
Abstract. The possibility of an exact analytical description of
first-order and second-order transitions is demonstrated using a
specific microscopic model. Predictions using the exactly calcu-
lated partition function are compared with those based on the
Landau and Yang ±Lee approaches. The model employed is an
adsorbed polymer chain with an arbitrary number of links and
an external force applied to its end, for which the variation of
the partition function with the adsorption interaction parameter
and the magnitude of the applied force is calculated. In the
thermodynamic limit, the system has one isotropic and two
anisotropic, ordered phases, each of which is characterized by
two order parameters and between which first-order and sec-
ond-order transitions occur and a bicritical point exists. The
Landau free energy is found exactly as a function of each order
parameter separately and, near the bicritical point, as a func-
tion of both of them simultaneously. An exact analytical for-
mula is found for the distribution of the complex zeros of the
partition function in first-order and second-order phase transi-
tions. Hypotheses concerning the way in which the free energy
and the positions of the complex zeros scale with the number of
particles N in the system are verified.

1. Introduction

For a long time a much debated issue has been whether the
statistical mechanics can be used for describing phase
transitions [1]. Many authors argued that a phase transition
can only be described by calculating the Gibbs free energy for
each separate phase, whichmay require using a distinct model
for each phase. Then one must compare these free energies
and decide which of the phases occurs in equilibrium, and
which may exist as a metastable phase. Onsager [2] demon-
strated that the description of phase transitions can be based
on the exact partition function common for the entire system,
without any additional assumptions.

Great advances in the theory of phase transitions were
brought about by the study of exactly solvable models which
exhibit nontrivial behavior with phase transitions of the first
or the second order, and at the same time permit finding the
exact partition function of the system [3]. Usually, such
models cannot be directly comparable with experiment; they
are useful, however, for understanding the physics of phase
transitions. At present, there are surprisingly few exactly
solvable models, notwithstanding the immense efforts in this
direction.

Most models describe particles or spins located at the
nodes of some kind of lattice. Each spin is represented by aD-
dimensional vector. For one-dimensional systems, and for
spin interaction with closest neighbors, the problem has been
solved for any D. It has been demonstrated that the system
does not exhibit phase transitions at finite temperatures [4] (a
phase transition only occurs in the Kac model [5] with
infinitely weak forces and an infinitely large radius of
interaction). For D!1, the problem has been solved
exactly for arbitrary magnetic field and interaction between
closest neighbors, or for long-range forces [6] (this problem is
equivalent to the so-called spherical model [7]). For D � 1
with interaction between closest neighbors on a two-dimen-
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sional lattice in the absence of a magnetic field (the two-
dimensional Ising problem), a solution was obtained by
Onsager [2]. Exact solutions have also been found for the
two-dimensional models of ferroelectrics and antiferroelec-
trics [8]. All these models admit exact solutions only in the
thermodynamic limit N!1 (where N is the number of
particles in the system).

Apart from these models, a number of models from the
physics of polymers can be taken. Unlike low-molecular
systems, the particles in a polymer molecule are bound in a
linear chain (the so-called `linear memory effect' [9]). Even a
single polymer chain may be regarded as an individual
thermodynamic system if the number of monomer units is
large enough [10]. For a linear chain capable of forming a
two-dimensional folded b-structure, Zwanzig and Lauritzen
[11] obtained an exact solution which describes a phase
transition of the second order from a disordered folded
structure to a regular arrangement. Further modifications of
this model, allowing for the possible existence of coils, were
considered in Ref. [12]. Another class of models is concerned
with the melting of DNA [13], and with the adsorption of an
ideal chain on surfaces of different geometry (planar [14 ± 16]
or spherical [17]).

Apart from the exactly solvable models, there are a
number of general approaches to the description of phase
transitions. The first approach was proposed by L D Landau
in 1937 [4]. He assumed that the nonequilibrium free energy of
the system depended analytically on the so-called parameter
of order. In the neighborhood of a phase transition, where the
parameter of order goes to zero, the free energy can be
expanded in powers of the parameter of order, which allows
constructing the thermodynamics of the system. Later it was
demonstrated that Landau's theory is equivalent to themean-
field approximation. The inclusion of local fluctuations of the
order parameter has led to the construction of the fluctuation
theory of second-order phase transitions [18]. Note that, to
the best of our knowledge, the functional form of Landau's
free energy has always been postulated rather than calculated
exactly for a particular model.

Another method of description of phase transitions,
proposed by Yang and Lee [19] in 1952, is based on the
analysis of complex zeros of the partition function. If a phase
transition is feasible in the system, then in the thermodynamic
limit N!1 the zeros come infinitely close to the real axis.
There is a phenomenological approach which relates the
critical exponent and the amplitude of heat capacity for
different phase transitions to the distribution of complex
zeros [20] and gives scaling predictions for such distributions
[21]. Being mathematically rigorous, the Yang ±Lee theory
does not simplify the solution of the problem, since finding
the distribution of zeros is no easier than getting the exact
expression for the partition function. In practice, for each
particular model the distribution of zeros was calculated
numerically for a certain number N of particles in the
system, and then the result was extrapolated to infinitely
large N [22].

The relationship between different approaches to the
description of phase transitions has never before been
investigated for one and the same microscopic model. This
article purports to fill this gap.

We are going to consider a model of an adsorbed polymer
chain in an external field, and obtain an exact analytical
expression for its partition function. In the thermodynamic
limit, the system under consideration exhibits one anisotropic

and two isotropic, ordered phases, characterized by two order
parameters each. Phase transitions of the first and second
order are possible between these phases, and there is a
bicritical point.

