1. All six variables a,b,¢,a’,b’, ¢’ have some
definite values +1 or —1 no matter whether they are observed
or not. At each trial, these six numbers should satisfy the
quantum prediction of full correlation between the observed
triples. (Indeed, one can choose the position of the prism
while the signal is on its way to the detector.)

Thus, according to the theory of hidden variables, the
information sent by the light source should satisfy four
requirements (5.8.2) imposed by the quantum model, though
each one of the numbers a’, b, ¢, ... takes values with equal
probabilities. One can easily see that Eqns (5.8.2) are
inconsistent.  Let, for instance, the signal be
(a,b,c,a’,b’,c") = (= — — + ++), then the first three equal-
ities in Eqns (5.8.2) are satisfied while the last is not.
Moreover, no combination of the six signs can satisfy all
four observed correlations (5.8.2). This fact becomes clear if
one multiplies the right-hand parts and the left-hand parts of
all the equalities in Eqns (5.8.2). The product of the left-hand
parts contains all multipliers twice:

a'beab’cabe’a'b'c’ = (abea'b'c’)? = +1. (5.8.3)
At the same time, the product of the right-hand parts gives
(=1)*(+1) = —1. To solve this paradox +1 = —1, it is
sufficient to assume that the Stokes parameters Sz; and Sz,
have no a priori values, no matter whether they are observed
or not, and to take into account that all four equalities (5.8.2)
are tested in different trials (with different positions of the
polarizing prisms).

As a result, the distribution p(a, b, c,a’,b’, ¢') also has no
sense. In the classical model, 2°=64 numbers
pla,b,c,a’ b’ ¢’) form the set of elementary probabilities;
all  lower-dimensional marginal probabilities p(a),
pla,b’),..., are obtained from the elementary probabilities
by means of summation. Hence, if we assume that
pla,b,c,a’ b’ ¢’) do not exist, then all marginal probabil-
ities are undefined. However, all one-dimensional probabil-
ities like p(a) do have physical sense since they can be
measured directly. Hence, the above-considered experiment
cannot be described in terms of the Kolmogorov model: one
can measure marginal probabilities and the corresponding
moments while the initial six-dimensional elementary prob-
ability distribution has no sense. In other words, the quantum
moments (SjAS18Sic), (SiaSaeSac),... are not ‘true’
moments of some non-negative distribution; the problem of
moments has no solution, and the model is ‘non-Kolmogor-
ovian’. A formal calculation of p(a,b,c,a’,b’,¢") via the
quantum moments using the standard classical algorithm is
ambiguous and leads to negative probabilities, which have no
operational sense (see Section 5.6 and Refs [38, 56]).

Note that quite a different reasoning is commonly used for
solving paradoxes of this kind. It is believed that such
paradoxes prove the existence of ‘quantum nonlocality’: for
instance, one assumes that the position of the prism at point A
influences the values measured by the detectors B and C (see
Section 5.7).

Two interesting features distinguish the GHZ paradox
from Bell’s paradox. First, here one observes a full correlation

between the observables, and that is why no angular brackets
are used in Eqns (5.8.2). Second, instead of the violation of a
classical inequality, here we obtain violation of a classical
equality.

Formally, the GHZ paradox can also be defined as a
violation of the classical restriction for the moments (5.7.6),

fmin < <F>clas Sfmax

F=F F,F;F, = AB'C' - A'BC' - A'B'C- ABC. (5.8.4)

The classical model is based on commutative algebra, so that
F=(ABCA'B'C')* = 1,i.e., theclassical variable F takes the
only value fiin = fmax =fo =1 and (F)_,,, = F = 1. On the
other hand, according to Eqn (I.3), the mean value for the
corresponding quantum operator F in the state (5.8.1) is
(F)quant = (W|F[Y) = =1 # fo. (For more detail, see Ref.
[38].)

5.9 ‘Teleportation’ of photon polarization

A surprising possibility of copying the quantum state of an
individual system and passing it to another system, iso-
morphic to the first, has been discovered by Bennett et al.
[75]. In contrast to the reversible exchange of g-bits (5.1.1),
here the initial system influences the final one by means of a
classical control channel. In fact, the ‘quantum teleportation’
suggested in Ref. [75] is a method of preparing an individual
quantum system in a given state. It is essential that the
information about the state to be prepared exists in the
quantum form, i.e., it is encoded in the state of another
system. This means that the copying does not reveal all the
information about the system; otherwise, some part of the
information would be lost. (Recall that one cannot measure
the polarization of a photon.) Therefore, only some part of
the information is transformed into the classical data
consisting of observable macroscopic events. The idea
suggested in Ref. [75] was further developed in Refs [76—81].
The first experiments in this direction are described in Refs
[80, 81].

To explain the effect of polarization copying, let us
consider a simplified and idealized scheme of the experiment
performed in Ref. [80] (Fig. 5). In three quasi-monochromatic
light beams A, B, and C that are fed to the input of the optical
system, photons (denoted by circles) appear simultaneously,
in ‘triples’. The photons to be copied (A) are fully polarized.
The photons B and C are depolarized but there is an ideal
correlation between their polarizations (Section 5.5). The
beams A and B are mixed by the nonpolarizing beamsplitter
BS with transmission 50%, therefore all three beams become
polarization correlated. This correlation is analysed by means
of two polarization transformers T, T, the polarizing prism
Pc in the C beam, three photon counters D, and the
coincidence circuit CC.

In fact, this scheme is a modification of the polarization
intensity interferometer operating in the photon counting
regime. (For comparison, see the description of two-photon
interferometry, Section 5.5.) In the experiment [80], the rate of
triple coincidences N was studied as a function of T and Tc,
and the time delay 7 in one of the three channels. (The
interference visibility decreases with the increase of 7, as
usual.)

The three-photon interference observed for the scheme in
Fig. 5 manifests a remarkable feature: the rate of triple
coincidences N depends similarly on the orientations of Ta
and T, as if both transformers were placed one after another
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Da CC

€A

Figure 5. Simplified and idealized scheme of experiment [80] and the
explicit model of the polarization copying e — ec. At the input, each of
the beams A, B, C contains a single photon (circles). Bold lines show the
trajectories of the photons. Photon A has an arbitrary polarization es. The
base vectors e, and e, are chosen so that e, = e5. Simultaneous detection
of photons by the detectors Da and Dg means that photons A and B did
not interfere at the beamsplitter since they had orthogonal polarizations,
es L eg. Photons B and C are prepared in states with orthogonal
polarizations, eg L ec, therefore, ec L es. Here, Ta, T¢ are polarization
transformers, Pc is a polarizing prism, D, are detectors, CC is a triple
coincidence circuit, N is the number of triple coincidences during some
time interval, and x and y denote polarization.

in one of the beams or as if the polarization of photon A at the
output of T4 were transferred to photon C at the input of T¢:
ey — ec. In other words, the phase and visibility of the
interference pattern observed in triple coincidences is deter-
mined by the product of the Jones matrices TcTa. If Tc
corresponds to the transformation inverse to Ta,
(TcTa = 1), then N depends neither on Ta nor on T¢, and
the interference visibility is equal to zero.

One can consider the detectors D¢y, Dc, and the
transformer Tc as a device for measuring the polarization of
C-photons (see Fig. 3), but the counting rate of the ‘singles’ in
Dc;is independent of the polarization since the C-photons are
not polarized. However, ‘conditional’ photocounts in Dg;
(photocounts simultaneous with those in Da, Dg) manifest
full polarization. For instance, by means of the dependence of
N3 on T¢, one can measure the polarization vector for A-
photons e = (o, ), or the Stokes vector (S,), which is
almost the same. From time to time, both photons are
registered by one and the same detector Da or Dg. In such
cases, the polarization is not copied (see Appendix II).

In order to turn the interferometer into a device preparing
photons with the polarization copied from the initial photons,
an optical gate (modulator) M removing ‘spare’ C-photons
should be added to the setup. The gate can be controlled by
pulses from the detectors Da; and Dygy; in fact, it can replace
the triple coincidence circuit since it ‘blocks’ C-photons in
‘bad’ cases where two photons are fed to a single detector (and
also in cases where the nonideal detectors D4, and Dg; ‘miss’
photons). One can also use an additional polarization
transformer T, that would ‘improve’ the C-photon polariza-
tion in certain cases and thus increase the proportion of
‘good’ events from 25% to 50%. As a result, all photons
passing the gate and the transformer T/ (one half of all
photons) have polarizations coinciding with the initial
polarization of the A-photons: ec = ea. One can say that
the device prepares single photons with unknown polariza-
tion repeating the polarization of single A-photons.

There exists a more primitive analogous device preparing
photons with a given (but not copied) polarization using a
two-photon source and a gate. In this device, a detector
registering a photon opens the gate for the second photon
[82—84]. Note that the action of the amplitude modulator M
is described by a nonunitary transformation, in contrast to Ty
and BS, so that the photons passing through M should be
considered to be in a mixed state. The ‘teleportation’ ex — ec
occurs at best in 50% of all trials. The imperfection of the
detectors and other elements makes this proportion still
lower.

