
Abstract. The experimental discovery of a number of `strange
metals' has reopened the question of the low temperature beha-
vior of interacting Fermi systems. Here we provide a subjective
overview of some aspects of the resulting theoretical work. It
seems to us that from a theoretical standpoint Landau's Fermi-
liquid theory has proven to be a remarkably robust description
of clean Fermi systems. The only well documented theoretical
examples of non-Fermi-liquid behavior are metals subject to
gauge interactions or at quantum critical points. The experi-
mental anomalies which prompted the reexamination of Fermi-
liquid theory remain in many cases mysterious.

1. Introduction

Our present-day understanding of metal physics is based on
L D Landau's insight that electron-electron interactions are
unimportant at low energies. They introduce finite renorma-
lizations and lifetimes vanishing as o, T! 0, which may be
understood perturbatively and do not change the physics
qualitatively from that of non-interacting electrons. The past
two decades have seen the experimental discovery of a
number of `strange metals' whose behavior is apparently not

well described by Fermi-liquid theory. Examples include
quasi-one-dimensional organic conductors [1], a two dimen-
sional electron gas in the presence of disorder [2], or magnetic
fields [3], some `heavy fermion' compounds [4] and high
temperature superconductors. These experimental discov-
eries have prompted theorists to reconsider the circum-
stances under which fermi liquid theory breaks down and
what possible `non-Fermi-liquid' metals might exist. In this
article we summarize the progress which has beenmade in this
direction focusing on the behavior of clean systems.

2. Definition of Fermi-liquid theory

The canonical problem which Fermi-liquid theory aims to
solve is the behavior of a finite density, n, of electrons, in d
spatial dimensions, interacting with each other via a short
ranged interaction (because of screening, the Coulomb
interaction is effectively short ranged) and with a periodic
potential. If the electron-electron interactions are neglected
the solution is straightforward in principle: the single-particle
SchroÈ dinger equation defines energy bands En�k� which in
equilibrium are populated by electrons according to the
Fermi ±Dirac distribution with chemical potential m,

nk � n�Ek� � 1

exp��Ek ÿ m�=T� � 1
:

One has a metal if at T � 0 there is at least one partly filled
band. In this case there is a Fermi surface defined by
En�k� � m; this is a surface in k-space; as one moves across it
the k-space conduction-band occupancy nk drops from 1 to 0.
The volume enclosed by the Fermi surface is equal to the
density of electrons in the conduction band. The low energy
excitations are constructed by removing electrons from filled
states near the Fermi surface and adding then to empty states
also near the Fermi surface. These excitations are called
particle-hole pairs; the particle and hole may be characte-
rized by a crystal momentum k and an energy
Ek ÿ m � xk � vkjkÿ kFj. They are eigenstates of the single-
particle SchroÈ dinger equation and so have an infinite
lifetime.
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Landau's fundamental insight was that these qualitative
properties also hold for interacting systems because at low
energies the available phase space severely restricts possible
scattering processes. For example, two electrons initially in
states k1 and k2 near the fermi surface may only be scattered
to final states k3 and k4 which are also near the fermi surface;
energy and momentum conservation imply that the phase
volume of possible final states is proportional to

kdÿ2F

ÿjxk1 j � jxk2 j�2
v2F

in all d > 1. Landau's insight may be formalized in at least
three ways: Landau's original derivation, which involves
writing the energy as a functional of nk AGD, diagrammatic
derivations involving formal resummations of themany-body
perturbation theory [5], and renormalization group argu-
ments [6]. All of these methods lead to the same conclusion:
the essential features of the non-interacting system are
preserved in the interacting one. Specifically, there is a fermi
surface defined as the locus in k-space across which the
occupancy nk (of the single-particle state of crystal momen-
tum k) has a step. Themagnitude of the step is less than 1, and
the step may not be located in the same place as in the non-
interaction system but the step exists and the k-space volume
enclosed by the fermi surface is preserved. Further, although
the exact eigenstates are of course very complicated combina-
tions of single-particle states, asymptotically they have a non-
zero overlap with single particle states of momentum k and
renormalized dispersion x�k � v�kjkÿ kFj (where `�' denotes
renormalized quantities and kF denotes the true Fermi
surface of the interacting system). More precisely, the
propagation of an injected electron is described by the
Green function which may be written (here Tt is the time-
order symbol)

G�o; k� �
�
dt exp�iot�hTtc

y
k�t�ck�t�i

� Zk�o�
oÿ x�k � iGk�o� � Ginc :

Here Ginc is a smooth function of o and k; the non-smooth
(quasiparticle) part is described by a renormalized dispersion
xk, a quasiparticle weight Zk�o� and a lifetime Gk�o�. If
G�o� � 0 the quasiparticle part describes coherent propaga-
tion and Z is the overlap referred to above. The result of the
derivations referred to above is that although Gk�o� is non-
zero, it vanishes faster thano, x aso, x! 0. This behavior of
Gmay be used to show that the physical content of the theory
at low energies includes a specific heat which is asymptotically
linear in temperature, amagnetic susceptibility which tends to
a constant, and a resistivity which as T! 0 vanishes at least
as rapidly asG�o � 0;T� (subtleties connectedwithUmklapp
scattering and the dissipation of momentum can make the
resistivity vanish faster). In the usual fermi liquid in d � 3
G�T� is of the order of T 2; in d � 2, G�T� � T 2 lnT.
Experimentalists tend to define non-fermi-liquid behavior as
a specific heat which vanishes less rapidly than T or a
resistivity which vanishes less rapidly than T 2. The well
known T-linear resistivity of high Tc superconductors has
encouraged the belief that these materials are not fermi-
liquids.