We will obtain exact expressions for Landau's free energy
as a function of each of the order parameters. In the
neighborhood of the bicritical point, it is possible to express
the free energy as a function of two independent order
parameters. We will also find an asymptotically exact
analytical expression for the distribution of complex zeros of
the partition function in the case of phase transitions of the
first and second order. The exact analytical expression for the
partition function of our model can be obtained not only in
the thermodynamic limitN!1, but also for finite values of
N. This offers the opportunity of verifying the scaling
assumptions concerning the functional dependence of the
free energy and the locations of the complex zeros on the
number of particlesN in the system. In addition, it is possible
to analytically trace the transition from `large' systems to
`small' systems, and study the effects of the finiteness of the
system in the case of phase transitions of the first and second
order.

We believe that the main advantage of our model is not
that it brings novel unexpected results in the physics of phase
transitions Ð the model is too simple for that (the phase
transitions of the second order in it prove to be of the mean-
field type). Neither is the model good for drawing a
comparison between theory and experiment; for polymer
systems, such comparisons are made using much more
realistic models [23]. The purpose of this paper is to prove
the feasibility of an exact analytical description of phase
transitions of the first and second order using different
approaches and methods of the theory of critical phenom-
ena. The possibility of analyzing the occurrence of phase
transitions and studying the effects of the finiteness of the
system, applying different methods of statistical physics to
one and the same microscopic model, is also useful from the
standpoint of teaching statistical physics, since phase transi-
tions constitute one of the central and most fascinating
chapters of this science.

2. Model. Partition function

The model is represented by an ideal Gaussian chain
consisting of N segments, attached at one end to a flat
surface, owing to which the translation entropy of the system
as a whole is zero. The adsorption interaction between the
segments of the chain and the surface is short-range. We are
only interested in random walks in the direction of the
normal, i.e., along the Z axis (walks in the Xÿ Y plane are
not restricted and are therefore described by conventional
Gaussian functions). For a model of a continual Gaussian
chain whose last Nth segment is a distance z away from the
surface, the partition function P�zjN� in the absence of
external forces satisfies the differential equation [24]

q
qN

P�zjN� ÿ l 2

6

q2

qz2
P�zjN� � 0 �1�

with the initial condition P�zj0� � d�z�, which takes into
account the fact that one end of the chain is attached to the
plane z � 0. It is easy to see that Eqn (1) is the SchroÈ dinger
equation with �h � 1, and t � iN for the Green's function that
describes a quantum particle of mass 3=l 2 originally residing
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in the plane. Further on, we assume that the segment length is
equal to one �l � 1� and express all energies in units of kT.

The short-range interaction between the segments of the
chain and the surface is described by the boundary condition
[25]

1

P�zjN�
q
qz

P�zjN�
����
z�0
� ÿc ; �2�

which is similar to that for the SchroÈ dinger equation in the
presence of a delta-shaped pseudopotential. From a mathe-
matical standpoint, the adsorption of a macromolecule
corresponds to the existence of the ground state in the
corresponding quantum-mechanical problem. With c > 0,
the macromolecule tends to lie flat on the plane; with c < 0,
the macromolecule is desorbed; the case of c � 0 corresponds
to the so-called critical conditions of adsorption. The physical
meaning of the parameter c is discussed in greater detail in
Ref. [26].

Equations (1), (2) are also used for describing the
diffusion of neutrons in the restricted half-space when
particles are absorbed �c < 0� or generated �c � 0� on the
boundary [27]. The critical condition �c � 0� corresponds to
the reflection of neutrons from the boundary.

The solution of equations (1), (2) was first obtained inRef.
[28] (see also Ref. [15]) and is expressed in terms of the
dimensionless parameters ~z � z=�2R�, ~c � cR, where
R � �N=6�1=2 is the radius of inertia of the ideal polymer
chain in free space:

P�~zj~c� � �pR2�ÿ1=2 exp�ÿ~z 2��1� p1=2~cY�~zÿ ~c�� : �3�

Here Y�t� � exp�t 2� erfc �t�, and erfc �t� is the complemen-
tary error function.

3. Adsorption in the presence of an external
force applied to the end of the chain

If a constant external force f is applied to the free end of the
Gaussian chain, then the statistical weight of all paths ending
at the same height z is P�~zj~c� exp� fz�. The positive values of f
correspond to forces that tend to tear the chain off the surface,
and the negative values correspond to forces that tend to press
the end of the chain down. Introducing a dimensionless
variable ~f � fR, we obtain

P
ÿ
~zj~c; ~f

� � �pR2�ÿ1=2 exp� ~f 2 ÿ �~zÿ ~f �2�
� �1� p1=2~cY�~zÿ ~c�� : �4�

After integration over all possible positions of the free end, we
obtain the partition function for the adsorbed polymer chain
in an external field [15]:

Q�~c; ~f� � ~cY�ÿ~c� ÿ ~fY�ÿ~f �
�~cÿ ~f � : �5�

4. Order parameters

In theories of adsorption, the role of the parameter of order is
usually played by the mean fraction of the adsorbed segments
hyi � hmi=N � ÿNÿ1 q lnQ=qc [14, 15]. For the adsorbed
chain, this fraction is finite and does not depend on N. For a
chain that is desorbed or detached from the surface by an
external force, we have hyi � Nÿ1.

