
Abstract. The current state of ultrasonic research of dynamic
critical phenomena inmagnetically ordered crystals is reviewed.
Based on relevant theoretical concepts, the conclusion is drawn
that the experimental data on ferro-, ferri-, and antiferromag-
netic materials in both the hydrodynamic and critical regions
can be described in terms of the dynamic scaling concept and the
theory of interacting modes. The influence of a magnetic field
on the dynamics of critical fluctuations of magnetization and
spin-energy density is discussed.

1. Introduction

The progress achieved in recent years in the understanding of
critical phenomena inmagnetically ordered crystals [1 ± 6] has
largely been due to theoretical and experimental works
devoted to studying the critical dynamics of condensed
media. The existing concepts of the time evolution of critical
fluctuations were developed in the framework of the theory of
interacting modes and dynamic scaling. These research
directions, although being developed independently from
one another and based on completely different ideas, in each
particular case lead to predictions that agree well.

The first direction originates from the classical works of
Landau and Khalatnikov [7] and Van Hove [8], who gave a

theoretical justification of the phenomenon (long since
noticed by experimenters) of a sharp increase in the time
required for the system to pass from a nonequilibrium to
equilibrium state as a critical point is approached. These
theories qualitatively explained many experimental facts but
ignored the divergence of transport coefficients. Fixman was
the first (see, e.g., Ref. [8]) who tried to allow for the
divergence of transport coefficients; he believed that the
long-range spatial correlations predicted by the Ornstein ±
Zernike theory [1] intensify fluctuations, which in turn can
lead to anomalous changes in the transport coefficients.

This fruitful idea was further developed in Refs [8, 9]
where it was shown in terms of time correlation functions that
the divergence of transport coefficients is caused by the decay
of one hydrodynamic mode into several hydrodynamic
modes (theory of interacting modes).

In parallel with the theory of interacting modes, a purely
phenomenological approximation was also developed, based
on the concepts of Ferrela et al. (see Ref. [8]), who extended
the ideas of the static scaling theory to dynamic phenomena.
Later, this theory was generalized by Halperin and Hohen-
berg [10] and applied to particular systems.

The relation between these two approaches was found by
Kawasaki [8], who showed that instead of hydrodynamic
modes, a set of dynamic variables can be introduced, whose
dynamics has a characteristic spectrum of frequencies
predicted by dynamic scaling.

A natural result of the theoretical studies in critical
dynamics was the use of the method of the renormalization
group and Wilson's e expansion [11] to study dynamic
phenomena [12], which allowed the calculation of the
dynamic critical exponent z for concrete models and the
establishment of factors affecting its numerical values; the
value of z proved to depend not only on the spatial
dimensionality d, the number of the degrees of freedom of
the order parameter n, and the nature of the ordering
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interaction, but also on the satisfiability of the laws of
conservation of the characteristic energy and order para-
meter.

The critical dynamics of magnetically ordered crystals,
especially ferromagnets, exhibits extremely varied and com-
plex features, which are caused by the necessity of taking into
account, apart from the exchange interactions, weak relati-
vistic interactions. The most significant of these are dipolar
interactions, whose role increases on approaching the critical
point. As a result, the critical region turns out to be divided
into the exchange and the dipole regions [13 ± 15]. In the
exchange region, as the experiments performed on ferro-
magnets such as EuO, EuS, Ni, Fe indicate, predictions of
the theory of interacting modes and dynamic scaling are valid
[13 ± 15]. In the dipole region, the theory predicts two variants
of dynamics: the conventional and a rigid [13 ± 16]. The
experimental situation is still unclear because of the discre-
pancies in the existing data obtained by the methods that
allow studying two-spin correlations (dynamic susceptibility,
EPR, light and neutron scattering, etc.).

In the entire critical region of magnetically ordered
crystals, the decisive part in the formation of critical
dynamics belongs to four-spin correlations, which can be
studied by ultrasonic methods [17, 18]. The advantage of
ultrasonic methods is not only the possibility of studying
four-spin correlations, but also the fact that they permit
simultaneous measurements of both static and dynamic
properties. Measurements of sound velocities give informa-
tion on the equilibrium properties, while measurements of
sound attenuation yield information on the dynamic proper-
ties of a material. The interest in ultrasonic investigations is
additionally increased due to the fact that the elastic waves
affect the spin system via the spin ± phonon interaction of
magnetostrictive origin rather than directly. Depending on
the nature of the exchange interaction, three types of
interaction between sound waves and spin system are
distinguished [19]. In magnetic metals, where both localized
3d and 4f electrons and itinerant s electrons are involved in the
exchange interaction, the interaction with spin fluctuations is
predominantly quadratic. In magnetic insulators, the
exchange interaction is short-range and the sound waves
largely interact with fluctuations of the spin-energy density,
which yields a linear relation to the spin Hamiltonian. In both
insulating and metallic magnetically ordered crystals, a linear
relation with the order parameter exists below the critical
temperature, which leads to the well-known mechanism of
anomalous propagation of sound waves called the Landau ±
Khalatnikov mechanism. The first two types of interaction
result in a fluctuation mechanism and the third type yields a
relaxation mechanism.

The strength of the singularity of the attenuation
coefficient ak and the propagation velocity vL when the
fluctuation mechanism is operative are determined by the
nature of the exchange interaction, magnetic ordering, and
anisotropy. In particular, in magnetic insulators, where the
exchange interaction is short-range, the critical attenuation
exhibits only a weak singularity, because the sound
absorption is due to the fluctuations of the spin-energy
density, which decay via slow spin ± lattice relaxation [18 ±
21]. In the case of long-range interaction, the singularity is
much stronger, since the main contribution to the critical
attenuation comes from the fluctuations of the order
parameter, while the relaxation is due to the spin ± spin
interaction [18 ± 23].

The theory of critical attenuation of sound waves in
magnetic metals, which was developed by Kadanoff [9, 20]
and Kawasaki [19] for the hydrodynamic region ot5 1 (o is
the angular frequency, and t is the relaxation time), was
confirmed experimentally in ultrasonic investigations per-
formed on Ni [24 ± 26], MnP [27], and rare-earth metals [18].
It was shown in later theoretical works [19, 28 ± 31] that in
both the hydrodynamic and critical �ot5 1� regions, the
coefficient ak is described by a simple scaling function of the
variable ot. The experimental investigations performed on
three-dimensional Heisenberg ferromagnets Gd [18] and
MnP [27, 31] and on a two-dimensional Ising antiferro-
magnet Rb2CoF4 [29, 30] confirmed the validity of the
concepts of dynamic scaling.

Although critical dynamics have been studied by
ultrasonic methods in numerous works of both foreign and
domestic authors, no reviews have been published in recent
years devoted to systematizing the experimental and
theoretical studies of the propagation velocity and attenua-
tion of ultrasonic waves in either the hydrodynamic or
critical region. The last review concerning this question
was published in 1977 [19] and, naturally, does not reflect
the modern state of the problem of investigation of critical
dynamics of magnetically ordered crystals by ultrasonic
methods.

The work presented here is aimed to fill this gap. It
generalizes experimental and theoretical investigations in the
field of propagation of ultrasound in the critical region not
only in ferromagnets and antiferromagnets, but also in
ferrimagnets, which are substances that are close to insula-
tors in electrical properties, to ferromagnets in magnetic
properties, and to antiferromagnets in spin-ordering effects
(properties that first were studied by the authors of this review
[32 ± 42]).

2. Mechanism of the spin ± lattice interaction

In magnetically ordered crystals, the anomalous propagation
of sound waves near the Curie (NeÂ el) temperature is
controlled by spin ± lattice interactions which have a magne-
tostrictive origin. In this temperature range the interaction
between the spin system and the lattice is implemented by two
mechanisms: single-ion (linear-magnetostrictive) and two-ion
(volume-magnetostrictive) [18].

When considering these mechanisms, the Hamiltonian of
the system is written in the form [43]

H � H0 �H1 �H2 ; �2:1�

where

H0 �
X
k

�ho0
kb
�
kbk ÿ

X
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a
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a
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X
i

S z
i �2:2�

is the Hamiltonian of noninteracting spins Si and phonons
with frequency o0

k and polarization vector ek; bk and b�k are
the operators of annihilation and creation of phonons,
respectively. From here below, J is the exchange integral, S is
the spin number, g is the LandeÂ factor, mB is the Bohr
magneton, and �h is Planck's constant. The latter term in H0

represents the Zeeman energy for the case H k z. H1 and H2

are the spin ± phonon interactions of first and second orders
with respect to the phonon amplitudes, i.e., the volume-
magnetostriction and linear-magnetostriction interactions,
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respectively. They are determined by the expressions
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where r is the density. As can be seen from (2.3) ± (2.6), the
change in the length of the vectorRi that links two lattice sites
with spins Si is a first-order quantity with respect to elastic
stresses for longitudinal waves, and a second-order quantity
for transverse waves propagating along the symmetry axes of
the crystal. In other words, this means that the propagation of
longitudinal waves results in a volume deformation, whereas
transverse waves cause shape deformation.

The very value of the critical attenuation at a fixed
frequency depends on the values of the spin±phonon interac-
tion constants. These constants cannot be calculated theore-
tically. The volume-magnetostrictive interaction constant BV

can be evaluated from the displacement of the Curie point
under the action of hydrostatic pressure, the anomaly of the
thermal expansion coefficient, and the true volume magne-
tostriction. The preferredmethod is the estimation ofBV from
the dependence of the exchange interaction on pressure
(volume). In this case, BV is expressed through the
exchange-integral derivative with respect to the interatomic
distance a:

BV � Na
qJ
qa
� 3NAr

M
Jgm ; �2:7�

where qJ=qa is estimated from the displacement of the Curie
point under the action of a hydrostatic pressure; N is the
number of atoms per unit volume;

gm �
q ln J
q lnV

� ÿ 1

BT

q lnTc

qP
�2:8�

is the GruÈ neisen constant; and BT is the compressibility.
The linear-magnetostrictive interaction constant B? is

determined as

B? � 2:4C44l0 ; �2:9�
whereC44 is the elastic constant and l0 is themagnetostriction
at T � 0 K.

When estimating the magnetoelastic constants BV and B?
for magnetic insulators, Bloch showed [44] that the energy of
volume interaction varies as the 10=3 power of volume and,
consequently, gm � 10=3. Later, Samara and Jiardini [45]

verified this law. This conclusion is also confirmed by our
data on thermal expansion. In particular, the values of the
GruÈ neisen constant gm obtained from the slopes of the
DaH � f�DCH� dependences coincide within 10% with the
above estimates.

When estimating BV in the rare-earth metal Gd, it should
be remembered that the dependence of the exchange integral
on the interatomic spacing has different signs for the
hexagonal axis and the basal plane and that the GruÈ neisen
constants for the a and c axes differ at above and below Tc

[46]. For this reason, the BV values for Gd are estimated from
the average value of gm.

The BV and B? constants calculated by (2.7) and (2.9) are
given in Table 1. The table also lists the data on the Curie
(NeÂ el) temperatures, anisotropy parameters, and GruÈ neisen
constants.