A more theoretical definition of non-fermi-liquid beha-
vior seems desirable.We distinguish strong andweak versions

of non-fermi-liquid behavior. In a strong non-fermi-liquid the
electron Green function is smooth everywhere; there is no
singularity which could be used to define a fermi surface. The
only examples known at T � 0 are band insulators, which are
trivial, superconductors and spin or charge density wave
systems, where due to a phase transition to an ordered state
a gap opens up in the electronic spectrum. In a weak non-
fermi-liquid the Green function and hence the single particle
occupancy nk has a singularity (albeit perhaps not a step)
which defines the fermi surface, but the relaxation rate
vanishes less rapidly than o as o! 0. Several theoretical
models of weak non-fermi-liquids exist, including the d � 1
Luttinger liquid, certain quantum critical points in two and
three dimensions, and electrons coupled to a gauge field in
two or three dimensions. The T-linear resistivity of high Tc

superconductors led to the proposal of a `marginal fermi
liquid' in which G � o.

Weak or strong non-fermi-liquid behavior can only occur
if the assumptions underlying the conventional derivations of
fermi liquid theory break down. The theoretical status of
conventional fermi liquid theory is as follows: for weak short-
ranged interactions it may be derived by perturbation theory,
which is apparently well behaved in sufficiently high dimen-
sion. In d � 3 the perturbative results have never been
questioned. In d � 2 doubts have been raised about even the
leading order result [7] or about singularities arising on
resummation to infinite order [8], but other work [9, 10] has
shown that perturbation theory is well behaved even in d � 2.
Additionally, diagrammatic resummation and renormaliza-
tion group analysis [6] have shown that if this behavior is
assumed at some energy scale E0 5 EF then it persists down to
E � 0, i.e. the Fermi liquid is a stable fixed point in the
renormalization group sense, in d � 2 and d � 3. Therefore,
obtaining a non-fermi-liquid metal requires low dimension-
ality (d � 1 or d � 0, i.e impurity models), an interaction
stronger than some critical value or a generalized model
including a singular interaction or disorder or high magnetic
fields. The physics of impurity models and 1d metals, the
physics of high magnetic fields [3] and the physics of
disordered metals [2] have been discussed at length elsewhere
and will not be considered further here (except for the n � 1=2
quantized Hall state). Concerning strong interactions two
cases arise: one is that at a particular critical interaction
strength a T � 0 second order phase transition occurs. The
critical fluctuations associated with this phase transition lead
to a singular interaction incompatible with the assumptions
used in deriving fermi liquid theory and thus to non-fermi-
liquid behavior at the critical point. This will be discussed in
Part 3. The second is that there is a range of strong couplings
leading to non-fermi liquid metallic behavior. No model is
known which gives rise to such behavior down to T � 0,
although to our knowledge there is no proof that such amodel
cannot exist. Several models, motivated by the properties of
high Tc superconductors, exhibit non-fermi liquid behavior
over a wide range of temperatures, but all of them cross over
to Fermi-liquid behavior at sufficiently low T. These will be
discussed in part 4.

3. Quantum critical phenomena
and non-Fermi-liquid physics (ferromagnets)

At a second order T � 0 phase transition (the quantum
critical point) fluctuations of the order parameter have long
ranged (power law) correlations in space and time. The
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density of states corresponding to these fluctuations may be
constant or even divergent at low energies (in contrast to a
non-critical Fermi liquid), so scattering of electrons off them
may lead to weak non-fermi-liquid behavior.

To give some flavor of these calculations we consider the
electron Green function near the ferromagnetic quantum
critical point of a 2D or 3D fermi liquid in some detail.
Experimental realizations of three dimensional transitions
include MnSi [11], ZrZn2 [12] and TiBe2 which are all `weak
ferromagnets' in which the Curie temperature may be tuned
to 0 by hydrostatic pressure. These transitions have been
extensively studied by the usual techniques of critical
phenomena which involve integrating out all non-critical
degrees of freedom including conduction electrons, obtain-
ing an action describing the long wavelength magnetization
fluctuations and analyzing this action. It was found by Hertz
[13, 14] that the long wavelength spin fluctuations are
described by the propagator

D�o; q� �
�
p0joj
2pq

�Dq2 � xÿ2�T�
�ÿ1

; �1�

where x is the correlation length which diverges at the critical
point, p0 is the scale of order of Fermimomentum andD is the
spin stiffness. The spin fluctuation propagator (1) can be
written in terms of the two-particle irreducible bubbleP�o; q�
and an interaction vertex U as D � 1=�Dÿ10 ÿUP�. For non-
interacting fermions P�0; q� is an analytic function of q2 and
it is usually assumed that P�0; q� and U remain analytic
functions of q2 even when short range interactions are taken
into account, so that at the critical point Dÿ1�0; q� / q2.
However this belief was recently called in to question by
calculations yielding q2 ln q in three dimensions and qj j in two
dimensions [15]. If correct, this would make the quantitative
results derived below inapplicable, but the method of analysis
and the qualitative conclusions (such as the smallness of the
vertex corrections) would not change. In any case, because the
spin system is embedded in a fermi liquid, the spin dynamics is
overdamped; the specific form joj=q in (1) comes from the
familiar Landau damping.

Equation (1) is the result of the mean field theory;
however mean field theory has been shown to give asympto-
tically correct behavior for this problem. The essence of the
argument is this. Equation (1) implies the dynamical
exponent z � 3 because one power of the frequency scales as
three powers of momentum. Because the spin wave interac-
tions (i.e. f4 terms) have non-divergent coefficients, the
effective dimensionality of the critical theory deff � d� z;
thus in both d � 2 and d � 3, deff > 4 so the theory is above
the upper critical dimension and its properties may be studied
by perturbation theory. Two results relevant to the present
discussion are (i) if the parameters (such as pressure) are
tuned so that at T � 0 the system is at the critical point,
xÿ2�T� � T 4=3 in d � 3 and xÿ2�T� � T= lnT in d � 2, much
less than the characteristic scale T 2=3 of q2 or joj=q for typical
o � T and (ii) the specific heat is of the order T lnT in d � 3
and T 2=3 in d � 2 [14]. The behavior of the specific heat is
non-fermi-liquid in the empirical sense discussed in the
previous section.

