
Abstract. The `double exchange' mechanism and Jahn ±Teller
instabilities are shown to account for the low-temperature
properties of slightly doped LaMnO3 in the framework of the
band insulator model. Analysis of the doping of La1ÿxAxMnO3

with divalentA atoms suggests that Coulomb forces cause holes
to be localized near dopants, which makes the formation of
conducting clusters along these charged centers a major factor
in the physics of such compounds. A percolation theory analysis
of experimental data is given. The two-phase coexistence re-
gime and the large-volume Fermi surface at high concentrations
are discussed. The relevance of some of the results to doping
physics in cuprates is suggested.

Among phenomena attracting strong attention both on the
experimental and theoretical sides, the so-called `colossal'
magnetoresistance (CMR) in manganites, La1ÿxAxMnO3

(A Ð a divalent atom, usually, Ca, Ba, or Sr) has recently
become the subject of numerous intense studies. The pre-
sentation below is an attempt to shed some light on the rather
controversial theoretical situation in the field{.

The recent activity relating to manganites is stimulated, of
course, by the enormous potential of CMR for practical
applications. Doped manganites in the concentration range
0:16 < x < 0:4 undergo a phase transition from the high
temperature paramagnetic state with a huge (insulating)
resistivity into the ferromagnetic phase with the Curie point,
Tc, around room temperature, moreover, the resistivity drops
by an order of magnitude in the close vicinity of the transition
temperature. A reasonably weak magnetic field (on the scale
of 5 Tesla) moves the temperature of transition upwards,
resulting , thus, in the colossal negative magnetoresistance.
(For a review see, e.g., Ref. [2].)

On the theoretical side, the phenomenon presents many
challenges. There is a consensus that some basic features are
due to the so-called `double-exchange mechanism' (DE), first
suggested in Ref. [3] and elaborated in more detail in Ref. [4].
The recent discovery [5] of the isotope effect in CMR proves
that the lattice also plays an important role. Another side of

the story is that these perovskite systems bear a remarkable
resemblance to high-temperature superconducting oxides
(HTS). The major problem which brings manganites closer
to cuprates is the mechanism of doping, i.e., the mechanism
by which the system acquires metallic properties when
divalent atoms substitute La-sites.

As a starting point, we have chosen the ideal `cubic'
structure for LaMnO3: each La3� resides at the center of a
cubic cell with the Mn3� ions at the cube's corners. In turn,
eachMn3� is caged by the oxygen octahedron locally forming
the complex MnO6 with the Mn3� ion in the cubic symmetry
position. In real materials, due to the difference in the ionic
radii between La and a substituted divalent atom, the lattice
may experience considerable local distortions. It is not clear
yet whether such distortions (characterized by the so-called
`tolerance factor') constitute a factor crucial for the physics of
the doping process which takes place in CMR-materials Ð
most likely, they do not. Nevertheless, in some details, say for
the resistivity behavior, Ca-doped or Sr-doped materials may
display considerable differences [6]. Below we disregard these
complications which, however, may essentially affect the
tunneling integral's values through deviations of the angle in
the Mn ±O±Mn bond from 180�.

A very important fact regarding the manganese d-shell is
that in the cubic environment it would be split into a doublet
and a triplet. In manganites the three-fold manifold of the t2g-
levels is fully occupied by three (t32g) electrons, while the
double-degenerate e2g-term contains only one electron
(Mn3�). This arrangement comes about through the strong
Hund's rule coupling which orients all the spins in one
direction. The strongly coupled (and localized) three elec-
trons of the t32g-term form the local spin, Si �S � 3=2�. One
may then write down the Hund's interaction between these
spins and those of the e2g-electrons in the form

ĤH � ÿJH
X
i

r̂ � Si ; �1�

where r̂ stands for the Pauli matrices.
TheHund's coupling, JH > 0, being estimated on the scale

of � 1 eV, considerably exceeds the other energy scales, as
evaluated from the phase diagram for manganites.