Based on an analysis of the interaction constants given in
Table 1, we may conclude that in all magnetically ordered
crystals, including ferrimagnets with spinel and garnet
structures, anomalies of the velocity and attenuation of
ultrasonic waves must be observed. From comparison of BV

and B?, it follows that the main mechanism of spin ± phonon
coupling in virtually all the crystals that were studied is
magnetostrictive. Therefore, it is only anomalies in the
behavior of longitudinal waves that are expected near the
Curie point. In magnetite and rare-earth metals such as Tb,
Ho, and Dy, the significant contribution of the linear-
magnetostrictive interaction to the spin ± phonon interaction
can also result in anomalies for transverse waves, but only if
the conditions given in the following section are fulfilled.

3. Sound propagation near the Curie point

When experimentally studying the propagation of ultrasonic
waves, the first parameters to be measured are the propaga-
tion velocity and the attenuation coefficient and they are
measured not only near the phase-transition temperature but
also over a wide temperature range. In all the magnetically
ordered crystals that were studied, anomalies characteristic of
second-order phase transitions were revealed near the critical
temperature.

As is seen from Figs 1 ± 4, the propagation velocity vL or
the velocity shift Dv=v0 passes through a minimum, and the
attenuation coefficient ak goes through a maximum. The

Table 1. Spin ± phonon interaction constants.

Material Curie (NeÂ el)

temperature

Anisotropy

parameter

gm BV, 10
7 J

mÿ3
B?, 107

J mÿ3

Gd

Tb

Dy

Ho

MnP

Ni

Rb2CoF4

EuO

RbMnF3

MnF2

Fe3O4

Y3Fe5O12

Gd3Fe5O12

290.1

227.6

177.3

132.1

290.5

630.0

103.2

69.4

83.0

67.3

858.0

548.25

560.0

5� 10ÿ4

ÿ0:4
ÿ0:3
ÿ7� 10ÿ2

� 10ÿ4

0.55

4� 10ÿ4

5� 10ÿ6

3� 10ÿ2

10ÿ4

10ÿ5

10ÿ5

2.00

1.39

1.30

1.08

Ð

1.20

Ð

3.33

3.13

3.33

3.33

3.13

3.20

9000

7500

6000

2200

3200

2360

Ð

2700

Ð

1300

281.5

151.2

160.5

20

1280

1440

460

Ð

Ð

Ð

40

0.2

20{
1.28

1.5

{ The values of the interaction constants for the ferrimagnets have not

been normalized with respect to the reduced magnetization.
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temperatures at which the anomalies of ak and vL are
observed do not coincide and are displaced toward lower
temperatures relative to Tc (see Figs 3 and 4).

Another characteristic feature of magnetically ordered
crystals is that not only their attenuation coefficient increases
in magnitude but its maximum shifts toward lower tempera-
tures. The ultrasound propagation velocity only weakly
depends on frequency. However, in the immediate vicinity
of Tc, the velocity depends on the frequency strongly.

These and some other features of the propagation of
ultrasonic waves in magnetically ordered crystals can be
illustrated using the substances studied as examples.

The experimental studies performed on ferromagnets
such as Gd [18, 47 ± 50] and MnP [27, 31, 51] and on
antiferromagnets MnF2 [52 ± 58] and RbMnF3 [18, 21, 55 ±
58] show that longitudinal waves exhibit critical attenuation,
whereas for transverse waves, no anomalies occur at the Curie
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Figure 1. Attenuation of ultrasonic waves of frequency 50 MHz along the

c axis of holmium [48]: �, longitudinal; �, transverse.
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Figure 2. Attenuation of ultrasonic waves of frequency 50 MHz along the

c axis of dysprosium [48]: �, longitudinal; �, transverse.
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Figure 3. Attenuation of longitudinal ultrasonic waves in the ordered

phase of MnF2 [56] for the propagation direction [001] at several

frequencies: 1, 200; 2, 500; 3, 720; and 4, 1000 MHz.
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Figure 4. Propagation velocity of ultrasonic waves in RbMnF3 [55] for the

propagation direction [001] at several frequencies: 1, 30; 2, 90; and

3, 150 MHz.

868 I K Kamilov, Kh K Aliev Physics ±Uspekhi 41 (9)



(NeÂ el) point or they are much less than for the longitudinal
waves. This can be explained as follows [58]. The longitudinal
waves are related to the spin system through the modulation
of the exchange interaction by strain fields; for the transverse
waves, this interaction is absent. The transverse waves are
related to spins through an anisotropic magnetostrictive
interaction, which is much weaker than the isotropic
exchange interaction in crystals where the magnetic ions are
in the S state. Since the attenuation coefficient ak is
proportional to the square of the spin ± phonon interaction
constant, the values of ak for the transverse waves are much
less than for the longitudinal waves. As is shown by
magnetostriction investigations of rare-earth metals, whose
atoms are not in the S state, the constants of the linear and
volumemagnetostriction interaction can be of the same order
of magnitude. However, the experiments that were carried
out on Tb, Ho, and Dy showed an absence of critical
attenuation for transverse waves [18, 49] (see Figs 1 and 2).
These experimental results verified in Refs [59, 60] disagree
with the above explanation. Later experiments showed that
when the transverse waves propagate in the basal plane in Tb
and Ho, they exhibit critical attenuation only if they have a
certain polarization [61]. In order to explain these experi-
mental results, the following mechanism was suggested in
Ref. [60]. The rare-earth metals Tb, Dy, and Ho have a
hexagonal structure and belong to easy-plane magnets.
The energy of single-ion anisotropy stabilizes the spins in
the basal plane and, consequently, the fluctuations along the
c axis are suppressed by this energy, whereas the fluctua-
tions in the basal plane are not restricted. The attenuation
coefficient for the transverse waves is proportional to the
correlation function for the spin components along both the
propagation direction and the polarization vector. There-
fore, no critical attenuation is observed for transverse waves
of any polarization propagating along the c axis. The
transverse waves only reveal anomalous attenuation if
their polarization and propagation vectors lie in the basal
plane.

Unlike the rare-earth and other metals, the attenuation
coefficient in magnetic insulators exhibits less singular
behavior. As in other magnetically ordered crystals, the
total attenuation in magnetic insulators increases with
increasing frequency. However, no anomalous attenuation
is observed at high frequencies if the condition ot > 1 is
fulfilled. In EuO, no anomalous attenuation was found near
Tc in the frequency range 10 ± 200 MHz [18]. A wide
maximum of ak was revealed below Tc; as measurements
in a magnetic field of 8 kOe show, this maximum is due to
the interaction of elastic waves with spins located in domain
walls. A comparison of the interaction constants of EuO
and other magnetic insulators shows that in the frequency
range studied, EuO should exhibit anomalous attenuation
of the same order of magnitude as that in MnF2. The
absence of critical attenuation in EuO can be explained by
the anomalously large relaxation time, which satisfies the
condition ot4 1; note also that it was mentioned in Ref.
[62] that critical attenuation in europium oxide can be
directly observed at frequencies of a few kilohertz.

In single crystals of ferrites with spinel (Fe3O4) and
garnet (Y3Fe5O12, Gd3Fe5O12) structures, the anomalies in
the velocity and attenuation of longitudinal waves were
found to occur along all principal crystallographic direc-
tions. Both the velocity and attenuation reveal weak
anisotropy; in particular, in yttrium iron garnet, it turns

out to be

�Dv=v0��110�
�Dv=v0��100�

� 1:28 :

The anisotropy of ak andDvmay be caused by the anisotropic
dependence of the exchange integral on the interatomic
spacing or by the contribution of the single-ion mechanism
of spin±phonon interaction. This is also indicated by the data
on thermal expansion of iron garnets [63].

It follows from the experimental data on ferrites with
spinel and garnet structures that the attenuation grows in
magnitude with increasing frequency and the maximum of ak
is displaced toward lower temperatures. In Y3Fe5O12, the
anomalous attenuation passes through a maximum at
T � Tmax as the frequency increases from 1.67 to 30 MHz;
the maximum attenuation is observed at 10 MHz [32, 33]. A
similar phenomenon was revealed in yttrium iron garnet
when measuring the complex susceptibility of the parapro-
cess at the same frequencies [64]. It is evident that the
anomalous absorption of the elastic and electromagnetic
energy in Y3Fe5O12 may be related to the formation of
domains with a strong correlation between spins, which
have a finite volume and a most probable life time, according
to our estimations, of about � 10ÿ8 s, which coincides with
the data obtained from the measurements of dynamic
susceptibility and neutron scattering [64, 65].

Unlike other rare-earth metals and metallic magnets, the
critical behavior of gadolinium has not been determined
unambiguously even in the hydrodynamic region. The
dynamic critical properties of gadolinium were studied in
Refs [18, 27 ± 38], where it was shown that depending on the
purity of a sample, gadolinium may be classified as either an
isotropic or a uniaxial Heisenberg ferromagnet.

This information was obtained from experiments on the
critical propagation of ultrasonic waves, since gadolinium is
not an object that is suitable for using conventional methods
of studying critical dynamics (neutron scattering, dynamic
susceptibility, EPR). Note also that, although the experi-
mental data available in the literature involve a wide range of
temperatures and frequencies, they allow studying the
dynamics of critical fluctuations only in the hydrodynamic
region. To study the propagation of ultrasonic waves in the
critical region, measurements in the immediate vicinity of Tc

are necessary, which naturally increase the requirements on
the experimental procedure. In particular, the accuracy of
temperature maintenance and the temperature steps during
the measurements should be no worse than 10ÿ4 and 10ÿ3 K,
respectively. The critical region can also be achieved by
increasing the frequency, but in this case the total attenua-
tion increases sharply, which restricts measurements in the
ordered phase to the conditionot � 1. In this connection, the
optimal ranges for experimental investigation of the critical
dynamics of gadolinium are frequencies of about 5 ± 30 MHz
and reduced temperatures t � 10ÿ4ÿ10ÿ1.

Figure 5 displays typical temperature dependences of the
total attenuation coefficient (at 25 MHz) and the relative
change (at 10 MHz) in the velocity of longitudinal waves
propagating along the c axis of gadolinium. Note that, like in
other magnetically ordered crystals, the anomalies of ak and
Dv=v0 do not coincide with Tc � 293:575 K, which was
determined from magnetic measurements by the kink
method, but are shifted toward lower temperatures. More-
over, the temperatures at which the maximum of ak and the
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minimum of Dv=v0 occur do not coincide with one another.
Thus, at o=2p � 10 MHz the anomalies of ak and Dv=v0 are
displaced with respect to Tc by 0.16 and 0.22 K, respectively.
A characteristic feature of the frequency dependence of the
attenuation is not only an increase in the ak magnitude and a
displacement of its maximum toward lower temperatures
with increasing frequency, but also the absence of relaxation
anomalies caused by trivial effects of the interaction of sound
waves with domain walls.

To further discuss the experimental data and compare
them with theory, one should determine the critical attenua-
tionDak � ak ÿ a0 (a0 is the background attenuation) and the
relative change in the sound velocity �Dv=v�k � Dv=vÿ Dv=v0
(Dv=v0 is the normal change in the velocity).