For the effect to be observed, the input field should be

prepared in a partially factored three-photon state
[W) = [¥)A|¥) e Photon A should be in a pure state,
[W)a = aldx) + Bl4y), (59.1)

so that a certain polarization vector ex = (o, f}), and the
Stokes vector (S), could be ascribed to it. These vectors can
be varied by means of the polarization transformer Ta. Here
|Ax) = |1) 4,10) 4, is a state with one photon per mode Ax.
Photons B and C should be prepared in an entangled
(nonfactored) state with full polarization correlation [see
Eqn (5.5.2)],

Bx,Cy) — |By, C
|l//>Bc:| X y>\/§| v, Cx)

(5.9.2)

(This was done in an experiment using spontaneous para-
metric scattering [85—87].) Each one of the photons B and C
has no a priori polarization, and they should be described in
terms of mixed states. Such two-photon states are called Bell
or EPR states [76]. Modes A and B should have equal central
frequencies, while mode C can have any frequency. All three
photons should be correlated in time at the point where they
reach the beamsplitter. Due to the initial correlation between
B- and C-photons and the action of the beamsplitter, all three
photons become polarization-correlated. The information
about the initial state of the A-photon, i.e., its polarization
vector ex = (a, ), is encoded in the triple correlation at the
output of the scheme.

In each trial, ideal detectors register the numbers of
photons n; equal to 0, 1, or 2. The total number of detected
photons is equal to 3, one of these photons being detected by
detector C. Any repeated trial results in one of 16 elementary
events with three photons randomly distributed among six
detectors. The probabilities of these events are obtained by a
standard calculation (see Appendix II). It is convenient to
describe the observed correlations in terms of the Schrodinger
representation and the effective WF for the C beam propor-
tional to the projection of the output WF |¢/’) on the vector
(Ax, Ay,

W)cer = V8 (Ay, Bxly') = | Cx) + BICy) - (59.3)
Here |y/’) is the WF of the whole six-mode field accounting
for the beamsplitter [see Eqn (I1.10)]. (For simplicity, we do
not take into account Tg.) Note that in a consistent theory,
the C beam should be described by a mixed state and no WF
can be associated with it (Section 4.10). Projecting W) ¢ o
onto the vector (Cx|, we obtain

|<CX|¢>Ceff|2 _ o ‘

Ay, Bx, Cx) =
p(Ay, Bx,Cx) 3 3
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Comparison between Eqns (5.9.3) and (5.9.1) shows that in
the chosen subset of events, the field in the C beam has the
same polarization properties as the initial A-photon. The
state of the A-photon (its polarization vector) seems to be
transferred from the A beam to the C beam, ex — ec. The
action of the transformer Tc on the chosen subset of events
can be described in terms of the effective function (5.9.3)
assuming that Tc transforms the vectors |Cj) [see Eqn (I1.9)].

The same ‘teleportation’ takes place for another 1/8 of the
trials, where photons A and B are registered by the detectors
Ax and By [see Eqn (I1.8a)]. The total share of ‘good’ events
can be increased to 1/2 if a controlled polarization transfor-
mer T, is inserted into the beam C [75]. This element should
provide the transformation § — —f [described by the Pauli
matrix gy, see Eqn (5.4.5)] if there are ‘clicks’ in the detectors
Day and Dy, or D, and Dg,. Now only for one half of all
events, where two photons get into a single output mode Ax,
Ay, Bx, or By, there is no ‘polarization copying’.

This experiment can be also described in the Heisenberg
representation: pj,, = iy, = (WINLN/N, W) (see Appendix
II). The optical scheme including the beamsplitter and the
polarization transformers is described by a transformation
matrix (the spectral Green’s function), ax — a;, = Y Grutn.
The optical scheme transforms the input moments, which can
be written as u — u’ = G°u. The matrix Gy, coincides with
the corresponding matrix in the classical theory; therefore,
transformation of the field statistics u — u’is described in the
quantum theory the same way as in the classical theory. The
only difference between the quantum and classical descrip-
tions is contained in the relative values of the input moments
u. This leads to the limited visibility of two-beam intensity
interference in the classical case, V' < 50% (see Section 5.5
and Ref. [37]).

The original paper by Bennett et al. [75] was entitled
“Teleportation of an unknown quantum state via dual classic
and EPR channels”. In the formalism used in Ref. [75], Bell
states similar to Eqn (5.9.2) were chosen as base vectors. Such
an approach ignores the cases where two photons get into a
single detector; it is not taken into account that a nonunitary
operation is necessary for excluding these cases. It is stressed
in the paper that the initial state is not measured but the
information about the state is split into two parts, the
quantum one and the classical one. In the optical case
(Fig. 5), the classical part includes the signal that controls
the transformer T(. in case of certain events; the quantum part
includes the photon C. The information sender is tradition-
ally called Alice. In addition to the input A photons, Alice has
a source of EPR-correlated photons B and C, the beamsplitter
BS and the detectors at the output of the beamsplitter. To
Bob, who operates the transformer T(, Alice sends the
photon C (using the quantum channel) and classical signals
with commands to set T = 1 or T = g,. Photon C, which
gets the state of photon A as a result of reduction and the
action of T¢, is sent further by Bob.

If it were not for the ‘bad’ events where two photons are
fed to the same detector, the limiting efficiency of the scheme
would be 100%. (This situation is specific for the optical case;
for fermions, such ‘bad events’ are forbidden by the Pauli
principle.) The idea of ‘teleporting’ the state of a two-level
system can be generalized to the case of more complicated
systems [60, 75—79]. One can ‘move’ information from the
field to atoms and back, see Eqns (5.1.1), (5.1.2). One can
expect that these possibilities will find applications in
quantum computing and quantum cryptography.

There are two possible interpretations for the effect
considered here.

(1) The effect of three-photon interference and teleporta-
tion is usually considered in terms of WF partial reduction:
simultaneous ‘clicks’ in two detectors Da and Dg cause the
reduction of the three-photon state into a one-photon one,
[¥"Yapc — W) The field or the detectors in the C beam
instantaneously know this due to some superluminal interac-
tion [80]; therefore, the effect is believed to be evidence for
‘quantum nonlocality’. It is supposed that the mathematical
procedure of projecting |yy') onto (Ay, Ax| in Eqn (5.9.3)
following from the Born postulate corresponds to some real
event caused by detecting photons at points Da, and Dgy.
The necessity for a gate or a coincidence circuit is ignored.

However, if a coincidence circuit is used, the detectors in
the beams A, B, and C are equivalent: one can assume that the
reduction occurs first in the detectors D¢; (in the absence of
the modulators M and T(). At present, the hypothesis of
instantaneous reduction is confirmed neither theoretically
nor experimentally. It is hardly consistent with the special
relativity theory, since the detectors can be placed at any
distance. In Appendix II, it is shown that the copying effect is
fully described in terms of a standard formalism with Born’s
correlation functions (4.7.1b). In other words, the idea that
the effect is caused by instantaneous reduction is redundant; it
is nothing more than a possible interpretation.

(2) In the framework of the ‘minimal’ interpretation, the
effect can be considered as a manifestation of the specific
correlation between the three light beams. Certainly, all
observable events do not violate the special relativity theory.
One can assume the information («, f§) , to be carried from the
input of the optical scheme to its output either by the WF of
the field ( — ', the Schrédinger representation) or by the
field operators (¢ — a’, the Heisenberg representation),
similarly to the case of a single polarized photon. If the
modulators T/ and M are not used, then the time sequence
for the three detectors is not essential, since the detectors are
separated by spacelike intervals (see Section 4.8). There is no
reason for selecting two stages in a triple photocount
occurring in the three detectors (first, two photocounts
cause the WF reduction, and then the new WF influences
the third detector). Neither the consistent theory nor the
experiment confirms this interpretation. Instead of introdu-
cing ad hoc ‘nonlocality’, it is more consistent to assume that
the quantum theory is non-Kolmogorovian and to neglect the
existence of a priori values (see Sections 4.5, 5.6—5.8). If
modulators are used, one can speak of the preparation of a
photon state in the C beam.

In its simplest version, the effect of polarization copying,
ex — ec, hasaclear (but not strict) explanation (see Fig. 5). It
follows from two well-known effects: the intensity antic-
orrelation in the output beams of the beamsplitter, A’ and
B’, and the polarization anticorrelation for the photons in the
initial beams, B and C (Section 5.5). Assume for simplicity
that all three photons A, B, and C have some a priori
polarizations ez and the corresponding Stokes vectors Sy.
These polarizations vary randomly from trial to trial.
Property (5.5.2) can be understood as an anticorrelation
between the directions of the Stokes vectors, Sy = —Sg, or
orthogonality of the polarization vectors, ep | ec (see
Section 5.5). Let us choose a basis with e, = e5 and assume
that according to Eqn (5.9.2), there exist only two events with
equal probabilities: either ey = e, and ec = e, oreg = e, and
ec = e,. In the first case, where eg = e, one should observe
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an anticorrelation between the photocounts in D and Dg,
since both photons should get into the same detector, either
into Dy orinto Dg. (This is the so-called effect of two-photon
interference or intensity anticorrelation at the output of a
beamsplitter, see Ref. [37].) Hence, if ‘clicks’ are observed in
both detectors Da and Dy, then the second case takes place,
i.e., ec = e, = ex (see the bold lines in Fig. 5).

Using this explanation, one can suggest a similar classical
method of copying polarization from one light beam to
another without measuring this polarization. Consider three
ideal lasers A, B, C generating polarized light beams, so that
beams A and B have equal intensities /y and frequencies .
The beams B and C are transmitted through polarization
transformers controlled by a common random number
generator in such a way that the orthogonality condition
eg(?) L ec(z) is always satisfied (see Section 5.5). As a result,
all polarizations of the beams B and C have equal probabil-
ities but their Stokes vectors have opposite directions,
Sp = —Sc.

