
Abstract. A review is presented of the author's work on reso-
nance tunneling as an electron transport mechanism along the c
axis in high-temperature layered cuprates. A formulation of the
problem is given, qualitative aspects of the mechanism are
described, and physical properties calculated. Comparisons
are made with experimental data for the temperature depen-
dence of normal conductivity, the frequency dependence of
optical conductivity, and the stationary supercurrent along the
c axis. For the latter, the resonance tunneling coherence of
different centers is shown to be of crucial importance. Weak-
ened interplane coupling and vortex fluctuations are invoked to
explain the sharp drop in Tc and the rise in the 2D�0�=Tc ratio
with decreasing oxygen content. Simple example models are
given to demonstrate major aspects of resonance tunneling.

1. Introduction

The mechanism of conductivity, and hence, superconductiv-
ity, along the c axis in high-Tc layered cuprates has always
been somewhat mysterious. The long period in this direction
means a long distance between CuO2 complexes of single,
double or triple layers, and in the absence of the CuO chains,
which exist only in the optimally doped YBa2Cu3O7 and in
YBa2Cu4O8 (YBCO124), the hopping between distant CuO2

layers should be negligible. Systematic experimental studies
of the normal conductivity of single crystals of YBa2Cu3Ox

with x < 7, i.e., with broken chains [1], showed that whereas
the in-plane resistivity rab behaved `metallically', i.e.,
decreased with temperature, the c-axis resistivity rc showed
`insulating' behavior (see Fig. 1).

At first this was explained as a consequence of the
`Anderson localization' in the c direction. However, this
explanation was rejected, first, on the basis of the scaling
theory, and then by direct estimates [2], which showed that
localization in the c direction requires a larger impurity
concentration than localization on the plane. Attempts to
explain the conductivity along the c axis in the absence of
chains led to many controversial assumptions. One was the
universal existence of `normalmetal layers' (see, e.g., Refs [3 ±
5]); this hypothesis was not confirmed by angle-resolved
photoemission spectroscopy (ARPES) in Bi2Sr2CaCu2O8�d
(BSCCO), which showed that there are no other Fermi
surfaces, except those of the CuO2 planes (see Ref. [6]). The
other was the RVB mechanism, associated with the existence
of `spinons' and `holons' [7, 8] (or, for superconductivity,
`pair tunneling' [9]); however, in the presence of chains the
ARPES experiments demonstrated a definite hybridization in
the one-electron spectra of chains and planes [10], and this
completely ruled out such a mechanism. There exist several
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Figure 1.Temperature dependences of rab and rc for YBa2Cu3O6.66 [1].



attempts to connect the c-axis conductivity with `off-diagonal
disorder', i.e., some sort of scattering by impurities lying
between the CuO2 planes, which enhances the hopping
between planes (see Ref. [11] and references therein). It is
difficult, however, to understand the mechanism of such an
enhancement unless some further assumptions are made, and
this can substantially alter the picture.

At the same time the solution of this mystery is almost
obvious. The metallic conductivity of layered cuprates is due
to doping of the CuO2 planes by holes. In YBCO the origin is
the oxygen atoms in theCuO chains, which have a tendency to
attract electrons from the planes. In the case of optimally
doped YBa2Cu3Ox with x � 7 the chains are metallic
(Fig. 2a), and the energy bands of the planes and chains
intersect (Fig. 3a). However, in the `underdoped' samples
with x < 7 the chains are broken (Fig. 2b). Nevertheless, the
remaining oxygen atoms can form localized states for
electrons and can attract them from the planes (Fig. 3b). It
is easy to see that this mechanism can lead not only to doping
but also to transport of holes between the planes (Fig. 4). In
order for thismechanism to be effective, it must correspond to
the so-called `resonant tunneling'.

The idea of this phenomenon was first proposed by
D Bohm [12] in 1951 and is now extensively used in the
physics of semiconductors. If the electrons tunnel through a
potential barrier, the probability is exponentially small.
However, if in the bulk of the barrier there exists a potential
well, the probability can become almost 1. For this, two
conditions must be fulfilled: (1) the well must be exactly in the

middle of the barrier, and (2) the energy of the electron must
be equal to that of the bound state in the well. For the centers
formed by brokenCuO chains inYBCO, the first requirement
is satisfied automatically. As for the second requirement, the
energy of the localized states is in general quite different from
the Fermi energy (see Fig. 3b). At finite temperatures the
Fermi distribution has an exponential tail, and the holes in it
may have the necessary energy. This leads to an exponential
temperature dependence of rc.

This explanation is very likely for underdopedYBCO, but
the question is whether it can be used for superconductors
based on Bi, Tl, or Hgwhich have no chains. The temperature
dependence of the in-plane resistivity rab of such layered
cuprates is always `metallic' but rc exhibits various kinds of
behavior, from `metallic' to `insulating', in different samples.
However, as can be seen from the theory described below, the
behavior of the resistivity components can be confusing, and
much clearer conclusions can be drawn from the temperature
dependence of the ratio rc=rab. In BSCCO and the tallium-
based superconductors this ratio grows approximately
exponentially with decreasing temperature [13 ± 16], which
can be considered as evidence of the same resonant tunneling
mechanism.

It is generally accepted that the doping of the CuO2 planes
in these substances is accomplished by oxygen atoms in the
BiO layers in BSCCO, or similar layers in other substances, in
the same way as by the CuO chains of YBCO. The BiO layers
are, however, slightly displaced from the middle of the
barrier. Therefore, a question appears as to what are the
permissible limits of such a displacement. This is a rather
simple quantum-mechanical problem, and its solution is
given in Appendix I [17]. The result is that the actual
displacement is so small that it does not qualitatively
influence the tunneling probability, and hence, we can
conclude that the resonant tunneling mechanism of inter-
plane transport is very general.