In the paramagnetic phase, where the time average of the
order parameter is zero, the only mechanism of anomalous
attenuation is the fluctuation mechanism and it is assumed,
when determining Dak, that the background attenuation is
independent of temperature. Since the anomalous attenua-
tion is observed over a relatively narrow temperature range,
the value of ak is chosen as an a0 value at a temperature that is
20 ± 30 K above Tc. The normal change in the velocity is
determined by the extrapolation of experimental values of
Dv=v0 measured in the paramagnetic phase to Tc.

Measurements of the velocity of both the longitudinal and
transverse waves over a wide temperature range (78 ± 900 K)
performed in ferrites with spinel and garnet structures (see
Refs [34, 35]) show that v in the paramagnetic phase decreases
linearly with increasing temperature. Therefore, in order to
find �Dv=v0�k, we used linear extrapolation. Taking into
account that Dv=v0 for gadolinium in the paramagnetic
phase depends on T nonlinearly and that the DE effect in the
ferromagnetic phase does not exceed 2%, for determining
�Dv=v0�k both at T > Tc and at T < Tc, the following
dependence was used:

Dv
v0
� a0 � a1T� a2T

2 ;

where a � 0:43524, a1 � ÿ2:6425� 10ÿ3, and a2 �
3:977� 10ÿ6. In Figure 5, this dependence is given by a solid
line.

Experimental data show that when determining Dak and
�Dv=v�k in a magnetically ordered phase, it should be
remembered that the anomalous propagation of ultrasonic
waves can be related not only to the second-order phase
transformation, but also to the interaction of the sound with
domain walls, spin waves, and nuclear spins. These interac-
tions can lead to additional anomalies near the Curie point
[55, 67]. Some of them are revealed in crystals that were
studied in our work as well. An interaction with the domain
walls, which led to a relaxation maximum, was revealed in
ferrites of the copper ± cadmium system. Near the Curie
temperature, this maximum, unlike that caused by fluctua-
tion effects, is suppressed even in a weak magnetic field. A
resonance attenuation due to the interaction of elastic and
spin waves was revealed in yttrium iron garnet [68]. At
frequencies of 5 ± 30 MHz, its maximum is observed rela-
tively far from Tc and therefore it has no significant effect on
the critical attenuation. Thus, for example, according to our
data for Y3Fe5O12 at o=2p � 30 MHz, the attenuation peak
of the natural magnetoacoustic resonance is at T � 530 K,
i.e., 20 K below Tc.

The temperature dependences of Dak and �Dv=v�k
determined by the above methods correspond to the power
laws

Dak
o2
� B�0 tÿZ

�
i ; �3:1��

Dv
v

�
k

� V�0 t
ÿn�

i ; �3:2�

where the plus and minus signs refer to the temperatures
T > Tc and T < Tc, respectively. The values of the critical
exponents �Z�i ; n�i � and amplitudes �B�0 ;V�0 � that best
describe the experimental data are given in Tables 2 ± 4.

When determining critical exponents and amplitudes, it
should be remembered that their absolute values depend not
only on the correct estimation of the background attenuation
and the normal change in the velocity, but also on the choice
of Tc. If Tc is identified with the attenuation-peak tempera-
ture or velocity minimum, then even for the same crystal the
values of the critical exponents may vary within wide limits.
For example, for gadolinium the values of Zi given by
different authors vary from 1.2 [47] to 1.8 [69]. This may be
due to the fact that, as we saw above, the anomalies inDak and
Dv=v are observed below Tc and the anomalies themselves
become displaced toward lower temperatures with increasing
frequency.

To clarify the effect of the choice of Tc, we analyzed the
dependences of Zi and ni on Tc and found that a change in Tc

of 1 K leads to changes in the critical exponents by 30% and
more. Therefore, there is a need to determine Tc from
independent measurements. The preference here should be
given to estimatingTc frommagnetic measurements using the
kink method [66].

Moreover, the power laws (3.1) and (3.2) predicted by
different theories are only valid if the condition ot5 1 is
fulfilled. This means that the experiments and data treatment
must be carried out in the corresponding frequency and
temperature ranges. All these requirements are satisfied
when the critical exponents given in Tables 2 ± 4 are used. It
follows from these tables that the ni value is independent of
the crystal structure, crystallographic direction, and of the
range of exchange interaction and spin ordering. This can be
shown using the data for single crystals of ferrites Fe3O4

288 298 308 318 T, K
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Figure 5.Temperature dependences of the velocity shifts (curve 1, 10MHz)

and attenuation coefficient (curve 2, 25 MHz) for gadolinium [83].
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(spinel structure), Y3Fe5O12 (garnet structure), Gd3Fe5O12

(garnet structure), and ferromagnetic metal gadolinium
(hexagonal structure), as well as antiferromagnetic RbMnF3

(cubic structure) and MnF2 (tetragonal structure) and the
weak ferromagnet NiF2.

Thus, the insignificant changes in ni when going from
sample to sample and the closeness of ni to the values of the
critical exponent of the heat capacity (see Table 3) show that
the propagation velocity of longitudinal waves gives informa-
tion on the static critical behavior and, therefore, all the
magnetic insulators that were studied can be classified based
on the equalities ni � a � a to the Heisenberg universality
class (d � 3, n � 3).

The critical exponents for MnF2 and RbMnF3 given in
Table 3 were borrowed from Refs [18, 55, 58], whereas the t0
and yÿ values were calculated from experimental data given
in those papers.

As to the critical exponent for the attenuation Zi, its
values, as seen from Tables 2 ± 4, are independent of the
frequency and the propagation direction of longitudinal
waves but depend on the range of the exchange interac-
tion; for gadolinium, Zi is much greater than for ferrites
with spinel and garnet structures. As can be seen from
Table 1, this experimental fact agrees with the data obtained
for other metallic and insulating magnetic crystals [18,
55 ± 61].

Thus, from the experimental data on the velocities and
attenuation of ultrasonic waves, the numerical values of
the critical exponents for the attenuation, and the dis-
placement of the maximum of ak toward lower tempera-
tures, it follows that in all the crystals that were studied
both the fluctuation and relaxation mechanisms of anom-
alous sound propagation are observed. In the paramag-
netic phase, only the fluctuation mechanism is present,
which exhibits specific features in magnetic insulators and
in metals.

Table 2. Experimental values of the critical exponents for the attenuation �Zi� and velocity �ni� for magnetically ordered crystals.

Material t � �Tÿ Tc�=Tc Zi ni Ref.

Gd

Tb

Dy

Ho

MnP

Ni

Rb2CoF4

EuO

RbMnF3

MnF2

FeF2

Fe3O4

Y3Fe5O12

Gd3Fe5O12

7� 10ÿ3ÿ7� 10ÿ2

10ÿ3ÿ10ÿ1
3:4� 10ÿ3ÿ2:4� 10ÿ2

7� 10ÿ3ÿ7� 10ÿ2

3� 10ÿ3ÿ10ÿ1
±

3� 10ÿ4ÿ10ÿ1
2� 10ÿ3ÿ10ÿ2
5� 10ÿ3ÿ1:1� 10ÿ2

3� 10ÿ4ÿ10ÿ3
±

5� 10ÿ3ÿ2:5� 10ÿ2

±

4� 10ÿ4ÿ4� 10ÿ2

±

10ÿ4ÿ3� 10ÿ2

±

±

2:3� 10ÿ4ÿ3� 10ÿ2

1:8� 10ÿ4ÿ3� 10ÿ2

2:3� 10ÿ4ÿ5� 10ÿ1

1:2� 0:1
1:63� 0:1
1:8� 0:2
1:24� 0:1
1:37� 0:1
1:26� 0:1
1:0� 0:1
0:9� 0:2
1:1� 0:1
1:4� 0:2
1.25

0:74� 0:05
0

0:28� 0:05
0:32� 0:02
0:13ÿ 0:16
�0:02
0:75� 0:08
±

0:50� 0:10
0:42� 0:10

0

±

±

0

0

±

0

0:25� 0:1
0.17

±

±

±

0�ln t�
0

±

0.12

0.33

±

0:25� 0:05
0:32� 0:02
0:36� 0:05

[47]

[18]

[69]

[18]

[18]

[18]

[18]

[59]

[31]

[24]

[25]

[29]

[18]

[21]

[18]

[54]

[18]

[18]

[42]

[42]

[42]

Table 3. Critical exponents for the velocity �ni�, attenuation �Zi�, and
relaxation time �x� for some magnetic insulators.

Magnetic

material

a Zi ni xÿ x� tÿ0 ,
10ÿ11 s

t�0 ,
10ÿ11 s

yÿ

MnF2

RbMnF3

Y3Fe5O12

Gd3Fe5O12

ÿ0:11
ÿ0:14
ÿ0:21
ÿ0:20

0.14

0.28

0.50

0.42

0.12

0

0.32

0.36

0.83

0.48

0.90

0.94

0.15

0.21

0.10

0.12

50

1.12

2.30

2.40

106

7.43

92.2

115

ÿ0:66
ÿ0:11
ÿ0:50
ÿ0:53

Table 4. Critical exponents and amplitudes for gadolinium (along the c axis).

Critical exponents

and amplitudes

T > Tc T < Tc

Experiment Theory Experiment Landau ±Khalatnikov

theory
uniaxial ferromagnets isotropic ferromagnets

Zi
ni
x

y

z

B0, cm
ÿ1 s2

V0, 10
4 cm3

t0, 1012 s
BF, cm

ÿ1 s0.92

BR, cm
ÿ1 s0.94

1.15(5)

0.20(2)

0.92(7)

0.08(4)

1.37(10)

5:0�1� � 10ÿ21

4.0(1)

3.06

2:95� 10ÿ9

Ð

1.218

ÿ0.03
1.25

0.123

2.17

1.883

0.122

1.67

0.147

2.48

1.98

4:72� 10ÿ21

4.16

3.29

Ð

Ð

1.08(5)

0.14(2)

0.94(7)

0.06(4)

1.39(10)

2:36�1� � 10ÿ19

9.5(1)

17.7

Ð

1:29� 10ÿ8

1.0

0

1.0

0

2
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4. Fluctuation mechanism of anomalous
propagation of ultrasonic waves

4.1 Fluctuations of spin-energy density
In magnetically ordered crystals with strongly developed
fluctuations, the dominating mechanism of the anomalous
propagation of sound waves near the temperature of
transformation into the paramagnetic state is the fluctuation
mechanism, which consists in the following. Through the
spin ± phonon interaction ofmagnetostrictive nature, fluctua-
tions of the order parameter or spin density produce a
random force fk, which disturbs the normal acoustic modes.
As a result, an elastic wave propagating in such a system
experiences decay and a frequency shift, which, according to
Tani and Mori [17] and Kawasaki [8], are expressed through
the correlation function of random forces. In particular, the
attenuation coefficient is

ak � Re

�1
0

dt
ÿ
fk�t�; f �k �0�

� exp�ÿiokt�
vL

�bk; b�k� ; �4:1�

and the change in the velocity of longitudinal waves
Dv � Dok=k caused by the frequency shift consists of two
parts

Dok � �Dok�1 � �Dok�2 ; �4:2�

�Dok�1 � ÿ
1

2rkBTVo0
k



U
�1�
k U

�1�
ÿk 0
�
; �4:3�

�Dok�2 �
1

rVo0
k



U
�2�
kk 0
�
; �4:4�

where �Dok�1 is the second-order contribution from H1, and
�Dok�2 is the first-order contribution from H2. Unlike the
case of ak, the expression for Dvk does not contain time
correlations in the low-frequency limit. At high frequencies,
(4.2) contains an additional term that determines the
frequency dependence of the anomalous change in the
velocity. It is only �Dvk�1 that exhibits singular behavior
near Tc and, as both experimental [18, 24 ± 26] and theore-
tical [43, 70, 71] studies as well as our data show (see Table 3),
this part of the velocity change is proportional to themagnetic
contribution to the heat capacity or thermal expansion
coefficient. The second term in Eqn (4.2), as can be seen
from Eqn (4.4), behaves near Tc in the same manner as the
internal energy of the spin system.

