
Abstract.Recent progress in superstring theory is reviewed. It
is shown how S- ,T- andU-dualities arise in the study of string
compactifications, solitons and D-branes to interrelate string
theories previously thought to be completely different.
Though there are still no proofs for a number of statements,
dualities provide an insight not only into string theory itself,
but also into geometry and supergravity. Special attention is
given to physical aspects which may escape notice in specific
problems. The article is intended for a very general reader
with little or no background knowledge.

1. Introduction

String theory was founded in the seventies as an attempt to
explain strong interactions [1]. Rather than succeed in the
initial realm, it led to the emergence of a new branch of
theoretical physics. Nowadays string theory has a very broad
range of applications: from black hole thermodynamics to the
GrandUnification of interaction forces [2]. Indeed, numerous
earlier attempts at unification fit nicely into the string theory
framework. Being a self-consistent quantum theory it
includes gravity. On the other hand, at low energies string
dynamics reduces to the Yang ±Mills action which is a vital
ingredient of all realistic models of particle interactions.

As we already mentioned string theory incorporates
gravitons (and higher spin states) that lead to UV divergen-

cies in quantumperturbation theory. String theory avoids this
problem by considering one-dimensional strings instead of
point particles. Therefore, at large scales (low energy) we
recover general relativity, while the string size provides a
natural cut-off at small distances (a potential source of
divergences). This concept also changes our understanding
of space ± time geometry. At large scales it resembles classical
Euclidean geometry, but attains a completely unusual string
geometry when points become close to each otherÐ there are
no well-defined separated points any more. One could hope
for a generalization of this idea tomembranes{ and objects of
arbitrary dimension: p-branes. We shall use these designa-
tions later, taking p to be the spatial dimensionality. In this
notation, point particles become 0-branes, strings Ð 1-
branes, and instantons are �ÿ1�-branes as they are localized
in all space and time directions, etc. We can write the classical
action, similar to the Nambu ±Goto action for strings [2 ± 4]:

S � ÿTp

�
d p�1x

�ÿ det �qiX m qjX nZmn�
�1=2

; �1�

�Tp� �
��mass� p�1� ; �2�

so that the brane tension Tp has dimension p� 1 in mass
units. X m provide a map from the �p� 1�-dimensional world-
volume x � �x0; . . . ; xp� to the D-dimensional Minkowski
space with flat metric: Zmn � diag �ÿ;�; . . . ;�� and
m � 0; . . . ; Dÿ 1.

At least in the string case, this action is equivalent to the
action in Polyakov's form:

S � Tp

�
d p�1x

���
g
p

g ijZmn qiX
m qjX n ; �3�

with g � det gij. The equations of motion for the metric
determine it up to position-dependent normalization factor:

gij / qiX m qjXm : �4�

Pull-back into Eqn (3) leads to the original Nambu ±Goto
action (1).Wemust stress here that in the action (3) one has to
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integrate over all distinctmetrics and sumover all world-sheet
topologies.

For an arbitrary value of p, the theory of p-branes is
highly nonlinear. It is a great fortune that in the case p � 1
there exists a huge general covariance symmetry. At least on a
sphere, it allows us to eliminate the metric from Eqn (3), and
therefore to linearize the theory. In this particular case g ij has
exactly the same number of independent components as the
number of reparametrizations we can play with: two choices
come from the coordinate transformation and the other from
the scale invariance. So far so good, but we have considered
only the classical action. On the other hand, in quantum
theory there is a so-called Weyl anomaly that breaks the
scaling invariance. It is proportional to the total central
charge of the underlying algebra. For the simplest case of a
bosonic string, ghost fields contribute 26, so that c � Dÿ 26
defines the critical dimension of the bosonic string theory:
D � 26 [2 ± 5]. If we regarded X's as supersymmetric coordi-
nates, the corresponding supersymmetric (SUSY) conformal
theory would have a central charge c � �3=2�Dÿ 15, i.e. a
critical dimension of 10. Similar arguments lead to D � 2 for
the extended �N � 2� supersymmetry, which is not so
interesting as the N � 1 case.

All the arguments above are supposed to answer the
question: ``Why strings?'', and to show the peculiar role of
the one-dimensional (p-)branes. Moreover, a consistent
quantum theory may exist in the critical dimension only.

In the case of a free open string the world-sheet
integration in the bosonic part of the action (3) runs over all
surfacesM with a boundary. Its variation

dS � ÿ2Tp

�
M

d p�1x dXm qi q
iX m

� 2Tp

�
qM

d p�1x dXmEij q
jX m �5�

defines classical solutions as harmonic functions on the world
sheet of a string. The latter are just eigen modes as for a
normal violin string. In the case of a closed string we have two
sets of left and right modes, correspondingly:

X�z; �z� � XL�z� � XR��z� ;

XL�z� � xL � C

2
ÿ ia0 ln z� i

X
m6�0

am
mzm

; �6�

XR��z� � xR ÿ C

2
ÿ i�a0 ln �z� i

X
m6�0

�am
m�zm

;

where we introduced the complex coordinates z � x0 � ix1
and �z � x0 ÿ ix1{.

Along with the equations of motion, one of the following
boundary conditions should also be satisfied. Neumann
boundary conditions respect Poincare invariance:

qnXm � 0$ XL�z� � XR��z� ; �7�

and hence momentum is conserved. On the other hand,
Dirichlet boundary conditions indicate defects in space ±
time:

dXm � 0$ XL�z� � ÿXR��z� : �8�

The higher excited modes am and �am enjoy harmonic
oscillator algebra for each mode:

�am; an� � mdm�n;0 ; �9�

and similarly for �am, so that an arbitrary excitation can be
represented as

aÿm1
. . . aÿmr

�aÿm 0
1
. . . �aÿm 0s j0; ki : �10�

The total number of excited oscillators is given by

L � m1 � . . .�mr ; �L � m 01 � . . .�m 0s : �11�

Five different superstring theories have emerged over the
progress of the theory: type I string theory, type IIA and IIB,
and two heterotic string theories with gauge groups SO(32)
and E8 � E8. Let us briefly explain how these theories come
from the simple bosonic string. The theories differ in the way
we supersymmetrize the bosonic string, so that the type refers
to space ± time supersymmetry. Type I theory is a theory of
open (and closed{) superstrings withN � 1 supersymmetry on
the world sheet. The boundary conditions on the ends of a
string relate two supercharges of chiral and antichiral modes
into single supercharge which has 16 real components. In
other words, the type I theory has N � 1 supersymmetry in
space ± time. On the contrary, type II theories have two 16-
component supercharges and therefore possess N � 2 super-
symmetry in space ± time. The only difference between type II
theories concerns the chirality of left and right modes seen by
a ten-dimensional observer. In type IIB both sectors are
chiral, while in type IIA they are of opposite chirality.