The contents of this review are ordered in the following
way. In Section 2, the temperature dependence of the static
normal c conductivity is calculated [18, 19]. In Section 3,
theoretical predictions are compared with the experimental
data of Ref. [1]. Section 4 is devoted to normal optical
conductivity along the c axis, including a comparison with
experiment [20]. In Section 5, superconductivity along the
c axis is considered [19]; special attention is drawn to the case
when the resonant tunneling through different centers is
incoherent or partially coherent [21]. In Section 6, an analysis
is given of how the critical temperature is suppressed by
decreasing the concentration of resonant centers [21, 22].
Appendix I deals with the question about the role of
displacement of the resonant center with respect to the
barrier center [17]. The coherence of resonant tunneling
through two centers is considered in Appendix II [17].

2. Normal static conductivity

Wewill assume that the resonant localized centers are located
randomly along the median plane with a given concentration
and some distribution of energies. The positions of these
centers in different median planes (we consider a model with
one CuO2 plane per period) are assumed to be uncorrelated.
The CuO2 planes are metallic with some scattering of
electrons from other agents (e.g., defects or other electrons
belonging to the same plane), which are uncorrelated in
different planes and are more numerous than the resonant
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centers. The Hamiltonian of the model is{
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where the first term is the kinetic energy, the second
corresponds to scattering within the plane leading to a finite
life time, and the third is associated with the resonant
tunneling between CuO2 planes. Here cn refers to plane n, ~c
means the part of the c operator that corresponds to the
energy of the resonant impurity Ej, and rj are the planar
coordinates of resonant impurities between the planes. The
electric field along the c axis is represented by the vector
potential Az, d is the period along z (the distance between the
planes), and Az is assumed to vary substantially at distances
much larger than d.

In order to calculate the current, we first define the
contribution to the thermodynamic potential O of second
order in Az and lowest order in t. Since we have to take
averages over electronic states, the correction in the first
approximation after summation over spins is given by (see
Ref. [19])

DO � ÿT
�
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�2 �b
0
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�
X
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� �Az�t� ÿ Az�t0�
�2
: �2�

First, we perform summation over j, j 0. Here, we must
distinguish two limiting cases. Resonant tunneling through
different centers can be coherent or incoherent. If the energies
of the centers are very different, they are definitely incoherent.
The permitted `coherence' interval, whichwe denote as Z, is by
order of magnitude the average binding energy Uÿ E0 times
the direct tunneling amplitude exp�ÿad�, where
a � �hÿ1

�������������������������
2m�Uÿ E0�

p
(see Appendix I). The difference in

energies can be due to different surroundings. This is,
however, not the only origin of incoherence. If the centers
are too far apart, i.e., their concentration is very low, they will
also act incoherently. An example of two centers is considered
in Appendix II. The characteristic distance proves to be of the
order of

��������
d=a

p
. If the distance between the CuO2 layers is

large, and the binding energy is small, there will be many
centers within such distances, and all centers with the same
energy will be coherent. This is the actual case except for very
strongly underdoped samples; the latter will be considered
later.

As shown in Appendix II, resonant tunneling enhances
the probability only in the case when the energies of the
localized states are clustered around some discrete values with
a high density (there is some indication of this in the infrared
data, see Section3). Then the tunneling processes through
centers belonging to the same cluster will be coherent, and the
summation over impurities can be replaced by a summation

over such clusters, namely,X
j

�i� ! ni Z
�
d2rj ; �3�

where i denotes a certain cluster, and ni is the corresponding
density of states. With this substitution, the contribution of
every cluster to free energy (2) has to be calculated, and then
the summation over clusters performed. For simplicity wewill
consider a model with only one such cluster, i.e., where the
energies of all localized states are close to each other. This
introduces two adjustable parameters: the constant prefactor
depending on t, Z and n; and the energy of the localized state.
From Eqn (2) we obtain the `thermodynamic' current

jz�t� � ÿc dDO
dAz�t� �

4
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d�etnZ�2

�b
0

dt0
�
d2r eGn�r; tÿ t0�
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�
: �4�

Here, the eG functions include the in-plane scattering.
According to our assumption, this scattering is uncorrelated
at different planes and, so, independently averaged functions
must be used. Therefore, both functions are equal and depend
only on the coordinate differences. Passing to the Fourier
representation in t and r, we obtain

jz�io0� � 4

c
d�etnZ�2T

X
m

�
d2k�2p�ÿ2
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�
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It is important to mention that, due to the coherence of
tunneling through centers belonging to the same cluster and
to the randomness of their locations, the electron conserves its
momentum in the plane after hopping.

Now, we perform two operations. First, we find the
analytical continuation to real frequencies. The k integration
refers to a tiny energy interval of width Z around the energy of
the cluster E. Hence,�

d2k�2p�ÿ2f �k� ! dneZ
2

�
f�E� df

2p
; �6�

where ne is the three-dimensional electron density of states
(i.e., the 2D-density with spins times 1=d; note that it is not the
same as n in (4) Ð the 2D density of resonant states), and the
integration is over the Fermi contour in the plane. For
simplicity we assume isotropy in the plane. Then
ne � m=�pd� and can be considered as independent of
energy. We obtain
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{Everywhere, except specially mentioned cases, we use units with �h � 1.
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The coefficient connecting jz�o0� and Az�o0� (denoted by
ÿQ) vanishes at o0 � 0.

The static conductivity is defined by the relation

sc � ic
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qQ�o0�
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�
o0�0

: �8�

From this we obtain

sc ��etnZd�2neZ 1

2p

�1
ÿ1

do
1

T
coshÿ2

�
o
2T

��
ImGR�o;E�

�2
� �etnZd�2neZ 1

2p

�1
ÿ1

do
1

T
coshÿ2

�
o
2T

�

�
�

1=2t
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�2
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where 1=t is the scattering probability entering into the in-
plane resistivity. The linear temperature dependence of this
resistivity still has no final explanation. We will simply
assume that 1=t � aT, a5 1, in order to keep the validity of
the Fermi-liquid model.