The above ionic picture for a single manganese ion, Mn3�

immediately poses the question about the role of the Jahn-
Teller (JT) instability (see in Ref. [7]). The idea of an
instability in the high symmetry molecular configuration in
the presence of one electron occupying a degenerate level was
first formulated by L D Landau in 1934. The theorem was
proven by Jahn and Teller in 1937 by the method of
enumerating and investigating the possible symmetry cases
for all the finite point groups. (The reader can find the whole
story, as told by E Teller, in Ref. [8]; for the modern
formulation of the Jahn ±Teller theorem see, e.g., Ref. [9]).
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The JT-Hamiltonian is of the familiar form [10]

ĤJT �
X
i

g�ŝi Qi� �
X
i; j

JelQi �Qj ; �2�

whereQi characterizes the local lattice distortions coupled to
the e2g-electron (the two-fold degenerate representation). Its
specific form is of no immediate importance. In addition, the
specific form of Eqn (2) also depends on the choice of the
electronic basis �j1;j2� for the 2D-representation e2g; the
matrix, ŝ , describes the lifting of the degeneracy and mixing
of the wave functions in the presence of the local modes. As in
Eqn (1), the indices �i; j� run over the manganese sites.

The second term in Eqn (2) corresponds to the respective
elastic energy arising from the coupling of the JT-distortions
at the neighboring sites. Such a coupling, more often than not,
is ascribed to elastic interactions which involve phonon
degrees of motion [10]. For the LaMnO3-structure shown in
Fig. 1, the key element in the interaction is the geometrical
factor: namely, neighboring octahedra share the oxygen atom
along theMn ±Mn-bond. If a static JT-distortion is fixed at a
given site, i (in practice, this is an elongation of the
octahedron along one of the three cubic axes), it induces a
corresponding contraction of the octahedra on neighboring
sites. In other words, the collective JT-effect would result in
`antiferroelastic' distortion of the lattice characterized by a
structure vector, Q0. In what follows, the elastic energy is
omitted. The low temperature lattice structure in our model is
exclusively due to the gains in the electronic kinetic energy,
i.e., due to the band structure which depends on the mutual
orientations of distorted octahedra.

As for the latter, here we adopt a simple tight binding
model in which the e2g-electron may tunnel between two
manganese sites via a virtual exchange with the electrons on
oxygen orbitals. Here lies the main distinction in howwe view
manganites and cuprates. In cuprates (at least, at a low
doping level) it is commonly accepted that the added hole
resides on some oxygen site, while in manganites we assume
below that doping with divalent elements, such as Ca or Sr,
results locally in the removal of the e2g-electron from a given
Mn-ion (Mn4+). In other words, the `charge transfer' gap
betweenMn andOhas a sign opposite to that betweenCu and
O in cuprates. Nevertheless, the view that, as in cuprates,
holes go onto oxygen sites (see in Ref. [2]) is another option.
Experimentally there is no answer to this dilemma yet.

In the single electron picture (the band model) we add to
the Hamiltonians (1) and (2) a phenomenological tunneling
term:

ĤT �
X
i;d

t̂i;i�d : �3�

Although we restrict ourselves to hopping between nearest-
neighbors, t̂i;i�d in Eqn (3) is a two-by-two matrix due to the
two-fold degeneracy of the e2g-level on each site.

Before proceeding further with the model (1) ± (3), it is
worth mentioning that a more common approach to the
interpretation of magnetic properties of manganites is
usually based on the localized spin picture, i.e., both the t2g-
and e2g- states are localized, forming the total spin Si, S � 2,
of the Mn-site. The magnetic order in this approach is due to
the indirect anisotropic exchange via oxygen orbitals [11]. The
local spin model can account for the observed magnetic order
by choosing specific values for the anisotropic exchange
constants. On the other hand, the localization of the e2g-
electrons would be equivalent to assumptions of strong
electron-electron interactions. On the microscopic level,
such physics is often described in terms of the modified
Hubbard model [7]. We do not expect, of course, that
interactions between electrons are absent. However, we do
believe that electron-electron interactions do not play the
dominant role, and that lattice effects have more relevance to
the physics of manganites.