Because only an odd (even) number of gamma-matrices
(Gm) can be placed between two spinors of opposite (the same)
chirality, type IIA (IIB) theory contains only odd (even)
forms. This affects the dimensionality of (Ramond ±
Ramond) potentials in the spectrum. Hence type IIA (IIB)
strings can end only on p-branes with p even (odd) respec-
tively. A heterotic string is somewhat more sophisticated, but
more promising from the phenomenological point of view. A
compactification of it onto a certain (Calabi ±Yau) manifold
is a good candidate to describe the real world. It has anN � 1
right sector like a type I string, and the usual bosonic left
sector. As all the theories have D � 10 critical dimension, it
seems that we are left with 26ÿ 10 � 16 extra bosonic degrees
of freedom. They become gauge degrees of freedom, 32 in
number after fermionization of bosonic fields with the same
central charge. This leads us to the SO(32) gauge group.
Detailed analysis indicates that there is only one other
anomaly-free way to gauge these extra left fields which gives
the E8 � E8 special group.

Before we delve into thewonderful world of dualities let us
digress for a moment to fix the notation and terminology.

Say, if a theory is dual to itself, it is said to be self-dual.We
will discuss the following: T-, S- and U-dualities. The former
relates one theory (A) on a large manifold to another theory
(B) on a small manifold. Below we study the simplest example
of compactification on a circle. O�n;m;Z� is the typical
symmetry group of T-duality. It is nonperturbative with
respect to string tension. However one can compare spectra

{The role of the `unphysical' constant C will become clear later.

{A theory of only open strings does not exist. It is always possible to find a

section of a world sheet, such that it will be represented by a closed curve

corresponding to a closed string.
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in both theories to any order in string coupling constant.
Therefore, this is an example of perturbative T-duality. On
the contrary, S-duality is nonperturbative, because it `inverts'
the coupling constant like T-duality inverts the size. This
duality implements nonperturbative objects that makes it
more interesting. Usually S-duality is associated with the
SL�2;Z� symmetry group. The latter (U-duality) was first
found in compactifications of type II superstrings on
K3� T2. It possesses the E7�Z� duality group which unifies
T- and S-duality groups, i.e. SL�2;Z� �O�6; 6;Z�.

In spite of extensive citations throughout the text, here we
acquaint the reader with a helpful bibliography. Due to the
exhaustive literature [2 ± 5] on perturbative string theory,
there is no use in reviewing it once again here. Later we
assume that the interested reader, if necessary, can use the
mentioned references. The most important and heavily used
terms and definitions are collected in the Glossary at the end
of the paper. There is also a number of lectures [6 ± 11] on
nonperturbative aspects of string theory that will be the main
subject of our discussion. In the meantime we hope that the
present discussion will complement these reviews. It is also
instructive to mention some papers on T-duality and D-
branes [12 ± 14], and on S-duality [15 ± 17] and p-branes [18,
19]. The Seiberg ±Witten exact solution of N � 2 super-
symmetric Yang ±Mills theories in four dimensions [20] is
frequently used to verify string dualities. This fact influenced
the recital of S-duality which goes along the lines of Seiberg
and Witten. To become more familiar with this subject we
recommend the beautiful introductory lectures [21 ± 23].

2. Low-energy action in string theory

Due to supersymmetric nonrenormalization theorems, low-
energy methods provide the most powerful tools for under-
standing string theory dynamics. String theory action reduces
to the low-energy effective action of massless string excita-
tions in the large tension limit. This description is possible in
closed form because higher excitations in Eqn (10) become
infinitely massive.

Consider the excitation of the bosonic string next to the
tachyon{. It coincides with the first excited state in type II
string theory, namely, the massless state (10) with L � �L � 1:

am
ÿ1a

n
ÿ1j0; ki : �12�

The trace, symmetric and antisymmetric parts of this state are
the dilaton, the graviton and antisymmetric two-form,
respectively.

In the same fashion one can construct type II superstring
states from the creation and annihilation operators of the
Ramond ±Ramond sector. Because of the anticommutation
property of fermions, these excitations correspond to even
(odd) rank forms in type IIB (IIA) theories respectively.

Themassless sector of a type I superstring can be obtained
by left-right symmetrization of a type IIB theory. More
customarily, it is said that type I theory is the Z2 orbifold of
a type IIB supersting. The fact that the type I string theory is a
theory of open superstrings is also an important point. Ends
of an open string carry so-called Chan ± Paton factors which
are the generators of some gauge group. It turns out that the
theory is anomaly-free only if the gauge group is SO(32) [2].
For this reason the low-energy action of type I string theory

also includes Yang ±Mills action with SO(32) gauge group,
while Eqn (44) is the typical form of the action for closed
strings.

3. T-duality

Let us start our tour with the T-duality which is inherent to
theories of extended objects like strings. There is no analog of
T-duality in the normal field theory describing the dynamics
of point particles.

Consider the compactification of the closed bosonic string
theory on a circle [11, 12]. This implies the identification of the
25th coordinate:

X 25 � X 25 � 2pR ; �13�

so that Kaluza ± Klein excitations now carry discrete
momenta: k25 � n=R. This, of course, also takes place in any
quantum field theory in compact space. But the following
effect is unique for a string theory. A string can wrap the
periodic dimension so that

X 25�2p� � X 25�0� � 2pmR : �14�

From the mode expansion (6) we see that the eigen values
k25L;R of operators a0 and ~a0 are no more equal to each
other: k25L ÿ k25R � mR. Once the net momentum is equal
to �k25L � k25R �=2 we conclude that:

k25L �
mR

2
� n

R
; k25R � ÿ

mR

2
� n

R
: �15�

The physical state conditions determine the mass spec-
trum of the theory:

M 2 � k20 ÿ
X24
m�1

k2m �
m2R2

4
� n2

R2
� L� �Lÿ 2 ;

mn� Lÿ �L � 0 :

From the above formulas it is clear that two theories with
radii R and 2=R have the same spectrum so that the Kaluza ±
Klein states in one theory correspond to the windingmodes in
the other, and vice versa{:m$ n. This is exactly the action of
T-duality which takes

k25L ! k25L ; k25R ! ÿk25R :

If we also extend its action to the higher excited states:

a25m ! a25m ; �a25m ! ÿ�a25m ;

so that

X 25
L ! X 25

L ; X 25
R ! ÿX 25

R ;

it becomes an exact symmetry of the operator product
expansion in any order of string interaction. This accounts
for the Z2: R$ 2=R group associated with T-duality. The
moduli space, i.e. the space of parameters in the correspond-
ing conformal theory, is a half-line R >

���
2
p

.

{ In type II superstrings the tachyon is eliminated by the GSO projection.

