
A scientific session of the Division of General Physics and
Astronomy of the Russian Academy of Sciences was held on
26 November 1997 at the P L Kapitza Institute for Physical
Problems, RAS. The following reports were presented at the
session:

(1) Zhdanov G S, Libenson M N, Martsinovski|̄ G A
(S I Vavilov State Optical Institute, St Petersburg) ``Optics
in the diffraction limit: principles, results, and problems'';

(2) Zabrodski|̄ A G (A F Ioffe Physicotechnical Institute,
Russian Academy of Sciences, St Petersburg) ``Coulomb gap
and metal ± insulator transitions in doped semiconductors''.

Brief presentations of both reports are given below.
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Optics in the diffraction limit: principles,
results, and problems

G S Zhdanov, M N Libenson, G A Martsinovski|̄

Lately there has been an upsurge of interest in the possibility
of studying and forming nanometer structures by optical
methods. This possibility, which not so long ago seemed
highly hypothetical, emerged in connection with the develop-
ment of near-field optics (NFO), a new scientific and
technological line of research which, from the physical
viewpoint, is based on the presence in the far zone (the
Fraunhofer region) of traces of interaction of the light and
the object in the near field. Technically, NFO is a combina-
tion of elements of ordinary optics and scanning probe
microscopy (SPM). A distinctive element of near-field
devices is an optical probe, which is usually a fiber with a
sharpened end, 1 whose surface is covered, except for the tip
of the cone, with an opaque metal layer, 2 (Fig. 1).

A fraction of the light flux traveling along the fiber passes
through a diaphragm in a metal screen and reaches the
sample, which is in the `near field' (NF) of the source. If the
distance z to the sample surface and the radius a of the
aperture are much smaller than the wavelength l of the light,
a, z5 l, the size of the light spot on the sample is close to the
size of the aperture. When the probe is moved along the
sample, the resolution may not be restricted by diffraction
(such resolution is known as `super-resolution').

Although such an idea was proposed as long ago as 1928
by Syngh [1], it was far ahead of its time and was practically
left unnoticed. Its first confirmation was obtained in 1972 in
microwave experiments carried out by Ash and Nichols [2].
At the beginning of the 1980s Pohl, Denk, and Lanz of the
IBMZurichResearchLaboratory `penetrated' the diffraction
limit and demonstrated a resolution of l=20 on a device
operating in the visible optical range, which became known as
a `near-field scanning optical microscope' (NSOM) [3].
Somewhat earlier the first scanning tunneling microscope
(STM) was developed in this same laboratory, which made it
world-famous.

In contrast to the tunneling microscope and the atomic-
force microscope (AFM), which immediately won wide
popularity, the NSOM was left in the shade for some time.
The unique possibilities of NSOMs were fully realized only at
the beginning of the 1990s, after two very important technical
problems had been solved: the energy efficiency of the probes
was raised considerably, and a reliable scheme formonitoring
the distance between the probe tip and the sample was
developed. Today NSOMs are successfully used in dozens of
laboratories for solving a broad range of problems of the
physics of surfaces, biology, various techniques for recording
and retrieving information, and the like. In 1993 the
commercial production of NSOMs began.

There are about 20 types of NSOM, differing in optical
systems and functional design. Depending on the presence or
absence of an aperture at the tip of the probe, NSOMs can be
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Figure 1. Design of an aperture NSOM: 1, sharpened optical fiber; 2,

metallic coating; 3, light transmitted by the probe; 4, output probe

aperture, d5 l; 5, sample surface; and 6, the distance h between the

surface under investigation and the probe aperture, h5 l. The dashed

circumference indicates the region of near-field contact.



which a pattern is imprinted as the surface is scanned by the
probe. The required scanning rate is related to the illuminat-
ing power, which is limited by the probe's thermal stability.
As noted earlier, in typical conditions only one-millionth of
the light flux reaches the sample, while the main fraction is
absorbed by the metallic coating of the probe and heats it up.
Kurpas et al. [12] found that the temperature distribution in
the probe strongly depends on the probe's microgeometry
and the structure of the field near the probe's tip. Conditions
may be such that the most heated region is far from the tip.
The calculated ratio of the maximum rise in the probe's
temperature, DT, to the absorbed power P for ordinary
aperture angles of the cone is DT=P � 105 K Wÿ1, which
agrees with the results of measurements. At P � 10 mW or at
P0 � 10 nW for the radiation that has reached the sample, the
probe may disintegrate because of melting of the aluminum
coating.