Exactly the same Hamiltonian as the sum of Eqns (1) ± (3)
has been studied in Ref. [12]. The paramagnetic-to-ferromag-
netic transition was treated as a `crossover' from the high
temperature regime, where electrons are effectively localized
by thermally excited random distortions in Eqn (2), to the
regime where the coherent transport (3) starts to prevail.
Although Ref. [12] is probably qualitatively correct in
emphasizing the importance of lattice (polaronic) effects on
the resistivity at elevated temperatures, the approach [12] is
not applicable at lower temperatures.

Among the main facts that our band model is to explain,
are the insulating behavior of the parent LaMnO3, the
localization of an added hole (at small concentrations), and
the very peculiar antiferromagnetic order called the A-phase
[13] with its characteristic ferromagnetic alignment of spins in
alternating planes. Also, the Neel temperature being of order
of 140K (at x < 0:08) is surprisingly low, if compared with the
temperature scale for structural transitions in stoichiometric
LaMnO3 (� 900K).

It has been suggested [1] to depict the ground state of
LaMnO3 as a band insulator. The key ingredient of the theory
which makes it possible, is the DE-mechanism [3, 4] together
with the JT-distortions. The underlying physics may be
explained without entering into more detailed calculations
[1]. For the two-center problem, Mn3+ ±Mn4+ and local
spins, S1, and S2, the low energy electronic term has the form
[4]

E � ÿJHjS j � t

���� cos� y
2

�����ÿO

�
t 2

JH

�
; �4�

where y is the angle between S1 and S2 (if treated as classical
spins). Therefore, at JH 4 t, the major gain in the electronic
energy, ÿJHjS j, is the same for ferro- and antiferromagnetic
arrangements of the two spins. The term linear in t in Eqn (4)
favors the ferromagnetic spin alignment due to the band
formation for the e2g-electrons. There is one e2g-electron per
unit cell in the system, which would fill-up the band in a `half-
metallic' way, i.e., because spins of both itinerant e2g- and
local t2g-electrons are parallel Eqn (1), each site in the
momentum space can be occupied by a single electron only.
Since there are two bands (the band spectrum is calculated in
Ref. [1]) due to the double degeneracy of the e2g-level, such a
state would be ferromagnetic and metallic.

Figure 1. LaMnO3-an ideal cubic structure (�ÐLa, x ÐMn, �ÐO).
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Such a state as just described may be a reality at finite
doping (see the discussion below), but experimentally this is
not the ground state of the nominally pure LaMnO3. In fact,
the possibility of lowering the electronic energy by JT-effects
has not been explored yet. In principle, one would need to
calculate and compare the ground state's energies for all
possible symmetries. Fortunately, the true ground state
structure of LaMnO3 is well known: in addition to the A-
type antiferromagnetism, the structure is characterized by the
in-plane staggered distortions of the oxygen octahedra, as
shown in Fig. 2. [Solid segments represent the elongated
octahedra, and the new unit cell is also shown (dashed)].

We show here in simple terms that the structure is, in fact,
compatible with the band insulator state. Indeed, for the
antiferromagnetic spin arrangements along the one of three
cubic axes, according to Eqn (4), we already obtain the giant
gain in energy due to the ÿJHS term. Although there are no
terms linear in t, a smaller gain, of the order of t 2=JH, is
achieved. One may notice, however, that an antiferromag-
netic arrangement in any other direction would not consider-
ably change that estimate. To obtain any further decrease in
the ground state energy, capable of competingwith the energy
of the ferromagnetic state above, one must turn in the Jahn ±
Teller instability.

The initial assumption that JH exceeds all other energy
scales involved �JH 4 t� considerably simplifies the further
analysis. In fact, with accuracy t 2=JH 5 t, there is no
communication between adjacent layers, and the problem
turns out to be a two-dimensional one. In a single layer,
electrons again may be treated as being ferromagnetically
polarized. There are two electrons per new 2D unit cell shown
in Fig. 2. The two branches of the electronic spectrum in the
absence of the JT-distortions are of the general form [1]:

e�p� � �A� B��cos px � cos py� � �Aÿ B�

� ��cos px � cos py�2 � 3�cos px ÿ cos py�2
�1=2

: �5�

This spectrum becomes split into four branches (in the new
Brillouin zone), when the lattice superstructure, shown in
Fig. 2, is imposed. If the JT-gaps are large enough, the new
spectrum consists of two pairs of bands. The lower energy
pair is fully occupied by electrons with only one spin
direction, as shown in Fig. 3, implying that the ground state
of LaMnO3 would be that of the band insulator.