In the case of adsorption in an external field, it would be
natural to define one more order parameter, namely, the
mean stretching of the chain in the direction of the force (that
is, in the direction normal to the plane)

hzi � hzi
N
� ÿNÿ1 q lnQ

qf
:

The stretching is negligibly small for an adsorbed chain and is
on the order of unity for a detached chain.

Using Eqn (5), it is easy to obtain expressions for hmi=R
and hzi=R that are directly related to the order parameters:

hmi
R
� hyi

�������
6N
p

� �2~c 2 � 1�Y�ÿ~c� � �2= ���
p
p �~c

~cY�ÿ~c� ÿ ~fY�ÿ~f � ÿ 1

~cÿ ~f
; �6�

hzi
R
� hzi

�������
6N
p

� �2
~f 2 � 1�Y�ÿ~f � � �2= ���

p
p � ~f

~fY�ÿ~f � ÿ ~cY�ÿ~c� ÿ 1

~fÿ ~c
: �7�

In the absence of an external force � f � 0�, equations (6),
(7) reduce to the known expressions

hmi
R
� 2~c� 2���

p
p

Y�ÿ~c� ; �8�

hzi
R
� 1

~c
ÿ 1

~cY�ÿ~c� : �9�

5. Phase diagram

In the case of an asymptotically long polymer chain
�N!1�, one may speak of its phase states. These states
are conveniently represented on a phase diagram (Fig. 1).
Movement upwards on the diagram corresponds to pulling
the chain away; downward movement corresponds to push-
ing the end of the chain down onto the surface. The
adsorption force increases to the right, and the repulsion
between the segments of the chain and the surface increases to
the left. The three separate regions on the diagram correspond
to an `isotropic' phase �hyi � hzi � 0�, a `stretched' phase
(hyi � 0 and hzi > 0), and an `adsorbed' phase (hyi > 0 and
hzi � 0). Two dashed lines indicate phase transitions of the
second order, the solid line denotes phase transitions of the
first order; their intersection is the bicritical point c � f � 0.

IIII

I

III

III

c

f

Figure 1. Phase diagram of the system and typical conformations of the

chain corresponding to each phase: I, `isotropic' phase; II, `stretched'

phase; and III, `adsorbed' phase.
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Typical conformations of the chain are shown on each
portion of the diagram.

The approximate expressions for the order parameters for
horizontal movement in different portions of the diagram are
listed in Table 1.

The parameters hmi=R and hzi=R are plotted as functions
of ~c � cR for several different values of ~f in Fig. 2a, b. Curves
1 correspond to the horizontal movement in the lower portion
of the phase diagram (in the presence of a force pushing the
free end of the chain toward the surface). Curves 2 describe
the horizontal motion across the bicritical point (in the
absence of an external force), and curves 3 and 4 correspond
to horizontal movement in the upper portion of the diagram
in the presence of a detaching force.

Figure 3a ± d shows the mean order parameters Ð the
fraction of the adsorbed segments of the chain hyi and the
stretching of the chain hzi Ð versus the magnitude of the
adsorption interaction c for different values ofN. Figure 3a, b
corresponds to phase transitions of the second order, when
the external force is zero � f � 0� and the path on the diagram
crosses the bicritical point. We see that as the number of
segments N increases, the order parameter hyi features a
bend, which is typical of phase transitions of the second order.
The second order parameter hzi is nonzero only for chains of
finite length. Figure 3c, d corresponds to a phase transition of
the first order, when there is a detaching force f � 0:2. In this
case, both order parameters hyi and hzi for the asymptotically
long chain change abruptly at the point of transition
c � f � 0:2.

6. Symmetry properties

The partition function (5) is symmetrical with respect to the
adsorption parameter ~c and the reduced external force ~f. One
may say therefore that adsorption is in a sense equivalent to
the action of an external force [16]. As follows from Eqns (6),
(7), the mean number of adsorbed segments



m�cj f �� is

described by the same functional dependence as the mean
height of the end of the chain



z� f jc��. It is easy to see that all

the remaining moments of distributions with respect to the
number of contactsm and the height of the end of the chain z

Table 1.

f > 0

hyi hzi�
N� fÿ c��ÿ1
f

6

�
1�Nf �cÿ f �

18

�
c

3

�
1ÿ 3f

N�cÿ f �c2
�

f

3

�
1ÿ 3c

N� fÿ c� f 2
�
; ÿc4 1

f

6

�
1�Nf � fÿ c�

18

�
; jcj5 1

�
N�cÿ f ��ÿ1 ; c4 1

f � 0 �Nc�ÿ1

�
2

3pN

�1=2�
1� �pÿ 2��6p�ÿ1=2N 1=2c

�
c

3

�
p
6N

�1=2

; ÿc4 1

�
2

3pN

�1=2�
1� 4ÿ p

2
�6p�ÿ1=2N 1=2c

�
; jcj5 1

�Nc�ÿ1 ; c4 1

f < 0 �Nc�ÿ1
�
1ÿ

�
c

f

�2�
�

p
6N

�1=2�
1�

���
p
6

r
N 1=2c

�
1

3
c

�
1� �j f j ÿ c�

Nj f jc2
�

2
ÿ
Nj f j�ÿ1 ; ÿc4 1

ÿ
Nj f j�ÿ1 ; jcj5 1

�
N�c� j f j��ÿ1 ; c4 1
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0
~c

hmi=R
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0
~c

hzi=R

3

4

2
1

a

b

Figure 2. (a) Reduced mean number of contacts hmi=R � hmi�N=6�ÿ1=2 of
the polymer chain with the plane and (b) the reduced mean height

hzi=R � hzi�N=6�ÿ1=2 of the free end of the chain vs. the reduced

parameter of adsorption interactions ~c � cR. The magnitude of the

reduced external force ~f � fR acting on the free end of the chain is ÿ5
(1), 0 (2), 5 (3), and 10 (4).
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also transform into one another when we make the substitu-
tion c$ f. The distributions themselves are similar as well.
Because of this, a distribution with respect to the number of
contacts c$ f can be derived from Eqn (4):