Further, let the beams A and B be mixed at a beamsplitter
and the intensities 7, (¢#) and J§(¢) in the output beams A’ and
B’ be measured by two analogue detectors. Because of the
fluctuations of the vector eg(z), there are also fluctuations in
the intensities 7, () and Ij(r). These fluctuations are antic-
orrelated, since the total intensity is preserved,
I (t) + I§(t) = 21y. At the moments when I (¢) is equal to
Iy (1), to a given accuracy Al/ Iy, there is no interference of the
beams at the input of the beamsplitter, and this means that
their polarizations are orthogonal, ey | eg. In this case,
eg L ec also, so that ey = ec. At such time moments, the
gate blocking the C beam is automatically opened. As a result,
we obtain light pulses with random intervals and random
durations but with the frequency w¢ and polarization ea.

A principal drawback of this model distinguishing it from
the quantum one is the limited accuracy of copying, which is
inversely proportional to Al and to the relative time of gate
opening (the efficiency). In the quantum case, an ideal setup
provides exact copying.

6. A particle in one dimension

In Section 5.2, we considered a trapped atom and showed how
its internal degrees of freedom can be prepared in a given state
by means of cooling and a resonant laser pulse. For an atom
cooled in a trap, its external (kinetic) degrees of freedom are
also prepared in a definite (ground) stationary state
Wo(r —rp), with the shape and the length of the packet ag
being determined by the trap potential V(r —ry). Here ry is
the classical coordinate of the trap center. Switching off the
trapping potential at the moment 7y, one prepares the free
particle in the state y(r, 79) = ¥, (r — ro) with some localized
form of the packet, with known moment of preparation ¢y,
and localization domain ro 4+ ay. The state is no more
stationary and the packet starts to ‘diffuse’. The mean energy
E and the momentum of the particle are equal to zero but they
can be increased using classical fields (gravitational, electric,
or optical fields). We stress once more that in this process, no
measurement is performed on the quantum system: the
particle (or its WF) is influenced but its back action on the
measurement devices is not observed. An experimenter
measures (via comparison with references) only numerical
values of the classical parameters rg, #y, V(r —ry) for the
preparation device.

As another example, one can consider a short field pulse
with £ =1 keV applied to a metal. This pulse causes cold
emission of electrons with relatively well-defined energies.
Additional filtering in space and velocity allows one to
prepare free particles in sufficiently well-defined (but mixed)
states.

6.1 Coordinate or momentum measurement

How does one actually observe signals from the microworld
in a laboratory? For detecting single particles, one uses
scintillators, photosensitive films, Wilson chambers, Geiger
counters, ionization detectors of atoms, photomultipliers
(PMTs) and similar devices. Probably, a common feature of
all these devices is the transfer of an energy quantum from the
particle to the atoms of the detector and further amplifica-
tion, an ‘explosive’ process leading to a macroscopic event [4],
which can be the appearance of a droplet in a super-cooled
vapor due to the thermodynamic instability or the appearance
of an electron avalanche in a PMT due to the accelerating
field. It seems reasonable to place the border between the
quantum and classical parts of the setup (Section 4.1) after
some ‘seeding’ atom in the detector and to consider the energy
of this atom as the ‘readout observable’. In this approach, the
macroscopic event registered in the experiment is supposed to
be caused by the excitation or ionization of one of the atoms
of the detector. The well-known Glauber model for the
optical photons detection [20], which is successfully used in
quantum optics, is also based on this scheme.

Some devices detect only the space coordinate r; or a
sequence of coordinates (a track) for macroscopic objects,
such as droplets, silver particles, and so on. Devices with fine
time resolution generate short electric pulses and this way fix
the moment #; of detecting a particle. Thus, one can state that
only some events (r;,#;) in space—time are actually regis-
tered. These events are measured using macroscopic rulers
and clocks and assumed to be the coordinates of the particle
under study. (Of course, any measurement of continuous
parameters has restricted ‘laboratory’ accuracy, which should
be distinguished from the principal quantum uncertainty.)
Further, using these coordinates, one determines (indirectly,
from theoretical considerations) other parameters of the
particle, such as the energy, momentum, spin, etc. (see the
scheme in Fig. 1).

Following Glauber, let us consider the model of detecting
a charged particle, for instance, an electron. Let a massive
detecting atom be placed at a fixed point x;. Due to the large
mass of the detecting atom, the coordinate of its center of
mass x; can be considered as a c-number. Suppose that the
particle is prepared in some pure state (x|y,) = ¥(x, 1),
where 7 is the time moment of preparation. The detecting
atom is in the ground state |g), and the state of the whole
system (particle + atom) has a factored form, |¥o) = |¥)|g)-
In each trial, time is measured with respect to a new moment
to = 0. As the ‘readout observable’ (see Section 4.1), we
choose the operator of projection on the excited state of the
detecting atom, Pj(e) = |e){e|. According to the Born
postulate (4.7.1), this Heisenberg operator averaged with
respect to the initial WF gives the probability of the event
‘the atom at point x; at time ¢, is in the excited state’:

pile, 1) = (Yol Pi(e, 11)|Wo) - (6.1.1)

This function can easily be calculated in the first order of
the perturbation theory with respect to the interaction energy
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for the particle and the atom, V| (for more detail, see Ref.
[58]). Further, suppose there are many levels (or many atoms)
with different transition frequencies w.. We integrate the
probability p;(e, 7;) over the transition frequency w. under
the assumption that the frequency band Aw. is infinitely
broad. This classical procedure of probability summation
describes a broad-band detector with infinitely fast response
and indirectly takes into account relaxation processes.

It is convenient to introduce the differential probability of
the detector excitation per unit time (the transition rate),
w = dp/dt. The excitation rate for a detector at point x;
passed by a particle takes the form

wxr, 1) =y (Yol VEX, 1) W)

- de W (x, )V ()] (6.1.2)

Here 1, is the detector efficiency, V;(x) is the potential of the
interaction between the particle and the atom. This potential
has either a maximum or a minimum at point x = x; and
plays the role of the ‘instrumental function’ determining the
inaccuracy of the measurement Ax = a;, where q; is the width
of V] (x)

Note that Eqn (6.1.2) could be obtained at once from the
formula w = (Y| P1]yy) [see Eqn (6.1.1)] by choosing the
integral

P = VA [ Vi) (e

i.e., a weighted sum of elementary projectors |x)(x|, as the
‘readout observable’. However, this choice has to be verified,
which is done by means of the present calculation.

For a; < ay, where qy is the width of the initial packet
¥(x, ty), one can assume V7(x) = &(x — x;), with all unessen-
tial constants included into the efficiency #,, so that Eqn
(6.1.2) takes the form

w(x1, 1) :nl}lp(xl,t1)|2. (6.1.3)
We see that the WF absolute value || (the envelope of the
wave packet) can be measured, i.e., it is an operationaly-
defined parameter.

Expression (6.1.3) resembles the Born postulate stating
the probability meaning of the WF. However, in our case, it
follows from Eqn (6.1.1), and the arguments x, #; play the
role of directly measurable classical parameters of the
quantum theory. Let us stress that #; = Z{ — 1y is an argu-
ment of the distribution function, which is obtained by
processing experimental data. It is not an arbitrary measure-
ment time chosen by an experimenter, as is usually supposed
in the quantum measurement theory. In the ith trial, the
moment ¢; of a pulse appearing at the output of the detector is
unpredictable up to the duration of the particle wave packet,
Aty = Clo/Uo.

In a real experiment, the operator of the particle
coordinate X cannot be measured directly, and the position
of the particle is always identified with the classical coordi-
nate x; of a massive fixed detector (a microcrystal in a
photosensitive film, a water droplet in a super-cooled vapor,
etc.), up to some uncertainty +a;. When an excited atom is
registered, it is natural to conclude that the passing particle
has the coordinate x| & a; at the moment of the pulse #; =+ 7.

(Here 7 is the time constant of the detector, which is assumed
to be zero in our model.) This procedure relates the
mathematical symbols X(¢) or y/(x, t) to our ‘actual’ space—
time (x1, 1), which is measured by means of rulers and clocks.

Consider now the simplest model of measuring the
distribution of the longitudinal momentum for a charged
particle, p = mv = hk. Let a domain with constant magnetic
field Hy be placed before the detector. In this domain, the
trajectory of the particle is bent: the particle moves along a
circle with radius r = c¢p/eH). Measuring the transverse
coordinate of the particle, one finds r and calculates p and
k = p/h. Repeated many times, this experiment allows one to
measure the distribution w(k), the mean value ky, and the
uncertainty Ak. Under the assertion that the measurement is
accurate, one can assume the projector Py = |k)(k| to be the
readout observable. Then, from the Born postulate, one
obtains w(k) = (ol PelWro) = |(klo)|” = [w(k, 10)|*. Since
free motion conserves momentum, the vectors |k) have only
phase variations, and the moment of measurement is not
essential.