Consider, as an illustrating example, A � B in Eqn (6).
The new spectrum in the presence of the JT-deformation, gQ,
is of the form [1]

el�p� � �
��jt�p�j � D

�� ; l � 1; . . . ; 4 ; �6�

where �A� B��cos px � cos py� � t�p�, D � jgQ=2j. At
D > 2t�0�, the spectrum is of the form shown in Fig. 3. The
direct insulating gap, Dÿ 2t�0�, appears at p � 0.

The concept of two-dimensional ferromagnetic layers
emerging from the DE-mechanism �JH 4 t; gQ�, is also
helpful in understanding the two remaining questions
regarding low temperature properties of lightly doped
manganites. Thus, we have seen from Eqn (4) that the
coupling between layers is rather weak �� t2=JH�. It is also
well known, on the other hand, that fluctuations make a
phase transition into the ferromagnetic state impossible in
two dimensions, unless there is a coupling between layers.
Therefore, the weakness of the interlayer interaction is in
good correspondence, at least, on a qualitative level, with the
surprisingly low value for the Neel temperature, TN ' 140 K.
(The estimates for t give a few tenths of an eV.)

Another interesting problem concerns the fact that at low
concentrations doped materials preserve their insulating
behavior. This is rightly treated as the trapping of the doped
hole, but self-trapping is easier to achieve in a two-dimen-
sional situation: the difference is that in the 3D-case, a carrier,
before getting self-trapped, must pass across a large energy
barrier, while in the 2D-case carriers may be either itinerant,
or localized depending on the numerical value of some
combination, C, characterizing the relative role of the gain
in elastic energy (2) due to the JT distortion, � g2=Jel, to the
band width, t. If the value

C � g2

Jelt
�7�

exceeds a threshold, usually of order unity, the doped hole
would go into a trapped state [14]. In a simple minded
interpretation, Eqn (7) tells us whether, due to lattice
deformations, the hole energy level goes below the bottom
of the band and thus becomes localized. In 2D there is no
energy barrier to overcome.

The criterion imposed by Eqn (7) makes sense only in the
limit of low concentrations. If the concentration of induced
holes increases, while the problem is still considered in the

Figure 2. In-plane staggered distortions inside the ferromagnetic layer.

Solid segments represent the elongations of octahedra. The new unit cell is

shown as a dashed square.

p

E�p�

Figure 3. JT-split bands in ferromagnetic layers. Two low energy bands are

fully occupied by polarized electrons resulting in the band insulator for

LaMnO3.
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framework of a spatially homogeneous (averaged) underlying
ionic structure, a phase transition into the ferromagnetic state
would take place at some concentration. The superstructure
� ���2p a� ���

2
p

a� 2a� imposed on the `cubic' lattice by the JT-
distortions of octahedra and the AF spin order, would not be
energetically favored anymore. It seems rather obvious that
such a transition is of I-order resulting, hence, in a separation
of the sample into coexisting `carrier-rich' and `carrier-poor'
regions. Such an idea of two coexisting phases was proposed
in Refs [15, 16] for HTS-cuprates where it is now the topic of
countless numerical studies (see, e.g., Ref. [17] and references
therein). To do justice to the pioneering work [13], an intrinsic
heterogeneous structure has already been suggested to
interpret the neutron data [13] on doped manganites.