{An extra SU�2� � SU�2� massless multiplet emerges at the self-dual

value of radius R � ���
2
p

.
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An open string cannot wrap the periodic dimension, so we
have to consider the action of T-duality on it separately. The
usual open string has Neumann boundary conditions
niqiX m � 0. The duality transform qiX 25 � E ji qj ~X 25 with
~X 25 � X 25

L ÿ X 25
R , changes these conditions to the following:

niE ji qj ~X � t j qj ~X : �16�

It states that the longitudinal derivative vanishes, there-
fore ~X 25 is constant along the boundary. As follows from the
mode expansion (6), the change of sign of the right-movers X
only transforms the Neumann boundary conditions (7) into
the Dirichlet boundary conditions (8). If we put R! 0 (i.e.
~R!1), we obtain the space where string end-points are
allowed to move on the hyperplane of constant ~X 25 �
X 25

L ÿ X 25
R � C. This means that open strings can terminate

only on this hyperplane, while closed strings (which exist in
any theory of open strings) can propagate anywhere. The
hyperplane should preserve Lorentz invariance, and therefore
must be a dynamic object: D-brane [11, 12]. Interestingly, by
this definition a D-brane turns out to be a nonperturbative
state charged under Ramond ±Ramond fields. We will return
to this question in Section 5.

It is worthy to stress one more important feature of T-
duality. For the example we have been discussing throughout
this section, the parity operator in the spinor space has the
following form{: ÿiG 25G27. Therefore, because the duality
exchanges the even and odd form potentials, it also exchanges
type IIA and IIB string vacua.

4. S-duality

Let us now turn to the more remarkable duality which not
only led us to the equivalence of various string vacua but also
allowed some models to be solved. For instance, it is a vital
ingredient for the solution of the N � 2 super-Yang ±Mills
theory [20]. A very good `stringy' introduction to the
Seiberg ±Witten theory can be found in Ref. [21].

Electromagnetic duality in ordinary quantum electrody-
namics (QED) is the four-dimensional image of strong-weak
coupling duality in string theory. Point particles naturally
couple to the vector potential An whose field strength

Fmn � qmAn ÿ qnAm �17�

satisfies the Maxwell equations:

qmF mn � 0 ; qm ~F mn � 0 ; �18�

The dual{ field strength in the last formula is defined via
contraction with the antisymmetric tensor E mngd.

Equations (18) are manifestly symmetric with respect to
the exchange F$ ~F. The electric source in the right-hand side
of the first equation breaks this symmetry unless an
analogous magnetic source is also introduced. This restores
the symmetry if we require electric and magnetic charges to
transform into each other. However the vector potential Am

can no longer be globally defined, as it identically satisfies the
second equation of set (18). In other words, the nonzero
source term in the right-hand side is inconsistent with the

Bianchi identities in the dual theory. This fact leads to the
Dirac string attached to the monopole. It is not dynamic and
represents just a topological singularity in space ± time.
Defining the vector potential separately on the two hemi-
spheres, surrounding the magnetic charge, allows us to
remove the singularity in Am. According to Stocks theorem,
the net flux through the sphere reduces to integration over the
equator, or a loop over the Dirac string. The electron wave
function in quantum theory acquires a phase during motion
in amagnetic field. In order for the string to stay `invisible' the
change in phase over the loop should bemultiple of 2p. This is
precisely the Dirac quantization condition for the electric Qe

and magnetic Qm charges: QeQm � 2pn. For dyons, particles
carrying both electric and magnetic charges, the analogous
condition is known as the Dirac ± Schwinger ± Zwanziger
quantization condition. For two dyons with charges Q1

e , Q
1
m

and Q2
e , Q2

m respectively, the condition has the following
form:

Q1
eQ

2
m ÿQ2

eQ
1
m � 2pn ; n 2 Z : �19�

The simplest solution is given by the charge lattice:

Qe � en1 ; Qm � 2p
e

n2 ; �20�

where n1 and n2 are integers. Therefore, a theory with an
electrically charged particle �e; 0� and a magnetic charge
�0; 2p=e� possesses electric-magnetic duality which acts as
e$ 2p=e, interchanging weak and strong couplings.

Note that we derived the non-trivial condition on charges
assuming only existence of magnetic charge. Unfortunately,
so far we have been dealing with QED that does not have a
monopole in the spectrum. Hence the duality cannot be a
symmetry of the theory.

Let us now turn to the more complicated Georgi ±
Glashow theory which includes a monopole from the very
beginning. The model starts with SO(3) gauge field interact-
ing with the isovector Higgs field f via Lagrangian [22]

L � ÿ 1

4
F mn
i Fimn � 1

2
D mfDmfÿ V�f� ; i � 1; 2; 3 ; �21�

where Dm is a covariant derivative and V�f� � l�f2 ÿ a2�2=4
is the Higgs potential. Finite energy solutions must have the
profile of the Higgs field asymptotically going to the constant
a. The remaining gauge symmetry is U(1), the rotation is over
fa � ada;3. Therefore, only the Abelian part of the gauge
boson survives at large scales. Moreover, an element of the
second homotopy group is associated with any finite energy
solution according to the f map: S 2 ! S 2 from spatial
infinity to the vacuum space. As was shown by t'Hooft and
Polyakov [28], the latter is defined by an integer proportional
to the magnetic charge Qm of the solution. The authors of
Ref. [28] suggested a topologically stable solitonic solution
that at large distances resembles the Dirac monopole in the
effective QED theory. It avoids singularities at small scales
restoring the whole non-Abelian gauge symmetry.

Because the monopole considered above has a smooth
field profile, calculation of its mass makes sense and turns out
to be related to its magnetic charge. As was shown by
Bogomolny [29], the mass of the solution with magnetic
charge Qm satisfies the following inequality: M5 ajQmj,
that, according to Prasad and Sommerfield, can be saturated
in the case of so-called BPSmonopoles [30]. A similar formula

{ In terms of gamma-matrices the chirality operator is defined as

G27 � G0G1 . . .G25.

{From now on tilde refers to the dual variable.
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also holds for vector bosons which acquire mass M � ajQej
via the Higgs mechanism. Combination of these two results
yields the mass formula for dyons, i.e. solutions carrying both
electric and magnetic charges:

M � ��ae�ne � tnm�
�� : �22�

We have introduced the complex coupling constant{ t �
y=2p� i4p=e2.

Theories which have states saturating the BPS condition
may have the SL�2;Z� duality group generated by the
transformations

t! ÿ 1

t
; t! t� 1 : �23�

The former is a generalization of electric-magnetic duality,
and the latter shifts the y-angle by 2p. For example, the energy
of a state in a four-dimensional field theory with extended
supersymmetry is bound by the absolute value of the central
charge of SUSY algebra. For sufficiently large supersymme-
try, the mass formula (22) is protected from quantum
corrections. In that case, strong-weak coupling duality is an
exact symmetry of the spectrum and may be also a symmetry
of the whole quantum theory.

One of the simplest examples with this property is a `kink'
solution in �1� 1�-dimensional space ± time. A solution
minimizing the Lagrangian

L � ÿ 1

2
qmf qmfÿU�f� �24�

with the potential term U�f� � l�f2 ÿm2=l�2=4 and dimen-
sionless coupling constant g � l=m2 carries conserved topo-
logical charge:

T � 1

2

���
g
p �

f��1� ÿ f�ÿ1�� ; �25�

where T � �1 (T � ÿ1) for a kink (antikink), respectively,
and f varies from f � ÿ1= ���

g
p

at the minimum of U at
x � ÿ1 to another extremal value f � �1= ���

g
p

when
x � �1. The mass (rest energy) of the kink is given by

E �
�
dx

1

2
�f0�2 �U�f� � 2

���
2
p

3

m

g
; �26�

As one might expect for nonperturbative solution, it is
inversely proportional to the coupling constant.