P� ~mj~c; ~f � � �pR2�ÿ1=2 exp�~c 2 ÿ � ~mÿ ~c�2�
� �1� p1=2 ~fY� ~mÿ ~f �� : �10�

As follows from the phase diagram, adsorption of the ideal
chain on the plane in the absence of external forces � f � 0�
corresponds to motion along the line of phase transitions of
the second order across the bicritical point and is similar to
the detachment of the chain at the critical value of the energy
of the adsorption interaction �c � 0�. Adsorption of the chain
with the pressed end � f < 0� is equivalent to stretching the
chain attached to an inert or repulsive surface �c < 0� and
occurs as a phase transition of the second order. Adsorption
of the chain in the presence of a continually acting detaching
force � f > 0� is equivalent to stretching the adsorbed chain
�c > 0�.

7. Effects of the finiteness of the system

When analyzing the effects of the finiteness of the system, it is
assumed [29] that the free energy of the system in the
neighborhood of the phase transition depends on the size of
the system L only in the combination L=x (where

x � jTÿ Tcjÿn is the correlation length, and n is the
corresponding correlation exponent), and the free energy is
written in the form F � F

ÿjTÿ TcjL1=n
�
. If the system is

characterized by the number of particles N, then we use the
relation L � N 1=d and, assuming that dn � 2ÿ a, obtain

F � F
ÿjTÿ TcjN 1=�2ÿa�� ; �11�

where a is the critical exponent for the heat capacity.
In the vicinity of the critical point, the critical length x is

much greater than the length of the element l, and then two
characteristic regimes are observed: the scaling regime
L=x4 1, in which F is a power function of its arguments,
and the regime L=x5 1, in which F tends to a constant value.
A smooth transition from one regime to the other occurs
under the condition L=x � 1, that is, in a range

DT � Nÿ1=�2ÿa� : �12�

Let us now compare Eqn (11), (12) with the results that
follow from the exact partition function (5). As we go along
the line of phase transitions of the second order f � 0 on the
phase diagram, the free energy varies as

F � const� ln
ÿ
Y�ÿ~c�� : �13�

If we are moving in the lower portion of the phase diagram,
where there is a permanent down-pressing force, and cross the

ÿ0.4 ÿ0.2 0 0.2 0.4

0.06

0.04
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0.1

0 c

hzi

1

2

34
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0.04
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0 c
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1

2
3 4

ÿ0.4 ÿ0.2 0 0.2 0.4

0.04
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0.12

0 c

hyi
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2
3 4

ÿ0.4 ÿ0.2 0 0.2 0.4

0.02

0.06

0.04

0.08

0 c

hzi

1
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3

4

c

a

d

b

Figure 3.Order parameters of the system, i.e., the mean fraction of contacts of the chain with the plane hyi � hmi=N (a, c) and the mean stretching of the

chain hzi � hzi=N (b, d), vs. the magnitude of the adsorption interactions c in second-order phase transitions (a, b), when the external force is absent

� f � 0�, and in first-order phase transitions (c, d), when the detaching force is f � 0:2. The number of segments in the chain is N � 50 (1), 5� 102 (2),

5� 103 (3), and 5� 104 (4).
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vertical line of phase transitions of the second order, then the
free energy is

F � F0 � ln
ÿ
~cY�ÿ~c� � pÿ1=2

�
; �14�

where the regular part F0 contains the dependence on the
down-pressing force ÿf.

In both cases, the free energy is a function of the scaling
parameter ~c � c�N=6�1=2. The value ~c � 1 separates the
characteristic regimes. Comparing Eqns (13), (14) with (11),
(12), and taking into account the fact that jcj characterizes the
deviation from the critical point, we see that the second-order
transitions in our system are of a mean-field nature with a
heat capacity exponent a � 0 and occur in a range of
jcj � Nÿ1=2 when crossing the vertical line of second-order
phase transitions on the diagram (or in a range of j f j � Nÿ1=2

when crossing the horizontal line). The width of the bicritical
region is of the order ofNÿ1=2 in both directions on the phase
diagram.

Figure 4a shows the variation of the mean order
parameter hyi as a function of the inverse number of
segments in the system �Nÿ1� in the absence of an external
force � f � 0� for several values of c. Using the condition
~c � 1, it would be natural to define a characteristic chain
lengthN � � 6=c2 that separates `short' and `long' chains, that
is, `small' and `large' systems. This characteristic value of N �

is indicated in Fig. 4a by arrows. As follows from the formulas
listed in Table 1, for negative values of c the order parameter
hyi for `long' chains tends to zero asNÿ1 as the chain becomes
longer and remains constant �c=3� when c is positive. On the
other hand, for `short' chains we have hyi � Nÿ1=2 irrespec-
tive of on which side of the transition point the system is. In
the immediate neighborhood of the transition point c � 0, the
value of N � grows indefinitely, and so chains of almost any
length behave as `short' ones.