The integrand in Eqn (9) is a product of two d-function-
like factors. Since we assume 1=2t to be much less than T, the
second factor can be replaced by ptd�oÿ E�, and after that
we obtain

sc � 1

2
�etnZd�2neZt

�
T cosh2

E

2T

�ÿ1
: �10�

Comparing this expression with the in-plane conductivity
sab � �1=2��ev�2net, where v is the Fermi velocity, we obtain
for the resistivity ratio

rc
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� 1

Z
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tnZd

�2

T cosh2
E

2T
: �11�

For generality, let us consider the case of incoherent
tunneling [21]. This means that not the amplitudes but the
probabilities should be added, and in formula (2) the
summation over impurities should be performed with j � j 0.
We obtain

jz�t� � 4

c
d�et�2nZ
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dt0
� eGn�0; tÿ t0� eGn�1�0; t0 ÿ t�
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Passing to Fourier components, we get
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One can see that in the incoherent case the quasimomen-
tum in the plane is not conserved after hopping from one
plane to another. The two independent k integrations are
substituted according to formula (6). Then we perform the
analytical continuation to real frequencies. The result will be
the same as before, except for the substitution of one of the n's

in (11) by ned=2. Since n is supposed to be large (see Appendix
II), incoherence is likely to reduce the conductivity. Actually,
it is difficult to get an independent estimate of the constant
prefactor, and since otherwise there is no change, we can
consider the question of coherence not very important for
normal conductivity. We will see the same to be true for high-
frequency conductivity. The situation, however, will be
drastically different for superconductivity (see Section 5).

3. Comparison with experiment

A comparison with experimental data [1] was performed on
the basis of Eqn (11) written in the form

rc
rab
� AT cosh2

T0

T
�14�

by choosing optimal values for the constants A and T0

(Fig. 5a ± e). One sees that the fit is good for moderate
oxygen concentrations, and worse in both limits, i.e., for
metallic and completely broken chains; hence, in these limits
our theory does not reflect all the details of the plane ± chain
relations (see also the end of this section). The constant T0 in
the middle region (Fig. 5b ± d) remains essentially indepen-
dent of the oxygen concentration: �T0 � 548 K, or E � 47
meV (it has to be remembered that the energy E is actually the
difference Eÿ m) and is somewhat smaller at the edges.

Our theory fails close to x � 7, where the chains are
metallic and their energy levels tend to form a band. Since
the c-axis conductivity is essentially exponential, the smallest
activation energy shows up; therefore, it is likely to be smaller
than in the intermediate region. In the vicinity of the metal ±
insulator transition, there is a competing mechanism of
doping: direct thermal excitation from the valence band to
the conduction band. Due to the low concentration of
resonant centers, direct tunneling becomes the main mechan-
ism of transport. The probability does not depend on
temperature, and therefore, the main temperature depen-
dence of the resistivity comes from the thermal excitation
exponent with a smaller activation energy. Despite this, such
processes are negligible far from the transition, since the
direct, unassisted tunneling probability is very small.

Contrary to T0, the constant

A � 1

Z

�
v

tnZd

�2

�15�

exhibits a systematic dependence on oxygen concentration. If
we try to fit it by the formula

A � a�xÿ b�ÿm ; �16�

where x is the number of oxygen atoms per unit cell, we obtain
the following optimal values for the constants:

a � 0:073 ; b � 6:34 ; m � 1:62 : �17�

The fit is presented in Fig. 6. It is remarkably good, and the
values (17) are very reasonable.

The concentration x � 6:34 corresponds to the metal ±
insulator transition, and this shows that the resonant centers
and doping centers are essentially the same, as we argued in
Section 1. It is most likely that the density of localized states n
is proportional to the concentration of oxygen atoms in
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broken chains. The valuem � 1:62 < 2 means that the Fermi
velocity entering into Eqn (15) decreases with increasing
difference xÿ 6:34; this could be expected.

4. Pseudogap in the optical conductivity

The energy difference between the resonant centers and the
Fermi level can be surpassed not only by a finite temperature
but also by absorption of a photon. Therefore, in underdoped
YBCO and in other substances with the resonant tunneling
mechanism of c-axis transport one can expect the appearance
of a gap in the absorption of polarized infrared radiation at
low temperatures. The corresponding threshold should not
depend on temperature. Such a phenomenon was observed in
[24, 25] (Fig. 7) and was originally associated with the `spin
gap' observed in the temperature dependence of the Knight
shift above Tc and the `pseudogap' found by angle-resolved
photoemission spectroscopy (ARPES) in normal BSCOO.
The latter can be measured rather precisely, and it never
exceeds the true gap in the superconducting state, whereas the
gap observed in the c-axis infrared conductivity is definitely
larger.

According to our concept, such a gap should be absent in
YBa2Cu3O6.95 and inYBa2Cu4O8 (the small depression of the
conductivity at temperatures slightly above Tc can be
explained by fluctuations [26]).

We will start with Eqn (7) derived in the previous section.
Previously we used the limito0 ! 0, and nowwe consider the
general case. If we write this equation as j � ÿQA, the real
part of the conductivity can be obtained as

Re s�o0� � ÿc ImQ�o0�
o0

� 2

o0
�etnZd�2neZ

� 1

2p

�1
ÿ1

do
�
tanh
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2T
ÿ tanh

o
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�
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where the notation is the same as before, and in particular,

ÿImGR�o;E� � 1=2t

�oÿ E�2 � �1=2t�2 �19�

(t is the scattering time in the plane). This function is close to
pd�oÿ E�, and if we assume that its width is 1=2t5o0, then
both delta functions in Eqn (18) will be well separated (this
limit is opposite to that assumed for static conductivity).
Performing the integration over o, we obtain

Re s�o0� � �etnZd�
2neZ

to3
0

�
nF�Eÿ o0;T� ÿ nF�E� o0;T�

�
�20�

In order to avoid guesses about the frequency dependence
of t, it is necessary to simultaneously measure the optical
conductivity in the ab plane and to take the ratio sc=sab, as we
did previously for the static conductivity (the static sab will be
divided by o2

0t
2, and so t will be absent in the ratio).

Unfortunately, these data were not obtained, and we have to
use what is available.