We now consider the behavior of the single particle Green
function in this non-fermi-liquid using diagrammatic argu-
ments adopted from [16]. The leading order diagram for the
self energy is shown in part (a) of Fig 1. This diagram may be
evaluated using a non-interacting fermion Green function

Gÿ1 � �oÿ vjkÿ kFj� and the spin fluctuation propagator
given by (1). The result is

S�1��o� � 3

8p2
vFp0
p2FD

�
E ln
�
EF

E

�
� i

p
2
E
�

�2�

for d � 3 and

S�1� � E
�
o0

E

�1ÿd=3

in d < 3 with o0 an energy scale of the order of EF. Thus the
leading approximation to the theory is a weak (d < 3) or
marginal (d � 3) non-fermi-liquid; the physical consequences
include a specific heat which varies as Td=3 (T lnT0=T in
d � 3) and an nk which has a cusp at kF rather than a jump.
Note that in this approximation the non-analytic part of the
self energy is a function of energy only.

We now discuss higher order corrections, such as those
shown in Fig. 1b, c. Those shown in Fig. 1b scale as
S�b� � �S�1��E��2=E while direct calculation gives
S�c� � E2=3�dÿ2�E. These can also be seen to be small by the
arguments underlying the Migdal theory of electron-phonon
interaction. These arguments are that the energy transferred
in an electron-phonon scattering process is small, so all
intermediate states must be near the Fermi surface, and that
the curvature of the fermi surface severely restricts the phase
volume available for interference processes so these processes
are weak and can be ignored. Clearly for these arguments to
apply the curvature term in the electron dispersion should be
important for a process involving a typical momentum
transfer. The same logic applies here. To see this quantita-
tively note that the electron Green function can be written as

G�E; p� �
�
Eÿ Sp�E� ÿ v

�
pk � p2?

2p0

��ÿ1
: �3�

Here we have separated the momentum into components
parallel and perpendicular to vF (cf. Fig. 4) and have
introduced the fermi surface curvature pÿ10 . In a typical
process involving an energy transfer o, the momentum
transferred, ko � o1=3 so the curvature term scales as o2=3.
For d > 2 this is more important than the self energy (which
scales as od=3) and so is relevant. As usual the effect of this
term is to decrease the effect of interference terms. The result
is the Migdal theory with an expansion parameter
�o=EF��dÿ2�=3. One consequence of this theory is that the
leading order diagram gives an asymptotically exact expres-
sion for the self energy. In the terminology of critical
phenomena, the singular contribution to the self energy is
described by a scaling function which depends on frequency

Â b

c

Figure 1. Fermion self energy diagrams. The wavy line denotes the

fluctuation propagator (1) and the solid line the fermion propagator.
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only, involves the exponent d=3 and because of the Gaussian
nature of the theory may be computed exactly. Note also that
the crucial scattering processes are those which move the
electrons along the Fermi surface and that the non-analyti-
cities in the fermion propagator do not feed back and change
the form of the spin fluctuation propagator which is always
given by Eqn (1).

The case of d � 2 is more subtle. The Migdal arguments
show that the leading self-energy scales in the same way (o2=3)
as the k? dependence; the vertex corrections are therefore
marginal and a more complicated treatment of the electron
problem is required. Note however that the critical theory is
still above its upper critical dimension, so the spin propagator
is still given by Eqn (1).To study the electron propagator an
expansion parameter is required; the analogy to the Migdal
theory motivated us to introduce one which controls the
relative importance of scattering parallel and perpendicular
to the Fermi surface. Paper [16] did this for the gauge
interaction problem; the treatment carries over with only
minor modifications to the ferromagnetic case. We introduce
the parameter N via

DN�o; q� �
�
N

p0joj
2pq

� 1����
N
p q2

�ÿ1
; �4�

so that a typical momentum transfer is ko �
����
N
p

o1=3; we have
chosen this precise form (involving the choice of energy units
so that D � 1=

����
N
p

), so that the first order self energy is
independent of N. Because ko � N 1=2o1=3 for large N the
curvature term,

k2o
p0
� No2=3 4S�1��o� ;

becomes important and a Migdal approximation can be
constructed with the expansion parameter 1=N. Therefore at
large N the leading order is

G�2D� � 1

o1=3
0 E 2=3 ÿ vjpjj ÿ pFj

; �5�

where o0 � �1=2
���
3
p �3�2=p2� is a numerical coefficient.

Explicit calculation shows that the next order correction
turns out to be of order � �lnN=4pN�2S�1�; the E2=3 is thus
preserved. The self energy acquires a p-dependence which has
not been studied in detail. At smallN k2o=p0 5S�1��o� and all
higher order terms are equally important. Strictly in the limit
N! 0 one can neglect the effects of electron displacement
along the Fermi surface on the electronGreen function, so the
electron scattering becomes essentially one dimensional.
Therefore in this limit we may treat each ray in the
momentum space of electrons as an independent one
dimensional system and study it by bosonisation. We find
that in the limit of low energy andmomenta close to the Fermi
surface G�p; E� acquires a simpler scaling form

G�1D��E; p� � ÿ1
vF�pÿ pF� g

�
G�2=3�lÿ1=30 E 2=3

v
2=3
F �pÿ pF�

�
;

g�u� � 3

2
exp

��ÿ1�3=4u3=2�ÿ 3
���
3
p

i

4p

�1
0

exp
�ÿ �uy�3=2� dy
y2 � iyÿ 1

:

�6�
Although the Green functions (6) and (5) have completely

different analytical structures, their qualitative properties are

similar: both are equal to 1=vFjpF ÿ pj in the limit
o1=3

0 jEj2=3 5 vjpÿ pFj and both behave as 1=�o1=3
0 jEj2=3� in

the opposite limit o1=3
0 jEj2=3 4 vjpÿ pFj. We therefore expect

a smooth crossover from formula (6) to (5) as N! 0. Both
describe overdamped fermions with a characteristic energy
that scales as �pÿ pF�3=2. Thus, the limitN! 0 is not singular
for the fermion Green function. Our derivation suggests that
the precise form [given in Eq (6)] depends on two special `one-
dimensional' features: the neglect of internal loops and the
neglect of the perpendicular momentum in fermion propaga-
tors. Both these features are present in theN! 0 limit but are
not present at arbitrary N. For this reason we do not believe
that the exponential form is generic, although the correspon-
dence between theN! 0 andN!1 limits lead us to believe
that the scaling E2=3 / pk is.