6.2 Time-of-flight experiment
There exists another method of velocity measurement, with a
high-energy particle passing by two fast detectors in sequence,
for instance, two Geiger counters (Fig. 6a). Only trials where
both detectors ‘click’ are taken into account (the coincidence
method). As a result, one can measure the joint distribution
for two events, p;x = p(xy,11;x2, 1) (Fig. 6b). This is the
scheme of the time-of-flight experiment, which is widely used
for measuring velocities of particles. The distance between the
detectors, x, — x; = L, divided by the time delay between the
two pulses, 1, — t; = T, gives the a priori group velocity of the
particle wave packet vg = L/T. (The energy loss in the first
detector is not taken into account.) Let the particle be
prepared each time in a pure state with the momentum
sufficiently well-defined, so that it is described by a long
wave packet. As a result, one observes fluctuations in the
detection moments ¢, t,, with respect to some preparation
moment ) =0, and in the time delay 7. Repeating the
procedure many times, one can measure the distribution py,.
As it is shown in Section 4.9, standard algorithms of the
quantum theory cannot be used for calculating p;,. The point
is that the Heisenberg operators Pi(z;) and P(f;), which
describe the responses from the detectors at time moments ¢,
and 7,, do not commute, since the detectors interact with the
particle. The only way to calculate the probability p;, in the
case of a time-of-flight experiment seems to be to use the
Wigner formula (4.9.1). In addition, one should assume the
time moments 7, in Eqn (4.9.1) to be random. (In the quantum
measurement theory, it is supposed that the moments of
measurement are arbitrarily chosen by the experimenter and
that the reduction takes place at these moments.)
The differential probability (transition rate)
azplg /01101, can be calculated using the above-described
model of a broad-band detector in the second order
perturbation theory [58] [for comparison, see Eqn (6.1.2)],

wiz = (ol V1 (X, n)V3 (X, ) (X, 1)|Wo) -

Wiy =

(6.2.1)

Here V, are the potentials of the interaction between the
particle and the detectors, and 5, are the detector efficiencies.
Since only coincident counts are registered, the parameter
characterizing the interaction of the particle with the
detectors, 1, V,,, can be considered as small.
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Figure 6. Time-of-flight experiment. (a) Schematic plot and the interpreta-
tion. A particle with definite momentum passes two detectors (rectangu-
lars) with sizes @) and a; < a; placed at points x; and x; = x; + L.
According to Eqn (6.2.2), the initial wavefunction of the particle, which
has the shape of a long sinusoid, seems to collapse, at the detection
moment ¢, into a short wave packet of length «;. Further, this packet
moves towards the second detector with group velocity vy and gradually
diffuses. (b) Experimental results. Each point with coordinates (7y;, f2;)
denotes the detection moments of both detectors in the ith trial. The
particle is prepared in a state with definite momentum; therefore, any time
moment ¢; is possible. The second pointlike detector registers the particle
at an arbitrary moment #; > t;;. The dotted line shows a linear regression
corresponding to the group velocity vy. At the top right, the measured
delay distribution w(7) is shown, with 7= t, — 1,. (c) The observed delay
distribution w(7) is determined by the shape of the potential V| (x) of the
first detector, in accordance with the propagation law for a free particle, as
if the reduction of the WF happened at the moment 7,: exp(ikox) —
V1(x)exp(ikox).

Let the particle be prepared in a state with definite
momentum muvy and the potentials V,(x) have Gaussian
shapes with widths a, such that @, < a;. Then Eqn (6.2.1)
takes the form

wp =w(T) = 2 -
» =0 1+ (T/T,) { 243 [1+(T/T.)"]

(6.2.2)

Here T=t -1t >0, L=x, —xy, and T, = ma%/h is the
typical time of packet diffusion. The observed detection
moments fy;, »; have a uniform distribution over the time
axis, but the delay between them has a distribution (6.2.2)
with the maximum at 7 = L/vy. Equation (6.2.2) describes
the mapping of the Gaussian function V;(x) onto the
observed delay distribution w(7) (Fig. 6¢).

(L —vT)* } .

This distribution can be understood in the following way.
The initial broad wave packet is ‘cut’ at the moment 77, so that
its size becomes equal to the size a; of the first detector,
exp(ikox) — Yer(x) = Vi(x) exp(ikox) (Fig. 6a). This is the
so-called back action of the detector on the particle as a result
of their interaction [18, 19]. For this term, we obtained an
operational definition. At ¢ > t;, the center of the effective
wave packet i (x, 7) moves with the group velocity vo. In the
near-field zone (L < koa% =y T,), its envelope is constant,
but in the far-field zone (the inverse inequality) it broadens
proportionally to L/a;. With the help of the second detector,
one can measure the envelope |y (x)| [see Eqn (6.1.3)]. Of
course, this is nothing but a convenient interpretation for the
calculated result and not the ‘actual picture’ of the events.

Let us stress that here the ‘reduction moment’ ¢ is the
argument of the distribution function but not one of the
actual detection moments ¢;;, which fluctuate from trial to
trial (Fig. 6b). This fact seems to have principal importance.
According to the traditional viewpoint, the reduction yy — '
takes place in each trial at the moment #;;, while Eqn (4.9.1)
used when deriving Eqn (6.2.2) corresponds to the reduction
at some moment #;, which is not related to any physical event.

By means of the experiment described above, two effects
can be observed directly: manifestation of the projection
postulate and wave packet diffusion caused by the vacuum
dispersion w ~ k.

6.3 The uncertainty relation and experiment
Let us consider the operational meaning of the uncertainty
relation. It can manifest itself in two types of experiments.
(Other possibilities are discussed in Ref. [88].)

Experiments of the first type contain two series of
measurements. For instance, in the first series, one measures
the coordinate of the particle, X. From the set obtained x;, one
finds the quantum uncertainty Ax, which is determined by the
WF. In the second series, the momentum P is measured and
its uncertainty Ap is calculated. (All measurements are
assumed to be ideal.) Models for such measurements have
been considered in Sections 6.1 and 6.2. As a result, the
obtained uncertainties should obey the inequality
AxAp = /2. This example illustrates how the uncertainty
relation can be directly observed in experiment. The term
directly observed admits a quantitative criterion: one can state
that a direct observation allows the upper bound for the
Planck constant to be chosen from the measured set of
numbers. (This criterion is sometimes not satisfied by
examples given in textbooks.)

In experiments of the second type, in each trial, one first
measures X and then P. Apparently, a quantitative descrip-
tion of such experiments is only possible using the Wigner
formula (4.9.1), as in the example considered above. The first
detector discovers the particle at point x; + a;, and then the
second detector (or a set of detectors with various transverse
coordinates) placed after the domain with the magnetic field
measures its longitudinal momentum P = %ik. Let us register
only coincident counts of both detectors. Observing a large
number of such coincidences for identically prepared particles
and different x;, one can measure the distribution w(xi, k).

As previously, we assume the momentum measurement to
be exact and describe it by the projector P, = |k)(k|. The time
moment of the second measurement is not essential, but it
should be stressed that the coordinate and momentum are not
measured simultaneously. (This is practically the only
possible way to measure these two parameters.) For simpli-
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city, let 1; =ty and n = 1. Using Eqn (4.9.1), we find the
coincidence probability as a function of the parameters x; and
k of the devices,

w(xi, k) = (Yol PLP2Pi[hg)
2
= (2n)™" de V1 (X)W (x) exp(—ikx) (6.3.1)
Again, this result can be understood as a manifestation of the
back action. Indeed, the interaction of the particle with the
first detector is taken into account by multiplying its initial
WF by the interaction potential,

Wo(X) = Wegr(x, 11) = Vi(x)ho(x).

Note that the inverse sequence of measurements would
give quite a different result, namely, the initial momentum
distribution,

(ol P2Py P2 o) o | (ki) |

=w(k, ty).
The second (coordinate) measurement plays no role here.

Let the particle be prepared in a state with definite
momentum /ik, i.e., [fy) = |ko) or

Wo(x) = (o) = (2m) 2 explikox)

Then Eqn (6.3.1) takes the form

2

w(x1,k) o H dx Vy(x) expi(ko — k)x] (6.3.2)

Now, the momentum distribution obtained in the correlation
experiment is given by the Fourier transform of the
coordinate detector ‘instrumental function’ V;(x); the width
of this distribution is of order of 1/a; and its uncertainty
satisfies the Fourier relation a;Ak > 1/2. This demonstrates
an important operational feature of the uncertainty relation,
the so-called intervention of the device, which limits the
product of the accuracies for successively measured non-
commuting variables. The first measurement, with accuracy
Ax = ay, limits the accuracy of the second measurement to the
value Ak, = 1/2Ax. Note that here Ax and Ak, are not
related to the variances of the observables in the initial state
¥y, as in the experiments of the first type.

6.4 Wigner’s distribution
At first sight, the above-considered experiments with one or
two detectors can be described trivially and explicitly in terms
of classical subensembiles of particles. Suppose that ‘actually’,
the WF only describes the statistics of a classical ensemble of
particles with some distribution of initial coordinates and
velocities. The effective WF i in the theory of time-of-flight
experiments simply results from the selection of some particles
by the first detector, the velocities of these particles being
determined by its position x; and detection time ¢;. This
simple interpretation does not require the projection postu-
late and the mysterious reduction process. However, such
reasoning leads to certain principal difficulties, even if the
effects of particle interference are not taken into account.
From the classical viewpoint, a pointlike particle has only
one state, which is determined by its coordinate x, and
momentum p, = mv, at a given time moment. The space of
events (the phase space) is a plane R? with coordinates x and p.

The distribution function has the form
w(x,p,t) =0(x — x)0(p — p) -

The evolution of the state in time is given by the Hamilton
equations

dH . dH

P2
¥=— = H=2"4v(x).
X TR p > + V(x)

4

In the absence of external forces, the potential V(x) =0, so
that

x(t) = xo +vot, p(t)=po,
w(x,p, 1) = 0(x — xo — vot)o(p — po)

(here vy = po/m).

In order to introduce stochasticity, consider a set of
identical independent particles differing by random initial
parameters xo;, poi, where i enumerates the particles. This
corresponds to a set of points on the phase plane. Their
distribution density w(x, p, t) is proportional to the number of
points in a small domain near x, p. The space of states is given
by a set of various distribution functions w(x, p, t) satisfying
the conditions

dedp wix, p,t) =1, w(x, p,t)=0.