When using Eqn (4.1) for explaining experimental data on
ak in magnetic insulators, including ferrites, it should be
remembered that in the spin ± phonon interaction that
determines the dynamics of the random force fk, the
predominant part is that that is proportional to the
Hamiltonian of the spin-energy density Hk. In this case, as
was shown by Kawasaki [20], we have

ak � o2 Re

�1
0

dt

Hk�t�Hk�0�

�
exp�ÿiokt� ; �4:5�

and, consequently, the sound waves predominantly interact
with the spin-energy density fluctuations. If it is assumed
that the changes in Hk with time and, consequently, the
decay of the spin-energy density fluctuations occur by
thermal diffusion of spins and by spin ± lattice relaxation,

then we have

ak � o2CHt
1� o2t2

; �4:6�

1

t
� 1

tS
� 1

tSL
� k2K

CH
� g0
CH

: �4:7�

Here, tS and tSL are the times of spin diffusion and spin ±
lattice relaxation, respectively; K is the spin thermal con-
ductivity; g0 is a constant; and k is the wave number.

To determine the dominating mechanism of the decay of
spin-energy density fluctuations in magnetic insulators,
including ferrites, the relaxation time and its temperature
dependence must be found. To this end, the following
formula (universal for all the mechanisms) obtained from
data on Dak and �Dv=v�k may be used [43]:

t � v

o2

Dak
�Dv=v�k

� t0tÿx : �4:8�

Although this formula was derived on the assumption that
ot5 1 and that t is frequency-independent, it was shown
experimentally that it canbeusedup toot � 1 [43]. The values
of the critical amplitudes t0 and exponents x that best describe
the experimental data are given in Tables 3 and 4. It follows
from these data that t exhibits only a weak singularity.
Moreover, in the paramagnetic phase of the ferrimagnets,
the critical exponents a, x, and a are equal within the
experimental error and coincide with the corresponding
values for other magnetic insulators MnF2 and RbMnF3 [18,
21, 55, 56]. The proportionality of t to themagnetic part of the
heat capacity and thermal expansion coefficient indicates that
in ferrimagnets the dominating mechanism of the decay of
fluctuations is spin ± lattice relaxation.At t � tSL andot5 1,
it follows from Eqn (4.6) that Zi � 2a. This equality, as is seen
from Table 3, is sufficiently well satisfied for the ferrites with
garnet and spinel structures and themagnetic insulatorsMnF2

and RbMnF3.
Microscopic calculation of tSL was performed for the first

time by Huber for the magnetic insulators MnF2, RbMnF3,
and EuO [72]. Although the calculation was based on the
Einstein model for the phonon system and the Gaussian
approximation for the spin-correlation function, not only the
proportionality of tSL to themagnetic part of theheat capacity
was shown, but also a satisfactory agreement with experi-
mental values was obtained. The calculated values of tSL
turned out to be greater by a factor of four for RbMnF3 and
bya factor of thirty forMnF2as compared to the experimental
values [72]. Based on more realistic approximations (Debye
model for the phonon system and the Lowesey ±Mesevi
correlation function [73]), Itoh [73] obtained excellent agree-
ment with experimental data not only for the temperature
dependence, but also for the numerical values of tSL. Similar
calculationswere performed byus for some ferriteswith spinel
and garnet structures. In particular, the critical amplitudes t0
calculated in the Itoh approximation agree within 10 ± 20%
with the experimental values given in Table 3. The good
agreement between experimental values of tSL and those
calculated based on the Huber and Itoh approximations
indicates the spin ± lattice type of relaxation in ferrimagnets.
In this case,CH in Eqn (4.6) may be replaced by the relaxation
time tSL. Then, Eqn (4.6) describing the frequency and
temperature dependences of the attenuation coefficient takes
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the form

ak�o;T� � a1
o2t2

1� o2t2
; �4:9�

where a1 is a constant for the critical region. Equation (4.9)
was experimentally verified using the Heisenberg antiferro-
magnet RbMnF3 [55] and yttrium and gadolinium iron
garnets [42]. This dependence is represented on a double
logarithmic scale in Fig. 6. The experimental points corre-
spond to various frequencies and the straight line, to the
calculation in the Itoh approximation [73] with

a1 � 8:69
RTc

18Mv 2
A

t0

q ln J
q ln a

dB cmÿ1 :

The fact that the measured values of a in a frequency range of
1.67 ± 30MHz and the temperature range 10ÿ4ÿ10ÿ2 K lie on
the same straight line confirms the frequency independence of
t and the spin ± lattice nature of relaxation.

Thus, based on an analysis of experimental data on the
velocity and attenuation of ultrasonic waves and a compar-
ison of these data with theoretical concepts, we may conclude
that inmagnetic insulators, including ferrimagnets with spinel
and garnet structures, the dominating factor in the para-
magnetic phase is the linear interaction of sound waves with
the spin Hamiltonian, and the anomalous attenuation is due
to spin-energy density fluctuations, whose decay occurs
through slow spin ± lattice relaxation. The same mechanism
can explain the absence of critical attenuation in EuO in the
megahertz frequency range. According to Huber's calcula-
tions [72], tSL � 4� 10ÿ6 s in EuO; then, ot4 1 in the
frequency range of 10 ± 200 MHz that was studied and,
consequently, Eqn (4.9) yields ak � a1, which is nonsingular
at the Curie point.

4.2 Fluctuations of the order parameter
It follows from the experimental data and the values of the
critical exponents (see Tables 2 ± 4) that in the paramagnetic
phase in rare-earth metals, nickel, and MnP, the strength of
the singularity of ak is greater than in magnetic insulators.
This is primarily due to the fact that in metallic magnets the
exchange interaction is long-range. In magnetically ordered

crystals of metallic type, there exist conduction electrons
whose transitions from the s state into d or f states under the
action of a random force, occuring near the Fermi surface,
lead to local spin fluctuations. Therefore, the dynamics of the
random force fk is governed by long-wavelength spin
fluctuations. In this case, if we neglect the contribution of
H2, fk is expressed through U

�1�
k and the attenuation

coefficient for longitudinal waves turns out to be propor-
tional to the four-spin correlation function

ak � �2rVvL�ÿ1 Re
X

q; q 0 ; a; a 0
g a �
q �k�ga

0
q 0 �k�

�
�1
0

ÿ
S a
q �t�S a

ÿqÿk�t�;S a 0
ÿq 0 �0�S a 0

q 0�k�0�
�
exp�ÿiokt� dt ;

g a
q �k� �

X
j

exp�iqRji�
�
exp�ikRji� ÿ 1

�
ek

qJ a
ij

qRi
; �4:10�

and the velocity change, as in the case of insulators, is
described by Eqns (4.2) ± (4.4).

The main difficulty in the theoretical discussion of critical
propagation of sound waves consists in the estimation of the
four-spin correlation function. Here, two approaches may be
mentioned, namely, the so-called conditional theories [74 ±
76] and the theories of Kawasaki [8, 22] and Laramore and
Kadanoff [23]. The conditional theories, which are based on
the representation of the four-spin correlation function
through two-spin correlation functions by means of decou-
pling and on the use of the hydrodynamic form for estimating
two-spin correlations, in the limit of ot5 1 yield ak �
o2w1=2tÿ1, i.e., lead to overestimated values of critical
fluctuations. The Kawasaki theory [43], which is based on
the concept of dynamical critical variables [8], and the
Kadanoff's theory [23] of interacting modes yield identical
values for the critical exponents. However, the latter theory
makes it possible to estimate not only the critical exponents,
but also critical amplitudes. Therefore, when comparing the
experimental values of Zi, ni, B0, andV0 with those calculated
theoretically, predictions can be used that follow from the
theory of interacting modes, according to which we have in
the limit ot5 1

Dak � Bo2t ; �4:11�

where

B � rkBTcgv
r 3c0

�
1

Tc

qTc

qP

�2

t 2aÿ2�3n : �4:12�

With this form of Dak, it should be remembered that B is a
singular quantity, whereas the experimentally determined
amplitude B0 is temperature-independent. For the first time,
this circumstance was noted by Pokrovskii and Khalatnikov
[77] when considering the anomalous sound attenuation near
the l point of helium. They showed that B had the same
singularity as the heat capacity at constant pressure had. A
similar result was also obtained for magnetically ordered
crystals [70, 71]. However,V0 cannot be estimated in terms of
these works; we, therefore, theoretically calculated V0 and ni
using the known formula for the relaxation time (4.8), which
being combined with Eqns (4.11) and (4.12), yields�

Dv
v

�
k

� vB � V0t
2aÿ2�3n : �4:13�

0.1 1.0

1.0

D
a k
,d

B
cm
ÿ1

0.1

o2t2

1� o2t2

Figure 6. Critical attenuation in gadolinium and yttrium iron garnets as a

function of o2t2=�1� o2t2�.

September, 1998 Ultrasonic studies of the critical dynamics of magnetically ordered crystals 873



Formulas (2.10), (2.11), and (4.11) ± (4.13) also make it
possible to obtain relations between the static and dynamic
critical exponents:

Zi � xÿ 2a� 2ÿ 3n � xÿ a ; �4:14�
ni � 2ÿ 2aÿ 3n � ÿa : �4:15�

One of the main parameters that characterize critical
dynamics is the relaxation time, which can be calculated
from experimental data on Dak and �Dv=v�k. In the para-
magnetic phase, formula (4.8) is usually employed for this
purpose, whereas in magnetically ordered phases, the t�t�
dependence can be restored from the displacement of the
maximum of ak with increasing frequency (according to the
Landau ±Khalatnikov relaxation theory, this displacement is
determined by the condition ot � 1).

The temperature dependences of the relaxation time
calculated from the data on Dak and �Dv=v�k show that the
experimental points lie on two straight lines that represent
power dependences of the type of (4.8) with identical critical
exponents at both T > Tc and T < Tc, but with different
critical amplitudes (Fig. 7). Note that formula (4.8) is valid for
gadolinium at t5 10ÿ3 (o=2p � 30 MHz, ot � 0:39), and
the absolute values of t coincidewith the values given by other
authors. Thus, LuÈ thi et al. [18] give t � 5:31� 10ÿ10 s at
t � 3� 10ÿ3, whereas our data yield t � 5:8� 10ÿ10 s (see
Fig. 7).

