
Abstract. The recent realization of Bose ±Einstein condensa-
tion in atomic gases opens new possibilities for the observation
of macroscopic quantum phenomena. There are two important
features of these systems Ð weak interaction and significant
spatial inhomogeneity. Because of this a non-trivial `zeroth-
order' theory exists, compared to the `first-order' Bogolubov
theory. The zeroth-order theory is based on the mean-field
Gross ±Pitaevskii equation for the condensate c-function. The
equation is classical in its essence but contains the constant �h
explicitly. Phenomena such as collective modes, interference,
tunneling, Josephson-like current and quantized vortex lines
can be described using this equation. Elementary excitations
define the thermodynamic behavior of the system and result in a
Landau-type damping of collective modes. Fluctuations of the
phase of the condensate wave function restrict the monochro-
maticity of the Josephson current. Fluctuations of the numbers
of quanta result in quantum collapse-revival of the collective
oscillations.

1. Introduction

In 1924 ± 1925, Albert Einstein published two articles [1] in
which Bose's quantum statistics of photons was extended to
the case of a perfect gas of a given number of atoms. In the

second of the articles, a spectacular phenomenon, the
condensation of atoms in their lowest quantum state, was
predicted. It was discovered, namely, that at high enough
temperature the momentum distribution of atoms is given
by{

np �
�
exp

�
E�p� ÿ m

T

�
ÿ 1

�ÿ1
; T > T 0

c ; �1�

where m is the chemical potential of the gas and E�p� � p2=2m.
The situation, however, is different at the phase transition
temperature (we take the degeneration factor g � 1)

T 0
c � 3:31

�h2

m
�n�2=3 ; �2�

where n is the gas density. Below this temperature the number
N0 of atoms in the state with p � 0 is macroscopically large,
i.e. proportional to the total number N of atoms,

N0 � N

�
1ÿ

�
T

Tc

�3=2�
; T < T 0

c ; �3�

whereas the rest of the atoms are distributed according to Eqn
(1) but with the chemical potential m � 0, so that

np �
�
exp

�
E�p�
T

�
ÿ 1

�ÿ1
; T < T 0

c : �4�

This `Bose ±Einstein condensation' (BEC) plays an
important role in the theory of physical systems such as
superfluid helium, electrons in superconductors, and exci-
tons in insulators. In all these cases, however, BEC is masked
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either by a strong interaction or by the complexities of a
system. For example, although hardly anybody can doubt the
existence of Bose condensate in superfluid 4He, complicated
theoretical calculations are needed when using neutron
scattering data to reliably determine the number of atoms in
the condensate.

As recently as 1995, a sophisticated experimental techni-
que enabled BEC to be observed directly in alkaline-earth
metal vapors in a work which, in my view, crowns the
development of 20th century experimental physics [2 ± 4].

Due to their magnetic moments, alkaline-earth atoms
have the ability to be confined in an appropriately arranged
`magnetic trap.' Once trapped, the atomsmust be cooled, first
by `laser cooling' and then by evaporation from the trap.
Since high-energy atoms evaporate more rapidly, the latter
process makes the gas cooler (in full analogy to what happens
to tea in a cup). The resulting temperatures of a few hundred
nK have allowed condensation to be observed. At present,
several experimental groups have already been able to achieve
BEC.

These experiments, while confirming the famous predic-
tion by Einstein, present scientists with a new form of
substance in which strong spatial inhomogeneity makes
quantum effects very important on a macroscopic scale.

The present paper reviews the main theoretical methods
currently used to treat a magnetic-field-trapped Bose-con-
densed gas and, in contrast to Ð and hopefully complement-
ing Ð our previous Uspekhi publication [5], is mostly
concerned with the quantitative aspects of the problem.

As already mentioned, magnetically trapped atoms are
kept near the potential minimum of the trap. Their interac-
tion with the trap can be described by an external potential
Vext�r� which, under typical experimental conditions, we will
assume to be harmonic,

Vext�r� � m

2
�o2

xx
2 � o2

yy
2 � o2

zz
2� : �5�

For a perfect Bose gas in a trap, the transition temperature
and the gas density at the center of the trap are related by Eqn
(2), which, for a harmonic trap, gives [6]

T 0
c � �hoH

�
N

z�3�
�1=3

; oH � �oxoyoz�1=3 : �6�

For a phase transition to be sharp, the `thermodynamic
limit' should be taken. In our particular case, however, we
should simultaneously let N!1 keeping constant the
product oHN

1=3 (i.e., T 0
c ) in doing so [7]. Note also that

while in a homogeneous perfect Bose gas a phase transition is
of third order, so that at T 0

c there is a jump in the temperature
derivative of the specific heat; in a trap we are dealing with a
second-order transition already in a perfect gas.

If the rarefaction is great enough, the transition tempera-
ture expression (6) can also be applied to good accuracy to an
interacting gas. To describe the spectral distribution of
condensed atoms, however, the interatomic interaction and
the energy of vacuum quantum oscillations are to be taken
into account. Indeed, in the absence of these effects the
condensate, which has no thermal pressure, would contract
itself into a point at the minimum of the potential energy.
Although the effects mentioned above prevent this collapse,
the condensate still forms a sharp density peak in the
neighborhood of this point. Clearly, a quantitative descrip-
tion of such phenomena requires that a theory of inhomoge-

neous Bose-condensed gas be developed.