In the supersymmetric case the Lagrangian has the form

L � ÿ 1

2
qmf qmf� 1

2
�cigmq

mcÿ 1

2
U 2�f� ÿ 1

2
U 0�f�cc ;

�27�

where c is a Majorana fermion and U�f� � l�f2 ÿ a2�. The
theory contains two supercharges:

Q� �
�
dx � _f� f0�c� �U�f�c� ; �28�

c� denotes the left and right components of c respectively.
They form the supersymmetry algebra:

Q2
� � P� ; Q2

ÿ � Pÿ ; fQ�;Qÿg � T ; �29�

where P� � P0 � P1, and the central charge T is purely
topological. The relation:

P� � Pÿ � �Q� �Qÿ�2 ÿ T � �Q� ÿQÿ�2 � T �30�

leads to the Bogomolny bound M5T=2 for the rest mass M.
This bound is saturated for a state jsi which is annihilated
by the following combination of supercharges:
�Q� �Qÿ�jsi � 0. Indeed, the requirement for preserved
supersymmetry is equivalent to taking the square root of the
equations of motion. And the fact that the kink solution is
annihilated by a combination of supercharges implies satura-
tion of the Bogomolny bound. The other combination of
supercharges rather creates a fermionic zero-mode in the kink
background. This follows from the (nonzero) supersymmetric
variation of the bosonic equation of motion which is
equivalent to the fermionic equation of motion in the
bosonic background.

This property (that half the supercharges annihilating the
classical solution leads to saturation of the Bogomolny
bound, while the other half produces fermionic zero-modes
in the soliton background) takes place for many solitonic
solutions in supersymmetric theories. As a result, the search
for configurations that preserve some SUSYprovides a short-
cut to the solution of the equations of motion. Indeed, it is
usually easier to find solutions to these first order equations
than to solve the equations of motion, generally of the second
order. In the next section we demonstrate this by some
examples of p-branes Ð string solitonic solutions.

5. Branes and the duality of dualities

In Section 2 we found that a consistent theory of open strings
possessing T-duality requires the ends of strings to move on
static objects extended in p spatial dimensions. They are
described by the boundary conditions:

q?X 0;...; p � 0 ; Xp�1;...;Dÿ1 � 0 ; �31�

which correspond to themotion of the ends of open strings on
a �p� 1�-dimensional hyperplane (brane world-volume).
Because there are no independent open strings in type II
theories, their existence is intimately related with the presence
of D-branes. We have already mentioned that the latter must
be dynamic object in order to preserve Poincare invariance.

On the other hand, from the discussion above we learnt
about the existence of string solitons, so-called p-branes.
These extended BPS solutions can be obtained from the low-
energy supergravity theory of the corresponding string
theory. Such solutions are parametrized by the tension Tp

and the charge density mp with respect to the Ramond ±
Ramond �p� 1�-form A�p�1� described by the following term
[18] in the world-volume effective action:

Sint � mp

�
d p�1xA�p�1� �32�

From now on we omit space ± time indices, and specify the
rank of the corresponding form by a superscript in parenth-

{ In this expression we take into account the topological y-term. As was

shown by Witten [27], with nonzero y a monopole acquires an effective

electric charge ynm=2p.
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eses: A �i�. Like for any BPS states, the mass formula (22)
equates brane tension and its charge mp: Tp � mp. This fact
entails an important corollary for D-branes which frequently
turn out to be p-branes. One can evaluate the interaction
energy between two identical parallel D-branes [12, 13]. It is
proportional to T 2

p ÿ m2p. Hence dilaton and graviton attrac-
tion is exactly canceled by repulsion due to Ramond ±
Ramond fields. The same happens in supersymmetric field
theories where two static monopoles (more generally, BPS
states) do not exert a mutual force.

Like any BPS states, p-branes usually break half of the
supersymmetry. If we consider intersecting branes or special
configurations of them (D-brane instantons), only 1=4 (or
less) of the original supersymmetry would be preserved: a half
due to each brane.

A consistent quantum theory of such objects encounters
serious problems (partly outlined in the Introduction). All we
can do at this point is to study the low-energy physics.

One can rewrite Eqn (17) for arbitrary p andD in terms of
differential forms. In this language the gauge transformations
look like:

dA�p�1� � dL�p� : �33�

The gauge-invariant field strength{

F �p�2� � dA�p�1� �34�

satisfies the Bianchi identity

dF �p�2� � 0 : �35�

Neglecting other interactions, the equations of motion for the
�p� 1�-form potential acquire the form

d ~F �p�2� � ~J �Dÿpÿ1� ; �36�

where the source term J is a �p� 1�-form.
A point particle naturally couples to a vector potential, so

that the world-line integral of the one-form is well-defined. In
the same way a p-brane is naturally coupled to a �p� 1�-form
[since it has �p� 1�-dimensional world-volume]. This gives a
�p� 2�-form field strength. From the Hodge conjugation
(contraction with a totally antisymmetric tensor) one can
easily see that it is dual to a �Dÿ �p� 2� � Dÿ pÿ 2 �
~p� 2�-form. This gives us the dual pairs (p and ~p) in D
dimensions:

p� ~p � Dÿ 4 : �37�

For example, this useful formula suggests the possible self-
duality of point particles in four dimensions (which is realized
by electrons and monopoles). Because our main subject is
string theory in the critical dimension of 10, it is useful to
guess for a dual of a string, i.e. 1-brane. According to Eqn (37)
this is the NS5-brane. Under the transformation
String$ NS5-brane, S- and T-dualities also exchange. This
means that the essentially nonperturbative S-duality in string
theory becomes T-duality from an NS5-brane point of view.
As already mentioned, the latter can be checked to any order
in perturbation theory. Therefore we have reduced the
verification of S-duality to the equivalent statement, string ±

NS5-brane equivalence, described above. This logic is
referred to as the duality of dualities.

Like the Maxwell equation (18), formula (36) implies the
existence of `electric' charge, p-brane, but also magnetic
charge, i.e. ~p � �Dÿ pÿ 4�-brane.

To restore the duality symmetry introducing a
�Dÿ dÿ 4�-brane we must modify Eqn (34) to

F �p�2� � dA�p�1� � o�p�2� ; �38�

so that the Bianchi identity (35) takes the following form:

dF �p�2� � X �p�3� ; �39�

where

X �p�3� � do�p�2� : �40�

For electric and magnetic charges

mp �
�
SDÿpÿ2

~F �Dÿpÿ2� �
�
MDÿpÿ1

~J �Dÿpÿ1� ; �41�

mDÿpÿ4 �
�
S p�2

F �p�2� �
�
M p�3

J �p�3� �42�

we have a generalization of the Dirac quantization condition
(19). Following Dirac, one can smoothly define the potential
everywhere except at a singular (hyper)string impaling
SDÿpÿ2. This singularity may become dangerous once the
Aharonov ±Bohm experiment involving �Dÿ pÿ 4�-branes
can detect it. Indeed, the �Dÿ pÿ 4�-brane wave function
acquires the phase

md mDÿdÿ4 � 2pn �43�

over a loop around the singularity.
Surprisingly, D-brane charges expressed via their tensions

satisfy this relation with n � 1. The simple cylinder diagram
somehow knows about this nonperturbative consistency
check [13]. Moreover we have just realized that D-branes
carry the minimal allowed R±R charges. Hence one can
assume that these are the only ones.