The final results obtained after mathematical treatment of
the experimental data on the temperature and frequency
dependences of ak and DvL=v0 that were performed by the
least-squares method using a standard program are given in
Table 4. The table also gives the numerical values of the
critical amplitudes and exponents obtained in terms of the
theory of interacting modes. When calculating critical
amplitudes, the following values of the parameters that enter
into expressions (4.11) ± (4.13) were used: vL �
2:9� 105 cm sÿ1; r � 7:9 g cmÿ3; rc0 � a=

���
6
p

(an estimation
obtained from the molecular-field theory for hexagonal
crystals; a � 3:636 A is the shortest spacing of atoms [23]);
dTc=dP � 1:63� 10ÿ3 K barÿ1 [48]; and t0 was estimated, as
in Ref. [23], on the assumption that the energy of critical
fluctuations is equal to the exchange integral. The experi-
mental and theoretical values of z given in Table 4, which are
identical for various magnetically ordered crystals belonging

to the same dynamic class of universality and are determined
from the basic expression for the dynamic scaling [8 ± 12]

Ok � qzf�qrc� ; �4:16�

where Ok is the characteristic frequency of fluctuations with
wave vector q, were calculated from the relationship z �
�Zi ÿ ni�=n, which follows from Eqns (4.14) and (4.15), and
from the well-known relation z � x=n [12].

Note primarily that our values of the critical exponents Zi
and ni differ from those obtained by other authors: Zi �
1:2� 0:1 [47], Zi � 1:63� 0:1 [18], Zi � 1:8� 0:2 [71], and
ni � 0 (logarithmic dependence) [18]. This difference appears
to be related to the choice of the Curie point. In Refs [18, 47,
69], the Curie temperature was assumed to be equal to the
temperature at which the attenuation peak was observed,
whereas we determined Tc from magnetic measurements in
weak magnetic fields (smaller than the anisotropy or
demagnetizing fields [66]).

From a comparison of the experimental and theoretical
critical exponents and amplitudes, three important results
follow, which characterize the critical behavior of gadolinium
in the hydrodynamic region. First, despite the significant
discrepancies between the theory and experiment for some
critical exponents, the critical propagation of ultrasonic
waves can be described in terms of the theory of interacting
modes by the isotropic Heisenberg model with a noncon-
served order parameter (total spin of the system). In this case,
the conservation of the total spin is disturbed by isotropic
dipolar interactions (these problems are discussed below in
more detail). Second, the critical amplitudes are less atT < Tc

than at T > Tc, which suggests the presence in the magneti-
cally ordered phase of other than fluctuationalmechanisms of
anomalous variation of Dak and Dv=v, the most important of
which is the Landau ±Khalatnikov relaxation mechanism [7].
Third, the equality of the critical exponents x� � xÿ and
z� � zÿ for gadolinium confirms the validity of the main
assumption of the dynamic scaling hypothesis (4.17), accord-
ing to which the characteristic frequencies of fluctuations are
only a function of the variable ot.

5. Dynamic scaling for attenuation

It follows from the experimental and theoretical works [19,
27 ± 31] that the total attenuation of ultrasonic waves in
magnetically ordered crystals is caused by both the relaxa-
tion and fluctuations of the order parameter or spin-energy
density. BelowTc, bothmechanisms are operative, whereas in
the paramagnetic phase, only the fluctuational mechanism is
retained, i.e.,

Da�k � a�F ; Daÿk � aÿF � aR ; �5:1�

where aF and aR are the fluctuation and relaxation contribu-
tions to the critical attenuation Dak.

According to the dynamic scaling concepts and the theory
of interacting modes [19, 27 ± 31], ak is described in the entire
critical region by the scaling function of the variable ot:

a�k � B�F o
1�y� f �F �ot�� ; �5:2�

where f�ot� is the scaling function. Its concrete form is not
determined in the theory, but when treating experimental
data, fF is usually assumed to have the Lorentzian form

oÿ1, s

10ÿ8

10ÿ9

t, s

10ÿ9

10ÿ10

10ÿ4 10ÿ3
t

10ÿ2

10ÿ3 10ÿ2 10ÿ1

1

2

Figure 7. Temperature dependence of the relaxation time for gadolinium:

1, at T < Tc; and 2, at T > Tc [83].
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[27 ± 31]

f �F �
�ot��1ÿy�

C� �ot�1ÿy�
: �5:3�

Here, C is a positive constant, y� � a=x�, B�F � BÿF , and
a�F 6� aÿF because t�0 6� tÿ0 . Thus, we see that

aÿF �t� � a�F �qt� ; q �
�
tÿ0
t�0

�1=x

: �5:4�

Then, using (5.2), we can determine aF and aR for the
magnetically ordered phase. It was shown that not only aF,
but also aR was described by the scaling equation [19]

aR�t� � Daÿ�t� ÿ a�F �qt� � BRo1�yÿ f�otÿ� ; �5:5�

f�ot� � otÿ

1� �otÿ�2 : �5:6�

A similar result follows from the Landau ±Khalatnikov
theory at yÿ � 0 [7].

In order to experimentally verify scaling equations (5.2)
and (5.5), we must determine yÿ, y�, and C. To this end, we
may use the limits of the functions fF and fR at T � Tc and
T � Tmax. Since ot!1 at T � Tc and ot � 1 at T � Tmax,
we have

a�F � BFo1�y� � ac ; T � Tc ; �5:7�

aR � 1

2
BRo1�yÿ � amax ; T � Tmax : �5:8�

Figure 8 displays the frequency dependence of ak for
gadolinium at these temperatures; it is seen that the experi-
mental points satisfy dependences (5.7) and (5.8) in the
frequency range 5 ± 30MHz. The value of Dak corresponding
to 5 MHz was borrowed from Ref. [69].

The constant C is estimated from the experimental values
of Dak at T � Tc and ot� � 1. From Eqn (5.7) and the
temperature dependence of Dak, we have a�F =ac �
1=�C� 1� � 0:75 and C � 0:33.

The experimental data for a�F in the frequency range 10 ±
30 MHz were treated by the least-squares method using the
above estimates for y� and C. As the adjustable parameters,
we used x�, y�, and C, whose values were selected to be close
to 0.9, ÿ0:08, and 0.33, respectively. The best agreement of
the experimental points with Eqn (5.2), which is shown by a
dashed line in Fig. 9, was obtained at x� � 0:91, y� � ÿ0:12,
and C � 0:30. These data are in satisfactory agreement with
the values that were obtained based on direct measurements
(see Fig. 8 and Table 4).

The relaxation contribution aR to the anomalous attenua-
tion was found using Eqns (5.4) and (5.5) with q � 6:8. The
scaling function for aR on the double logarithmic scale is also
shown in Fig. 9 (curve 2). Here, the data points of various
forms correspond to different frequencies and the dashed line
represents Eqn (5.5) with yÿ � 0:12. The numerical values of
the other parameters necessary for the calculations are given
in Table 4. As can be seen from Fig. 9, the experimental data
on the frequency and temperature dependences of ak in the
range of ot from 0.1 to 7.0 relatively well satisfy Eqn (5.5).
The maximum of aR occurs not at ot � 1, as expected from
the Landau ±Khalatnikov theory, but somewhat displaced

toward the greater values of ot. This displacement
�ot � 1ÿ yÿ � 1:12�, caused by the singularity of the
critical amplitude of the attenuation coefficient, leads in
turn to a displacement of the maximum of Dak and the
minimum of Dv=v relative to one another.

Similar behavior of the ultrasonic attenuation is also
observed in other metallic magnetic materials. In particular,
in the ferromagnetic compound MnP, whose static critical
behavior is described by the three-dimensional Ising model
(b � 0:34� 0:03 and g � 1:29� 0:05), the investigation of
the critical propagation of ultrasonic waves (30 ± 210 MHz)
along the hard axis (a axis) showed that in the range
0:1 < ot < 10, the attenuation is described by the scaling
function (5.2) [31]. In this case, x� � xÿ � 0:92� 0:05,
t�0 � 9:0� 0:15, q � 5:0� 0:5 and y� � yÿ � ÿ0:18� 0:04
[31]. The fluctuation contribution found from the total
attenuation both above and below Tc is described by Eqns
(5.2) and (5.3) with C � 2:0� 0:2. The behavior of the
relaxation contribution is asymmetric relative to otÿ � 1,
although it is described by the scaling function (5.5). Figure 10
displays (on a double logarithmic scale) the relaxation
contribution as a function of otÿ. At small otÿ, the
experimental points correspond better to the Lorentzian
function (5.6), whereas at otÿ > 1, a Gaussian function
yields a better approximation.

The dynamic exponent for MnP �z � 1:38� estimated
from the relation z � x=n proved to be much less than the
theoretical value z � 2 for a three-dimensional Heisenberg
ferromagnet with nonconserved order parameter [12]. In
accordance with the assumption of the possibility of describ-
ing the phase transition inMnP on the basis of the molecular-
field theory [27], the value n � 1=2 was used when estimating
z, which yields z � 1:84� 0:10. This result is close to the value
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Figure 8. Frequency dependence of critical attenuation in gadolinium at

various temperatures: 1, T � Tmax; 2, T � Tc, and 3, t � 10ÿ3 [83].
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that follows from the Landau ±Khalatnikov [7] and Van
Hove [8] theories.

A disagreement between the static critical behavior and
the dynamic behavior was also revealed in the two-dimen-
sional Ising antiferromagnetic compound Rb2CoF4 [30].
Ultrasonic studies performed in the frequency range of 10 ±
150 MHz yield x� � 1:20� 0:10 and xÿ � 1:23� 0:05. It
follows from these values that at n � 0:99� 0:04, we have
z � 1:21� 0:10. This result agrees with the predictions of
dynamic scaling for the two-dimensional isotropic antiferro-
magnet �z � d=2�, but disagrees with the values obtained by
the Monte Carlo and the renormalization-group methods for
the kinetic Ising model �z � 1:85ÿ 2:18� [30].

As to the ferrimagnets, the main contribution to the
anomalous attenuation at T < Tc comes from the relaxation
mechanism because of the weak singularity (caused by the
interaction of the sound waves with fluctuations of the spin-
energy density) of the attenuation coefficient. The critical

exponents and amplitudes that characterize the behavior of
this contribution are given in Table 3. Note that the critical
exponents and the relaxation-time amplitudes differ from
their values in the paramagnetic phase. A similar phenom-
enon was also revealed in other magnetic insulators [55, 57].
In particular, the values of xÿ for the ferrimagnets are close to
those predicted by the Landau ±Khalatnikov theory, and the
critical amplitudes of the relaxation time are less by an order
of magnitude or even more than those characteristic of the
paramagnetic phase. In addition, the frequency dependence
of aR at T � Tmax in yttrium and gadolinium iron garnets is
described by the values of yÿ � ÿ0:50� 0:05 and
yÿ � ÿ0:53� 0:05, respectively, which are much greater
than those in metallic magnets. The numerical values of yÿ

for magnetic insulators (see Table 3), including ferrites, may
be theoretically justified on the basis of Suzuki's concepts [28],
according to which we have in themagnetically ordered phase

aR � oM 2w�q� fR�otÿ� ; �5:9�

where M is the magnetization, and w�q� is the dynamic
susceptibility. For qrc ! 0, w�q� � tÿg, and M � tÿb, it
follows from Eqn (5.9) that yÿ � �2bÿ g�=xÿ. Substituting
the values of the critical exponents b, gÿ, and xÿ of MnF2,
Y3Fe5O12, and Gd3Fe5O12 into this relation, we obtain yÿ

values close to those of experiment (see Table 3).
Thus, in the magnetically ordered phase, the contribution

to the anomalous attenuation in magnetic insulators, as in
metallic magnets, is described in terms of the dynamic-scaling
concept.