A non-zero N leads to coupling between different points
on the Fermi surface; the problem is then not strictly one
dimensional. Small but nonzero N may be studied by Ward
identity techniques. The result is, as expected, that the scaling
E2=3 / pk is preserved but the form of G is changed qualita-
tively from the one dimensional form given in Eqn (6). This is
of theoretical interest because several authors have argued
that bosonisation techniques may be applied to a two
dimensional electron gas [17, 18]. In the singular interaction
case of interest here, these techniques produce aG precisely of
the form of Eqn (6) above. However, we have seen that this
form is correct only when scattering along the Fermi surface is
completely neglected (N! 0), suggesting that the bosonisa-
tion method does not adequately treat these processes. It is
instructive to generalize the previous analysis to the case of
electrons in d spatial dimensions interacting with the over-
damped bosonic mode with propagator D � 1=�joj=q� qx�.
If d > 2 and x > dÿ 1, the result is weak `Migdal' non-fermi-
liquid behavior characterized by a self energyS�o� � od=�x�1�

with a singular dependence only on the frequency and
corrections of order o�dÿ2�=�x�1� to the leading behavior; in
d � 2 one also obtains a weak non-fermi-liquid but now S is
function of both o and pk.

So far we have discussed the effects of critical fluctuations
on the electron self energy. The vertices connecting electrons
to small momentum transfer spin fluctuations are not
renormalized, essentially because the spin theory is above its
critical dimension. Now we turn to the renormalization of the
fermion vertices with large momentum transfer. The correc-
tions to the vertex with large but arbitrary momentum
transfer jqj � pF are generally small because of the small
phase volume available for virtual processes which leave both
fermions with momentum transfer p� q� k and p� k close
to the Fermi surface. The situation changes only for jqj close
to 2pF. In this case a virtual process with momentum transfer
q along the Fermi surface leaves both fermions with momenta
p� q� k and p� k near the Fermi surface.

In three dimensions this leads to only subleading effects
but in two dimensions the leading contribution in 1=N to the
fermion vertexGQ is logarithmically divergent atQ � 2pF; we
find that higher powers of N contain higher powers of
logarithms; we sum these logarithms using a renormalization
group method and find power law singularities in G2pF . These
singularities imply that the calculation of the particle-hole
susceptibility must be reconsidered. Finally, a singular
susceptibility near 2pF may be further modified by the short
range four fermion interaction; therefore we must also
consider the renormalization of this interaction by the
critical fluctuations.
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We begin with the diagrams for GQ shown in Fig. 2a. The
diagrams shown there diverge logarithmically if all external
momenta are on the Fermi surface, the external energies are
zero and themomentum transfer is exactlyQ � 2pF. Since the
energy only enters the Green function via o1=3

0 jEj2=3, the
momentum component across the Fermi surface via vFkk
and the momentum along the Fermi surface via k2?, the
divergence is cut off by the largest among

E; Ek �
�vFkk�3=2
o1=2

0

; E? � k3?=m
3=2

o1=2
0

: �7�

If, say, the largest is the external frequency we evaluate the
diagrams in Fig. 2 and get

dG2pF�o� � �
�

1

2N
� 1

2p2N 2
ln3�N�

�
ln

�
1

o

�
G 0
2pF

; �8�

where G0
pF

is the bare vertex at small scales or large
frequencies. The sign `�' in (8) corresponds to the spin
density vertex while the sign `ÿ' corresponds to charge
density. The logarithmic nature of the corrections to the
effective interaction allows us to sum higher orders of the
perturbation theory by constructing the renormalization
group equation:

dG2pF

d ln�1=o� �
�

1

2N
� 1

2p2N 2
ln3�N�

�
G2pF : �9�

From (9) we see that the vertex grows at large scales as

GR
2pF
�
�
EF
o

�s

G 0
2pF

; �10�

s � 1

2N
� 1

2p2N2
ln3�N� �O

�
1

N2

�
: �11�

Here we used the energy o for the infra-red cut off assuming
that it sets the largest scale amongo, E, Ek, E?. The result (10) is
derived using a large N expansion. It is also of interest to
evaluate these diagrams atN � 2. The leading order diagram
gives s � 0:25; the sum of the diagrams shown in Fig. 2b and
2d gives s � 0:35.

The power law growth of the vertex at 2pF distinguishes
fermions at the quantum critical point from an ordinary
Fermi liquid with short range repulsion and leads to
anomalous behavior of the spin correlators at Q � 2pF. In
the absence of a short range interaction effective at 2pF the

spin correlator is given by the polarization diagrams shown in
Fig. 3. The leading contributions in powers of �1=N� lno
come from the diagrams in which the vertical lines of the
fluctuations do not cross. In these diagrams the leading
contribution originates from the frequency range (and the
corresponding momentum range, which we have not expli-
citly written)

EF > on > . . .o1 > o < . . . < oÿn < EF ;

where o is the external frequency. Therefore, the sum of all
diagrams is given by the diagram shown in Fig. 3 with
renormalized vertices (GR

2pF
):

P�o; q� �
�
G

�
E� o

2
; p� q

2

�
G

�
Eÿ o

2
; pÿ q

2

�
� �G�R�E;p �o; q�

�2
dp dE : �12�

To evaluate the integral in (12) we note that the main
contribution comes from the range of momenta and energies
related by E � Ek � E? � o [see (7)]. Estimating the result by
power counting we find that if s < 1=3 (as occurs for largeN)
integral (12) converges, but if s > 1=3 it diverges at o � 0,
q � 2pF. We evaluate the integral in these cases separately
and find:

P�o; q� � P0 ÿ
�����������
p0

o0v
3
F

r �
co

�
o
o0

�2=3ÿ2s

� cq
ÿjqÿ 2pFjl0

�1ÿ3s�
; s < 1=3 ; �13�

P�o; q� �
�����������
p0

o0v
3
F

r �
co

�
o
o0

�2sÿ2=3

� cq
ÿjqÿ 2pFjl0

�3sÿ1�ÿ1
; s > 1=3 ; �14�

where the coefficients cq and co are of the order of unity for a
curved Fermi surface. Below we shall assume that
cq � co � 1. Since these coefficients depend strongly on the
curvature of the Fermi surface, the case of a flat Fermi surface
should be considered separately. We shall not discuss it
further here.