The only thing left is the explicit form of the p-brane
solutions. Consider a d-rank antisymmetric tensor potential
AM1M2...Md

interacting with gravity gMN and dilaton f via the
action

ID�d� � 1

2

�
dDx

�������ÿgp �
Rÿ 1

2
�qf�2

ÿ 1

2�d� 1�! exp
�ÿa�d�f�F 2

d�1

�
: �44�

The field strength Fd�1 of rank �d� 1� is defined in Eqn (34),
and a�d� is (by now) an unknown constant. Even though here
we allow arbitrary D and d, the most interesting cases will be
the string and NS5-brane{. A d-dimensional elementary
object, `�dÿ 1�-brane' is described by its trajectory in
space ± time XM�x i� �i � 0; 1; . . . ; �dÿ 1��, world-volume
metric gij�x� and the tension Td. It interacts with the bulk

{This formula changes a little on inclusion of the interaction. {A self-dual string in six dimensions is another interesting example.
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fields via the action

Sd � Td

�
ddx
�
ÿ 1

2

������ÿgp
gijqiXMqjXNgMN exp

�
a�d�f

d

�
� �dÿ 2�

2

������ÿgp

ÿ 1

d !
ei1i2...idqi1X

M1qi2X
M2 . . . qidX

MdAM1M2...Md

�
: �45�

The Bianchi identity (35) stays intact, while the equations
of motion (36) for the field A become

d
n
exp
�ÿa�~d �f�Fo � 2�ÿ1�d 2 ~J ; �46�

with the source term J of rank d:

JM1...Md� Td

�
ddx ei1i2...id qi1X

M1qi2X
M2 . . . qidX

Md
dD�xÿ X��������ÿgp :

�47�

Now we can define two conserved charges: the Neuter
`electric' charge (41) and the topological `magnetic' charge
(42). The latter does not vanish if the action ID admits ~d-
dimensional solitonic solutions Ð `�~dÿ 1�-branes'. These
charges satisfy the Dirac quantization condition (43). Of
course at this level it is not clear whether the system has
elementary or extended solitonic solutions, and even if it has
anyÐwhat values of electric and magnetic charges md and m~d
are.

Let us first consider the equations of motion that follow
from ID � Sd. The Einstein equations:

�������ÿgp
(
RMN ÿ 1

2
gMNRÿ 1

2

�
qMfqNfÿ 1

2
gMN�qf�2

�

ÿ 1

2

1

d !

�
F M
M1...Md

F NM1...Md ÿ 1

2�d� 1� g
MNF 2

�
� exp

�ÿa�d�f�) � �������ÿgp
TMN
dÿ1 ; �48�

contain the �dÿ 1�-brane energy-momentum tensor equal to

TMN
dÿ1 � ÿTd

�
ddx

������ÿgp
g i jqiXMqjXN exp

�
a�d�f
d

�
dD�xÿ X��������ÿgp :

�49�

The antisymmetric tensor field equation has the following
form:

qM
� �������ÿgp

exp
�ÿa�d�f�FMM1...Md

�
� 2Td

�
ddx ei1 ...i dqi1X

M1 . . . qi dX
MddD�xÿ X� ; �50�

the dilaton equation is

qM
ÿ �������ÿgp

gMNqNf
�� a�d�

2�d� 1�!
�������ÿgp

exp
�ÿa�d�f�F 2

� a�d�Td

d

�
ddx

������ÿgp
g i jqiXMqjXNgMN

� exp

�
a�d�f
d

�
dD�xÿ X� ; �51�

and the position of the �dÿ 1�-brane is given by

qi

� ������ÿgp
g i jqjXNgMN exp

�
a�d�f
d

��

ÿ 1

2

������ÿgp
g i jqiXNqjXPqM

�
gNP exp

�
a�d�f
d

�

ÿ 1

d !
e i1...i dqi1X

M1 . . . qi dX
MdFMM1...Md

� 0 ; �52�

where

gij � qiXMqjXNgMN exp

�
a�d�f
d

�
: �53�

To solve these equations of interacting �dÿ 1�-brane
fields we introduce the ansatz for the D-dimensional metric
gMN, d-form AM1...Md

, the dilaton f and coordinates XM�x�
corresponding to the most general coordinate split
d=�Dÿ d� invariant under Pd � SO�Dÿ d�, where Pd refers
to the d-dimensional Poincare group [18, 19]. We divide the
indices

xM � �xm; ym� �54�

into m � 0; 1; . . . ; �dÿ 1� andm � d; d� 1; . . . ; �Dÿ 1�. Then
the space ± time interval takes the form

ds2 � exp�2A�Zmn dx m dxn � exp�2B�dmn dy
m dyn ; �55�

and the gauge d-form is

Am1...md � ÿ
1
dg

em1...md expC ; �56�

where dg is the determinant of gmn, em1...md � gm1n1 . . . gmdnde
n1...nd

and e012...�dÿ1� � 1, i.e. A01...�dÿ1� � ÿ expC. All the other
components of AM1...Md

we put to zero. The Pd invariance
requires the (so far) arbitrary functions A, B, C to depend on
ym only. Then SO�Dÿ d� invariance further restricts the
dependence to only the parameter y � ������������������

dmnymyn
p

. There is
a similar ansatz for the dilaton

f � f�y� : �57�

In the same fashion we separate coordinates in the �dÿ 1�-
brane sector:

XM � �X m;Ym� �58�

and choose the static gauge

X m � xm ; �59�

assuming

Ym � const : �60�

Substituting all this into the �dÿ 1�-brane equations of
motion we get five equations of the four functions A, B, C, f
and one unknown number a�d�.

Assuming that metric at infinity tends to ZMN gives the
unique solution:
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A �
~d

2�d� ~d� �Cÿ C0� ;

B � ÿ d

2�d� ~d� �Cÿ C0� ;

a�d�
2

f � a2�d�
4
�Cÿ C0� � C0 ; �61�

where C0 � a�d�f0=2 and f0 is the dilaton vacuum expecta-
tion value. C is determined by

exp�ÿC� � exp�ÿC0� � kd

y~d
;

~d > 0 � exp�ÿC0� ÿ Td

p
ln y ; ~d � 0 ; �62�

and

kd � 2Td

~d
O~d�1 ; �63�

where O~d�1 is the volume of S
~d�1. The parameter a�d� is

defined via the relation:

a2�d� � 4ÿ 2d~d

d� ~d
: �64�

It is worthwhile noting that in the case at hand the d-
function coefficient vanishes in both the Einstein equations
and the dilaton equation at y � 0. Therefore we have found
solutions to free equations; the source term shows up only in
the equations of motion of the antisymmetric tensor field.