5.1 The concept of dynamic scaling
The main parameters that determine the critical dynamics are
the critical exponent of the relaxation time and the dynamic
critical exponent z. Determining z is a complex problem;
therefore, we shall dwell on it in more detail.
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Figure 9. Scaling equations for the fluctuation (curve 1, T > Tc) and relaxation (curve 2, T < Tc) contributions to the anomalous attenuation in

gadolinium [83].
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Figure 10. Scaling equation for the relaxation contribution in MnP [31].
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How dynamical exponents determined by statics can arise
may be illustrated by an analysis of dynamic critical
phenomena in a 4ÿ e-dimensional space [2].However, many
questions remain unanswered. Seemingly, the Hamiltonian
contains the entire information on the dynamics of a system.
Nevertheless, to date no one has been able to obtain the
equations of the dynamical renormalized group starting from
the microscopic Hamiltonian. Thus, the question of the
construction of a dynamic theory starting from the micro-
scopic Hamiltonian still remains open.

Nevertheless, many studies of dynamical phenomena are
based on microscopic Hamiltonians of the spin system. For
these models, calculations of zwere performed on the basis of
the theory of interacting modes [3, 23], dynamic scaling [3, 4],
and the renormalized-group theory [4, 6]. The theoretical
difficulties are, of course, incomparable with the experimental
ones; but the first consideration is that experiments do not
ensure the accuracy that is necessary for the theory.

Despite the above remark, it is worth considering some
thorough experimental investigations on neutron scattering,
particularly in ferromagnets with high Curie temperatures
(Ni, Fe, etc.). All the z values obtained by thismethod are very
close to that of the Heisenberg ferromagnet (cf. the results of
Tables 5 and 6). Similar results were obtained using the
methods of neutron spin echo [95], perturbed angular
correlations [94], and MoÈ ssbauer spectroscopy. However,
even in the case of nickel, which was studied in most detail
by both neutron scattering and ultrasonic methods, the z
values differ so much from one another that it is impossible to
make definite conclusions on the character of the dynamic
fluctuations. Note, nevertheless, that the z values obtained for
Ni make it possible to classify this material as a Heisenberg
ferromagnet.

Even more complex is the situation in the case of the rare-
earth metal gadolinium, which, according to all data, is a
Heisenberg ferromagnet [82, 83]. Gadolinium was investi-
gated using both ultrasonic methods [18, 47, 83], MoÈ ssbauer
spectroscopy [79] and the disturbed angular correlation
method [81, 82]. The range of z obtained is so wide that it
includes both the value characteristic of rigid dipolar
dynamics �z � 1� and the value specific of a Heisenberg

ferromagnet �z � 2:5�. Note also that in magnetic insula-
tors, the determination of z is impossible because of the
specific features of spin ± lattice relaxation in them.

The above brief analysis by no means implies that it is
impossible to correctly determine the dynamic critical
exponent z using the above methods. It is likely that this can
be made with a correct choice of the object of study and
appropriate ranges of frequency, temperature, and magnetic
fields and, which is the most important, the correct treatment
and interpretation of the results obtained.

6. Effect of dipole forces on critical dynamics

Let us consider the effect of dipole forces on the critical
dynamics of magnetically ordered crystals using gadolinium
as an example. It is seen from Table 4 that the experimental
critical exponents differ significantly from the theoretical
values for the Ising �n � 1� and Heisenberg �n � 3� models.
In particular, the critical exponent Zi is much less than the
value that follows from Eqn (4.14) for the systems with n � 3
but is close to the value for the systems with n � 1. At the
same time, the exponent ni corresponds better to the
Heisenberg model in both the sign and the absolute value.
As to the critical exponents x and z, they are far from the
values predicted by the theory for model crystals. This is true
even for ferromagnets with nonconserved spin, although in
this case the agreement between the theory and experiment is
somewhat better (see the second line for z in Table 4). In
gadolinium, the conservation of the total spin may be
disturbed because of the presence of anisotropic and dipolar
interactions.

Table 5. Theoretically predicted values of the dynamical exponent z.

Spin-system model Universality

class of the

static critical

behavior

Scaling law Approximate

numerical

values

for d � 3

Isotropic

ferromagnet

Isotropic

antiferromagnet

Anisotropic

ferromagnet

Anisotropic

antiferromagnet

Ferromagnet

with nonconserved

order parameter

Ferromagnet

with dipolar

interactions:

normal dynamics

rigid dynamics

�3; d�

�3; d�

�1; d�

�1; d�

�n; d�

�3; d�

1=2�d� 2ÿ Z�

d=2

2ÿ a=n

2ÿ a=n

2� cZ
c � ÿ0:5

2ÿ Z
2� cZ
c � 0:94
�5ÿ Z�=2ÿ 1=n

5=2

3=2

2

2

2

2

2

1

Table 6. Experimental values of the dynamic critical exponent z.

Magnetic

material

z Measure-

ment

method

Remarks

Ni

Gd

MnP

RbMnF3

MnF2

Y3Fe5O12

Rb2CoF4

2.46(25) [94]

2.5 2.0 [95]

2.5 2.0 [96]

2.0 (0.3) [24]

1.78 [25]

1.36 ± 1.52 [79]

1.786(6) [81]

1.73(5) [82]

1.37(10) ±

1.80(10) [83]

1.7(2) [47]

2.3(2) [18]

2.6(2) [69]

1.38(10) [31]

1.37(6) [27]

1.4(2) [97]

1.5(2) [97]

1.26

1.35(10) [42]

1.15(5) [98]

1.21(10) [29]

NS

PAC

MS

US

US

MS

PAC

PAC

US

US

US

US

US

US

LS

LS

US

US

NMR

US

Crossover to the dynamics of

systems with nonconserved

spin at t < 3:9� 10ÿ3

Hydrodynamic

region

Crossover to anisotropic

behavior at t < 2� 10ÿ3

Crossover to dipole dynamics

at t < 2:6� 10ÿ2

Hydrodynamic region

Dynamics are assumed to be

close to classical �z � 2�

Crossover from isotropic

to anisotropic behavior

at t < 3:5� 10ÿ2

T < Tc

T < Tc

Two-dimensional

Ising antiferromagnet

NS Ð neutron scattering,

PACÐ perturbed angular correlation,

MS ÐMoÈ ssbauer spectroscopy,

US Ð ultrasonic methods,

NMRÐ nuclear magnetic resonance.
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The effects of the anisotropic and dipole ± dipole forces on
the static critical behavior of gadolinium were estimated in
Refs [6, 80] to show that the crossover to dipolar behavior can
occur starting from t � 2:62� 10ÿ2. In this connection, when
analyzing experimental data on the critical propagation of
ultrasonic waves in Gd, one should take into account the
effect of dipolar forces. However, this question has not yet
been clarified theoretically; therefore, we will use the general
theory of the effect of dipolar forces on the critical dynamics
of ferromagnets, which was considered in the reviews by
Maleev [13 ± 15]. According to his theory, ferromagnets can
have both normal and anomalous (rigid) dipolar dynamics.
The first is characterized by the critical exponents
x � �2ÿ Z�n and z � 2ÿ Z. The calculations performed by
Teitel'baum [16] using an e expansion yield a close value
z � 2� 0:94Z. The rigid dipolar dynamics caused by the
interaction of longitudinal and transverse (with respect to
themomentum) fluctuations leads to z � �5ÿ Z�=2ÿ 1=n and
x � ��5ÿ Z�=2ÿ 1=n

�
n. By using the values of Z and n

obtained by the e expansion [2, 4, 6], we obtain z � 1:977
and x � 1:368 for the normal dynamics, whereas z � 1:043
and x � 0:722 for the rigid dynamics. The experimental
values of z and x lie between these values, i.e., preference
cannot be given to either of these dynamics. However, it is
known that in ferromagnets the region of rigid dynamics
narrows with increasing S and in gadolinium �S � 7=2� the
occurrence of normal dynamics seems more realistic. Never-
theless, large discrepancies between the theoretical and
experimental values of z and x remain; in our opinion, they
can be explained by the following circumstances.

First, in the exchange region, the dipolar forces lead to the
so-called Huber attenuation (see Ref. [13]), which is char-
acterized by a decreasing relaxation time at T! Tc: t � t. In
gadolinium, we already have 4pw � 1 at t � 2:62� 10ÿ2;
therefore, the effect of the Huber attenuation on the
temperature dependence of Dak should be insignificant.
Nevertheless, it can lead to a decrease in the critical exponent
Zi and, consequently, x and z. Second, almost the entire
temperature range that was investigated for gadolinium
corresponds to the region of crossover and therefore, by
analogy with the static critical exponents, the experiment
yields effective rather than asymptotic values of x and z [6].
For example, the critical exponent for the static susceptibility
g (through which Zi can be expressed as follows: Zi � gÿ a for
normal dynamics and Zi � g�5ÿ Z�=2�2ÿ Z� ÿ 1ÿ a for
rigid dynamics) is 10% (or even more) less than the
asymptotic value [6, 78]. This circumstance cannot be
ignored when discussing experimental results. We should
also remember that the above considerations are of a
qualitative nature because of the absence of theoretical
works devoted to problems of critical propagation of
ultrasonic waves in the crossover region.

The agreement between the theoretical and experimental
values can be improved by calculating z on the basis of the
data on attenuation and the dynamic-scaling concept for Dak
in the form [19]

Dak�o� � r 2=nÿ3c o f�r zco� ; �6:1�

from which the relation Zi � �zÿ 3�n� 2 follows for the
hydrodynamic region �r zco5 1�. Calculations based on this
relation yield z � 1:80. A close result is also obtained from
Eqns (4.14) and (4.15) if, by analogywith the critical exponent
a for the heat capacity, ni is assumed to be negative for

Heisenberg magnets (the more so because the critical change
in the velocity at T � Tc remains finite).

Note, finally, that the significant effect of dipolar forces
on the critical dynamics of gadolinium is also indicated by
studies performed by other methods [79 ± 82]. The critical
dynamics of gadolinium were studied by the electron
paramagnetic resonance method at a frequency of 9 GHz
[80]; the resonance linewidth in the paramagnetic phase was
shown to have a maximum characteristic of only dipolar
magnets [13 ± 15, 82]. Moreover, the DHTw? � f�wk� depen-
dence, where wk and w? are the longitudinal and transverse
(with respect to the field) static susceptibilities and DH is the
EPR linewidth, obeys a power law with an exponent 0.84,
whereas for the Huber attenuation this exponent is equal to
7=4. The investigation of the critical dynamics of gadolinium
by the gÿ g perturbed angular correlation method shows that
the fluctuations are isotropic, at least at t > 3� 10ÿ3, and the
dynamic exponent z determined from the autocorrelation
time assumes the values 1.3 ± 1.52 [79], 1.786 [81], or 1.73 [82],
which are in rather good agreement with our data [83] and the
theoretical values for the normal dipolar dynamics [16].