Now, we will compare our predictions with the experi-
mental data obtained for YBa2Cu3O6,7 (Tc � 63 K) in Refs
[24, 25] (Fig. 7). In order to apply formula (20), we have to
know the in-plane scattering probability 1=t as a function of
temperature and frequency, and this has not yet been
definitely established. At the lowest temperatures above Tc

(T � 70 K, 110 K), we use the assumption 1=t � const� o0

(const5 1). Apart from the constant prefactor, there is only
one fitting parameter in Eqn (20), namely, E (we cannot
mechanically take the value obtained from the static con-
ductivity, since it may be sample-dependent). The result (for
o0 > 3T) is presented in Fig. 8 for E � 47 meV (379 cmÿ1),
which is virtually the same as that defined from the
temperature dependence of the static conductivity. The error
bars in this plot represent the `wiggling' of the experimental
curves (see Fig. 7); those taken at lower temperatures may
reflect the uneven distribution of resonance levels. The fitting
is worse for data taken at lower frequencies.

This may be due to the failure of our assumption that
1=t � const� o0.

So we see that the resonant tunneling concept explains the
data on the infrared conductivity along the c axis reasonably
well. There exist, however, other explanations assuming the

formation of some sort of a bound state. One is based on the
idea of spin-charge separation (RVB) and the formation of
spinon pairs, i.e., of a gap in the spinon density of states [27,
28]. Since the current in the c direction requires recombina-
tion of spinons and holons [7, 29], the c-axis conductivity
would show activation behavior. This idea can also explain
the `spin gap' [30], i.e., the decrease in the electron spin
susceptibility in the underdoped YBCO with decreasing
temperature, starting far above Tc. The general problem
with the spin ± charge separation concept is that it is strictly
two-dimensional (actually, it was proven only in one dimen-
sion) and does not permit a crossover to three dimensions, as
in layered cuprates with overdoping. Another objection could
be the fact that since the spin susceptibility is due only to
unpaired spinons, and these are the only ones responsible for
the c-axis conductivity, both should have the same tempera-
ture dependence, and this is not observed experimentally.

Another explanation of the spin gap is based on the idea
of `preformed pairs' of holes in the case of strong attraction
(see, e.g., Ref. [31]). This idea could also give an explanation
of the pseudogap in the ARPES experiments [32, 33]. In this
framework the pseudogap in the optical conductivity could
be attributed to the fact that the tunneling of pairs between
the CuO2 planes is prohibited due to their double charge. It
seems, however, that this is not the proper explanation for
the same reason as the previous one, namely, the different
temperature dependence of the spin susceptibility and the
c conductivity. Besides, as we mentioned at the beginning of
this section, the value obtained for the gap in the
c conductivity is too large for this explanation to be correct.

5. Interlayer superconductivity

BelowTc we have to take into account theGorkov anomalous
Green's functions F (see Ref. [23]). This time, we will not
expand in Az and keep the exponential factors entering into
the Hamiltonian (1). On the other hand, we will only consider
the external field constant in time, and this permits the
cancellation of the terms with the G functions from the very
beginning. For coherent resonant tunneling, we obtain

jz � 4e�tnZ�2T
X
m

�
d2k�2p�ÿ2 eFn�k;om�eFn�1�k;om�

� sin

�
jn ÿ jn�1 � 2eAz

d

c

�
� Jc sin

�
jn ÿ jn�1 � 2eAz

d

c

�
; �21a�

and for the incoherent resonant tunneling, the result is

jz � 4et2nZT
X
m

�
d2k�2p�ÿ2 eFn�k;om�

�
d2k0�2p�ÿ2

� eFn�1�k0;om� sin
�
2eAz

d

c
� jn ÿ jn�1

�
� J �inc�c sin

�
2eAz

d

c
� jn ÿ jn�1

�
: �21b�

We see that the current has a Josephson nature. Passing, as
previously, to the energy integration, we obtain from (21a)

Jc � 2e�tnZ�2dneZT
X
m

�
df
2p

D2�om;f��
o2

m � E2 � D2�om;f�
�2 ;
�22a�
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Figure 8. Best fit of Eqn (20) with 1=t � const� o0 to experimental

data [20, 21] at low temperatures YBa2Cu3O6.7; Tc � 63 K,

2D � 5Tc � 27 meV.
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and from (21b)

J �inc�c � e�tdneZ�2nZT
X
m

�
df1

2p
D�om;f1�

o2
m � E2 � D2�om;f1�

�
�
df2

2p
D�om;f2�

o2
m � E2 � D2�om;f2�

: �22b�

It is well known that in layered cuprates the order
parameter D�f1� is rather anisotropic, and additionally,
under a p=2 rotation in the plane it can be either even
(s symmetry) or odd (d symmetry). It is easy to see that
formula (22a) gives a finite result in both cases, since the
integrand depends only on D2�f�. However, the incoherent
formula gives a finite result only for the s case and zero for the
d case. This leads to very important consequences.

For the moment, let us consider the case of a not too
underdoped sample described by the coherent formula. Since
in the sum over frequencies the most important are
om � O4T, where O is the characteristic phonon frequency
(see below), the sum can be approximated by the integral

T
X
m

! 1

2p

�1
ÿ1

do :

The BCS equation for D�o� in the temperature technique and
with explicit phonons, according to G Eliashberg (see [23]),
contains the phonon propagator O2=�O2 � �om ÿ om1

�2�.
Since in the integral om1

� D, for om 4D we can substitute

D�om� � D
O2

o2
m � O2

5 �O;E� : �23�

For simplicity, we assume E4O. Then, after substitution of
Eqn (23) into (22a) and integration over om, we get

Jc � 1

2
ed�tnZ�2ne ZD

2O
E4

�24�

if e5E. HereD2 meansD2. The only temperature dependence
of Jc is that of D2�T�. One must, however, have in mind that
we imposed strong inequalities: D5O5E, which might not
be true. Therefore, the details of the temperature dependence
may be more complex.

In order to estimate the value of Jc, we substitute �tnZ�2
from Eqn (15):

Jc � ev2ne�h
2Ad

D2O
E4

; �25�

where we have inserted �h in order to use ordinary units. The
estimate depends on the particular choice of unknown
quantities entering into this equation, but in all cases it is
likely to be confined to the range

Jc � 105ÿ107 A cmÿ2 : �26�

The surprisingly large value is due to the fact that D decreases
rather slowly when the energy deviates from the Fermi level
[see (26)] contrary to the normal-state distribution function.
The experimental value obtained in [34] for YBa2Cu3Ox with
x � 6:7 at T � 4:2 K is Jc � 1:5� 106 A/cm2, which falls
within the estimated limits.