A considerable increase in P0 can be achieved if the
standard quartz probes with an aluminum coating are
replaced by all-metal probes. Gurevich and Libenson [13]
suggested using metal for the rod, the light being fed to the tip
of the rod by exciting a cylindrical surface electromagnetic
wave (SEW). This eliminates the difficulties caused by the
field cut-off in a sharpened quartz fiber probe and the
associated large energy losses. Analysis shows that an SEW
field at the probe's tip is concentrated within a region
comparable in size to the diameter of the tip.

When examining the interaction of light and matter in the
near-field contact region (see Fig. 1), one must bear in mind
that the mean free path of the non-equilibrium carrier
generated in the process of light absorption and the size of
the effective interaction zonemay bemuch larger than the size
of the light spot. The zone is formed as a result of a cascade of
processes in which the electron and phonon subsystems of the
sample participate [14, 15]. In the steady state, the maximum
rise in temperature in this zone is a function of the parameter
z � R=

������
Dt
p

, whereR is the radius of the light spot, andD and
t are the diffusion coefficient and the lifetime of the non-
equilibrium carriers.

The range of applications of NFO is rapidly broadening.
A number of new tracks of research are in the stage of idea
formulation or in the experimental stage. One of these ideas is
related to the possibility of using the NFO method to control
the elements of high-power optics [16]. Usually, optical
breakdown of the materials and elements of optics is initiated
by defects whose nature is not always known. The most
natural approach to the detection of such defects consists in
analyzing the surface and thin layers by radiation with the
same frequency as that of the high-power light. The
possibility of visualizing small optical inhomogeneities and
doing a spectral analysis of these inhomogeneities in an
NSOM suggests that using this device constitutes an effective
way of solving the problem.
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Coulomb gap and metal ± insulator
transitions in doped semiconductors

A G Zabrodski|̄

1. Gapless models of localization
and hopping transport

Doped semiconductors belong to disordered systems that are
widely used in studying problems associated with the metal ±
insulator transition and low-temperature electron transport.
At a certain critical value Nc of the concentration of the
primary impurities, `metallization' of the impurity levels near
the Fermi level occurs in such systems. But whenN > Nc, the
reverse metal ± insulator transition may be induced by
introducing a compensating impurity, which captures the
primary charge carrier. The compensation lowers the Fermi
level and introduces what is known as `vertical' disorder into
the system in addition to the `horizontal' disorder due to the
random distribution of the impurities.

Since the 1970s, the common approach to describing such
a metal ± insulator transition is to use the one-electron
Anderson model, in which a random field leads to localiza-
tion of the states near the Fermi level [1] when the level
coincides with the mobility edge. This model makes it
possible, among other things, to explain why a compensated
semiconductor with a partially filled ground-state impurity
band does not havemetallic conduction at an arbitrarily small
impurity concentration N. What is important to the discus-
sion below is that in the Anderson model the density of states
g�E� has no singularity and remains finite near the Fermi
level. In this sense we call this model `gapless,' because the
insulator state in it corresponds not to a gap near the Fermi
level but to what became known as the `mobility gap' between
the Fermi level and the mobility edge.

According to Mott [2], in the insulator state with a finite
density of states near the Fermi level EF, low-temperature
electron transport occurs via tunnel hopping near the Fermi
level with variable activation energy and range (variable
range hopping, or VRH) and is accompanied by emission or
absorption of phonons, which in the three-dimensional case
yields the well-known Tÿ1=4-law for the electrical conducti-
vity,

r / exp

�
T0

T

�x

; �1�

where x � 1=4, the parameter T0 /
�
a3g�EF�

�ÿ1
, and a is the

localization length.
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On the other hand, in the 1970s a number of theoretical
papers [3 ± 5] appeared whose authors found that allowing for
the Coulomb interaction between a hopping electron and the
hole forming at the point occupied by the electron before
hopping must lead to an enhancement of localization and
formation of a gap or quasigap near the Fermi level and,
hence, to an increase in the exponent x in Eqn (1) up to unity.
Nevertheless, by the mid-1970s it was the validity of the one-
electron Anderson model (without the Coulomb interaction)
and the corresponding Mott law that were corroborated for
many disordered systems.{ It seemed that theMott law could
be observed in any `dirty' object with a fairly high value of
g�EF�.