Based on an analysis of experimental data for the
propagation velocity and the attenuation of ultrasonic
waves, it was shown above that in the magnetically ordered
crystals studied all three mechanisms of interaction of
ultrasonic waves with the internal degrees of freedom of the
spin system manifest themselves. It was established that the
dominating interaction mechanism depends on the exchange
interaction range and the temperature region. In particular, in
the paramagnetic phase, the dominant interaction is the linear
coupling with the spin Hamiltonian in insulating magnets,
and the quadratic coupling with fluctuations of the order
parameter in metallic magnets. In the magnetically ordered
phase, a linear coupling with the order parameter is added,
which leads to relaxation attenuation of ultrasonic waves.

7. Effect of a magnetic field on the propagation
of ultrasonic waves in the critical region

7.1 Paramagnetic phase
For the first time, the effects of a magnetic field on the
propagation of sound waves near the Curie point in ferro-
magnets were considered by Belov, Kataev, and Levitin [84],
who showed, based on the Landau ±Khalatnikov theory [7],
that Young's modulus decreases in a magnetic field and the
attenuation maximum is shifted toward higher temperatures
with increasingH. These results were later confirmed in their
experimental studies of invar-type alloys.

In further investigations, it was established both experi-
mentally and theoretically that the effect of a magnetic field
on the propagation of ultrasonic waves is primarily deter-
mined by the character of the exchange interaction [85].

When studying the propagation of ultrasonic waves in
rare-earth metals near the critical temperature in a magnetic
field, some features were revealed that are caused by the long-
range character of the s ± f interaction [61, 69, 86]. In
particular, in the paramagnetic phase, the magnetic field
causes, on the one hand, a decrease in the attenuation
coefficient ak due to the suppression of spin fluctuations,
and on the other hand, an increase, which is observed at a
sufficient distance fromTc or nearTc in weakmagnetic fields.
The growth of ak in weak magnetic fields is caused by the
polarization of the spin system of localized 4f electrons, which
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leads, through the s ± f exchange interaction, to a shift of the
energy-spin subbands of s electrons and, consequently, to
additional acoustic losses [85 ± 91]. This polarizationmechan-
ism of the anomalous change in ak in a magnetic field was
experimentally observed and theoretically justified for Ho,
Tb, and MnP [51, 86, 90] and for Gd [66, 89, 91]. Let us
consider the characteristic features of the influence of a
magnetic field on the propagation of ultrasound near the
critical temperature using gadolinium Ð a rare-earth metal
with the simple ferromagnetic order in a hexagonal lattice.

The typical isotherms of the field dependences Da �
ak�H� ÿ ak�0� and Dv�H�=v�0� � �v�H� ÿ v�0��=v�0� for the
paramagnetic phase of Gd given in Figs 11 ± 14 show that in
weak magnetic fields, Da increases and Dv�H�=v�0� decreases
with increasingH. At not too weak fields, Da andDv�H�=v�0�

pass through maxima, which shift with increasing T toward
the greater fields. In strong fields, Da and Dv�H�=v�0�
decrease and, starting from a certain field whose value
depends on T, the velocity shift in the field becomes positive.
Far from Tc, where spin fluctuations are weak, Da and
Dv�H�=v�0� increase with increasing field. A similar picture
is observed in all cases where the direction of the field and the
direction of propagation of ultrasonic waves are mutually
perpendicular.

As was shown by Tachiki andMaekawa [85], the effects of
a magnetic field on the propagation of ultrasonic waves in
metallic magnets are caused by the competition of the
polarization and relaxation mechanisms:

ak � �2rVvL�ÿ1 Re

�
4gz�

0 �k�gz
0 �k�hSz

0 i2

�
�1
0

ÿ
Sz
ÿk�t�;Sz

k�0�
�
exp�ÿiokt� dt

�
X
qq 0aa 0

g a�
q �k�g a 0

q 0 �k�
�1
0

ÿ
S a
q �t�Sÿqÿk�t�;S a

ÿq 0 �0�S a
q 0�k�0�

�
� exp�ÿiokt� dt

�
; �H k z� ; �7:1�

where Sz
0 is the spin polarization along the z axis. Here, the

first term in square brackets is a result of the combined action
of the polarization and fluctuation mechanisms and the
second term represents fluctuations. In weak magnetic fields
and if the spin polarization (magnetization) is proportional to
H, it follows from (7.1) that ak � H 2.
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Figure 11. Variation of Da as a function of H for gadolinium at various
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For the paramagnetic phase of hexagonal crystals, the
contributions to Da and Dv�H�=v�0� caused by the polariza-
tion mechanism are determined by the expressions [86]

Da � B
H 2

�TÿY�3
o2t

1� o2t2
;

Dv�H�
v�0� � ÿBv

H 2

�TÿY�3 ; �7:2�

where B is a constant that characterizes the magnetoelastic
interaction and Y is the paramagnetic Curie point, which is
equal to the Curie temperature in the molecular-field
approximation. Note that formulas (7.2) can be obtained
from the theory of Tachiki and Maekawa [85] if the purely
fluctuational term [second term in brackets in Eqn (7.1)] is
neglected. The experimental studies of Gd (see Figs 12 and
14), Dy, Ho, and Tb [86, 90] show that in the paramagnetic
phase of these metals, Da and Dv�H�=v�0� depend quad-
ratically on the fieldH. As T! Tc, fluctuations begin to play
a progressively more important role; nevertheless, the
experimental isotherms contain a region of magnetic field
where the quadratic dependence predicted by formulas (7.2)
remains valid. In accordance with Eqns (7.2), the slope of this
dependence increases on approaching Tc.

If the condition ot5 1 is fulfilled, it follows from Eqns
(7.2) that the relaxation time is independent of the tempera-
ture and magnetic field. Calculations of t from the experi-
mental data using formula (4.8) where Dak and �Dv=v�k are
replaced by Da and Dv�H�=v�0� show that the relaxation time
is independent ofH for all the isotherms in the magnetic field
region where the quadratic dependence is valid and the
temperature dependence is sufficiently strong [86]. As
follows from experimental data, the temperature dependence
of T is described by a power law of the type of (4.8). The best
agreement of the data points with this dependence is observed
in the range 6:8� 10ÿ3 4 t4 5:82� 10ÿ2 at x� � 0:96�5�.
Thus, the character of the temperature dependence of the
relaxation time in the magnetic-field range where the
polarization mechanism dominates undergoes no significant
changes in comparison with the case of H � 0 (see Table 4).

To quantitatively compare the experimental data with
theory, changes in ak and vL were calculated using the
formulas obtained by Tachiki and Maekawa [85]. For
hexagonal crystals, the formulas have the following form:

a a
k � Fkt
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where k1 is the dimensionless anisotropy constant. The
calculation of a a

k and Dv was performed on a computer by
numerical methods. Taking into account that formulas (7.3)
and (7.4) were obtained by expressing two-spin correlation
functions through the susceptibility, and that the suscept-
ibility was treated in terms of the molecular-field approxima-
tion, corrections for the temperature T 1 �
Tc � C=C 1�Tÿ Tc� should be introduced, which makes it
possible to diminish the discrepancy between the experimen-
tal and theoretical values of the susceptibility [85].

The parameters Fk and G were determined as follows.
First, the dependence of Da=Fk on H was calculated for
temperatures far from Tc. This dependence has a maximum
at a certain field H which is determined by the value of G.
Then, Fk can be found by comparing experimental and
theoretical values of Da corresponding to the maximum. The
results of the calculation for Da and Dv�H�=v�0� (Fig. 15)
agree only qualitatively with experiment. A better agreement,
as might be expected, is observed for the isotherms that were
used to select Fk and G. As the temperature changes on either
side of such an isotherm, the discrepancy between the theory
and experiment increases. Near Tc, discrepancies between the
experimental and theoretical curves occur over the entire
ranges of magnetic fields and temperatures. A similar
disagreement between the experimental isotherms and those
calculated from the Tachiki and Maekawa's theory [85] was
revealed for MnP and Tb [85, 90].

Note one more discrepancy between the theory and the
experiment. It was shown that in the limit of weak fields there
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Figure 15. Experimental and theoretical dependences of Da and

Dv�H�=v�0� on H for gadolinium at temperatures of 295.54 K ��� and
300.37 K ���; the dashed line corresponds to calculations using Eqns (7.3)

and (7.4); the data points were obtained by the authors.
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exists a temperature such that the contributions of the first
and the other terms in Eqns (7.3) and (7.4) become equal,
Da � 0 and Dv�H�=v�0� � 0 [85]. This compensation tem-
perature depends on the difference Tc ÿY (Y here is the
paramagnetic Curie temperature) and on a constant that
characterizes the range of the exchange interaction.

In magnetic insulators, including ferrimagnets, the differ-
ence Tc ÿY is large and the exchange interaction is short-
range. Therefore,Da andDv�H�=v�0� vanish only at very high
temperatures. This result agrees qualitatively with the
experiments in which the attenuation in the magnetic field
was observed to decrease, i.e., in magnetic insulators the
mechanism of suppression of fluctuations by a magnetic field
is prevalent in the paramagnetic phase [85, 92]. However, the
Tc andY temperatures in the metallic ferromagnets are close
to one another and the compensation temperature should be
close to Tc [85]. Below the compensation temperature, a
magnetic field should decrease the attenuation, and above
this temperature, the attenuation should increase. Our
experimental data for Gd show that at all temperatures and
magnetic fields, the attenuation increases in a magnetic field,
which indicates the predominance of the first term in Eqn
(7.3). A decrease in ak with increasingH is only observed near
Tc and only for a certain orientation of the magnetic field in
the magnetically ordered phase [66].

As is seen from Fig. 13, the change in the velocity in a
magnetic field passes through zero at certain values of H.
With increasing T, the value of H at which Dv�H�=v�0� � 0
increases. However, the compensation temperature is inde-
pendent of H and, therefore, the behavior of the velocity at
T > Tc appears to be related to the second term in Eqn (4.2).
This part of the velocity shift plays the decisive role in a
magnetic field because it behaves in the same manner as the
internal energy of the spin system.

7.2 Temperature dependence of the attenuation coefficient
in a magnetic field
According to the general concepts [1 ± 4], the effect of a
magnetic field on the critical behavior of magnets manifests
itself through the suppression of the anomalies of various
physical quantities, including ak and Dv=v. In fact, experi-
mental studies have shown that the ak peak shifts with
increasing H toward higher temperatures and simulta-
neously decreases in magnitude [51]. However, in weak
magnetic fields, where the polarization mechanism is pre-
dominant, such behavior is disturbed. In particular, the
attenuation peak increases with increasing H [42, 69].