Note that the strong singularity of the correlators at
momentum transfer 2pF discussed above is special to two
dimensions. In higher dimensions the leading correction to
GQ vertex remains finite (albeit non-analytical) even at
momentum transfer 2pF and does not lead to any interesting
physical effects.

4. Other non-Fermi-liquids

4.1 Electrons interacting with magnetic field fluctuations
As noted by Holstein [19] and Reizer [20] a moving electron
makes a magnetic field which will affect the motion of other

d

+ + +

a b c

=

Figure 2. Diagrams giving the renormalization of fermion vertex G2pF

(shaded triangle). (a) Leading order in ln�o�=N, (b) and (c) subleading

order in 1/N, (d) leading order in �ln�o�=N�2. Wavy line denotes critical

fluctuations (1), solid line the fermion propagator.

= + + +

Figure 3. Ladder sums giving the renormalization of fermion 2pF polariz-

ability. The notation is the same as in Figs 1, 2
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electrons. If the magnetic field is represented by a vector
potential and the effect of Landau damping is included, the
resulting problem is very similar to a critical ferromagnet but
with xÿ1 � 0 at all T. The effects however are small by two
powers of the fine structure constant a � 1=137.

It was argued that a similar two dimensional gauge field
theory describes relevant excitations of the half filled Landau
level [21, 22]. These arguments relied on a singular gauge
transformation that eliminates the average magnetic field at
the expense of introducing a fluctuating gauge field. Qualita-
tively this gauge transformation can be understood as the
attachment of a flux tube carrying flux F � 2F0 (where
F0 � hc=e is flux quantum) of fictitious magnetic field to
each electron. The important point is that such an attachment
cancels the average external magnetic field and brings about
an additional phase exp�2iyi j� for each pair of electrons and
therefore does not make their wavefunction multivalued
[rotation of one electron around another brings
exp�4ip� � 1] and does not change the electron statistics
because interchanging electrons is equivalent to rotation by
p [which brings a factor exp�2ip� � 1] and translation. From
this construction it is clear that the fluctuations of the
fictitious magnetic field are coupled to the fluctuations of
the density of the electron gas. Therefore the Coulomb
interaction which suppresses the fluctuations of the density
effectively suppresses these fluctuations as well. In an isolated
2D electron gas the Coulomb interaction is proportional to
1= kj j but in fabricated structures the electron gas might be
near a metallic gate; in this case the Coulomb interaction is
screened on the scale of Kÿ1. The resulting gauge field
propagator describing the singular interaction between
electrons is [21]

Dn�1=2�o; q� �
�
p0joj
2pjkj �

uk2

k� K

�ÿ1
: �15�

Here u � e2=8pÊ and the appearance of the 1=�8p� instead of
the conventional 2p may be traced to a 1=�4p� in the
coefficient of the Chern ± Simons term [21]. Clearly (15) is
much less infra-red singular than the propagator of the
critical fluctuations (1) and leads to a much weaker effects.

In this subsection we treat the case K � 0; we expect the
results to apply if the momenta of interest k 0o are greater than
K. In the other limit, one expects the same results as for critical
ferromagnetic fluctuations at N � 1. The momenta k 0o are
those for which the two terms in the denominator of (15) are
comparable. At temperature T, typical frequencies are
o � 2pT and, if K � 0, we find that typical momenta
k 0T � �8pp0kBT Ê=e2�1=2. Using a typical Fermi momentum
for Ga ±Al ±As system p0 � �4pn�1=2 � 8� 105 cmÿ1 and a
typical Ê � 13 we find that the unscreened results apply if

K �cmÿ1� < 4� 105T 1=2 �K� : �16�
Thus if at T � 0:1 K the screening layer is further than

1000 A from the 2d electron gas, the unscreened results apply.
If it is much closer, then one should use the results of the
previous section interpolated to N � 1.

We turn now to computations using eD (15) with K � 0.
The leading order self energy (Fig. 1a ) is in d � 2

S�1��E� � ÿi 2ÊvF
pe2

ln

�
EF
jEj
�
E� . . . �17�

Here the ellipsis indicates terms which are less singular as
E! 0. Arguments identical to those of Section 2 show that

S�1� also solves the leading order Eliashberg equation, so it
sums correctly all the rainbow graphs.

We now argue that higher order crossed diagrams give
fewer singular contributions to S�E; p�, so that the leading
dependence is given exactly by (17). Consider the leading
crossed diagram, Fig. 1c, with the fermion propagators
dressed by the self energy (17). After integration over parallel
momenta and symmetrization in q?1, q?2 one finds

S�2��E� � v2F
X
o1;o2

0
�

dk1
�p0jo1j�=�2pjk1j� � ujk1j

� dk2
�p0jo2j�=�2pjk2j� � ujk2j

A

A2 � �vF=p0�k1k2 ; �18�

with

A�o1;o2; pk��vFpk � S �1��E� o1 � o2�
� S �1��E� o1� � S �1��E� o2� :

The prime on
P

o1;o2
denotes the constraint that the sum

over frequencies is restricted to the region where o1 � o2 � E
has a sign opposite to o1 � E and o2 � E. This constraint
implies that o1 and o2 cannot vanish simultaneously, so no
infra-red singularities arise from the frequency integrals. To
extract the infra-red behavior of (18) we may replace A by its
typical value E ln�EF=E� and o1;2 by their typical values E. The
sum over frequency gives a factor of E2. The main contribu-
tion to the integrals over k1, k2 is a logarithmic divergence
coming from the region E < q2 < E ln E; the final result is

S�2��E� � ÊvF
e2

E
ln2 ln�EF=E�
ln�EF=E� : �19�

This is smaller than the leading term by the factor
f�ln ln�EF=E��=�ln�EF=E��g2.