The main theoretical difficulties in sorting out whether a
phase separation may occur in cuprates or manganites, arise
due to the need to balance the Coulomb forces: even though
lattice effects favor phase segregation (we do not mean the
role of the `tolerance factor' here), separation into regions
with different electronic concentrations breaks the electro-
neutrality condition. It was argued [15] that such phases may
coexist only as a `foggy' state, with the sizes of `droplets'
regulated by the Coulomb energy. Whether the individual
sizes may be large enough to be resolved, say, in neutron
diffraction experiments, is not clear. (In brief below we
discuss some experiments pertinent to the problem.)

Nowwe return to the phenomena of CMR andmetallicity
in manganites. In Figure 4 a schematic phase diagram
characterizes the magnetic and conducting properties of
La1ÿxSrxMnO3 depending on the Sr-content (the data from
Ref. [18]; PI Ð paramagnetic insulator; PMÐ paramagnetic
metal; CNI Ð canted AF, insulator (Ref. [19]); FI Ð
ferromagnetic insulator; FM Ð ferromagnetic metal; the
meaning of the dot-dashed line will be discussed later). In
Figure 5, data from the same paper [18] show the temperature
dependencies of the resistivity for samples with different Sr-
concentrations. A glance at data in Fig. 5 convinces us of the

existence of two different phenomena depending on the
concentration. The high temperature CMR corresponds to a
sharp drop in the resistivity accompanying the onset of the
ferromagnetic moment at some T0. `Metallicity', on the other
hand, means a metal-like behavior down to the lowest
temperatures. The latter takes place only for concentrations
above a threshold concentration, xc ' 0:16. Details of the
phase diagram in the concentration range below xc still
remain to be better clarified experimentally. Therefore, we
will first concentrate on the possible origin of an apparently
sharp onset of metallic behavior at some x � xc.

The concentrations x � xc are quite high to treat our
materials in terms of an average homogeneous solution. Let
us turn our attention first to a better understanding of the
processes taking place in the vicinity of the substituted
divalent ion (Sr2�). The change in the charge, (ÿ1), on the
La-site introduces a hole positioned on surroundingMn-ions.
A characteristic energy of the order of a few eV is responsible
for such hole localization. One may ask about the concentra-
tion at which divalent ions sitting on adjacent sites first start
forming an infinite path, or cluster. In terms of the theory of
percolation, this is a familiar site problem, which for a simple
cubic lattice gives xc ' 0:31 (for reviews on the theory of
percolation see Ref. [20]). It is well known that this threshold
value is not universal and depends on the specific lattice.
More important is this: if there is a correlation between sites,
the threshold value rapidly decreases and tends to the value of
0.16 when the effective correlation radius exceeds the
interatomic distances, i.e., to the value for a continuous
percolation problem. To see implications of this result for
our problem, note that one hole produced by one Sr-ion may
go to at least eight manganese sites. Hence, one cannot say
that the hole resides on a single Mn-site and then apply the
site-percolation results just counting Mn4+ in the same
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manner as for Sr2+-sites. Each of the eight Mn-sites provides
equivalent positions for occupation by one hole. One may go
further and say that the hole's wave function is probably
spread beyond the unit cell size. The Coulomb forces over
these distances prevail over all energies involved in the
Hamiltonian (1) ± (3) except the Hund exchange, JH, which
also results in the ferromagnetic magnetization of the spins of
Mn-ions surrounding Sr2+-ion.

In the simple percolation approach, which, in essence, is
classical, there are no specific details regarding the micro-
scopic mechanism for conductivity. One merely assumes a
possibility of charge transfer along a bond on the cluster.
When the infinite (critical) cluster is formed at xc, a current
may flow across the sample, and the conductivity rapidly
increases as �xÿ xc�ÿt for the 3D-random resistor network
[20]. There are not enough reliable data yet to verify whether
the residual resistivity as a function of concentration behaves
in accordance with this prediction.