Let us now consider crossing the line of phase transitions
of the first order when the adsorption forces of attraction to
the plane increase and there is a constant detaching force f. If
we are far enough from the bicritical point, and c4Nÿ1=2,
f4Nÿ1=2, then the free energy can be written as

F � ln
n
2t exp�t 2 � x2��xÿ1 sinh�2tx� � tÿ1 cosh�2tx��o

� F0 � ln

�
sinh�2tx�

tx

�
; �15�

where t � � f� c�=2 � f, x � � fÿ c�=2, and F0 is a function
changing little in the neighborhood of the transition. We see
that the free energy is determined by the combination
tx � �Nf �Dc, where Dc is the deviation from the transition
point c � f. Accordingly, the first-order phase transitions are
characterized by the width Dc � �Nf �ÿ1, which decreases
away from the critical point f � c � 0.

Since the critical exponent of heat capacity in the first-
order phase transitions can formally be set equal to unity (see
Section 10), this result agrees with the scaling assumption
(12).

In the case of phase transitions of the first order, when the
chain stretched by a constant force is adsorbed, the mean
fraction of adsorbed segments hyi in an asymptotically long
macromolecule changes abruptly at the transition point c � f
from zero to c=3 (see Table 1). For finite values of N, the
transition is smoothed out (Fig. 3c). One may define the
characteristic size of the system N � � 6� fDc�ÿ1 above which
the polymer chain may be regarded as `large'; the polymer
chain is considered `small' whenN < N �. Figure 4b shows the
order parameter hyi versusNÿ1 for a constant stretching force
f � 0:2 and different deviations Dc � cÿ f from the point of
phase transition. Arrows indicate the values of N � which
separate `large' and `small' systems. From Fig. 4b we see that
ifDc < 0, then the limiting value is hyi � 0. IfDc > 0, then the
order parameter tends to a finite value of c=3. In `large'
systems, the order parameter approaches its limit linearly
with respect to Nÿ1, and the slope of this function is
determined by the magnitude and sign of �Dc�ÿ1, that is, by
the distance from the transition point. At the same time, the
order parameter for `small' systems is always of the order of
Nÿ1=2, irrespective of whether the system is above or below
the transition point, as in the case of phase transitions of the
second order. Making use of Eqn (6), for `small' systems we
can obtain the following expression:

hyi �
�
3

�������
pN
6

r �ÿ1�
1�

�
3ÿ 8

p

�
6ÿ1=2N 1=2c

�
: �16�

We see that linear extrapolation with respect to Nÿ1 in
the case of phase transitions of the first order is only
allowable for `large' systems with N4N �, and the closer
we are to the point of phase transition the greater is the
critical value of N �.
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Figure 4. Mean parameter of order hyi (the mean fraction of adsorbed

segments) vs. the inverse size of the system Nÿ1 (inverse number of

segments in the chain) at phase transitions of the second order when the

external force is absent (a), and at phase transitions of the first order (b)

under a constant stretching force f � 0:2. Arrows indicate the character-

istic size N � separating `short' and `long' chains. The deviation from the

transition pointDc � cÿ f is 0.1 (1); 0.05 (2); 0.01 (3);ÿ0:01 (4);ÿ0:05 (5),
and ÿ0:1 (6).
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8. Description based on Landau's theory

8.1 Phase transitions of the second order
The phenomenological theory of phase transitions proposed
by L D Landau [17] is based on treating the free energy F of
the system as a function of the order parameter f. Near the
second-order phase transition, the free energy F is expanded
in f; the expansion in the case of the isotropic model is
performed in even powers of f:

F�f� � F0 � A�Tÿ Tc�f2 � Bf4 � . . . �17�

The coefficients A and B are assumed to be positive and
more or less constant in the neighborhood of the phase
transition, and so the quadratic term changes its sign at
T � Tc. Minimizing (17) in f, we obtain equilibrium values
f0 � 0 at T > Tc andf0 �

�
AjTÿ Tcj=2B

�1=2
at T < Tc. The

heat capacity exhibits a finite jump TcA
2=2B at the point of

transition.
For a Gaussian chain adsorbed on a plane, one may also

consider the free energy per segment as a function of the
fraction of adsorbed segments y � m=N, assuming that this
order parameter may fluctuate and is not a mean value. The
partition function of the chain P�y� in the absence of an
external force � f � 0� is expressed from Eqn (10):

P�y� �
�
pN
6

�ÿ1=2
exp

�
ÿ 3

2
Ny2 �Ncy

�
: �18�

Accordingly, the free energy F�y� � ÿNÿ1 lnP�y� is

F�y� � F0 ÿ cy� 3

2
y2 : �19�

Equation (19) has a physical meaning only when
04y4 1, since the fraction of adsorbed segments cannot
be negative. On the other hand, the free energy in Landau's

theory is invariant with respect to the substitution f! ÿf,
and is assumed to be analytical near f � 0. Introducing a new
variablef defined by y � f2, we obtain symmetrical behavior
for the free energy over the interval �ÿ1; 1�:

F�f� � F0 ÿ cf2 � 3

2
f4 : �20�

The free energy F versus f in this form is plotted in Fig. 5a
for several values of c and is in perfect agreement with Eqn
(17) of Landau's theory. Such curves can be found in almost
any textbook on statistical physics; this time, however, they
have been obtained from the exact partition function and
hold not only in the thermodynamic limit, but also for
systems of finite size.