Similar considerations apply to higher order crossed
graphs.

This result, that the leading behavior at small frequencies
is given exactly by the first order diagram, is again reminiscent
of the Migdal theorem, which states that the leading low-
frequency behavior of the electron self-energy in the electron-
phonon problem is given exactly by the leading order
diagram. In the calculations leading to Eqn (17 ) the energy
transferred by the gauge field is small, while the integral over
momenta is logarithmic and only cut off at the scale pF. In the
quantum critical case discussed in the previous section, the
momentum integrals were confined to the region of small
momenta. The problem simplified only in the large N limit
where the range of themomentum integration became large in
N. Thus, the problem of the half-filled Landau level is
analogous to the large N limit of the quantum critical d � 2
case.

We now turn to polarization bubbles and vertices. As in
the previously considered spin liquid case, the only singula-
rities occur in the 2pF vertices. The leading 2pF vertex
correction, Fig. 2a, is given after summing over parallel
momenta by

G�1�2pF
� vF

X
E

�
dk

�
p0jEj
2pjkj �

e2

8pÊ
jkj
�ÿ1

�
�
2ÊvF
pe2
jEj ln E� vF

p0
k2
�ÿ1

: �20�
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Again, the leading contribution to the integral over k? is a
logarithm coming from the region E < vFk

2
?=p0 < E ln E.

Performing this integral and evaluating the sum over
frequencies we get

G�1�2pF
� 1

2
ln2
�
ln

�
EF

max�T;o; vF�Qÿ 2pF�2=p0�

��
: �21�

Although it is of only academic interest, we note that the
higher order corrections may be summed to obtain the
leading singular behavior. As in the case of the self-energy,
the crossed graphs are less singular than ladder ones. As in
Section 2, the sum of the ladder graphs exponentiates, leading
to

G2pF � exp

�
1

2
ln2
�
ln

�
EF
T

���
: �22�

This weak singularity implies that the polarizability is not
singular, but the leading frequency and momentum depen-
dence is weakly singular.

4.2 Quantum critical antiferromagnets
Quantum critical antiferromagnets present a related set of
issues, but the kinematics of scattering off antiferromagnetic
fluctuations differs in a crucial way from that of scattering off
ferromagnetic spin fluctuations. In a material near an
antiferromagnetic instability the spin fluctuation propagator
peaks at some largemomentum transfer,Q, somost points on
the Fermi surface are not connected to other low energy states
by spin fluctuation scattering. Three cases are possible:

(1) The generic case: the tangent planes (or lines in d � 2)
at p and p�Q are not parallel as in the case of points p and
p�Q in Fig. 4.

(2) The parallel tangents (`2pF') case: the tangent planes at
p and p�Q are parallel as in the case of points p and p�Q0 in
Fig. 4 or in the case of points lying opposite to each other on a
spherical Fermi surface. In this case the singularities asso-
ciated with 2pF scattering in the usual Fermi liquid change the
picture dramatically

(3) The spin fluctuation scatterings do not connect any
points on the Fermi surface (or line). In this case the
fermions produce only analytic corrections to the proper-
ties of the spin fluctuations and vice versa and the two
subsystems can be regarded as effectively independent. We
shall not discuss this case here.

4.2.1 Generic case. In this case only at `hot spots' ( in d � 2) or
`hot lines' (in d � 3) does the fermion self energy acquire a
singular frequency dependence, S � o ln 1=o in d � 3 and
S � ����

o
p

in d � 2, as one moves away from the hot spots or
lines the self energy goes back to the usual Fermi-liquid form.
Because only a small portion of the Fermi surface is
significantly affected by the critical scattering the singular
behavior in e.g. the specific heat should be weaker than for
ferromagnets. For example, the theoretical prediction for the
leading singular behavior of the specific heat in typical three
dimensional antiferromagnet is T3=2; in contrast to the
T ln 1=T found for a ferromagnet. This result can be under-
stood as follows. Consider the effective long wave action of
spin fluctuations after fermions are integrated out. The main
effects of the fermions on this action is the appearance of the
dissipative term in the spin fluctuation propagator which
becomes

DAF�o; q� � 1

joj �D 0jqÿQj2 : �23�

The typical frequency of these fluctuations scales as
AjqÿQj2, giving a density of states nAF � o1=2, such a
density of states leads to the specific heat C � T 3=2. This can
also be understood in the electron language: in a strip of width
T 1=2 about the `hot line' the electron self energy is modified by
a large factor. Similarly the scattering rate is large near the hot
spot, however it only weakly affects the transport properties
because these electrons are short circuited by the intact
electrons away from the hot spots [24]. Similarly one finds
that the Neel temperature scales with pressure as
TN � �pÿ pc�2=3.

The theoretical status of these results is based on the same
arguments as in the ferromagnetic case treated above: the spin
fluctuations may be shown to be above the upper critical
dimension and hence to be described by a gaussian model
with the propagator given in Eqn (23). Interaction effects may
be computed perturbatively. Experiments on quantum
critical antiferromagnets, however, disagree strongly with
these theoretical predictions (unlike ferromagnets where
experiment and theory agree). Several antiferromagnetic
quantum critical systems are known; in all cases C � T lnT
and TN � �pÿ pc� [25]. The origin of this disagreement is an
important open problem.