Expressions (22a, b) represent the limiting cases, and it is
interesting how the crossover occurs, i.e., how the current

changes with a gradual decrease in the concentration of
resonant centers. In Appendix II, a formula is derived for
the total tunneling probability through two centers per unit
surface of the barrier; it corresponds to the one-center
expression multiplied by

2� 2 exp
ÿar20
2d

; �27�

where r0 is the distance between the two centers, d is the
thickness of the barrier, a � ������������������������

2m�Uÿ e0�
p

, and Uÿ e0 is the
binding energy at the center. The first term in this expression
is the sum of probabilities, and the second term comes from
interference. The whole expression can be presented in a form

4 exp
ÿar20
2d
� 2

�
1ÿ exp

ÿar20
2d

�
; �28�

and the first termmay be interpreted as the coherent part, and
the second as the incoherent part.

This formula can be used for an interpolation between
two limiting cases. On average, rÿ20 � nc is the concentration
of resonant centers in the plane (c is the atomic concentra-
tion). Therefore, we can construct an interpolation

Jc � exp

�
ÿ c�0�

c

�
J coh
c � J inc

c ; �29�

where c�0� � a=�dn�. In the case of d-type pairing, the
incoherent part vanishes, and hence, Jc decreases exponen-
tially with the atomic concentration of the resonant centers
when the latter becomes less than c�0� � a=�dn� (for BSCCO
c�0 � 3%). It would be interesting to check this expression
experimentally.

6. Critical temperature of underdoped samples

One of the unusual features of high-Tc cuprates is the
relatively high BCS ratio, 2D�0�=Tc (see, e.g., Ref. [35]).
Contrary to its conventional value 3.52, it is close to 5 in
optimally doped YBCO and around 7 in BSCCO. Usually,
this is explained by the strong interaction between electrons.
On the basis of the Eliashberg theory, within the formal limits
of its applicability (the `Migdal theorem'), the ratio can reach
even higher values. On the other hand, in the limit of very
strong interaction, `preformed pairs', or `bipolarons' are
formed; then the binding energy of pairs and Tc are more or
less disconnected, Tc being the Bose condensation tempera-
ture of these preformed pairs. In the bipolaron version, the
increase in the electron ± phonon interaction enhances the
binding energy and at the same time raises the effective mass
of bipolarons, decreasing their Bose-condensation tempera-
ture.

In these approaches the essential quantity is the ratio of
electron interaction to their Fermi energy: the increase of this
ratio moves the electron system in the direction of `preformed
pairs' and increases the BCS ratio. This all seemed, until
recently, very clear but some results of the recent photoemis-
sion experiments with underdoped BSCCO [32, 33, 36], where
the so-called `pseudogap' was discovered, cannot be
explained in that way. Of course, the pseudogap, i.e., the
presence of a gap in the quasiparticle spectrum above Tc and
its amazing thermal stability in strongly underdoped samples,
was the most spectacular among the new phenomena. There
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was, however, another surprise (see Ref. [36]): in the same
experiments it was found that the BCS ratio could reach
values over 20, and at the same time the Fermi surface was
virtually unchanged compared to the optimally doped
substance. This made it likely that the Fermi energy also
remained the same, and since there was no reason to suspect a
strong increase in the interaction of electrons, the conven-
tional explanation of the large BCS ratio did not work. What
then can be the action of underdoping? We propose an
explanation based on the destruction of superconductivity
by phase fluctuations in low-dimensional systems.

According to modern ideas, the antiferromagnetic insu-
lator phase is formed as a result of a Mott transition at half-
filling of the band (one can have inmind, as a simple example,
the spin ± Peierls transition in a 1D metal). A small doping
destroys the antiferromagnetic phase; a metallic phase
appears instead with an almost half-filled band and a large
Fermi surface. Differences in the doping concentration
influence its volume very little, since the original half-filling
is always present. However, the concentration of oxygen
atoms in the CuO chains, or BiO layers, which can serve as
resonant tunneling centers, varies considerably. If it becomes
very small, the connection between the CuO2 bilayers is
disrupted, and fluctuations of the phase suppress the critical
temperature without any essential change in the electron
concentration or their interaction.

Our estimate will be based on the method developed by
K Efetov and A Larkin [37]. If there is no magnetic field and
only phase fluctuations are important, we can write the
following expression for the free energy:

F �
X
n

�
dx dy

�
n
�0�
s

8m

��
qjn

qx

�2

�
�
qjn

qy

�2�

� 4bdns
�
1ÿ cos�jn ÿ jn�1�

��
; �30�

where n
�0�
s is the superconducting electron density in one

layer, jn is the phase of the order parameter in the nth layer,
b � T

�0�2
c =eF is some scaling energy, and d is a dimensionless

constant defining the connection between the layers. If the
atomic concentration of the resonant centers c exceeds c�0�,
the tunneling is coherent, and formula (24) applies. It may be
written as d � d0c2, since we can assume that n is proportional
to c (here d0 5 1). If, on the other hand, c < c�0�, then
d � d0c2 exp�ÿc�0�=c�, according to (29). Strictly speaking, F
is the Ginzburg ±Landau free energy, which is valid only in
the vicinity of Tc, but expression (30) is very general, and it is
very likely to be applicable beyond this vicinity, at least for
purpose of estimates. As in Ref. [37], we will assume that a
long-range order along the c axis described by an order
parameter hexp�ij�i exists. Using the mean-field approxima-
tion, we obtain from the last term in (30)

ÿ2bdn�0�s hexp�ij�i exp�ÿijn� :

The critical temperature can be defined by the self-consistency
condition at infinitesimal hexp�ij�i (see Ref. [37]):

1 �
�
2bdn�0�s

T

��
d2r


exp

�
ij�0� ÿ ij�r��� : �31�

The average is taken over one two-dimensional layer and is
defined by fluctuations; n

�0�
s means that the superconducting

electron density is defined by the 2D mean-field BCS-type
theory with critical temperature T

�0�
c .