It is important that we could determine the number a�d�
requiring the theory to have elementary �dÿ 1�-brane
solutions.

The mass per unit �dÿ 1�-dimensional volume of elemen-
tary �dÿ 1�-brane is equal to

Md �
�
y00 d

D ÿ d

where yMN is the total pseudotensor of the gravity ±matter
system. Therefore we find

Md � Td expC0 : �66�

In order to calculate the electric charge md of Eqn (41) it is
convenient to introduce the spherical coordinates:

ym � �y; y i� ; �67�

where i � 1; . . . ; �~d� 1�, so that

dmn dy
m dyn � dy2 � y2 dO2

~d�1 ; �68�

and dO2
~d�1 is the metric on �~d� 1�-dimensional unit sphere

S
~d�1. Then the antisymmetric tensor field equations give

Fym1...md � ÿ
1
dg

em1...mdqy expC : �69�

The tensor ~F dual to F has nonvanishing components in the y i

direction only:�������ÿgp ~F y1...yDÿdÿ1 � ÿ�ÿ1��Dÿd��d�1� exp�2C�qy exp�ÿC� : �70�

Therefore, using Eqns (61) ± (63) we obtain

exp
�ÿa�d�f� ~Fy1...yDÿdÿ1 � �ÿ1��Dÿd��d�1�2Td

ey1...yDÿdÿ1

O~d�1
: �71�

Equation (41) leads to the relation

md �
���
2
p

Td�ÿ1��Dÿd��d�1� ; �72�

which means that

Md � 1���
2
p jmdj exp

a�d�f0

2
: �73�

Therefore, although we did not imply any supersymmetry, we
have obtained the same relation between mass and charge as
in the case of the supersymmetric solutions in Section 3.
Actually this is a corollary of our assumption that the ratio of
coefficients of the kinetic term andWess ±Zumino term in the
s-model p-brane action (45) is consistent with supersymme-
try.

A generalization to exact stable multi-�dÿ 1�-brane
configuration is very straightforward. It is given by a super-
position of solutions (61):

exp�ÿC� � exp�ÿC0� �
X
l

kd

jyÿ ylj2
; �74�

where yl refers to the position of each �dÿ 1�-brane. To make
the zero-force condition manifest consider, for instance, the
multi-�dÿ 1�-brane configuration (74) withN source �dÿ 1�-
branes. In general there is no transverse SO�Dÿ d� symme-
try, however there is Pd, Poincare-invariance of the config-
uration (74). Suppose that every �dÿ 1�-brane with index l
satisfies X m�l� � xm, so that all of them are aligned. The
Lagrangian of every �dÿ 1�-brane with index l in the
background source given by Eqns (54) ± (57), follows from
Eqn (45) via substitution of gij from Eqn (53) and gMN from
Eqns (55), (61), (74):

Ld � ÿTd

"�
ÿdet

�
exp

�
2A� a�d�f

d

�
Zij

� exp

�
2B� a�d�f

d

�
qiYm�l�qjYm�l�

��1=2

ÿ expC

#
:

�75�

This corresponds to the potential energy

V � Td

�
exp

dA� a�d�f
2

ÿ expC

�
; �76�

which vanishes on the dilaton field equations. It is the
generalization of the zero-force condition discussed above to
arbitrary d and D.

The elementary �dÿ 1�-branes discussed so far corre-
spond to solutions of the interacting system fields ± branes
with the action ID�d� � Sd. They have d-function singularities
at y � 0 and a nonzeroNeuter electric charge md. To conclude
this section we find solitonic �~dÿ 1�-branes corresponding to
solutions of the equations of motion derived from ID�d� only.
Such solutions are regular at y � 0 and describe nonzero
topological magnetic charge m~d (recall

~d � Dÿ dÿ 2).
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To carry this out, we use the ansatz invariant under
P~d � SO�Dÿ ~d�. Then Eqns (54) and (55) still have the same
form as before, but with m � 0; 1; . . . ; �~dÿ 1� and m �
~d; ~d� 1; . . . ; �Dÿ 1�. We take an ansatz for the strength of
the antisymmetric field, not for the potential itself. Remember
from the above discussions that a nonzero electric charge
corresponds to

1���
2
p exp�ÿaf��F~d�1 �

md e~d�1
O~d�1

; �77�

where e~d�1 is the volume form on S
~d�1. Therefore, to get a

nonzero magnetic charge, we put

1���
2
p Fd�1 � m~d ed�1

Od�1
�78�

with the volume form ed�1 on Sd�1. Since it is a harmonic
form, one cannot write F globally as a curl of A any more.
However the Bianchi identity is still satisfied. It is easy to see
that all the field equations which follow from ID�d� are
satisfied provided that d! ~d, so that a�d� ! a�~d� � ÿa�d�
in the Einstein equations and the dilaton field equation with
zero source term. For future reference it is convenient to write
down the explicit solution for f0 � 0:

ds2 �
�
1� k~d

yd

�ÿd=�d�~d�
dxm dxm �

�
1� k~d

yd

�~d=�d�~d�
dym dym ;

exp�2f� �
�
1� k~d

yd

�a�d�
;

Fd�1 �
���
2
p

m~d ed�1Od�1 : �79�

Note that we found solution over all space including y � 0,
because now there are no d-functions in the equations of the
dilaton and graviton fields.

The mass per unit �~dÿ 1�-dimensional volume is equal to:

M~d �
1���
2
p jm~dj exp

�
a�~d�f0

2

�
� 1���

2
p jm~dj exp

�
ÿ a�d�f0

2

�
: �80�

Note that the dependence on f0 is such thatM~d is large whenMd is small, and vice versa.
The electric charge of the fundamental solution as well as

the magnetic charge of the solitonic solution satisfy the Dirac
quantization condition and saturate the Bogomolny bound.

Having considered the interaction of solitonic objects (the
zero-force condition), we now turn to the analysis of
singularities in the dual picture. Consider the radial trajec-
tory of a �dÿ 1�-brane infalling to the center of a dual
�~dÿ 1�-brane. We assume that �dÿ 1�-brane and �~dÿ 1�-
brane do not intersect each other, which is usually the case for
D � d� ~d� 2. And we choose the following criterion for a
�~dÿ 1�-brane to be singular: if a probe �dÿ 1�-brane `can see'
the singularity of the �~dÿ 1�-brane source (i.e. the probe
brane falls in a finite time), then we regard the �~dÿ 1�-brane
as a singular solution from the point of view of the �dÿ 1�-
brane. In the other case the brane solutions are mutually
nonsingular which is the case, for example, for strings and
five-branes. The complete final answer is that only point
particles and strings are nonsingular with respect to their
duals. Fortunately, the string and NS5-brane satisfy this
criterion.

6. Conclusions

The primary goal of this review is an attempt to provide the
elementary introduction to string dualities, one of the most
exciting subjects in modern theoretical physics. Throughout
the discussion, a number of specific examples were used to
explain the basic ideas underlying string dualities, rather than
to review the whole network. Now, with these simple
examples in mind, we recuperate the complete picture of
nonperturbative string theory from the duality point of view.