4.2.2 Parallel tangents (`2pF') case. If the antiferromagnetic
wavevectorQ connects two points on the Fermi surface with
parallel tangents, then the scattering kinematics is more
complicated and the analysis of the previous section must be
modified. In d � 3 it turns out that the susceptibility can not
have a maximum at such a wavevector, so this case does not
arise. In d � 2 the spin fluctuation propagator becomes [26]

D�o; q�� 2p

N
h
Re

�����������������������������������
kk � �k2?=4� � io

q
ÿ b�kk ÿ k2?=4� � D

i :
�24�

Q

Q0

p

q

k

k

?

Figure 4. Sketch of Fermi surface and important wave vectors. The fermi

line shown here is similar to that found by photoemission spectroscopy in

high Tc cuprates. The ordering wave vector Q connects two points with

parallel tangents, the vector Q0 does not. We also show a typical

momentum of a spin fluctuation, q, and a local coordinate system

convenient for the discussion of fermion processes near the fermi surface.
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Here a square root singularity is due to a singular electron
contribution at 2pF. This singular behavior is a consequence
of a large phase volume for scattering across the Fermi line
and implies that the critical fluctuations have a strong effect
on the electrons; furthermore, the 2pF singularities in electron
response functions mean that electrons near the Fermi line
which are strongly affected by critical scattering have a large
effect on the critical fluctuations. We showed that generally it
leads to a fluctuation driven first order transition but there is
one special casewhere the transition is not first order.Namely,
if twice the ordering vector Q is commensurate with a
reciprocal lattice vector, G, i.e. 2Q � G, then the spin
fluctuation propagator is less singular, the fluctuations are
weaker and the transition turns out to be second order and
characterized by the exponents which we calculate in a 1=N
expansion. If j2QÿGj is small, the T � 0 transition is
ultimately first order but a broad scaling regime exists [26, 27].

4.3 Spin charge separation in the t ± J model
A stronger violation of fermi liquid has been argued to occur
in the two dimensional t ± J model believed to be relevant to
high Tc superconductors. The fundamental idea, due to
P W Anderson [28] and implemented in various different
ways by P A Lee [29], A Larkin and others [30] is that `spin
charge separation' occurs, namely that the electron is very far
from being an elementary excitation; instead the appropriate
excitations are spinless charge carriers and neutral spin
degrees of freedom. The most studied and the most promis-
ing version of this idea splits the electron into a charge e
boson, b, and a neutral S � 1=2 fermion, f: c

y
is � bi f

y
is. In this

representation the states allowed in the t ± J model (in which
doubly occupied states are excluded) are described as having
one neutral fermion or one charged boson on each site, i.e.
the constraint of no double occupancy becomes
b
y
i bi � f

y
is fis � 1. The fermions are argued to fill a Fermi sea

while the density of bosons is equal to the doping, i.e. the
difference between the electron density and the density of the
half filled band. If the bosons are condensed Fermi-liquid
behavior is recovered with a quasiparticle weight of the order
of the bose condensation amplitude; a strong non-Fermi-
liquid is realized as long as the bosons do not condense. Bose
condensation atT � 0 seems unavoidable in themodels so far
considered but it is possible that the bosons remain uncon-
densed over a wide and experimentally relevant temperature
range. The bose condensation temperature can be made
arbitrary small in the low doping limit (however a more
quantitative study showed that it is unlikely that bosons
remain uncondensed for parameters relevant to high Tc

cuprates).
The separation of the electrons into bosons and fermions

implies a local gauge invariance bi ! bi exp�if�,
fi ! fi exp�if�; this leads to an internal gauge field which
couples all the degrees of freedom. The screening of the gauge
field by fermion particle-hole pairs leads to a gauge
propagator of the form of Eqn (4) with N � 2. The effect of
the gauge field on the bosons has also been considered in
various analytical and numerical approximations. If the mass
of the boson is larger than the mass of the fermion then a
controlled perturbative expansion is possible which shows
that the effect of the gauge field on the bosons is small [31]. In
the opposite limit the analytical treatment shows that the
bosons tend to phase separate into droplets [32] but the
numerical treatment shows that there might exist a numeri-
cally large window with interesting properties [33].

4.4 Coupling to localized degrees of freedom
and marginal Fermi liquid
An alternative route to non-Fermi-liquid behavior involves
coupling a Fermi sea of electrons to a set of localized
excitations. This issue arises in the context of heavy fermion
materials which involve conduction electrons coupled to local
moments [34]. This usually leads to a Fermi-liquid behavior
but the possibility of non-Fermi-liquid behavior in some
special cases is not ruled out. The issue also arises in the
context of attempts to justify the `marginal Fermi liquid'
phenomenology [35] of high temperature superconductors.
Briefly, the `marginal Fermi liquid' assumes that a system of
fermions retains its Luttinger Fermi surface but acquires a
relaxation rate G / max� oj j;T� with a proportionality
constant of the order of unity. Further, it is assumed that
this relaxation rate is uniform around the Fermi surface and is
due to the scattering by large angles and so determines the dc
and optical conductivity. It was later realized that this ansatz
does not provide an adequate description of the Hall angle or
optical conductivity at intermediate frequencies but the
concept remained and the interesting theoretical question of
whether there is any fermion model in dimension d > 1 which
displays this behavior remains open.

A large effort was invested in the construction of a model
which exhibits such properties at least over a large frequency
or temperature range but the results were mostly negative.
Nevertheless it is not yet proven that such a model does not
exist, moreover recent attempts based on the concept of
Majorana local modes may eventually produce one.