The curves of the temperature dependence of ak for
gadolinium for the case where the directions of the magnetic
fieldH and the propagation direction of ultrasonic waves are
mutually perpendicular are shown in Figs 16 and 17. Such an
experimental geometry makes it possible to study the
relaxation of the order parameter in the pure form. In all
other cases, anomalies of ak due to second-order phase
transitions manifest themselves (see Ref. [66]).

As can be seen from Figs 16 and 17, the attenuation ak
near the Curie point passes through an asymmetric peak at
H � 0. In amagnetic field, the peak value ak increases and the
ak�T� curve itself becomes symmetric. With increasingH, the
maximum of ak is shifted toward lower temperatures. This
shift and the increase in the peak value of ak continue up to
H � 500ÿ600 Oe. A further increase in H leads to a broad-
ening of the maximum and its displacement toward higher
temperatures. An especially large shift of the maximum of ak

toward higher temperatures is observed forH > 1130 Oe (see
Fig. 17). Similar features were also revealed when H was
parallel to the c axis for longitudinal waves propagating in the
basal plane.

Thus, it follows from the experimental data that the
behavior of the ak maximum differs dramatically in fields
H < 600Oe andH > 1130Oe. Let us consider the behavior of
ak and its maximum in magnetic fields below 600 Oe. Here, it
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should be noted first of all that the maximum of ak both at
H � 0 and at H 6� 0 is observed in the magnetically ordered
phase. In these ranges of temperatures and fields, the
temperature dependences of ak taken in different fields have
much in common with the ak�T� dependence at various
frequencies. In both cases, an increase is observed in the
peak value and a displacement of the maximum toward lower
temperatures with increasing o or H. This gives us grounds,
as in the case of the ak ÿ oÿ T data, to use the theoretical
concepts that follow from the Landau ±Khalatnikov relaxa-
tion mechanism [7] and apply formulas (5.5) ± (5.8) for the
treatment of experimental data, preliminarily having replaced
o byH. The correctness of this replacement is justified by the
fact that when a magnetic field is applied (e.g., perpendicular
to the hexagonal axis of the crystal), there arises a Larmor
precession of the uniform magnetization about the field
direction with a frequency that depends linearly onH.

The dependences of tmax and amax on H represented in
Fig. 18 on a double logarithmic scale confirm the validity of
formulas (5.5) ± (5.8). It is seen that the experimental points lie
on straight lines corresponding to power laws H � t xmax

(x � 1:25� 0:05) and amax � H 1�y (1� y � 0:82� 0:06).
When going from Tmax in any direction, the exponent 1� y
increases. For example, at T � Tc, we have 1� y �
1:18� 0:06, and in the paramagnetic phase 1� y � 2, as
was shown above. Thus, in accordance with the scaling
concepts, the experimental ak ÿHÿ T data can be described
by a single equation by changing the scale of ak by a factor of
H 1�y and that ofH by a factor of t x. According to Kawasaki
[19], for the relaxation mechanism the ak ÿ oÿ T data are
described by Eqn (5.5). By analogy with the ak ÿ oÿ T data,
we can write

ak
amax

� BR
AtÿxH

1� A2tÿ2xH 2
; �7:5�

where AtÿxH stands for ot and A is a constant independent
ofT andH. This equation is justified only when the relaxation
time is independent of H. The fact that t is independent of H
was shown above.

The results of the treatment of the ak ÿHÿ T data using
Eqn (7.5) are given in Fig. 19. Here, the dashed lines
correspond to (7.5) with x � 1:25 and A � 7:5� 10ÿ6 for
T < Tc, and A � 1:25� 10ÿ6 for T > Tc. The good corre-
spondence of the experimental ak ÿHÿ T data to Eqn (7.5)
suggests that the temperature dependence of ak in various
fields H (H < 600 Oe) is determined by the Landau ±

Khalatnikov relaxation mechanism not only below but also
above Tc. In this case, ak is maximum at ot � AHtÿx � 1.
This suggests that the temperature dependence t can be found
from the displacement of the maximum of ak toward the
lower temperatures with increasingH. As is seen fromFig. 18,
the H � tmax dependence corresponds to the power law (4.8)
with x � 1:25� 0:05 and t0 � 2:67� 10ÿ12 s. A comparison
of the x and t0 values with the results obtained from the
ak ÿ oÿ T data shows that the relaxation time in a magnetic
field as T! Tc changes more strongly (see Table 4) whereas
the absolute values of t0 undergo no significant changes. This,
in turn, results in that the dynamic critical exponent z � 1:76
that was estimated from the relation Z � x=n is close to the
value characteristic of the normal dipolar dynamics.

In magnetic fields H > 1130 Oe, the appearance of a
maximum of ak in the paramagnetic phase and its shift
toward higher temperatures may be caused by several
mechanisms. In the presence of strong fluctuations of the
order parameter nearTc, a magnetic fieldH greater than 1130
Oe may be regarded as strong, since the energy of the
magnetic field is greater than the energy of critical fluctua-
tions and, consequently, the long-wavelength fluctuations are
suppressed by the field. As a result, the fluctuation spectrum
is enriched in high frequencies, which restricts the increase of
the correlation radius. Far fromTc, the magnetic field is weak
and, therefore, H does not significantly affect rc. Conse-
quently, rc should pass through a finite maximum at a certain
temperature, which in turn leads to the appearance of a
maximum in ak. In this case, the critical exponents that
characterize the field dependences of the displacements of
the maximum of ak, as well as its maximum value amax, would
be the same as for the susceptibility [42].

The treatment of the experimental data in accordance
with the power relations amax � Hÿl and Tmax � H m yields
values l � 0:51 and m � 1:15, which do not correspond to the
results of the fluctuation theory. Moreover, with this
mechanism, ak cannot be greater than the value of the
attenuation coefficient at the corresponding temperature
without a field �H � 0�. But experiment shows that
ak�H� > ak�0� in the temperature range where the maximum
is observed. Some improvement in the agreement between the
theory and experiment can be obtained by taking into account
the following specific features of the critical behavior of
gadolinium. First of all, note that in a magnetic field the
polarization mechanism of anomalous attenuation is opera-
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tive in gadolinium, which may lead to an increase in ak as
compared to ak�0� at the same temperature. In addition, the
critical dynamics of gadolinium have a dipolar character
(normal dipolar dynamics). If we take this into account as
well as the fact that the maxima of ak in the range of magnetic
fields studied are observed at t4 2:3� 10ÿ2, i.e., at t < td, the
critical exponents l and m are determined from the relations
l � 2=z and m � 1=x. The first of these is a consequence of
the fact that ak is proportional to the susceptibility, and the
second follows from the relation t � r zc and the equality of
the energies of the magnetic field and critical fluctuations.
In either case, the values of l and m are calculated using the
value of z for the normal dipole dynamics. Nevertheless,
significant discrepancies still remain between the theory and
experiment, which are not removed even if the magnetic
field is corrected for the demagnetizing field. However, it
should be noted that the values of l and m are in good
agreement with the values obtained not only from the
susceptibility [66] but also from the attenuation of ultra-
sonic waves in MnP [51].

According to the scaling hypothesis, the ak ÿHÿ T data
can be described by a single equation by changing the scale of
a by a factor of Hÿl and that of t by a factor of Hm. Then,

ak
amax

� B
2AtHÿ1:15

1� A2t 2Hÿ2:30
: �7:6�

The results of the treatment of experimental data by Eqn (7.6)
are shown in Fig. 20. Here, the solid line represents Eqn (7.6)
with A � 1:47� 10ÿ6 and m � 1:15 and the data points
denoted by different signs correspond to experimental data at
different values ofH. From the formof this scaling equation, it
follows that the maximum of ak=amax will be observed at
At=H 1:15 � 1, which corresponds to the condition ot � 1 for
the relaxation mechanism of the anomalous attenuation of
ultrasonic waves. From the condition for a maximum, it
follows that the relaxation time at a constant temperature
decreases in a magnetic field according to the law T � Hÿ1:15,
and at a constant field it increases linearly with increasing
temperature. The first result agrees with the predictions of
Kawasaki [8] and Halperin and Hohenberg [10, 12] for the
diffusionaldecayof fluctuations, according towhich t � Hÿ1.
The secondresultmaybedue to themanifestationof theHuber
attenuation [93] in a magnetic field, for which t � t. The
appearance of the Huber attenuation in the dipolar region in
a magnetic field, which usually is observed in the exchange

region,may be related to the fact that with the application of a
magnetic fieldH, the susceptibilitydecreases.Consequently, in
a strong magnetic field almost the entire temperature range
belowTmax corresponds to exchange interactions, and dipolar
interactions in this case may be considered as small perturba-
tions [13]. However, at T � Tmax in the magnetic-field range
studiedwehavew5 1and, therefore, thedipolar forces cannot
be considered as a small perturbation. Thereby, atT � Tmax, a
crossover occurs from dipole to exchange behavior. This may
explain the discrepancy between the experimental values of m
and the theory.

Note also that the quadratic dependence of Da and Dv on
H predicted by the polarization mechanism follows from the
assumption of the proportionality of the magnetization to the
field H, which, as experimental studies show [66], is not
fulfilled over almost the whole temperature range and
especially near Tc. The quadratic field dependence of Da and
Dv follows from the relaxation of the uniform magnetization.
With the linear relation between the sound waves and the
order parameter, we have, according to Kawasaki [19],

aR�o� � r 2=nÿ3c o f�r zco� : �7:7�

Hence, at r zco5 1, we have aR�o� � o2r
2=nÿ3�z
c , since in this

case f�x� � x. In a weak field, the correlation radius is
independent of the magnetic field [13] and, therefore, the
field dependence of ak is determined by the frequencyo (byo,
we should mean the frequency of the Larmor precession),
which, as is known, is proportional to the strength of the
magnetic fieldH.

Thus, the specific features of the field and temperature
dependences of Da and Dv�H�=v�0� can be explained using
two mechanisms of anomalous attenuation of ultrasonic
waves Ð relaxational and fluctuational. As to the polariza-
tion mechanism, it, in our opinion, does not differ in any
features from the relaxation mechanism, since both mechan-
isms are based on the same linear relation between the sound
waves and the order parameter.

8. Conclusions

Thus, we see that studying critical dynamics by ultrasonic
methods has its own features in magnetically ordered crystals
depending on the character of the exchange interaction.
Depending on the range of the ordering interaction, the
sound waves interact with either fluctuations of the spin-
energy density (magnetic insulators) or fluctuations of the
order parameter (magnetic metals). In the first case, the decay
of fluctuations occurs by slow spin ± lattice relaxation, which
is known to exhibit a weak singularity �x � a�. In this
connection, the success of the determination of the critical
exponent z from ultrasonic experiments using the relation
x � zn is problematic. In magnetic metals with a long-range
exchange interaction, the decay of fluctuations of the order
parameter occurs through spin ± spin relaxation, which
exhibits a much stronger singularity �x � 1ÿ 5=3� as com-
pared to the spin ± lattice relaxation. In this case it is possible
to define the dynamic critical index z from ultrasonic
experiments.
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