If the adsorbed system is under the action of a down-
pressing force � f < 0�, then, for not too weak forces
j f j4Nÿ1=2, the free energy as a function of f is

F�f� � F0 ÿ cf2 � 3

2
f4 � 1

N
log

�
1� 1

3
j f jf4

�
; �21�

which in the thermodynamic limit N!1 is equivalent to
Eqn (20).

It is known that Landau's theory does not hold for low-
molecular systems in the neighborhood of phase transition
because of the strong correlations of fluctuations of the order
parameter. For the polymer system under consideration, the
order parameter is the fraction of adsorbed segments or the
stretching of the chain. In either case the order parameter is
not a local but rather a `global' quantity that characterizes the
macromolecule as a whole. Accordingly, there is no question
of correlations of fluctuations of these order parameters, and
the system always exhibits mean-field behavior.

The fact that Eqn (20) only involves two termswithf2 and
f4 is explained by the elasticity of the Gaussian chain. If the
finite stretchability of the polymer molecule is taken into
account, the function F�f� will also involve higher-order
terms.
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Figure 5.Landau's free energy F vs. the parameter f, calculated for a polymer chain that undergoes (a) a phase transition of the second order (adsorption

in the absence of an external force, f � 0), and (b) a phase transition of the first order (adsorption with a detaching force, f � 0:5). The dashed line

indicates joining of the analytical branches of F�f�. The values of the parameters cÿf, i.e., the deviation from the point of transition, isÿ0:5 (1), 0 (2), and
0.5 (3).
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8.2 Phase transitions of the first order
Let us consider the behavior of Landau's free energy in the
case of phase transitions of the first order that occur upon
crossing the line c � f on the phase diagram. According to
Landau's theory, in this case the free energy F�f� in a certain
range of external parameters must exhibit two minima. The
deeper minimum corresponds to the equilibrium state of the
system, while the other corresponds to a metastable state. As
the controlling parameter is varied, the relative depth of these
minima changes, and the point of phase transition corre-
sponds to switching from one minimum to the other. In the
case of phase transitions of the first order, the jump of the
order parameter occurs abruptly and is not accompanied by
the growth of fluctuations in the pretransition region.

In our polymer model, the first order phase transitions
occur in a somewhat peculiar manner. Landau's free energy is
expressed from the exact formula (10). In contrast to phase
transitions of the second order, however, the function F�f� in
the thermodynamic limit N!1 becomes nonanalytical at
positive f and c and consists of two branches: a part of a
parabola and a fourth-order curve, which are tangent at
f� � � f=3�1=2:

F�f� ÿ F0 �
� fÿ c�f2 ; f4f� ;

1

6
� f 2 ÿ c2� � 3

2

�
f2 ÿ c

3

�2

; f5f� :

8><>: �22�

At the point of tangency, the second derivatives of F�f�
exhibit a break, but all singularities disappear when N is
finite.

Figure 5b shows Landau's free energy versus f for a
constant detaching force f � 0:5 and several values of c. The
dashed line indicates the value of f�. At the transition point
itself �c � f �, curve F�f� has a flat portion, which corre-
sponds to a finite jump of the order parameter. The existence
of this flat portion gives rise to anomalous fluctuations in the
pretransition region.

Function F�f� always has only one minimum, and
therefore there are no metastable states. The reason is as
follows: each state at the point of transition consists of two
parts (phases) Ð the stretched tail of the chain and the
adsorbed part on the surface. All states, with arbitrary
fraction of adsorbed segments, are equiprobable as indicated
by the flat portion of the curve. On the other hand, the
activation barrier, which separates the adsorbed and the
stretched parts, is not present (the phase boundary is actually
a single segment).

An analogy can be drawn with a liquid ± gas mixture in a
cylinder at a constant pressure equal to the saturated vapor
pressure. The phase-separated states (gas and liquid) have the
same free energy at any volume on the flat portion of the van
der Waals curve. The total density of the system, which is the
`global' order parameter, will fluctuate between the densities
of the liquid and the vapor. This phase-separated system
corresponds to infinite compressibility (in the case of strictly
equilibrium states). .

9. Joint distribution with respect to two order
parameters near the bicritical point

So far we have been discussing the behavior of the polymer
system in terms of two order parameters y and z (or f2 � y
and c2 � z) taken separately. The height-of-the-free-end and
the-number-of-contacts distributions are described by Eqns

(4) and (10), respectively. To better understand the cause for
the appearance of the flat portion in the F�f� curve, it will be
useful to consider Landau's free energy as a function of two
independent variables, i.e., F�f;c�. It can be demonstrated
[30] that in the neighborhood of the bicritical point, where
f5 1 and c5 1, the joint distribution has the form

F�f;c� � ÿcf2 ÿ fc2 � 3

2
f4 � 3

2
c4 � 3f2c2 : �23�

If we move along the line of first-order phase transitions
�c � f �, crossing the phase diagram diagonally, then the
Landau free energy will be a function of only one variable
t 2 � f2 � c2 � y� z:

F � ÿct 2 � 3

2
t 4 : �24�

The mean value hy� zi, which is determined by the location
of the minimum of function (23), behaves in the same way as
in the mean-field theory of the second-order phase transi-
tions:

hy� zi �
0 ; c < 0 ;
c

3
; c > 0 :

(
�25�

On the line of the first-order phase transitions �c � f,
c; f > 0�, all states with the given mean value hy� zi � c=3
exhibit anomalously large fluctuations with respect to each of
the order parameters; for example, all states with any y in the
range between 0 and c=3 are equiprobable.