2. The empirical T ÿ1/2-law and the quasigap
near the Fermi level

At approximately the same time, I wrote a paper [6] in which it
was established that the observed low-temperature conduc-
tivity with a variable activation energy for various heavily
doped compensated semiconductors is described by Eqn (1)
with x � 1=2 rather than 1=4. In the same paper it was also
established that the empirical Tÿ1=2-law can be interpreted as
a three-dimensional VRH in a parabolic quasigap near the
Fermi level:

g � g0�Eÿ EF�2 ; T0 � A

g
1=3
0 a

; �2�

where g0 and A are constants.
Qualitatively this agrees with the prediction of the one-

electron Shklovski|̄ ±Efros theory [5] for a Coulomb gap. But
to do this, one has to find the coefficient g0 in Eqn (2) from
experiments.

3. One-electron Coulomb gap

This coefficient g0 was found in a series of papers [7] on the
basis of the idea that the observed high-temperature limit of
the VRH mode is proportional to the gap width D. The gap
width and the estimated density of states in the impurity band
at the band edges were then used to calculate the coefficient
g0. It was found that in the large-compensation limit (far from
the metal ± insulator transition) and for an N-series of
samples of heavily doped compensated germanium with a
constant primary-impurity concentration N and different
compensation degrees K the value of this coefficient is close
to that predicted by the Shklovski|̄ ±Efros Coulomb-gap
model [8]:

�g0�SECG �
K3

e6
; �3�

where K is the dielectric constant, and e is the electron charge.
For this reason, the quasigap detected in Ref. [6] was

identified in Ref. [7] with the one-electron Coulomb gap,
which served as experimental proof that such a one-electron
gap exists. Then, in the two papers [8], Zinov'eva and I studied
the gap close to the Fermi energy at very low temperatures
(the method was also based on studying the sensitivity of the

VRH mode to the spectrum of localized states and became
known as `VRH spectroscopy').

The Coulomb gap idea is extremely popular in the physics
of disordered systems, although its course to success was not
straightforward. At the beginning, Mott published a paper
[10] in the same journal in which Shklovskii and Efros had
published their paper [5]. In it he objected to their reasoning,
thus preparing the ground for a negative attitude toward the
results of future experiments in which such a gap would be
detected. On the other hand, there were other, objective,
difficulties in interpreting the existing experimental data
correctly. The primary obstacle was the commonly used
crude method of analyzing conduction with a variable
activation energy by `straightening' the conductivity curve
on a scale corresponding to a value of the exponent x in Eqn
(1) chosen a priori. Instead, the problems of determining the
possible range of the conductivity for a fixed value of x and
this value proper should have been solved directly. To this
end, starting with the early papers [6 ± 8], I decided to employ
the differential method in studying the temperature depen-
dence of the reduced conduction activation energy:

w � e
kT
� ÿ d log r

d logT
: �4�

Many troubles stemmed from the macro-inhomogene-
ities in bulk samples grown from melts, especially in the cases
of heavy doping and large compensation. Two basic
manifestations of inhomogeneities at low temperatures
were constantly detected at low temperatures: the decreases
in the effective conducting cross section, and conducting
`shunts,' oriented primarily along dislocations. These shunts
are usually capable of reducing the temperature dependence
of resistivity very dramatically, e.g. transform a Tÿ1=2-law
into a Tÿ1=4-law or into a power law or even into an
anomalously low conductivity of metallic type.{ To resolve
this difficulty, I (later with Zinov'eva) used [7, 9] the method
of uniform compensation of an n-Ge sample grown from a
melt by neutron doping. Note that neutron doping of Ge
amounts to introducing an acceptor germanium impurity
(basically) and also donor impurities: As and a small amount
of Se. In this way an N-series of samples of compensated n-
and p-Ge sample were manufactured with relatively low and
high neutron fluences (according to Ref. [7]). In the large-
compensation limit these samples made it possible to identify
the quasigap detected in 1977 [6] with a one-electron
Coulomb gap. Thus it was proved that, for a slightly filled
impurity band of a compensated semiconductor, the con-
tribution of Coulomb correlations, which emerge in the
hopping transport of a localized electron, to the hopping
activation energy in the VRH mode is larger than the
contribution of the random field of the charged impurities
(the latter would manifest itself in the form of a Tÿ1=4-law).
However, this was not all: it was found that the Coulomb
gap has a simple one-electron nature only in the two limiting
cases of an almost empty impurity band or in an almost filled
impurity band, while for a moderately filled band the mode
of multielectron hopping or multielectron correlations in
hopping is realized.

{ In 1977 both PhilipWarren Anderson and Sir Neville FrancisMott were

awarded the Nobel Prize in Physics.

{A similar effect takes place in the non-ohmic mode or when the sample is

overheated if the applied field or the power dissipated in the sample is not

sufficiently low.
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4. Multielectron Coulomb gap

The idea that multielectron hopping of electrons may
dominate over single-electron was developed most thor-
oughly in the work of Pollak et al. (e.g. see Ref. [11]). It is
illustrated by Fig. 1 for a half-filled impurity band (2 electrons
for 4 positions), where the ground state of the system is
depicted schematically. Suppose that the 1! 2 transition
belongs to an infinite cluster and determines conduction,
while the activation energy of one-electron hopping is
E1e � E2;3 ÿ E1;3. In the case of two-electron hopping, also
including the `assisting' hopping 3 ! 4, the activation energy
may be lower: E2e � E2;4 ÿ E1;3 < E1e. The example shows
that the participation of several electrons is capable of
lowering the Coulomb barrier for hopping and making such
hopping more probable than single-electron. Recent compu-
ter-simulation results [12] yield a Tÿ1=2-law for the corre-
sponding resistivity, but with the parameterT0 approximately
ten times smaller than in the case of a one-electron Coulomb
gap. Note, however, that the existence of a gap does not
follow from Ref. [12]. On the other hand, Andreev and I [13,
14] noticed that if multielectron correlations lower the energy
barrier for hopping (aCoulomb barrier), thismust narrow the
Coulomb gap in comparison to a one-electron. We then
suggested a model of an anomalously narrow multielectron
Coulomb gap, and this model was supposed to be verified by
experiments. Since the divergence of the dielectric constant K
at the metal ± insulator transition always narrows a Coulomb
gap, the experiments must be done on the insulator side far
from the transition. It was also believed that moderate filling
of the impurity band (compensation) is the optimummode to
observe multielectron correlations, while the cases 1ÿ K4 1
and K5 1 are unfavorable for such observations. For the
experiments discussed in Refs [13, 14] we selected a homo-
geneous K � 0:35-series of Ge:Ga samples prepared via
neutron doping of pure germanium.{ Analysis of the low-
temperature curves of the electrical resistivity of the samples
showed that the Tÿ1=2-law is realized at a temperature
considerably lower than in the case of large compensation
(Section 3), which is a qualitative indication that the gap
narrows. Unfortunately, the high-temperature limit of the
Tÿ1=2-law for neutron-doped Ge:Ga is not known with an
accuracy that would allow using it to estimate, as in Refs [7,
8], the width of the quasigap and, hence, the coefficient g0 in
Eqn (2).

For this reason I used another variant of the VRH
spectroscopy of the density of states in the quasigap, a
variant based on Shklovskii's idea about the need to first
find the localization length of holes near the Fermi level from
studies of the positive magnetoresistance in the VRH mode.
(This magnetoresistance stems from the narrowing of the hole
wave function in the plane perpendicular to the field.) The
localization radius a found by this method (see Refs 13, 14]) is
divergent at the transition point Nc. But if the concentration
ofGe is reduced, the localization radius reaches the `insulator'
limit a � 90A equal to the Bohr radius of a light hole in Ge.
This fact agrees with the idea that the large-distance
asymptotic behavior of the hole wave function is determined
by the light-hole mass and with the results of studies of
nearest-neighbor hopping conduction in neutron-doped
Ge:Ga [16]. On the other hand, the observable VRH
parameter T0 increases in value as one moves farther away
from the metal ± insulator transition, reaching its maximum
�T0�max � 7:5 meV. This makes it possible to use the
expression for T0 in Eqn (1) and the asymptotic value of a to
arrive at an estimate for the parameter g0 and, hence, for the
quasigap width D in the `insulator' limit:

�g0�exper �M�g0�SECG ; Dexper � DSECG

M 1=2
; M � 60 : �5�

In Figure 2 the Coulomb gaps of one- and multielectron
nature (the data was taken from [9] and [13]) observed in
doped Ge in the cases of large and moderate compensation
are compared with the predictions of the one-electron
Shklovski|̄ ±Efros model [8] (curves 1, 2, and 3, respec-
tively). For a complete check on the validity of the above
model of anomalous narrowing of a Coulomb gap with
multielectron correlations it is advisable to verify that there
is no narrowing at small compensations. The relevant data
have been published recently by the Haller group [17] and
refer to the K � 0-series of neutron-doped Ge enriched with
the 70Ge isotope (as a result of transmutation this isotope is
transformed into Ga). Unfortunately, the researchers only

{ At the same time, experiments were carried out to exactly characterize

the electrophysical parameters of the material [15]. These experiments

showed, in particular, that the compensation of neutron-doped Ge:Ga

depends on the `hardness' of the neutron spectrum.
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state the Tÿ1=2-law and its connection to the Coulomb gap,
without determining the gap parameters. Nevertheless,
Andreev, Egorov and I [18] were able to arrive at the right
conclusions by comparing the behavior of the parameter T0

[17] in the `insulator' limit (& in Fig. 3) and the data taken
fromRefs [13, 14] for amultielectron gap (� in Fig. 3). Clearly,
the latter are roughly four times smaller. Since in both cases
far from the metal ± insulator transition the values of the
localization radius for p-Ge are the same (and equal to the
Bohr radius of a light hole), all the difference must be
attributed, according to Eqn (2), to the coefficient g0: for the
data of Ref. [17] it proves to be 43 �M times smaller, which
corresponds exactly to the difference between one- and
multielectron Coulomb-gap widths [see Eqn (5)]. Thus, it is
obvious that the data of the Haller group [17] refer, as
expected, to a one-electron Coulomb gap. Note that the
difference in the values of the parameter �T0�1=2 in Fig. 3
corresponds to the difference between the observed activa-
tion-energy values{ and within the VRH model can be
interpreted as being caused by the difference in the values
of g0.

Thus, Andreev and I [13, 14] were able to corroborate
the model of anomalous narrowing of a Coulomb gap due
to multielectron correlations in the hopping of the electrons
or, in other words, to prove that a multielectron Coulomb
gap does indeed exist.} The corresponding experiment was
conducted in such a way that the narrowing caused by the
increases in the dielectric constant due to the proximity of
the metal ± insulator transition could be ignored. The latter
effect is responsible for a narrowing of another sort: the
collapse of Coulomb gap at the metal ± insulator transition
point.

5. The Coulomb gap
and the metal ± insulator transition

Figure 4, which depicts the data obtained by Andreev,
Zabrodskii, and me [18], illustrates the collapse of a Coulomb
gap in neutron-doped Ge:Ga as the metal ± insulator transi-
tion point is approached. Note that the parameter g0 vanishes
at the point NcI (Fig. 3) and that this is due to the collapse of
the gap (T

1=2
0 becomes infinite) and the divergence of the

localization radius a. This point practically coincides with the
critical point NcM of the metal ± insulator transition, which is
commonly associated with the vanishing of the temperature-
independent term s�0� in the expression for the metallic
conductivity: s�T� � s�0� � Ds�T�. This means that in addi-
tion to Anderson's definition of the critical point of the
metal ± insulator transition, which uses the vanishing of the
metallic state, one can also use the definition based on the
vanishing of the insulator state at the point where the
Coulomb gap collapses. It is also believed that as the
transition point is approached, the manifestation of the
multielectron correlations becomes more vivid.