The strongest fluctuations in a two-dimensional super-
conductor are those associated with spontaneous formation
of `pancake' vortices. The appearance of such vortices leads
to the so-called Berezinski|̄ ±Kosterlitz ± Thouless (BKT)
transition [38, 39]. Indeed, the velocity of the superfluid in a
quantum vortex is (in ordinary units) vs � �h=2mr, where r is
the distance from the axis (see, e.g., [35], Section 18). The
corresponding kinetic energy is

Ev � nsm

2

�R
x0

v2s 2pr dr �
ns�h

2

4m
ln

R

x0
:

Here R is the radius of the sample and x0 is the radius of the
core, or the coherence length; we assume that the penetration
depth, if exists, is much larger than R. Since the vortex can
appear anywhere, its entropy is equal to the logarithm of the
cross sections

Sv � ln

�
pR2

px20

�
� 2 ln

R

x0
:

The vortex can appear if its free energy Fv � Ev ÿ TSv is
negative, i.e., at temperatures higher than

TBKT � pns
8m

: �32�

There is a delicate point at this moment [40]. In order for
the vortex to appear, there must be a medium, which is the
superfluid. Similar transitions can happen in a crystal, where
the role of vortices is played by dislocations, or in a system of
spins lying in the plane (XY-model). In these cases there is no
doubt of the existence of the medium. For a superfluid,
however, the question is not so clear. On the one hand, it
can be assumed that there exists a 2D superfluid with a very
distant Tc; then ns is some constant defining TWKT, and the
latter is a given parameter of the theory (this is done in Refs
[37, 38, 40] and all subsequent literature on the BKT
transition). On the other hand, we can assume that there
exists only one possibility of a finite ns, namely, real 3D
superconductivity. In this case, ns is a function of tempera-
ture, and formula (32) must be considered as an equation
definingTWKT.Wewill take this approach, since it seemsmore
natural. Unlike the case of liquid 4He, if we at low
temperatures substitute n for ns, we obtain a Fermi energy
that is even much higher than T

�0�
c . This time, ns is the true

superconducting density in two dimensions. In the vicinity of
Tc it can be estimated as ns � �ns=n� � n, where
ns=n � �Tc ÿ T�=Tc, and n is the effective 2D electron
density. Then

e0 � n

m
4T�0�c > TWKT : �33�

This would mean

ns
n
� Tc ÿ TWKT

Tc
� TWKT

e0
5 1 : �34�

Therefore TWKT must be very close to the real Tc.
According to Refs [41, 42, 43], the correlator entering into

Eqn (31) is equal to

exp

�
ij�0� ÿ ij�r��� � A exp

�
ÿ r

x

�
; �35�
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where A � 1, and the correlation radius x is given by

x � x0 exp
�
b

�
TWKT

Tÿ TWKT

�1=2�
: �36�

Here x0 is the usual superconducting coherence length and b is
some constant; for qualitative estimates we can assume that it
is of the order of unity, as in Ref. [41]. Substituting Eqn (35)
into condition (31) that defines the critical temperature, we
obtain

bdn�0�s x2

T
� 1 : �37�

Here we substitute Eqn (36) and b � T
�0�2
c =e0,

x20 � v2=T �0�
2

c � e0=�mT
�0�2
c �, n�0�s � n � e0m (we assume here

that Tc � TWKT5T
�0�
c ), and obtain an equation for

x � �Tc ÿ TWKT�=Tc:

x

d
� exp

�
2b���
x
p
�
: �38�

For very small dwe get from (38) x � �ln�1=d��ÿ2 or, since
according to (34), x � Tc=e0 � TWKT=e0,

Tc � e0
�ln�1=d��2 : �39�

Substituting

d �
d0c2 ; c > c�0� ,

d0c2 exp
�
ÿ c�0�

c

�
; c < c�0� ,

8<: �40�

we obtain

Tc �

e0
�B� 2 ln�1=c��2 ; c > c�0� ,

e0
�B� 2 ln�1=c� � c�0�=c�2 ; c < c�0� ,

8>><>>: �41�

where B � 1 and e0 � 103 K. The second formula can also
serve as an interpolation between different extremal regions.
This relation gives the connection between the real Tc and the
concentration of resonant centers when Tc 5T

�0�
c . At larger

values of d, when Eqn (41) formally predicts Tc0T
�0�
c , the

true Tc remains equal to T
�0�
c .

Since it is difficult tomeasure the concentration c directly,
the theory can be verified by finding a relation between Jc and
Tc; formulas (29) and (41) can be considered as a parametric
representation of this dependence.

The following possibility appears: if superconductivity
with a d-type order parameter is sufficiently suppressed,
another type of superconductivity can appear with a
`subdominant' order parameter. In order to survive, this
order parameter must be of the s type, and hence a d! s (or
d! d� is) transition can be expected in sufficiently under-
doped samples, similar to that predicted in [44, 45] for
impurity suppression of the d-type order parameter. Since
there is little hope that systematic measurements of Tc and Jc
on the same samples will be performed in the near future, they
can be replaced by a much simpler measurement of the Tc

dependence on heating time in vacuum in order to trace the
d! s transition as a kink in this dependence.

The D�0� entering into the BCS ratio is obtained
experimentally either as a singularity in the density of states
from the tunneling conductance or as the energy gap from
ARPES. In principle, one can use the following reasoning.
The disruption of the connection between the planes makes

the system more two-dimensional, and this reduces the phase
transition temperature. However, it is much easier to form a
bound state of two particles in a space with reduced
dimensionality. Hence, there will be a tendency toward
`performed pairs,' the same as with increasing interaction.
This idea is supported by the existence of the `pseudogap' in
the ARPES experiments: D remains finite far above Tc,
particularly in strongly underdoped samples. Hence, D, as a
feature of a one-particle excitation spectrum, can persist even
without long-range order, being some sort of local character-
istic. We have no theory at present explaining the pseudogap
and its stability with temperature. Our only goal was to draw
attention to the fact that the existence of a pseudogap does
not necessarily mean the presence of long-range order, the
same as the presence of long-range order does not necessarily
lead to a gap in the spectrum of one-particle excitations (see
Ref. [46]); this can result in huge values of the BCS ratio.