Note that in the analysis of critical behavior in a system of
connected fields, the joint distribution of the Landau free
energy with respect to two order parameters is specified from
considerations of convenience and symmetry [18]. By con-
trast, the distribution F�f;c� in our polymer system is found
from the exact partition function.

10. Complex zeros of the partition function

Thermodynamic functions display singularities at phase
transitions; they themselves or their derivatives exhibit finite
or infinite jumps. At the same time, the partition function,
which is a sum of exponentials (a sum of the statistical weights
of states), is positive and has no singularities. The only
possibility for a singularity to arise is when the partition
function vanishes (or tends to zero). This brought Yang and
Lee [19] to the idea of considering the zeros of the partition
function of the grand canonical ensemble in terms of complex
numbers (as a function of a complex chemical potential).
Later, Fisher [19] proposed studying the distribution of zeros
of the partition function of the canonical ensemble in the
complex plane of temperatures or b � 1=�kT�.

Yang and Lee demonstrated that, for finite values of N,
the grand partition function only has complex-conjugate
zeros, and has no zeros on the real axis. If a phase transition
is possible in the system, then, as the number of particles
increases, the complex zeros come closer to the real axis, and
the gap between the zeros and the real axis vanishes in the
limit N!1. The Yang ±Lee theorem states that in the
complex plane of chemical potential these zeros lie on a
circle of unit radius. For the distribution of zeros of the
partition function of the canonical ensemble in the complex
plane of temperatures it was empirically established that they
normally lie on smooth curves and approach the real axis at a
certain angle o.
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Grossmann and Rosenhauer [20] gave a classification of
phase transitions assuming that complex zeros occur on a
certain line with a given linear density g�y�, where y is the
coordinate along the imaginary axis. Their analysis is based
on the formula for the internal energy of unit volume of the
system for a given deviation from the critical temperature
D � bÿ bc:

E�D� � 2�1� cot2 o�1=2
�1
0

g�y� y coto� D

�y coto� D�2 � y2
dy :

�26�

Assuming that the density of zeros is a power-law function
g�y� � y 1ÿa, they found that:

(1) If the density g�y� tends to a constant at small y
�a � 1�, then the zeros approach the real axis at right angles
o � p=2, and the energy exhibits a finite jump 2pg when
crossing the point b � bc. This obviously corresponds to a
phase transition of the first order.

(2) If the density grows linearly with y �a � 0� and crosses
the real axis at the angle o � p=4, then the energy varies
smoothly, but the heat capacity exhibits a finite jump, which
corresponds to a mean-field phase transition of the second
order.

(3) If a � 0, buto > p=4, or if 0 < a < 1 with arbitraryo,
then the heat capacity at the critical point will diverge
logarithmically when a � 0, or increase as cv � jDjÿa for all
a other than zero. In both cases the value of angle o
determines the magnitude of heat capacity on both sides of
the transition. The vertical line o � p=2 corresponds to the
symmetrical transition.

This model of adsorbed polymer chain allows verification
of the predictions of Grossmann and Rosenhauer. Moving
over the phase diagram (Fig. 1), we can gradually go from
phase transitions of the first order to phase transitions of the
second order, which are of a mean-field nature. Accordingly,
the complex zeros must first cross the real axis at right angles,
and then approach it at an angle p=4. In the polymer model,
the controlling parameter c (or f ) is similar to the inverse
temperature b, and the number of adsorbed segments (or the
height of the free end of the chain) is similar to the energy E.
We will analyze the partition functionQ�c; f0� in the complex
plane of the parameter c for a fixed value of the external force
f � f0, which may be positive or negative but always real.

Let us first consider the distribution of zeros when
crossing the line of phase transitions of the first order
� f0 � const > 0�. These zeros are found from the equation

cY

�
ÿc

����
N

6

r �
ÿ f0Y

�
ÿf0

����
N

6

r �
� 0 ; c 6� f0 ; �27�

which, upon transition to the polar coordinates c � r exp�iw�
and using asymptotic expressions for Y�x�, can be reduced to
the form

r2 cos 2w� 6

N
log

r
f0
ÿ f 20 � 0 ; �28�

w� 1

6
r2N sin 2w � 2pk ; k � �1;�2; . . . �29�

The line on which the zeros occur at N!1 is described in
polar coordinates as

r2 cos 2w � f 20 ; �30�

and in Cartesian coordinates x � Re�c�, y � Im�c� as
x2 ÿ y2 � f 20 �31�

and is therefore a hyperbola which crosses the real axis at
right angles at the point x � f0 and has two asymptotes
directed at o � p=4 to the real axis. From Eqns (29) and
(30) we get the equation which defines the locations of zeros
on the hyperbola:

w� 1

6
f 20 N tan 2w � 2pk ; k � �1;�2; . . . �32�

When w is small, that is, near the real axis, we have

wk �
6pk

3�Nf 20
: �33�

The limit of the density of the zeros

g � lim
N!1

1

N

dk

ds
;

where ds �
��������������������������
dr2 � r2 dw2

p
, is calculated exactly from Eqns

(29) and (32) and is

g�r� � �6p�ÿ1r : �34�

At the intersection with the real axis r � f0, w � 0, the density
of zeros has a finite value of g0 � f0=�6p�, which in
accordance with the above classification corresponds to a
phase transition of the first order with a finite jump of the
order parameter 2pg0 � f0=3 and is in agreement with the
results of Table 1. Assuming that the distance s from the
transition point along the curve on the asymptotic branches
of the hyperbola is approximately equal to r, we find the
location of the kth zero