The function w(x, p, t) allows one to calculate the moments
(x™p") and, more generally, the mean value (A(x, p, t)> for
any function of x and 7. The marginal distributions for the
coordinate and momentum have the forms

w(x, 1) = Jdp w(x, p,t), w(p,t) = de w(x, p,t). (6.4.1)

In the case of free motion, the momenta of the particles are
conserved, w(p) = const, therefore, the dependence of the
state on time is taken into account by a trivial argument shift,

w(x, p,t) =w (x —ln)—j ,p,O) . (6.4.2)

In the differential form, we obtain the Liouville equation:
ow ow P

This transformation describes classical diffusion of wave
packets (see Fig. 7). (It should be distinguished from true
‘diffraction in time’, i.e., the envelope variation caused by
vacuum dispersion for nonrelativistic particles.) Naturally,
under certain initial conditions, both classical diffusion and
quantum delocalization can be preceded by localization or
‘focusing’ of the packet.

Let us now pass to the quantum theory where the pure
state of a particle is given by some complex function (x).
This function determines the probability distribution for the
coordinate, w(x) = |y/(x)|?, the mean values {(x)), and also
the moments

o = (") = (Y |r) = de W(x)x"
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4 pt/m

Figure 7. Distribution function for the coordinate and momentum w(x, p)
at two time moments (top) and the resulting diffusion of the coordinate
distribution w(x) with time (bottom).

Its Fourier conjugate determines the probabilities for the
momentum, |(p)]> = w(p), and the moments u,, = (p").
The simultaneous joint distribution w(x,p,¢) =0 in the
general case can be neither measured nor calculated. At the
same time, the moments of the form p,, = (x"p") =
(Y|x™p"|y) can be calculated. Naturally, one could try to
define the corresponding function w(x, p) such that

m.n

umzjmwwmmxp.

(This problem is called the problem of moments, see Section
4.5.) In this approach, one could suppose that the coordinate
and momentum of a given particle have definite a priori
values. However, this approach has two principal obstacles:
first, in the quantum theory, all moments
(x"p™), (x"p"x), ..., (p"x™) are different; second, the
function w(x, p) can take negative values, so that it cannot
have the operational sense of a probability.

To overcome the first obstacle, one can choose some fixed
order of the operators. For instance, the Wigner function
W(x,p,t), which determines the moments symmetrized
according to some rule [89, 90], can be expressed in terms of
the WF as follows:

W(x“l’» t) = (27—5751)71 de exp (%) [ﬁ* (x _i,_%’ [)

><(p<x—§,t>.

For fixed ¢, this transformation defines the function of two
variables W(x,p) via the function of one variable y(x).
Calculating the marginals, one can easily verify that the
consistency conditions are satisfied,

(6.4.3)

w(x, t) = Jdp W(x,p,t) = !l//(x, t)’2 ,

w(p, 1) = de Wixap ) = (o, )] (6.4.4)

In combination with the Schrédinger equation, Eqn
(6.4.3) leads to the equation of motion for W, i.e., the
quantum Liouville equation [89, 90]. In the case of free

motion, it has a ‘classical’ form

ow ow 0
o YT T
i.e., the argument is transformed as x — x, = x — pt/m.
Thus, the Wigner function W for a free particle depends on
time the same way as the classical distribution function w [see
Eqn (6.4.2) and Fig. 7].
For instance, consider a Gaussian packet

1

X, 1) = :
Vi) /4 /ay + ikt /mag
. . (X*U()l)z
kox — t———
X exp {1 XIS (@ i fm)
0 = A exp[- = (64.5)
’ Jra, P e -
Here
Po hkg Po
ko == = =
0 7 ) 2 ) Vo )
2\ "2 ma?
a; = ag 1—|——) , T,=—2
o T

and aq is the minimal length of the packet at # = 0. According
to Eqns (6.4.5), the envelope |/(x, 7)| conserves its functional
form moving with the group velocity vy = py/m and broad-
ening with the growth of [¢|. Substituting Eqn (6.4.5) into
(6.4.3), we obtain

1 x—pt/m)®  (p—p)’a}
W(xapv t) :FheXp 7( 2 ) - 72 .
0

. (6.4.6)

This function is positive and can be considered as a
probability. For 7 # 0, it describes the correlation between
the coordinate and the momentum (see Fig. 7).

However, the Wigner functions of all other pure states
take negative values [89, 90] and do not conserve their shapes
in the course of propagation. As an example, consider a
packet with a rectangular envelope,

W (x,0) = I(x, a) exp(ikox) , (6.4.7)
where IT(x,a) = 0(x + a)0(a — x) and 0(x) is the step func-
tion. From Eqns (6.4.3) and (6.4.7), we find the Wigner
function:

sin[(k — ko)(a — 2|x])]

W(x,p,0) = Tl(x,a) " il

(6.4.8)

which definitely takes negative values (Fig. 8). Thus, the
properties of the state (6.4.7) cannot be described in terms of
some joint probability distribution for the coordinate and
momentum.

Note that the coherence length ac.n, which is actually
measured in experiments on particle interference, is usually
determined not by the true length of the packet a, but by its
‘nonuniformity length’, since the beam contains different
particles with a classical velocity distribution (see Fig. 7).
(Here one can find an analogy with the nonuniform broad-
ening of spectral lines.) Using higher time resolution and
applying other techniques, one can increase the observed
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Figure 8. Wigner’s function W(x, p,0) for a wave packet with a rectangular
envelope.

coherence length. Real experiments with particle beams
should be described in terms of mixed states (of the first
type, Section 4.10). In the simplest case, each particle of the
beam can be considered in a pure state depending on classical
random parameters. For instance, let py = fiky from Eqns
(6.4.5) or (6.4.7) be such a parameter, then the observed
‘smoothed’ distribution can be found by an additional
classical averaging over w(py),

w(x, t) = Jdpo w(po)’z//(x7 t; po)|2 . (6.4.9)
Here w(py) can be determined by the Maxwell velocity
distribution with some given temperature. This equation
describes two processes: the classical ‘diffusion’ of individual
wave packets caused by the group velocity po/m dispersion
(see Fig. 7) and the diffraction in time, i.e., variation of the
shape of each packet caused by the vacuum dispersion.

6.5 Model of alpha-decay

A simple one-dimensional model provides a remarkably
accurate description of alpha-decay [91]. Consider the
motion of a pointlike particle in the presence of the two-
hump potential V(x) shown in Fig. 9a. Suppose that we know
the moment of birth 7, for the chosen nucleus, say, ggRa2°. In
the framework of a primitive model, one can assume that the
o-particle is prepared in a quasi-stationary state (x, 1)
localized inside the nucleus and determined by the potential
well V(x) (Fig. 9a). Further evolution of this state is shown in
Figs 9b, c. The solution to the equation

oy m Ay

ih or

Figure 9. Evolution of an a-particle wave packet during radioactive decay.

describes the gradual tunneling of the particle through both
barriers. The estimate of transmission coefficient gives the
relation between the a-particle velocity and the half-life 77 .
This relation is in qualitative agreement with the experimental
data [91].

Using the Schrodinger equation, one can calculate the
shape of the wave packet describing an individual a-particle
for any ¢ > . According to this simple model, the length of
the packet at Ty > T, is of order of ag = vy T ;. Certainly,
to check this information with considerable reliability, one
should have a sufficient number of identical nuclei. Still, even
for a single nucleus, it is possible to predict the ‘probable’
distance between the o-particle and the nucleus at any time
moment, X ~ vo(t — to £ T 2).

Let us consider a well-known optical experiment on
quantum jump observation combined with the time-of-flight
method (Section 6.2). A radioactive atom is trapped and
illuminated by resonant laser radiation exciting one of its
electron transitions. The energy of the laser light is partly re-
emitted by the atom in the form of resonance fluorescence.
Note that modern equipment allows the detection of
resonance fluorescence from single atoms. Hence, as soon as
the alpha-decay takes place, the electron levels are reorga-
nized, the resonance fluorescence stops, and this moment can
be detected and identified with the moment #; of the o-
particle escape from the nucleus. (The inverse is also
possible: the appearance of the resonance fluorescence
indicates that the nucleus is created.) Suppose that a Geiger
counter placed at a distance x, detects an a-particle at time 7y;.
Hence, the group velocity is vy, = x2/(t2; — #1;). Repeated
trials allow one to observe the distribution of the moments
and this way to study the shape of the packet (see Section 6.2).

6.6 Modulation of the wave function

A lot of interesting effects are connected with the phase of the
WF, such as, for instance, the Josephson effect and magnetic
flux quantization in superconductors. Various fine effects,
like the Aharonov—Bohm effect for electrons (see Section
6.7) and its neutron analogues, the Sagnac effect for neutrons,
the influence of the gravitational field on the phase of the WF
for slow neutrons and atoms, the geometric Berry phase, are
studied using electron, neutron, and atomic interferometers
(see Refs [13—15]). Such experiments are described by taking
into account the dependence of the WF on classical quasi-
stationary fields: electric, magnetic, gravitational, and inertial
fields. In the case of atoms or molecules, one can additionally
modulate the WF by means of an optical quasi-resonant field.
The action of this field on the motion of an atom can be
described in terms of some effective potential V(x).

Let us try to use the effect of the WF phase modulation for
proving the statement that a WF can be associated with a
given individual particle. Consider a two-beam Mach-
Zehnder interferometer for particles. The flux of particles at
the input of the interferometer is made sufficiently weak, so
that the particles enter the interferometer one by one, without
influencing each other. For each particle, the phase difference
¢ between the two components of its WF in the two arms of
the interferometer can be controlled, for instance, using an
electric or magnetic field. The interference visibility in real
interferometers for electrons, neutrons, atoms, or molecules
can be close to 100%. This means that for some phase ¢ = ¢,
a particle is almost surely directed to one of the output ports
of the interferometer, while for the phase ¢, + m, it almost
surely gets to the other port. In other words, the WF
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amplitude in one of the output beams can be turned to zero by
the experimenter. Using classical language, the particle is
directed along one or another path. Thus, by varying the
phase delay, one can control the WF of any particle at the
output of the interferometer. Note that here we mean the WF
of a given individual particle. Since the system is prepared in
one of the pure states of the observable (the path of the
particle), the outcome is fixed, p; = 0 or 1, and in the ideal
case, there is no need for repeated trials.