As for the nature of the transition in neutron-doped
Ge:Ga [18] in particular and in doped semiconductors in
general, it must be noted that the transition is continuous (in
contrast to Mott's idea, which persisted for a long time, that
the transition is first-order), is characterized by a certain
symmetry on both sides, and can be considered a second-
order phase transition. Figure 3 shows that the transition
becomes more sudden (the correlation-length index
decreases) as the compensation K! 0 tends to zero.

6. Conclusion

Experiments have shown that at low temperatures the
insulator state of doped semiconductors is formed via one-
and multielectron Coulomb interactions, which results in a
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(respective) Coulomb gap appearing near the Fermi level. In
such systems the phase transition from the insulator state into
the metallic state can be interpreted as a collapse of the
Coulomb gap. Thus, it appears that the Coulomb interaction
and multielectron correlations play no less a role in the low-
temperature properties of the insulator state of doped
semiconductors than disorder.

I am grateful to my colleagues who participated in the
various studies and to the Russian Fund for Basic Research
and INTAS for support.

References

1. Mott N F Metal ± Insulator Transitions. 2nd ed. (London: Taylor

and Francis LTD, 1974)

2. Mott N F Philos. Mag. 19 835 (1969)

3. Srinivasan G Phys. Rev. B 4 2581 (1971)

4. Pollak M A J. Non-Cryst. Solids 11 1(1972)

5. Efros A L, Shklovskii B I J. Phys. C 8 L49 (1975)

6. Zabrodski|̄ A G Fiz. Tekh. Poluprovodn. 11 595 (1977) [Sov. Phys.

Semicond. 11 345 (1977)]

7. Zabrodski|̄ A G Fiz. Tekh. Poluprovodn. 14 1130, 1324, 1492 (1980)

[Sov. Phys. Semicond. 14 670, 781, 886 (1980)]

8. Shklovski|̄ B I, Efros A L Electronic Properties of Doped Semicon-

ductors (Berlin, New York: Springer-Verlag, 1984)

9. Zabrodski|̄ A G, Zinov'eva K N Pis'ma Zh. Eksp. Teor. Fiz. 37 369

(1983) [JETP Lett. 37 436 (1983)];Zh. Eksp. Teor. Fiz. 86 727 (1984)

[Sov. Phys. JETP 59 425 (1984)]

10. Mott N F J. Phys. C 8 L239 (1975)

11. PollakM,OrtunoM, inElectron-Electron Interactions in Disordered

Systems (Modern Problems in CondensedMatter Sciences, Vol. 10,

Eds A L Efros, M Pollak) (Amsterdam, New York: North-Holland,

1985) p. 287

12. Ortuno M et al., in Proc. 22nd Int. Conf. Phys. Semicond.

(Vancouver, 1994), p. 41

13. Zabrodski|̄ A G, Andreev A G Pis'ma Zh. Eksp. Teor. Fiz. 58 809

(1993) [JETP Lett. 58 756 (1993)]

14. Zabrodskii A G, Andreev A G, in Proc. 22nd Int. Conf. Phys.

Semicond. (Vancouver, 1994) p. 2681

15. Zabrodski|̄ A G, Alekseenko M V Fiz. Tekh. Poluprovodn. 27 2033

(1993) [Semiconductors 27 1116 (1993)], 28 168 (1994) [28 101 (1994)]

16. Zabrodski|̄ A G, Andreev A G, Alekseenko M V Fiz. Tekh.

Poluprovodn. 26 431 (1992) [Sov. Phys. Semicond. 26 244 (1992)]

17. Itoh KM et al. Phys. Rev. Lett. 77 4058 (1996)

18. Zabrodski|̄AG,AndreevAG, Egorov SVPhys. Status Solidi B 205

381 (1998)

726 Conferences and symposia Physics ±Uspekhi 41 (7)


	1. Gapless models of localization and hopping transport
	2. The empirical T^{-1/2}-law and the quasigap near the Fermi level
	3. One-electron Coulomb gap
	4. Multielectron Coulomb gap
	5. The Coulomb gap and the metal--insulator transition
	6. Conclusion
	References