rk �
�
12pk
N

�1=2

: �35�

As we move on the diagram along the line of phase
transitions of the first order toward the bicritical point, the
focal length of the hyperbola f0 decreases and, accordingly,
the density g0 decreases. At f0 � 0, the hyperbola degenerates
into two straight lines directed at the angleo � p=4 to the real
axis. The limiting density of zeros becomes g�jcj� � �6p�ÿ1jcj,
which in accordance with the classification of Ref. [20]
corresponds to a mean-field phase transition of the second
order with a finite jump of the order parameter
2p�6p�ÿ1 � 1=3, where �6p�ÿ1 is the coefficient in Eqn (34).
The same result follows from straightforward differentiation
of the free energy. As we recede from the bicritical point along
the lines of phase transitions of the second order, neither the
distribution of zeros nor their density exhibit any change:
o � p=4, g�r� � �6p�ÿ1r.

Figure 6 shows the arrangement of a few complex zeros of
the partition function (5), calculated numerically forN � 100
andN � 500 in the case of phase transitions of the first order,
when the polymer chain is adsorbed under a constant
stretching force f � 0:2 or f � 0:5. We see that the zeros
occur on hyperbolas, and approach the real axis more closely,
the greater the number of segments N.

The distribution of zeros in the case of phase transitions of
the second order is shown in Fig. 7 for two cases: when the
external force is absent � f � 0�, and when the external force
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presses down the free end of the chain to the surface
� f � ÿ0:2�. As N increases, in both cases the zeros tend to
occur on a straight lines at an angle p=4 and approach the
point c � 0 on the real axis in accordance with the analytical
results.

11. Scaling analysis of complex zeros of the
partition function

According to Ref. [21], the distance from the kth zero to the
real axis near the critical point obeys the scaling relation

yk � Lÿ1=nk1=dn �36�

or, in terms of the number of particles N,

yk �
�
k

N

�1=dn

�
�
k

N

�1=�2ÿa�
: �37�

Setting a � 0 for phase transitions of the second order, we
obtain the scaling prediction yk � �k=N�1=2, which agrees
with the exact analytical result (35). On the other hand,
a � 1 for phase transitions of the first order, and the scaling
predictions also agree with the exact result yk � f0wk �
�6p=f0��k=N� that follows from Eqn (29) and (33).

We found that the zero closest to the real axis in polar
coordinates is

w1 �
6p

3�Nf 20
: �38�

This relation can be used for evaluating the width of the
bicritical region, assuming that this zero should occur not far
from the asymptote w1 � 1. Then Nf 20 � 1 and f0 � Nÿ1=2 in
accordance with the estimate made in Section 7.

In the lattice models, the partition function for finite
systems is a polynomial and has a finite number of zeros. By
contrast, the partition function in our polymer model has an
infinite number of zeros for any N, since we have used the
continual model with an infinite number of states.

12. Conclusion

Wehave considered amodel of adsorption of a polymer chain
in an external field, which admits exact analytical treatment in
the calculation of the partition function. The model allows us
to obtain exact expressions for the Landau free energy as a
function of order parameters of the system in first-order and
second-order phase transitions and in the neighborhood of
the bicritical point. It is also possible to analytically study the
distribution of complex zeros of the partition function. This
rigorous treatment can be applied not only in the thermo-
dynamic limit, but also to systems of finite size.

Now, there is a natural question: why such a treatment is
possible, and what distinguishes this polymer model from the
classical exactly solvable lattice low-molecular models.

We can point to at least three special features of our
polymer model. First, the interactions between individual
elements of the system (the monomer segments of the chain)
are taken into account from the outset in writing the initial
differential equation (1) for the random-walk chain. By
assumption, each segment only interacts with its closest
neighbors, while there are no bulk interactions between the
segments that occasionally come close to each other. Second,
both order parameters Ð the stretching of the chain and the
fraction of segments in contact with the planeÐ are not local,
but rather characterize the system as a whole. Because of this,
there are no correlations of fluctuations of these order
parameters. Third, the external field directed along the
normal to the plane only acts on the free end of the chain
and does not act either on kinks or on the adsorbed portions
of the molecule. Given theGaussian properties of the random
walk, this makes the problem one-dimensional.

Owing to its simplicity, the behavior of our polymer
model is of mean-field nature and, thus, to a certain extent
trivial. On the other hand, by virtue of its being simple, the
model can serve as a good example for discussing various
methods and approaches in statistical physics and be a useful
teaching aid.
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Figure 6. Distribution of zeros of the partition function in the complex

plane of the parameter of adsorption interactions c for phase transitions of

the first order (adsorption with a detaching force) at f � 0:2 (*, *) and

f � 0:5 (&, &). The solid symbols correspond to N � 100; the open, to

N � 500. The solid lines (hyperbolas) are calculated from Eqn (31).
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Figure 7. Distribution of zeros of the partition function in the complex

plane of the parameter of adsorption interactions c for phase transitions of

the second order (adsorptionwith zero and a finite down-pressing force) at

f � 0 (&, &) and f � ÿ0:2 (*, *). The solid symbols correspond to

N � 100; the open, to N � 500. The straight solid lines are directed at

angles o � �p=4 to the coordinate axes.
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