The present understanding of string theory implies the
following picture. On the huge moduli space of the ``String
Theory'' there is a set of special points corresponding to types
IIA, IIB, I, and heterotic strings. Previously we regarded all
these as different, independent string theories. Now all the
points are connected, and moving on the moduli space we
come from one theory to another. But this is not yet a duality.
Indeed, two-dimensional theories of a scalar boson on a circle
also represent a different point on the moduli space
M� fRg, so that all such theories are connected by a
continuous variation of radius. Duality implies a stronger
relation: the theories must be equivalent. In the example
above, only the theories living on radii R and ~R so that
R ~R � 2 are equivalent to each other. This is precisely the T-
duality that relates compactifications of type IIA and type IIB
theories on circles or torii. Such compactifications preserve all
the supersymmetries of the ten-dimensional theory. To
preserve only part of the original SUSY, one has to
compactify on certain Calabi ±Yau manifolds. The conjec-
ture that any suchmanifold has its `mirror' partner has not yet
been completely proven by mathematicians{. String theory
nearly `proves' this conjecture assuming that every compacti-
fication of a type IIA theory has the corresponding type IIB
compactification. This is an example of T-duality at work.
Another pair of theories related by T-duality are heterotic
string theories with gauge groups SO(32) and E8 � E8

respectively. Unlike S-duality, the easiest way to check such
dualities is via a perturbative expansion.

S-duality connecting theories at strong and weak cou-
plings is one of themost powerful tools in string (field) theory.
In order to `confirm' it, one has to know not only all the
perturbation series, but also the nonperturbative effects.
Unfortunately there are only a few theories where so much
is known{. On the other hand to make use of S-duality, it is
usually conjectured from some indirect arguments, e.g. from
analysis of the BPS spectrum, low-energy effective action, etc.
Then, assuming it is a true quantum symmetry, one can get
`exact' results. However the existence of such a duality
remains conjectural. Among the known examples in string
theory, type I and SO(32) heterotic strings are related by S-
duality. Type IIB string theory turns out to be self-dual.When
the coupling constant goes to infinity, nonperturbative
degrees of freedom start to behave like fundamental excita-
tions in the original theory. Therefore it remains to be

{ManifoldsX and ~X are related by so-calledmirror symmetry [31, 9], if the

complex structure X of the first becomes the Kahler structure ~X of the

second, and vice versa. Namely, the duality action on a two-torus

exchanges its complex structure t � iR1=R2 and Kahler structure

r � iR1R2.

{Kramers ±Wannier duality is a good analog in condensedmatter physics

[32]. It relates the original spin system to the theory on the dual lattice at

the inverse temperature T$ 1=T [32]. Having assumed the existence of

the only singular point, one can `guess' for the phase transition tempera-

ture T � 1 corresponding to the self-duality point.
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clarified what the counterparts for type IIA and E8 � E8

heterotic string theories in strong coupling limit are. Some-
what miraculously, it turns out that both of these theories
follow from compactification of an eleven-dimensional M-
theory on a circle and interval respectively. The type IIA
coupling constant is related to size of the circle in such a way
that the weak coupling limit corresponds to the small radius
limit, so that we end up with a ten-dimensional theory. On the
contrary, in the strong coupling limit the circle decompactifies
to the eleventh dimension.

D ± p-branes, p-dimensional hypersurfaces where open
strings can end, provide a typical way for duality verifica-
tion. D-branes are nonperturbative supergravity solutions
charged under Ramond ±Ramond fields. Let us see how all
the branes can be obtained from the corresponding solutions
of maximal d � 11 supergravity. M-theory has two funda-
mental objects: a membrane, a dual (in d � 11) five-brane and
Kaluza ±Klein excitations. Compactification of this theory
on a circle leads to a type IIA theory with all the kinds of
branes. An NS5-brane in type IIA theory is an M5-brane
embedded in noncompact space ± time. On the other hand, if
one of its dimensions wraps the circle, we end up with a D4-
brane in type IIA string theory. A fundamental type IIA
string and a D2-brane follow from a membrane in a similar
fashion. D0-branes (and dual to themD6-branes) are nothing
but Kaluza ±Klein excitations along the compact dimension.
All the IIB type branes can be obtained by T-duality action in
one-space direction. This action along an NS5-brane leaves it
intact, while the D-branes of even dimensions (in type IIA)
are transformed into D-branes of odd dimensions in IIB
theory. The relation between type II theories turns out to be
even closer. Namely, the SL�2;Z� S-duality group of type IIB
theory has an interpretation as a modular group of a torus
composed of a type IIA compactification circle and an M-
theory circle. In this way T- and S-dualities are unified into a
U-duality.

One of the tempting directions for future investigations is
the geometrical interpretation of SL�2;Z� self-duality of type
IIB theory via compactification of an F-theory on a small
torus. Like in the previous passage, the S-duality group is
associated with the modular group of the torus [9].

Among other interesting directions are a matrix descrip-
tion of the ``String Theory'' [33] and applications to low-
dimensional field theories as low-energy limits of D-brane
configurations [34]. String theory turned out to be very
fruitful for a microscopic picture of quantum black holes [24
±26, 9]{. These topics make up the subject of future
investigations.
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7. Glossary

BPS inequality (bound) for masses of states in a theory with
extended supersymmetry arises from the central extension of
supersymmetry algebra:

M5 jZj : �81�
This condition is named after Bogomolny, Prasad and
Sommerfield who derived it in Refs [29, 30]. Some examples
can be found in Section 3 where we discussed S-duality (22).

If Eqn (81) becomes an equality, the bound is saturated,
e.g., Eqn (22). States whose mass is strictly equal to the
absolute value of the central charge fall into `short' multi-
plets. The latter is so called because it provides a representa-
tion of supersymmetry algebra with a lower number of states
(in contrast to the `long' multiplet composed of states with
larger mass). This fact has a very important corollary: the
number of states cannot jump during continuous variation of
the parameters, e.g. coupling constants. Therefore BPS states
remain in short multiplets during motion over the moduli
space, and their masses receive no perturbative corrections.

S-duality. An equivalent description of theories in different
regions of moduli space is called a duality (later S-, T- and U-
duality). In practice this means that two equivalent theories
that we used to think of as different theories are actually
represented by different regions on the moduli space of a
corporate theory. The equivalence of theories is a very strong
statement and, for example, implies that theories have the
same spectrum of physical states (but not only that). Some-
times it allows the `solution' of a theory by gluing together
perturbative expansions in different regions.

For example, S-duality relates one theory at weak
coupling to another theory at strong coupling. Of course, it
is not easy to make sure that the states in both theories
coincide. To do this one has to know the strong coupling
dynamics to all orders in the perturbation theory. Consider-
ing BPS states can substantially simplify the analysis.
Expressed in algebraic terms they cannot receive quantum
corrections, and therefore easily follow to the strong coupling
region under the renormalization group.