Let ¢ now take intermediate values. Then the particle is
discovered either in the first output beam or in the second one,
with the probabilities p; =cos’ (¢ —p,) and p, =
sin®(¢ — ¢,), i.e., the interferometer works like a beamsplit-
ter with transmittance 77 = p;. The phase can depend on
time, ¢ = ¢(7), and in this case, the probabilities p;(¢) and
p2(1) also vary (with opposite phases). Using radiotechnical
language, one can say that the interferometer operates as a
phase detector: it transforms the phase modulation of the WF
¢(?) into the amplitude modulation of the classical probabil-
ities py () at the output.

The interferometer performs a unitary transformation of
the particle state, with the normalization of the total two-
component WF being invariant. A pure state at the input is
transformed into another pure state at the output. However,
it should be stressed that if only a single output beam is
considered, with the second one ignored, it should be
described in terms of mixed states (of the second type, see
Section 4.10): the output state is a mixture of the one-photon
pure state, |1), and the vacuum pure state, |0), weighted with
the classical probabilities p; and 1 — py, respectively. Thus, if
the second output beam is not considered, the interferometer
works as an absorber with the transmission coefficient
n=pi.

Is there a possibility for WF amplitude modulation, with
the normalization (number of particles) conserved, in free
space without an interferometer? From our consideration, it
is clear that the effect of an absorber with transmittance 5 on
an electron or a neutron should be described in terms of mixed
states, using classical probabilities. Indeed, at the output of an
absorber, one finds an incoherent mixture of the states |1) and
|0) with the probabilities # and 1 — 5, respectively. In other
words, an absorber or a nontransparent screen can be
phenomenologically described as performing a nonunitary
transformation of the particle state. (This problem was
studied in detail in quantum optics [21].) An obturator,
which periodically blocks a beam of particles, can be
described by a time-dependent absorption 7(7); in addition,
this case is characterized by the classical probability for a
wave packet to get into the obturator ‘window’. Any absorber
modulates not the WF amplitude but the classical probability
of one-particle state preparation. On the other hand, the
effect of a semi-transparent reflecting screen can be described
by a unitary transformation retaining the WF normalization.
This case is analogous to the case of the two-beam inter-
ferometer, and similarly, here the reflected beam should be
taken into account.

Consider the phase (frequency) modulation of the
particle WF in free space in the one-dimensional approx-
imation. A time-dependent phase ¢(¢), in contrast to the
global (constant) phase of the WF, can lead to observable
effects. Let a plane monochromatic WF with frequency w
pass through a thin phase modulator placed at x = 0. In
the case of harmonic modulation at frequency Q < wy with
the frequency deviation Q, the WF at the output has the

form
¥(0,1) = exp[—iwor — ifsin(Qr)] .

Hence, for x > 0,

00

W(x, )= > Ju(B)expliknx — imt),

n=—oo
o = 2mawy, 172
" h

with J,, denoting the Bessel functions. Thus, harmonic phase
modulation leads to the appearance of new frequency
components wg & nQ. Due to the dispersion w ~ k2, these
components propagate with different velocities. Therefore, a
propagating WF acquires an amplitude modulation in
addition to the phase modulation, i.e., there appear slow
beats of the wave packet amplitude in space—time (Fig. 10).
The time period of these beats is At = 2r/Q, while their space
period is approximately Ax =~ 2n/(k; — ko) =~ voAt, where
vy = hko/m is the group velocity.

(6.6.1)
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Figure 10. Transformation of the frequency modulation of the wavefunc-
tion Y(x, ) (for x = 0) into amplitude modulation (x > 0) according to
Eqn (6.6.1). The modulation frequency is Q = wy/10; the frequency
deviation is f=Aw/Q =1, the coordinate x is normalised by
Ao = 2m/ky, and the time ¢ by Ty = 21t/ .

These beats can be observed using synchronous detection.
Periodic transformation of the phase modulation into the
amplitude one has been recently studied for rubidium atoms
[92]; the effects observed in this work were analogous to the
optical echo effect [35]. Phase modulation can be used to
control wave packets of finite length, to shorten or extend
them.

For light waves, transformation of the phase modulation
into the amplitude modulation (chirping) due to dispersion is
widely used for obtaining supershort high-power laser pulses.
Similar effects are predicted for beams of slow neutrons under
various types of modulation [93, 94].

6.7 Quantum magnetometers and the Aharonov—Bohm
paradox

Suppose that the above-considered interferometer for
charged particles, say, electrons, contains a source of static
magnetic field B(r). (The influence of the spin is neglected.)
This field can be equivalently described in terms of the vector
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potential A(r) given by the relation rot A(r) = B(r). This
definition is ambiguous: all potentials of the form A and
A’ = A + grad y, where y(r) is an arbitrary scalar field, give
the same magnetic field B(r) and therefore, are indistinguish-
able.

Assume that the field A(r) does not vary much within the
cross section of the electron WF in each arm of the
interferometer. Then it follows from the Schrédinger equa-
tion with the Hamiltonian (P — eA/c)* /2m that each compo-
nent of the WF has a phase shift given by the line integral:

e

¢, = ﬂJc A(r)dr, (6.7.1)

where C, is the path along the electron trajectory in the nth
arm of the interferometer between the input and the output
beamsplitters. (As in geometric optics, the trajectory is
understood as the path along a bounded beam.) Hence, the
phase difference between the WF components at the output
beamsplitter is

e e

= . Ndre = & =
b= — ¢, = hCTFCA(Tc)dl‘c = thJSBdS_ e by .
(6.7.2)

(Note that the result is independent of y.) This value is
observable since it determines the probabilities p;, for the
electron to be discovered in the two output beams of the
interferometer, see the previous section. Here C = C; — Cy is
a closed contour coinciding with the electron trajectory in
both arms of the interferometer, S is the surface bounded by
this contour, and @y is the magnetic flux through this surface.

Thus, an interferometer can be used to measure magnetic
fluxes. A similar principle is used in Josephson-transition
magnetometers [95]. This demonstrates how a classical
variable can be measured by means of a quantum effect.
(Such devices are used in quantum metrology.)

It is typical for this effect that ¢ depends only on the
integral (global) parameter, ®@g, which is determined by the
contour C and the field. The electron velocity does not play
any role but different paths can lead to equal phase
differences. For this reason, such effects are called ropologi-
cal, or geometrical.

According to Eqn (6.7.1), the phase shift is not defined for
an open contour, since the potential A is ambiguous. Still, one
can define the phase ¢(r,ry) at each point r of some trajectory
with respect to the phase at a fixed point ry. This can be done
by closing the trajectory from r to ry along a curve orthogonal
to A(r) at each point, i.e., a curve belonging to an
equipotential surface of A(r). In accordance with Eqn
(6.7.1), this closure does not influence the phase. The
obtained ‘moving’ phase is additive, ¢(rz,ro) = ¢p(r2,11)+
¢(r1,xo). For the case of several sources of field, this notion
has interesting topological properties.

The Aharonov—Bohm effect (see Refs [13, 95-98]) is
observed in the case where the magnetic field is equal to zero
along the whole electron trajectory. (More precisely, it is
equal to zero in the whole domain where the WF of the
particles have noticeable values.) According to Eqn (6.7.2),
the phase difference can be nonzero in this case if B(r¢) =0,
but at the same time, &5 # 0. These conditions can be
satisfied using magnetic screening, a thoroidal magnet or a
long solenoid placed between the arms of the interferometer.
Interpretation of the Aharonov—Bohm effect is connected

with an interesting paradox. The Lorenz force acting on the
electron at a point r¢ is determined by the field B(r¢);
therefore, it is commonly supposed that only B is a ‘real’
field, while the potential A is an auxiliary mathematical
notion. But in the case considered here, B(r¢) = 0, so one
has to accept ‘nonlocality’ or ‘action at a distance’, since the
static field By inside the solenoid somehow influences the
electron ‘at a distance’. Expressing By via the current [y, one
can speak about the ‘action at a distance’ of this current. This
conclusion can be avoided if the potential A(r¢) is claimed to
be a ‘real’ field, but this potential is defined at each point r¢
with a certain ambiguity. Both alternatives contradict the
traditional viewpoint. Note that the condition B(r¢) =0 is
actually not necessary for formulating the paradox, since in
the general case, the integral formula (6.7.2) also describes the
global, i.e., nonlocal, action of the field B(r).

On the other hand, the term ‘action’ implies a dynamic
effect, i.e., variation of the observed phase difference A¢ as a
result of the current A7 variation. Clearly, any change in the
WF phase (the phase modulation, see the previous section)
would be delayed in time, in accordance with the solution to
the Maxwell equations for the classical field of a given source.
No instant ‘action at a distance’ would be observed.
Probably, it is more consistent to consider the field source,
such as, for instance, a heavy particle with a dipole magnetic
moment, as a quantum system. In this case, we are dealing
with the interaction between two quantum systems and no
question arises whether it is the field or the potential which is
‘real’.

This reasoning demonstrates that the question of which is
‘more real’, B(rc) or A(rc), makes no sense from the
operational viewpoint. It relates to the group of ‘what-
actually-goes-on-there’ questions. One can only state that
the formalism based on the potential 4, instead of the fields
F,, is usually more compact and symmetric for solving
relativistic problems. In the electrodynamics calibration
theory, it is namely the potential that plays the most
important role, and its existence is supposed to follow from
the charge conservation law.