Appendix I

Let us consider a rectangular barrier with a potential U at
0 < z < d with a center located at z0 �0 < z0 < d� described
by a potential energy ÿ�b=2m�d�zÿ z0�. The SchroÈ dinger
equation can be presented in the form

d2C
dz2
ÿ a2C � ÿbd�zÿ z0�C�z0� ; �I:1�

where

a � �2m�Uÿ E��1=2 : �I:2�
Its general solution is

C�z� �
�
Aÿ b

2a
C�z0�y�zÿ z0� exp�ÿaz0�

�
exp az

�
�
B� b

2a
C�z0�y�zÿ z0� exp az0

�
exp�ÿaz� : �I:3�

The solutions beyond the barrier are

C�z� � exp�iKz� � r exp�ÿiKz� ; z < 0 ;

C�z� � p exp
�
iK�zÿ d�� ; z > d ; �I:4�

where K � �2mE�1=2, r and p are the amplitudes of the
reflected and penetrated waves, respectively.

The boundary conditions are the continuity of C and
dC= dz at the interfaces. From these four conditions we
define the constants A, B, r and p. They are

A � 1

2

�
1� iK

a

�
� r

2

�
1ÿ iK

a

�
;

B � 1

2

�
1ÿ iK

a

�
� r

2

�
1� iK

a

�
; �I:5�

r � �b=a�C�z0�
�1ÿ iK=a�2 exp adÿ �1� iK=a�2 exp�ÿad�

�
��

1ÿ iK
a

�
exp

�
a�dÿ z0�

���1� iK
a

�
exp

�ÿ a�dÿ z0�
��

ÿ 2�1� K2=a2�sinh ad
�1ÿ iK=a�2 exp adÿ �1� iK=a�2 exp�ÿad�

� �b=a�C�z0� exp�ÿaz0� ÿ �1� iK=a�
1ÿ iK=a

; �I:6�
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p � �b=a�C�z0�
��1ÿ iK=a� exp�az0���1� iK=a� exp�ÿaz0�

�
�1ÿ iK=a�2 exp adÿ �1� iK=a�2 exp�ÿad�

ÿ 4iK=a

�1ÿ iK=a�2 exp adÿ �1� iK=a�2 exp�ÿad�

� �b=a�C�z0� exp
�
a�z0 ÿ d��

1ÿ iK=a
ÿ �4iK=a� exp�ÿad��1ÿ iK=a�2 : �I:7�

We assumed here that z0, dÿ z0 4 1=a.
From Eqns (I.3), (I.5) and (I.6) (here we have to use the

full expression), we obtain

C�z0� � ÿ
�
2iK
a

�
exp

�
a�dÿ z0�

���
1ÿ b

2a

��
1ÿ iK

a

�
� exp adÿ b

a

�
1� iK

a

�
cosh

�
a�dÿ 2z0�

��ÿ1�I:8�
and

p � b
a
exp

�
a�z0 ÿ d���1ÿ iK

a

�ÿ1
C�z0�

� ÿ
�

2ibK
K2 � a2

���
1ÿ b

2a

�
exp�ad� 2ij�

ÿ b
a
cosh

�
a�dÿ 2z0�

��ÿ1
; �I:9�

where j � arctan�a=K�.
The transparency coefficient is equal to the absolute

square of this expression. It is exponentially small, except in
a small `coherence interval' of energies around 2a � b, or

Uÿ E0 � b2

8m
; �I:10�

provided that the resonant center is located close to the
middle of the barrier �z0 � d=2�. Our main goal is to find
out to what extent this condition is stringent. One sees readily
that the requirement is

jdÿ 2z0j4 1

a
� �2m�Uÿ E��ÿ1=2 : �I:11�

As has been said already, in Bi2Sr2CaCu2O8�d the
displacement of the BiO layers from the center is approxi-
mately 1A. Even ifUÿ E0 � 1 eV, 1=a � 2A, and the actual
resonant levels might be more shallow. One sees that
practically all localized centers formed from broken chains
in underdoped YBCO and from BiO layers in BSCCO can
support resonant tunneling at proper energies.

Appendix II

This time we suppose that there are two centers located in the
median plane: the first at (0; d=2), and the second at (r0; d=2)
(see Fig. 9). Here we have to solve the 3D SchroÈ dinger
equation. Performing a Fourier transformation with respect
to r, we obtain

d2Ck

dz2
ÿ a2kCk � ÿbC�k�

�
d

2

�
d
�
zÿ d

2

�
; �II:1�

where

C�r; z� �
�

d2k

�2p�2 Ck�z� exp�ikr� ; �II:2�

ak �
�
2m�Uÿ E� � k2

�1=2
;

�II:3�

C�k�
�
d

2

�
� C

�
0;

d

2

�
�C

�
r0;

d

2

�
exp�ÿikr0� : �II:4�

The boundary conditions for a normal incidence are

Ck�0� � �2p�2d�k� � rk ; Ck�d� � pk : �II:5�

From Eqns (II.1), (II.5) we obtain formulas similar to (I.5) ±
(I.7), where ak � �a2 � k2�1=2 enters instead of a,
q � �K2 ÿ k2�1=2 instead of K, C�k��d=2� instead of C�z0�,
and the terms without C in the numerators of (I.6) and (I.7)
acquire a factor �2p�2d�k�.

The self-consistency relations are

C
�
0;

d

2

�
�
�

d2k

�2p�2
�
Ak exp

�
akd
2

�
� Bk exp

�
ÿ akd

2

��
;

C
�
r0;

d

2

�
�
�

d2k

�2p�2
�
Ak exp

�
akd
2

�
� Bk exp

�
ÿ akd

2

��
exp ikr0 :

Substituting Ak and Bk, we obtain equations defining C at
both centers:

C
�
0;

d

2

�
ÿ
�

d2k

�2p�2
b
ak

�
1

2
� 1� iq=ak
1ÿ iq=ak

exp�ÿakd�
�

�
�
C
�
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d

2

�
�C

�
r0;

d

2

�
exp�ÿikr0�

�
� ÿ 2iK exp�ÿad=2�

a�1ÿ iK=a� ;