Any self consistent model of amarginal Fermi liquid must
be very different from the scattering by singular modes that
were discussed in the previous sections because in all these
models the scattering is due to soft bosonic modes which
become soft at a particular point in the momentum space
leading to predominantly forward scattering (as in the case of
a quantum critical ferromagnet or gauge field) or to a large
anisotropy around the Fermi surface (as in the case of a
quantum critical antiferromagnet). Clearly this is not what
one needs for the marginal Fermi liquid as defined above.
Instead one would like to construct a model in which
electrons scatter off of dispersionless entities with a propa-
gator whose imaginary part is constant for o > T and
proportional to o=T for o < T. The most promising
proposed realization involves a localized (dispersionless)
fermionic mode [36] which results, for example, in the
scattering process shown in Fig. 5a. Evaluating this diagram
gives

S�o� �
�
G 2

el�t; r � 0�Gf�t� exp�iot� dt ;

assuming that localized fermions have zero energy their
Green function is Gf�t� � 1=t giving ImS�o� / o as required

Â Ã

Figure 5. (a) Leading self energy correction to the itinerant electron Green

function (solid line) due to scattering off of localized fermionic mode

(dashed line). (b) Contribution to the self energy of the localized modes

that generically moves them away from the Fermi surface and gives them

dispersion.
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for a marginal Fermi liquid.
The main difficulty with this model is that it is not self-

consistent nor infra-red stable because in the same order of
perturbation theory as that which gives the desirable S�o�
one also gets a contribution to the localized fermion energy
shown in Fig. 5b which moves it away from the Fermi surface
and gives it dispersion. These problems are avoided in by the
models in which the energy shift is eliminated by fine tuning
and which are further studied in the limit d!1 which
eliminates the dispersion [37]. An alternative approach
involves representing the local degrees of freedom as real
fermions such as introduced byMajorana in 1937. The idea is
that normal fermions can be represented as a sum
c � f1 � if2 of two real fermionic fields; because f2 � 0,
an action which depends only on one real Fermi field can not
contain the term Ef2 and therefore such fermions always
remain at the Fermi surface [38].

Real localized fermions are of course exotic objects but
they do appear as a description of low energy excitations in at
least one microscopic model, namely a two channel Kondo
model which has electrons of two flavors interacting with a
single spin s � 1=2 impurity via the usual Kondo Hamilto-
nian

HK � J
X
n�1;2

cyanr abcbn S : �25�

The extra symmetry associated with the presence of two
flavors of electrons guarantees that the energy shift vanishes.
Unlike the usual Kondo problem this model does not have a
qualitatively simple ground state because both the unscreened
state (which can be regarded as a zeroth approximation at
small J) and the overscreened state (which is a zeroth
approximation at large J) are unstable. To construct the
correct ground state and to explicitly observe the formation
of theMajorana fermionic zero mode one performs a number
of non-local operator transformations [38]. The crucial step is
to note that charge and spin degrees of freedom are
completely decoupled and have identical correlators in a
non-interacting electron gas; so one can replace the spin
interacting with two electron gases (25) by a spin interacting
with spin and charge in the same electron gas

eHK � J
X
�cyarabcb � ~c yas ab~cb�S ; �26�

where

~c � c"
c
y
#

 !

is Nambu spinor and s isospin Pauli matrix associated with
charge. The transformation from (25) to (26) is highly
nonlocal from the view point of electron operators but the
advantage of it is that now the interaction can be further
rewritten as

eHK � J�frZr�2 ;

where the fr are three (out of a total of four) real components
of c" � 1=

���
2
p �f1 ÿ if2� and c# � ÿ1=

���
2
p �f3 � if0� opera-

tors and we have used the Majorana representation of spin
1=2 operator S � Z� Z. In this final form one sees the
appearance of the local Z2 gauge invariance which a
hybridization between spin and itinerant electrons would
destroy. It is this local mode which is most adequately

described by a Majorana fermion.
In this model there is no hybridization between the

Majorana fermion and the conduction band, however the
coupling between Majoranas on different sites via an
intermediate state that contains three electrons generically
will give them a dispersion thereby destroying the marginal
Fermi liquid. However the energy scale at which dispersion
becomes important has not yet been established for the two
channel Kondo problem; it might be low because each
Majorana fermion is coupled to three itinerant fermions
that are related to electrons by a highly non-local transfor-
mation.

4.5 Pseudogap in high T c cuprates
A different kind of non-Fermi-liquid behavior is displayed by
underdoped high Tc cuprates. At high temperatures
(T > 200 K) photoemission measurements of the electron
Green function suggest that the materials have a large
(Luttinger) Fermi surface [39] consistent with that predicted
by band structure. As the temperature is lowered through a
`pseudogap scale' of order 200 K a gap opens up, eliminating
parts of the Fermi surface near the momentum �0; p� and
�p; 0� but leaving the parts near the zone diagonal �p=2; p=2�
unchanged. As T is decreased through the superconducting
Tc � 60ÿ 80 K, the pseudogap evolves smoothly into dx2ÿy2
superconducting gap.

This is non-Fermi-liquid behavior in the strong sense
because it seems that parts of the Fermi surface are
eliminated without the occurrence of long range order. It
differs from the previously considered non-Fermi-liquid
behaviors in that the density of states decreases rather than
increases (e.g. the specific heat vanishes more rapidly than T).
Theoretical explanations have involved incipient pairing
[40 ± 43] or antiferromagnetic [27, 44, 45] instabilities. The
main unresolved issue is how to have fluctuations which are
strong enough to produce a pseudogap without leading to
long range order or at least to a correlation length with a very
rapid temperature dependence.

5. Conclusion

For three and two dimensional clean materials a Fermi liquid
is a surprisingly robust state of matter. On the theoretical side
the only firmly established situations in which a clean
material remains metallic but acquires a non-Fermi-liquid
property are (i) proximity to a quantum critical point and (ii)
the Halperin Lee and Read theory of a half-filled Landau
level, these systems exhibit only `weak non-Fermi-liquid'
behavior. In d � 2 the theoretically predicted deviations
from the conventional behavior are more pronounced and
include a possible divergence of the staggered susceptibility at
wave vector Q � 2pF. The main problems presented by the
experiment on clean materials are (i) critical behavior of
metals near antiferromagnetic quantum critical point that
disagrees with theoretical predictions and (ii) behavior of high
Tc cuprates in optimally doped and underdoped regimes.
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