7. Conclusions

In this paper, we tried to find out the operational meaning of
the basic terms used in nonrelativistic quantum physics. Our
consideration was based on the techniques applied in
laboratories and on the observable experimental data. Of
course, the situation may drastically change with time; for
instance, some new metatheory may appear, bringing
together quantum and classical physics, or new experimental
facts may be obtained. The essence of quantum notions was
also clarified by means of comparison with the closest explicit
models based on classical stochasticity.

Our attention was mostly drawn to the central object in
quantum physics, to the WF. We found reasons for ascribing
a definite WF  to a particle or to any other individual
quantum object prepared in the course of an ideal preparation
procedure. This position agrees with the orthodox viewpoint.
It was shown that the notion of a pure state of a given
individual system has a strict operational meaning, since it is
determined by the preparation procedure. Knowing the state
of a system, one can calculate the probabilities of possible
observations.

However, to convincingly check the information con-
tained in the symbol i/, one needs a set of identically prepared
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systems. This conclusion agrees with the ensemble viewpoint.
Thus, two basic approaches to the WF, the orthodox and the
ensemble approach, correspond to two different experimental
procedures, to preparation and to measurement. This fact
removes the seeming contradiction between the two
approaches. Both approaches have operational verifications,
each its own.

At the same time, there is no principal difference between
asingle trial and an arbitrarily large finite number of trials. As
a result of some measurement, one can ascribe the WF to a
single system or to, say, a hundred identically prepared
systems (Section 3.2). In both cases, the theory gives only
probability predictions, with the only exception for the case
where the system is prepared in an eigenstate of an observed
operator. Even for the case of a single measurement, knowing
the preparation procedure for the WF of some individual
system, one has certain a priori information about the
outcome of the future experiment. For instance, after a two-
slit screen, a given particle ‘almost for sure’ will not get into
‘sufficiently close’ vicinity of the WF knot. On the other hand,
even a hundred measurements of the particle coordinate
giving the statistical mean (x),o, = (1+0.1) cm, do not
guarantee that the true mean value (/|x[\}) is not 2 cm.

For a classical mixture of pure states (Sections 3.3 and
4.10), the ensemble meaning is implied at the very stage of
preparation. If the preparation conditions are not known,
then the question of whether an individual particle (for
instance, from cosmic rays) possesses a WF is a rhetorical
one. This question has no operational sense, and the answer is
chosen according to one’s taste.

Modern techniques suggest surprising possibilities for
preparing atoms in given states i, and for controlling and
monitoring these states (bright recent results can be found in
[99]). The ‘reality’ of an individual WF seems to be clearly
demonstrated in Section 6.6 using a realistic experiment with
phase modulation of a particle in a two-beam interferometer.
On the other hand, dynamic experiments of this kind can also
be described in the framework of the Heisenberg representa-
tion (Section 4.4), with the time dependence included into the
coordinate operator X(¢) instead of the WF. In this case, it
makes no sense to imagine a moving particle as a (complex)
wave packet (x,7) changing its shape in the course of
propagation.

Another group of problems discussed in the paper relates
to nonclassical effects (Sections 4.5, 4.6, 5.6—5.8, 6.4).
Comparing the predictions of certain quantum and classical
probability models, one comes to paradoxes demonstrating
that these models are incompatible. These paradoxes are
commonly solved with the help of the term ‘quantum
nonlocality’. However, a more conservative viewpoint is
possible admitting that the quantum theory is ‘non-Kolmo-
gorovian’ and it makes no sense to ascribe a priori values to
non-commuting variables. In this approach, several features
of quantum probability models can easily be obtained. Recall
that ‘nonlocally controlled” EPR correlations have rather
close classical analogues [56] and the contradiction between
classical and quantum predictions is only quantitative.

Considerable attention was also paid to one of the most
contradictory notions in quantum physics, WF reduction as a
result of measurement. In real experiments, the measurement
procedure is never used for the preparation of a quantum
state. The preparation and measurement procedures are
essentially different, in spite of the common viewpoint dating
from the thirties. One of the few ‘dissidents’, W Lamb, in his

paper [100] entitled ““Operational interpretation of nonrelati-
vistic quantum mechanics” writes that ‘“although some
authors confuse preparation and measurement of a state,
these notions are essentially different, both physically and
logically.”

At present, probably, all known experiments can be
described using the standard algorithms of the quantum
theory and the Born postulate (4.7.1). According to this
postulate, the value to be compared with experiment is the
projection of the state of the system onto some vector, which
is determined by the experimental procedure. Then Dirac’s
statement (4.7.2) that the measurement creates a new WF is
not necessary. As far as we know, at present there exist no
experimental facts that could confirm or disprove the
reduction hypothesis and various models of the measure-
ment process. Despite all efforts, they remain completely
isolated from experiment. Again and again, new results
confirm only the adequacy of the quantum formalism
(provided that the model is chosen correctly) and the Born
postulate. It is remarkable that the projection postulate
(4.7.2), in contrast to Born’s postulate (4.7.1), seems never
be used in quantitative descriptions of real experiments. Like
the notion of partial reduction (Section 4.8), it is only used in
qualitative speculations.

Thus, the notion of WF reduction at the moment of
measurement is so far redundant, it is only convenient for
an obvious interpretation of the observed effects. It is an
explanation of ‘what actually goes on’, i.e., it relates to the
fourth component of the quantum physics, to its interpreta-
tion (Section 2). The choice of interpretation is a matter of
taste. (This is the difference between an interpretation and a
theory.) Note, however, that describing quantum correlation
effects in terms of reduction and using the terminology
related to it (nonlocality, teleportation), one comes to
(pseudo)paradoxes like a superluminal telegraph. This fills
physics with an unnecessary atmosphere of mystery and
provides grounds for various pseudosciences. It seems useful
to return, from time to time, back to the beginning and to try
to build the axiomatic structure within the given branch of
physics, distinguishing between the necessary and redundant
notions with the help of an operational approach.

On the other hand, it is not reasonable to reject convenient
but not strictly defined notions; it is better to clarify their
status. The obviousness of reduction and other model notions
of physics promotes the planning of new experiments, the
development of intuition, and the discovery of new effects. It
is worth mentioning the positive role of the alchemists’ ideas,
Faraday’s lines, various models of the ether, Dirac’s concept
of positrons as ‘holes’ in a sea of particles with negative energy
or their definition as electrons moving backward in time,
given by Wheeler and Feynman. Several times in history,
‘metaphysics’ has turned into ‘physics’ (atoms, antiparticles,
quarks). It is possible that reduction will manifest itself in
future experiments (with timelike-separated events).

In Section 6.1, we presented a simple model for the
measurement of a particle’s longitudinal coordinate. This
model allows one to set a relation between the parameters of
the measurement devices xi, ¢, directly measurable by means
of rulers and clocks, and the basic construction of the
quantum formalism, the function y(x, 7).

In Sections 4.9 and 6.2, we tried to prove the statement
that the reduction postulate in the form of the Wigner
formula (4.9.1) is actually necessary only for describing a
narrow group of correlation experiments like time-of-flight
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experiments, where one measures two or more operators that
do not commute due to the interaction. If such experiments
were carried out, they would probably provide direct evidence
for the fact that the Wigner formula gives a correct
description of repeated measurements. From the operational
viewpoint, the Wigner formula (4.9.1) obtained by combining
the Born postulate (4.7.1) with the Dirac postulate (4.7.2) can
be considered as the basic measurement postulate of the
quantum theory, a generalization of the Born postulate. In
our opinion, it is essential that according to the Wigner
formula in one of its modifications (Section 6.2), ‘reduction’
occurs not at one of the numerous moments #; when a particle
is registered by the first detector but at some abstract moment
t,. This parameter is the argument of the distribution function
obtained by statistical averaging of a large series of measure-
ments, see Fig. 6.
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8. Appendices

Appendix 1. Eigenvectors of the Stokes operators and the
Greenberger — Horne — Zeilinger paradox

For the description of photon polarization, two bases are
convenient: the one formed by the eigenvectors |x), |y) of the
S| operator and the one formed by the eigenvectors |+) =
(]x) £ily))/v2 of the S5 operator. According to Eqn (5.4.3),

Silx) =), Sily)=-b),  SilE)=1[F),
Saolxy =1y, Saly) =Ix), Sal£) = +ilF)
Sslx) =iy}, Ssly) =—ilx), o SlE) =+E). (L)

Let the incident field be prepared in the three-photon state

_ WalHslte + [=)al=)sl-)
) = /alt/B C\/i AlZ/BlZ)e

(1.2)

the indices A, B, C relating to the three beams. According to
Eqns (I.1), (S1z) = (S2z) = (S3z) =0, i.e., the radiation is
completely depolarized, and measurement of the Stokes
parameters for each beam gives the values s, = £1 with
equal probabilities. However, one can easily see from Eqns
(I.1) that |y) is an eigenvector for some products of three
Stokes operators,

SiaSisSicly) = [¥), SiaSmSac|y) = —|¥) ,

SuSipSacl) = ~=lY),  SaSwSicly) = —ly). (1.3)
Hence,
W[SiaSiBSicly) =1, (W[S1aSmSaclyy) = 1,
W[SaaSisSaclh) = =1, (¥|S2a88Sicly) = -1. (14)

Thus, experiments where the Nicol prisms have y, =
78 = xc = 0 must give an ideal correlation between the
photocounts observed in the three detectors, sjasigsic =
(S1aS18S1c) = 1. Similarly, for y, =0 and yg = yc = 45°,
ideal anticorrelation must be observed, (SjaS2pSac) = —1.
This result leads to the GHZ paradox (see Section 5.8).