With x > xc the conducting path acquires a `finite
thickness', so that one can treat this part of the sample as a
`conducting phase', in terms of which a question about the
sort of `band' mechanism seems possible to formulate. Recall
that although the conducting paths are localized in some
vicinity of the Sr2+-clusters, the role of the Coulomb forces is
rapidly diminished by effective charge screening. If the latter
statement is correct, such a conducting phase would be locally
close in properties to the ferromagnetic state for the
homogeneous sample except that it is not clear how to
determine the `density of carriers'. (The structure of the
critical cluster, around which this new `phase' grows, is
known [20] to be extremely irregular. Some of the doped
holes may go into localized states.) In Ref. [21], samples with
x � 0:2 (La1ÿxSrxMnO3) have shown excellent metallic
behavior up to 200 K:

r � r0 � AT 2 : �8�

Taking the standard expression for conductivity,

s � ne2t
m�
� ne2l

pF
; �9�

and expressing pF in terms of n, the carrier concentration in
the isotropic model, we get from Eqns (8), (9) for the mean
free path, l,

l � 100A ; EF � t � 103 K �10�
(we assumed n � 1021 cmÿ3, m� � 3ÿ5m0).

In addition to the `conducting' (and ferromagnetic) phase
in the above picture, the rest of the sample would be occupied
by an `insulating' phase. Its meaning is understood for low x:
according to the mechanism of Eqn (7), lightly doped
LaMnO3 is an insulator with `canted' AF order [19]. For the
three-dimensional percolation problem one may have perco-
lation along both phases simultaneously. In other words, two
phases may simultaneously display their properties on
macroscopic scales. Thus, the canted phase is clearly seen at
low temperatures by neutrons{ in La2ÿxSrxMnO3 at
x � 0:12. Below x � 0:16, we believe, the `conducting' phase
exists in the form of insulated ferromagnetic islands (clusters).
Above xc � 0:16, both AF and F-phases may coexist, while
with a further increase of x the AF and JT-structural order, in

turn, may be present only locally. There has been no
systematic work yet done to prove or disprove this view,
although, there are many indications that intrinsic inhomo-
geneities [13] are, indeed, present in the concentration range
up to x � 0:3ÿ0:4.Most experiments confirming this point of
view use one or other local probe technique: NMR [22], ion
channeling [23], or the so-called pair-distribution function
analysis of neutron scattering data [24]. This short presenta-
tion is intended to briefly expose some basic theoretical ideas,
and we will not consider any longer other experimental means
of detecting the existence of the phase separation phenomena
or evaluating the current experimental situation.

An alternative picture to that described above, is a phase
transition to a metallic (and ferromagnetic) ground state at
x > xc. Thermodynamically, such a transition should be a
first order phase transition between insulating and metallic
states tuned by the increase of dopant concentration. Even
though disorder is always present, screening may make the
new phase similar to a metallic state possessing a large Fermi
surface. The first order nature of the transition is obscured by
the fact that the tuning mechanism, namely, doping by
divalent elements, is not a thermodynamical way of addres-
sing the phase transition. One again sees a clear similarity in
problems regarding the doping mechanisms between manga-
nites andHTS-cuprates. In both cases doping is a `forced' way
to cross some `miscibility' gap, separating the insulator from a
metallic ground state. In cuprates it is often assumed the
existence of small Fermi pockets (with x for the number of
carriers) which evolve somehow with doping in a large Fermi
surface [number of carriers � �1ÿ x�]. The percolation
interpretation above, if correct, would eliminate the notion
of small pockets in cubic manganites as well as in cuprates.

We now turn our attention to finite temperatures. One
necessary comment is that the Curie temperature for transi-
tion into ferromagnetic state, Tc�x�, is , in fact, finite at
x � xc. For site-problems on the lattice the Heisenberg spin
Hamiltonian with the exchange interaction between nearest
neighbors only would require Tc�x� ! 0 at x � xc (see in
Ref. [25]). Such behavior was shown in Fig. 4 by the dot-
dashed line. There is no such theorem proven for the non-
local DE-mechanism. In Ref. [19] arguments are given in
favor of a long-range character for spin-spin interactions
between holes localized near substituted defects.