The modular group SL�2;Z� is a typical S-duality group.
It is generated by two elements. The first

t! t� 1 ; �82�
usually corresponds to a shift of some topological number by
unity and does not affect the physics. The second generator,

t! ÿ 1

t
; �83�

inverts the coupling constant. For the sake of clarity we refer
to N � 2 supersymmetric Yang ±Mills theory [20] where t is
nothing but the complexified coupling constant.

T-duality. Theory A is called T-dual to theory B if theory A
compactified on a small manifold is equivalent to theory B on
a large manifold. Unlike S-duality, it is perturbative in the
sense that it can be checked step by step to any order in the
string coupling constant.

Because T-duality is a transformation of a d-dimensional
compact part of space ± time, usually it is associated with the
orthogonal symmetry group O�d; d;Z� [or O�d; d� 16;Z� in
the case of heterotic string theory compactified on a d-
dimensional torus].

{An extremalmagnetically charged black hole is obtained via dimensional

reduction of a certain configuration of interacting D-branes. And its

Bekenstein ±Hawking entropy comes from the possible string states [24 ±

26, 9].
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U-duality is composed of S- and T-duality in roughly the same
way as the S-duality symmetry group SL�2;Z� is generated by
two elements. Acting on a certain brane (BPS state) it is easy
to see that T and S do not commute with each other. HenceU-
duality is naturally named after unification of T- and S-
dualities.

We expect the corresponding symmetry group to have
SL�2;Z� and O�d; d;Z� as subgroups. In general the group
Ed�Z� has this property.

Bogomolny bound (see BPS inequality).

Membrane. A two-dimensional dynamical surface, an ele-
mentary (like ten-dimensional superstring) excitation in M-
theory. A nonperturbative two-dimensional object (mem-
brane) is a specific example of p-branes.

D-brane. A hyperplane (hypersurface) of Dirichlet boundary
conditions where open strings are allowed to end. In order to
preserve Lorentz invariance a D-brane must be a dynamic
object. Moreover, D-branes turn out to be sources of
Ramond ±Ramond fields, and p-branes [12]. In order to
specify the world-volume dimension it is convenient to write
D ± p-brane.

p-brane. Usually we think of a p-brane as a nonperturbative
object extended in p spatial directions; and even more
frequently Ð as the corresponding supergravity solution.
The latter interacts with a �p� 1�-form, a low-energy state
from the Ramond ±Ramond sector.

The classical p-brane action is given by the space (world-
volume) swept by the brane during its motion.

NS-brane. A solitonic five-brane, S-dual partner of a
fundamental string.

Conformal field theory (CFT). A theory symmetric with
respect to scaling transformation. The most popular example
is the two-dimensional conformal theory. In that case an
infinite-dimensional conformal group is generated by local
transformations preserving angles on a two-dimensional
surface [2, 4].

It was the conformal symmetry which allowed us to cancel
out the two-dimensional metric from Eqn (3).

It is possible to write the explicit dependence of conformal
generators via Laurent coefficients Lm of the stress-energy
tensor:

T�z� �
X�1

m�ÿ1

Lm

zm�2
; �T��z� �

X�1
m�ÿ1

�Lm

�zm�2
: �84�

To make a connection with Eqn (6), we give the typical
dependence of eigen modes in a free theory:

Lm � 1

2

X�1
n�ÿ1

anamÿn : �85�

These operators are called Virasoro generators because they
satisfy the following Virasoro algebra:�

Lm;Ln

� � �mÿ n�Lm�n � c

12
�m3 ÿm�dm�n; 0 �86�

and the same for �Lm with the central charge �c.

Central charge, or in other words the central extension of an
algebra, is represented by a c-number term in Eqn (86). Here
we talk about Virasoro algebra. It is clear that the central
charge is a parameter convenient for classification of theories.
For example one can check that the central charge in the
theory of a free boson is equal to 1. In the more general case,
where X m is a coordinate on D-dimensional manifold, c � D.

There is another example of an algebra with a central
extension that we discuss in the paper. It is the algebra of
extended supersymmetry. The presence of the central terms in
such a theory is very important since supersymmetry mixes
internal and space ± time symmetries. Namely, the central
charges determine the lower bound (22) for the masses of
states in the theory [29, 30].

We give an example of maximally extended eleven-
dimensional supergravity [7]:

fQa;Qbg � �CGM�abPM � �CGMN�abZMN
�2�

� �CGMNPQR�abZMNPQR
�5� : �87�

It is called maximally extended SUGRA, because the total
number of possible central terms in Eqn (87) is equal to the net
number of independent components of antisymmetric forms
Z�i�:

11� 55� 462 � 528 : �88�

We have already encountered one more example in Section 3
in the discussion of the two-dimensional supersymmetric
kink. Then the role of the central charge was played by the
topological charge of a kink.

Open (closed) string.A string is a 1-brane or, put differently, a
one-dimensional extended object with the topology of an
interval (a circle). The open string action (3) and the mode
expansion (6) coincide with those of a closed string. The only
difference is in the boundary conditions (7) or (8) for an open
string. These conditions relate the left �~am� and right �am�
movers, and therefore preserve only 16 out of 32 independent
supercharges in a ten-dimensional superstring theory. That is
the reason why an open superstring theory is called a type I
theory, while the theories of closed strings, type II theories,
possess 32 independent supercharges.

A harmonic function satisfies the Laplace equation which is a
typical equation of free motion.

SL(2,Z) group is a special linear group of rank 2 generated by
the elements

t! at� b

ct� d
; �89�

where adÿ bc � 1. Frequently these transformations are
associated with S-duality action, so that t stands for a
complexified coupling constant.

States in the type IIA theory spectrum. One can impose two
sorts of boundary conditions on the fermionic superpartners
of the coordinates xm. There are periodic (Ramond) and
antiperiodic (Neveu ± Schwarz) boundary conditions.
Depending on which conditions are imposed on fermions in
the left and right sectors on string world sheet, we distinguish
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the following four types of excitations: R ±R, NS ±NS, R ±
NS and NS ±R. The first two are bosons, while the last two
are their fermionic superpartners with respect to the target ±
space supersymmetry.

The NS ±NS sector contains a graviton, a dilaton and an
antisymmetric two-tensor, and the R ±R sector includes
various antisymmetric tensor fields called Ramond ±
Ramond fields.

Calabi ±Yau manifolds are Ricci-flat Kahler manifolds. The
simplest example of such a manifold is a two-dimensional (of
real dimension) torus. A more non-trivial example is a four-
dimensional K3-manifold.

O(n,m) group. The group whose action leaves the line element

ds2 � dx21 � . . .� dx2n ÿ dy21 ÿ . . .ÿ dy2m �90�

invariant in the space R n;m with the Lorentz signature.
O�n;m;Z� is its subgroup composed of matrices with integer
entries.

Coupling constants. There are two expansion parameters in
string theory. The first is the string tension: a perturbative
parameter in the nonlinear sigma-model (the theory living on
the world sheet). The other is the string coupling constant Ð
the parameter associated with the genus expansion of the
string world sheet.
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