Appendix II. To the theory of ‘quantum teleportation’
The effect of the beamsplitter BS and the transformer T¢ in
Fig. 5 can be described in the Heisenberg representation by
the following unitary transformations [see Eqn (5.4.5)]:

a.’:m cl=tic, +ric
fi \/5 ’ X CcHx CHyo
—ai 4+ b
b] = % ;€= —rcex +Iccy . (IL.1)

Here a, b, ¢ are photon creation operators for the beams A, B,
C,j=x,y, and \tc|2 + |rc|2 = 1. These relations define the
6 x 6 transformation matrix G,,, for the whole optical system.
The matrix G,,, relates the output operators to the input ones
and hence, allows one to express the statistics of the output
field in terms of the input statistics, which are given by the WF
|/) of the initial field.

According to the Born postulate (4.7.1), the probabilities
p = |q’|2 (below, the primes of p and ¢ are omitted) of
discovering the given numbers of photons in six output
modes are determined by the projections of |) on the
corresponding Fock states,

(0a;™ ...aé"6|1//>

nl‘n6'

q(ny, ... ng) = (ny,...,nglYy) = . (11.2)

Note that in the case of one-photon states, the probabilities
coincide with the corresponding moments,

p(110010) = p(Ax, Ay, Cx) = (WIN N, Negl) . (I13)

(The modes are numbered in the following order: Ax, Ay, Bx,
By, Cx, Cy.)

Substitution of Eqns (II.1) into (II.2) gives the probabil-
ities of all observable events. For instance, the probability
amplitude of detecting three photons in the output modes 4x,
By, Cx is

q(Ax, By, Cx) = (0laib)c i)

= %<0|(ax +bo)(—ay +by)(1tec+rée) ). (114)

‘Teleportation’ takes place under the condition that all but
two matrix elements entering Eqns (I1.4) are zero. Let
there be a single photon in each input beam, then
(0laxay|) = (0|byby W) = 0. Let, in addition, (0|a.b,c,|y)=
(0]aybycy ) = 0, then Eqn (I1.4) takes the form

1
q(Ax, By, Cx) = 3 (0[(tgaybyey — réaybyey) ). (11.5a)

According to this expression, the transformer T¢ has the same
effect on the polarization of photons in both beams A and C.

On the other hand, the probability amplitude of detecting
two photons in the output mode Ax and one photon in the
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output mode Cx has the form

¢(24x, Cx) = ay + by (tgex + réey) W)

1
m<o|(
= ﬁi (02axb(técx + réey) )
L
V2

In this case, there is no teleportation effect (no dependence on
tc). Hence, such outcomes should be excluded using a
coincidence circuit or a gate.

Let us specify the input state. Let

(0f(réasbey) W) - (IL5b)

W) = W) AW nc (I1.6a)
W)a = oldx) + fl4y) (IL6b)
Wine = = (1Bx, Cy) — |By. Cx)) (I.6¢)

V2

Here |Ax) = |10 x x * x) is the state with a single x-polarized
photon in mode A4, |Bx, Cy) = | * %1001) is the state with a
single photon in each of the modes Bx, Cy, and so on. The
state |)pc has the necessary properties bycy|[f)pe =
—byexl¥)pe = 0)/v2  and bycx|)ge = bybyl)pe =0,
which provide the transition from Eqn (I1.4) to (IL.5).

In the case (II1.6), using Eqn (II.4) and analogous
relations, we find

1
Q(Ay> Bx, CX) = 7‘1(‘4)‘7 Bya CX) = ﬁ (léOC + l’é ﬁ)7 (II7d)
1
q(AX, Aya CX) = —q(BX, Bya CX) = % (—l‘éd-'- r(*: ﬁ)? (II7b)
g(2Ax, Cx) = —q(2Bx, Cx) = ’3“ : (I.7¢)
1P
q(2By,Cx) = —q(2A4y,Cx) = . 11.7d
2

Here |2A4x) is the state with two x-polarized photons in beam
A. The amplitudes of the form ¢(x,*, Cy) can be found by
replacing t* — —r, r* — 1, then, p(x, x, Cx)+ p(x, %, Cy) = 1;
the amplitudes ¢(Ax, Bx, x) and q(Ay, By, x) equal zero. As a
result, the probabilities of all 16 observable events are

p(Ax, By, Cx) = p(Ay, Bx, Cx)

[ltcal® + |rc BI* + 2 Re(tcréa*p)]

o —

p(Ax, By, Cy) = p(Ay, Bx, Cy)

1
o [[rcal” + |tc BI* — 2 Re(tcréa*p)] (11.8a)
p(Ax, Ay, Cx) = p(Bx, By, Cx)
1
=g llrca + |rc B = 2Re(terc " p)]
p(Ax, Ay, Cy) = p(Bx, By, Cy)
1 2 2 -
=3 [|rcal™ + |tc BI” + 2 Re(tcréa™B)] (11.8b)

1
p(24x,Cx) = p(2Bx,Cx) = 7 lrcaf,
1
p(24x,Cy) = p(2Bx, Cy) = ¢ ltc o,
1
p(sza CX) = p(sz7 CX) = Z |tC ﬁlz )

|
p(24y, Cy) = p(2By, Cy) = ; Irc . (IL.8c)

According to Eqns (I1.7a) or (I1.8a), the transformer T¢ acts
on the four events p(Ax, By, *) and p(Ay, Bx, x) (which take
placein 25% of all trials) in the same way as if it were placed in
beam A at the input of the system. The joint action of Ta and
Tc on these events is described by the product of the Jones
matrices TcTa; varying T, one can measure «, . From the
operational viewpoint, this is the essence of the observed
effect.

For another four events, p(Ax, Ay,*) and p(Bx, By, %),
the dependence on T4 and T¢ can be made the same. For this
purpose, after such an event occurs, one should perform, in
accordance with Eqns (I1.8b), the additional unitary trans-
formation T{. = 0., which changes the sign of § before T¢
[75].

At the same time, 8 events (I1.8c) where two photons are
fed to the same detector manifest no ‘teleportation’ effect.
(Such events occur in 50% of all trials.) They can be excluded
by means of an optical gate (Fig. 5). In this case, the C beam is
completely polarized, Pc = 1.

Summing all probabilities of the form p(x, *, Cx), we find
the marginal probability of detecting a Cx-photon,
p(Cx)=" p(*,%,Cx)= (N{ )= 1/2.  Similarly, p(Cy)=
> p(x % Cy) = (N¢y) = 1/2 ie., C-photons stay completely
depolarized, as one should expect. Thus, the transformers Ta
and Tc have no influence on the unconditional counts of both
detectors D; in beam C.

Let us find the degree of polarization for beam C in the
presence of the controlled transformer T/ but without the
gate excluding the events (I1.8c). According to (I1.8), taking
the inverse sign of f§ in (I1.8b), we find the Stokes parameters
for beam C: SOC = 1, SIC = 0, SZC = Re(oc*ﬁ) = (1/2)S2A,
Sic = Im(a*f) = (1/2)S3a. As a result, the degree of polar-
ization Pc for beam C is Pc = (1/2)sin(0s), where
0a = arctan |f/«| is the polar angle for the point mapping
the state of photon A on the Poincaré sphere [see Eqns
(5.4.2)]. For instance, for linear polarization of A-photons,
Pc =1/2, and for circular polarization, Pc = 0. Thus, a
controlled unitary transformation T¢{. equal to 1 or o is not
sufficient for exact copying of the A-photon polarization. A
gate is needed even in the case where all detectors and other
elements are ideal.

Let us briefly consider the same calculation in the
Schrédinger representation. Vector transformations equiva-
lent to (IL.1) are given by the matrices T T,

|4]) —|B)) .
|A‘,~>:#, |Cx) = 1c|Cy) —re|Cy),

|4]) +1B)) .
|B;) = # Gy =rclC) + 12| C)) (IL.9)

Here primed letters denote output modes. Substituting these
expressions into Eqns (I1.6), we obtain the WF of the field at
the output of the scheme, |'). Let, for simplicity, Tc =1,
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According to the Born postulate in the Schrédinger
representation,
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etc. Here, all operators commute, and therefore their order
plays no role. However, for calculating the dependence of the
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This is a (non-normalized) vector in the space C. We also
define here the normalized effective WF |y) - . for the field C.
This WF describes the influence of Tao and Tc on the
probability of the subset of events (0110 * ). It is essential
that the vector |¥)c. has the same form as the initial WF
), for the A beam. Hence, ¢(4x,By,Cx)=a/V8,
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(I1.7) or, equivalently, replacing (a, ) — T (o, f), we again
obtain Eqns (I1.7).

Consider a version of the experiment shown in Fig. 5, with
no polarization prisms used and only a single detector
inserted into each of the beams A, B. In this version, there is
no polarization analysis for the photons A and B. (Appar-
ently, it is this version that was used in Ref. [80].) According to
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the A beam and a single photon in the B beam, regardless of
their polarizations, and likewise a third photon in the mode
Cx, is

p(A4, B, Cx) = 2p(Ax, By, Cx)
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These events manifest the effect of copying, in contrast to the
events where two photons get into a single output beam A or
B, their probabilities being

2p(24,Cx) = 2p(2B, Cx)
— 2[p(24x, Cx) + p(2Ay, Cx) + p(Ax, Ay, Cx)]

1 * ok
=3[ +1rcol® + e B* = 2Re(rerea’p)] . (IL13)
Again, a gate is necessary to exclude these events. Now, the
share of ‘good’ eventsis p(4, B, Cx) + p(4, B, Cy) = 1/4, half
that for the version with four controlling detectors and the
transformer T.
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