Finally, we consider whether the concept of the two
phases' coexistence may be of some use in explaining the
phenomenon of CMR. For that we assume that although the
`insulator' phase acquires a finite resistivity at elevated
temperatures, it is still much higher than the resistivity of the
`metallic' phase. Ferromagnetic order (and, hence, conduc-
tivity due to DE-mechanism) would be naturally oppressed
with the temperature increase. This qualitative behavior may
also be interpreted as a reduction in the amount of the well-
conducting phase, and the percolation approach will imme-
diately come into effect again. Indeed, above some tempera-
ture, T0, the concentration of the `metallic' phase is not
enough to ensure current flow across the whole sample, so
that the conductivity is zero (we neglect a contribution from
the insulating phase). Below T0 percolation is restored, and
the conductivity s�T� dramatically increases. CMR is then
well understood as due to an increase in the amount of the
conducting phase in the presence of a magnetic field which
drives the system above the percolation threshold.

The alternative view that the Curie point (orT0) is due to a
sudden change in the conduction mechanism (localization-{ J Lynn (private communication).
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delocalization crossover) has already been emphasized in
Ref. [12]. It is in no apparent contradiction with the above
picture, except it is assumed in Ref. [12] that the new state
below T0 is homogeneous along the whole sample. There is a
consensus now that the conductivity above T0 is related to a
polaronic mechanism. However, it is also established that JT-
distortions are also present in the conducting (ferromagnetic)
phase below T0 (see, e.g., in Ref. [24]). Whether these findings
should be considered as proof of the phase-coexistence, or
there are strong fluctuations below T0 not only in the
magnetic moment [26] orientations, but also in the structural
order, remains to be better understood.

The drop in resistivity below onset of ferromagnetic order
is often related [27] to scattering on short-range spin
correlations in the ordered phase [28]:

t�T0�
t�T� � 1ÿ jMj2

S�S� 1� ; �11�

where t�T� is the mean free time for an electron spin to scatter
on themoment fluctuations. It has been noted [27] that results
on the resistivity behavior follow the jMj2-term in (11) rather
closely. On the other hand, there are some theoretical
difficulties with the derivation of Eqn (11). Equation (11)
was obtained in Ref. [28] by treating the electronic scattering
as an elastic process, a provision which seems to us self-
contradictory, because short-range correlations are due to
short-wave magnons the spectrum of which experience no
sharp changes at the transition and their typical frequencies
are of the order of T0 itself.

The agreement between the experimental data on resistiv-
ity with the temperature dependence of the magnetization, in
accordance with Eqn (11), is, indeed, a remarkable fact, since
this behavior is exactly that which follows from the predic-
tions of the percolation approach. Namely, it has been shown
(see in Ref. [29]) that there exists a proportionality between
the conductivity, s�x;T�, magnetization, M�x;T�, and the
stiffness coefficient, which determines the low frequency
magnon spectrum:

o � D�x;T�k2

(if all characteristics are averaged over the same random
ensemble). This relation,

s�x;T� /M�x;T�D�x;T� ; �12�

leads to the same singular behavior in resistivity near T0 as
Eqn (4), since, in turn, D is proportional to M. The critical
behavior for M / �T0 ÿ T�b is well described by b � 0:3 in
La1:8Sr0:2MnO3 [21]. The same exponent was obtained for D
in Ref. [30]. Finally, for conductivity below T0, plotting s in
the form

s / �Tÿ T0�m ;

with m about 0.6 results in a good fit to the experimental data{
(note that the samples of Refs [21, 30] are from the same
batch).

This fact, at least, does not contradict the two-phase
interpretation.

To summarize, the band-approach properly describes the
low temperature properties of pure and lightly doped

LaMnO3. The band structure is determined by the super-
structure imposed onto an initially cubic lattice due to
involvement of the DE-mechanism and the JT-instability. A
new interpretation is suggested for process of doping: from
the extreme of low concentration the doped holes are kept
bound to the vicinity of substituted ions by Coulomb forces.
The finite conductivity and ferromagnetic phase arise along
the percolation clusters growing with increasing concentra-
tion. There are theoretical reasons and experimental evidence
in favor of phase separation in doped manganites.

The author belongs to the last generation of Landau's
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acknowledges this fact in the presentation to be published in
the special Uspekhi's issue devoted to the memory of Lev
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