C
�
r0;

d

2

�
ÿ
�

d2k

�2p�2
b
ak

�
1

2
� 1� iq=ak
1ÿ iq=ak

exp�ÿakd�
�

�
�
C
�
0;

d

2

�
exp ikr0 �C

�
r0;

d

2

��

� ÿ 2iK exp�ÿad=2�
a�1ÿ iK=a� ; �II:6�

r0

Figure 9. Resonant tunneling through two centers in the median plane.
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where a and K are the same as in Appendix I. The symmetry of
the integrals with respect to k! ÿk leads to the conclusion

C
�
r0;

d

2

�
� C

�
0;

d

2

�
; �II:7�

and hence,

C
�
0;

d

2

�
� ÿ 2iK exp�ÿad=2�

a�1ÿ iK=a�
�
1ÿ

�
d2k

�2p�2
b
2ak

�
�
1� 2

1� iq=ak
1ÿ iq=ak

exp�ÿakd�
��
1� exp�ÿikr0�

��ÿ1
:

�II:8�
Since the minimum value of ak is a, the second term of the

integrand vanishes at d!1. The remaining integral is
divergent. This is due to the fact that in the three-dimensional
case the d-function potential has no finite eigenvalues.
Therefore, we must consider some potential with a finite
range. Since the precise eigenvalue is of no importance, we
simply cut off the integral at some k � K. Assuming r0 to be
larger than 1=a and the range of the potential to be 1=K, we
can calculate the square bracket in the denominator of Eqn
(II.8) close to the resonance and obtain

C
�
0;

d

2

�
� 2K exp�ÿad=2�

K� ia

�
eÿ e0

2
�
e0�e0 � K 2=2m��1=2

ÿ b
2pd

Kÿ ia
K� ia

�
1� exp

�
ÿ ar20

2d

��
exp�ÿad�

�ÿ1
;

�II:9�
where

e0 � 1

2m

�
b
8p

�2�
K 2 ÿ

�
4p
b

�2�2
is the resonant value of e � Uÿ E.

From a formula similar to (I.7), we can obtain the Fourier
component of the penetrated wave

pk � ibC
�
0;

d

2

��
1� exp�ikr0�

�
exp

�
ÿ akd

2

�
�q� iak�ÿ1:
�II:10�

and, transforming to real space, we obtain the value of the
amplitude at r � 0 for two centers

P�2� �
�

d2k

�2p�2 pk � 2ibaK

pd�K� ia�2
�
1� exp

�
ÿ ar20

d

��

�
� �eÿ e0� exp ad
2
�
e0�e0 � K 2=2m��1=2 ÿ b

2pd
Kÿ ia
K� ia

�
�
1� exp

�
ÿ ar20

2d

���ÿ1
: �II:11�

The dependence on r0 in the square bracket can be
neglected, as we will see in a moment. Then, if r0 5

��������
d=a

p
,

the amplitude is doubled compared to the case of one center,
and this means coherence of tunneling through two centers.

The condition r0 5
��������
d=a

p
can easily be understood.

Despite the fact that the tunneling occurs with the use of a

resonant center, all the same the probability depends
exponentially on the length of the trajectory. If the latter is
tilted at an angle y to the normal, its length becomes
d= cos y � d�1� y2=2�, and hence the amplitude acquires a
factor exp�ÿady2=2�. Therefore, the typical values of ywill be
�ad�ÿ1=2. The transverse momentum component will be
k? � a sin y � ay � �a=d�1=2. The corresponding wavelength
l � kÿ1? �

��������
d=a

p
is the distance of coherence.

In the general case of many centers, with an average
distance between them less than

��������
d=a

p
, i.e., if their planar

density is larger than a=d, we can introduce an average
amplitude, substituting the bracket

�
1� exp�ÿar20=d�

�
in

(II.11) by the density of the centers. This, however, does not
take into account that the energies of the centers may be
slightly different. If this scatter of eigenvalues, although
small, is still sufficiently large, so that the absolute limiting
values of the first term in the square bracket of (II.11) are
larger than the second term, then this bracket can be replaced
by

ÿipd
� �eÿ e0� exp ad
2
�
e0�e0 � K 2=2m��1=2

�

� ÿ2ip
�
e0

�
e0 � K 2

2m

��1=2
exp�ÿa0d�d�eÿ e0�;

this expression does not depend on r0. The principal part of
(II.11) does not contribute to the result.

Summation over centers gives

�P � 4ba0K0
d�K0 � ia0�2

�
e0

�
e0 � K 2

2m

��1=2
exp�ÿa0d�n ; �II:12�

where n is the density of localized states. This penetration
amplitude exceeds the amplitude of direct tunneling if n is
sufficiently large, i.e., if all the localized states have approxi-
mately the same energy or are clustered around a few discrete
values (the experimental curves for high-frequency c con-
ductivity at low temperatures can be considered as evidence of
the latter situation, see Fig. 7). The factor
�e0�e0 � K 2=2m��1=2 exp�ÿa0d� plays the role of Z that was
introduced in Section 2. The coefficient t, appearing in the
tunneling Hamiltonian, is the product of 4ba=�Kd� and some
`interaction energy,' which is of the order of the barrier U in
magnitude.

Qualitatively the same but a physically more interesting
result can be obtained if we consider the tunneling probability
per unit area. The corresponding expression is

W �
��

d2k1

�2p�2 pk1 exp�ik1r�
�
d2k2

�2p�2 p�k2 exp�ÿik2r�
�

�
�

d2k

�2p�2 jpkj
2 ;

where h. . .i is the average over the area. Substituting pk, we
obtain the connection between tunneling probabilities with
two centers and with one center

W�2� �W�1�
�
2� 2 exp

�
ÿ ar20

2d

��
: �II:13�

The main result obtained here is that coherent tunneling
through different centers is possible if their energies do not
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differ too much and if their planar density is higher than one
center per area 2d=a. For BSCCO the distance between the
closest double layers is d � 15A. If we assume je0j � 1 eV, we
obtain 1=a � 2A, but it is likely that the localized levels are
shallower, and so we take 1=a � 4A. From this we obtain a
characteristic area of the order of 120A2; more than one
center per such an area looks quite realistic. One has also to
take into account our basic assumption: exp�ÿad�5 1; in this
case exp�ÿad� � 0:024.
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