2. Condensate at zero temperature

2.1 Basic equations
The first theoretical treatment of a rarefied Bose gas was given
in 1947 when Bogolyubov [8] separated the classical part
(condensate) from the second-quantized operator c of atom
annihilation, ĉ�r; t� � �����

n0
p � ŷ�r; t�, where

�����
n0
p � c-num-

ber� const. For a rarefied gas, y5
�����
n0
p

. Here the conden-
sate density n0 � N0=V, where N0 is the number of atoms in
the condensate. Treating the quantum part of the c operator
as a perturbation, Bogolyubov developed a `first-order' (in
quantum effects) theory of a spatially homogeneous Bose gas.

The same idea applies to an inhomogeneous gas. The
difference is that for this case there exists a non-trivial `zero-
order' theory in which the operator properties of ĉ can be
neglected. The point is that now the interaction is not just a
small correction, but plays a key role in the behavior of the
condensed atoms. Extending Bogolyubov's ansatz for the ĉ
operator to a spatially inhomogeneous gas yields

ĉ�r; t� � c0�r; t� � ŷ�r; t� : �7�

The task now is to derive an equation forc0, the classical part
of the `condensate wavefunction.' The starting point is the
exact operator equation for the operator c in the Heisenberg
representation,

i�h
q
qt
ĉ�r; t� �

�
ÿ �h2H2

2m
� Vext�r�

�
�
ĉy�r0; t�V�r0 ÿ r�ĉ�r0; t� dr0

�
ĉ�r; t� ; �8�

where Vext�r� is the confining potential of the trap and
V�r0 ÿ r� is the atom-atom interaction potential. The diffi-
culty is that neglecting ŷ in Eqn (8) is equivalent to neglecting
all interatomic correlations, which is unacceptable on the
scale of r0, the range of V. This difficulty does not exist,
however, if V satisfies the validity conditions of the Born
approximation. We then can safely replace ĉ by c0 and take
the function c0 (varying slowly on the scale of r0) out of the
integral. The result is

i�h
q
qt
c0�r; t� �

�
ÿ �h2H2

2m
� Vext�r� � gjc0�r; t�j2

�
c0�r; t� ;

�9�

where

g �
�
V�r� dr : �10�

Now Eqn (10) can be rewritten as

g � 4p�h2a

m
; �11�

where a is the Born amplitude of the s-scattering of low-
energy atoms on each other (the Born approximation is
applicable if a5 r0). Now let us take advantage of the fact
that, from general arguments, the low-temperature properties
of a rarefied (na3 5 1) gas are dominated by the s-scattering
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amplitude whatever the potential V. This means that Eqn (9)
is valid independently of the applicability of the Born
approximation if the quantity a in Eqn (11) is identified as
the exact s-scattering amplitude. (Equation (10) is generally
invalid in this case).

Note here that neglecting the correlations in deriving (9) is
often referred to as the `mean field approximation.'

Equation (9) was derived by E P Gross and L P Pitaevski|̄
[10] independently in 1961. Note that it can be obtained by
varying a suitably chosen action S,

dS � d
�
ÿ i�h

�
c�0

q
qt
c0 dr dt�

�
Edt

�
� 0 ; �12�

where the energy functional E is

E �
� �

�h2

2m
jHc0j2 � Vext�r�jc0j2 �

g

2
jc0j4

�
dr : �13�

Equation (9) describes the dynamics of an inhomogeneous
rarefied Bose gas at zero temperature, T � 0, and is classical
in the sense that the function c0 is not an operator and
determines the real spatial distribution of condensate atoms
rather than the probability density. The modulus and phase
gradient of c0 have a clear classical meaning:{

c0 � jc0j exp�iF�; n�r; t� � n0�r; t� � jc0j2; v�r; t� �
�h

m
HF ;

�14�

where n and v are the number of atoms per unit volume and
the atomic velocity, respectively.

The condensate wavefunction can be said to represent the
classical limit of the atomic de Broglie wave, when corpus-
cular properties do not play a role. Describing the condensate
in terms of c0 is similar to representing a classical electro-
magnetic field in terms of electric andmagnetic field strengths
obeying Maxwell's equations. However, in contrast to
Maxwell's equations, Eqn (9), which is their analogue in the
present context, contains the Planck's constant �h explicitly.

Equation (9) can be rewritten as a system of equations for
n and F, one having the familiar hydrodynamic continuity
form,

q
qt
n� H � �vn� � 0 ; �15�

and the other being analogous to the Josephson's equation
known from the theory of superconductivity,

�h
q
qt

F�
�
1

2
mv2 � Vext � gnÿ �h2

2m
���
n
p H 2

���
n
p �

� 0 : �16�

If the gas is in its ground state, the wavefunction c0 varies
with time as c0 � exp�ÿimt=�h�, where m is the chemical
potential. Thus, the ground state density distribution is
determined by the equation�

ÿ �h2H 2

2m
� Vext�r� ÿ m� gjc0�r; t�j2

�
c0�r; t� � 0 : �17�

Equation (17) can also be obtained directly by minimizing
Eqn (13) for the energy with the number of particles kept
fixed. (A similar equation was previously analyzed by V L
Ginzburg and the present author in connection with the
superfluidity of liquid helium near the l point [11]. Note,
however, that the coefficients of the equation have distinctly
different meanings in these two problems).

2.2 Hydrodynamics
Equation (9) contains an `internal' parameter with a dimen-
sion of length, and the correlation radius x � �h=

���������
mgn
p

, whose
ratio to the size of the condensate `cloud' R determines the
general behavior of the solutions involved. Since both n andR
increase with the number of condensed atoms N, for N large
enough the inequality R4 x holds. It is readily verified that
this condition can be rewritten as

N4
aH
a
; aH �

�
�h

moH

�1=2

�18�

(in fact this inequality is generally well satisfied for all
experiments of interest). In this case the `quantum pressure'
��h2=�2m ���

n
p ��H2 ���

n
p

can be neglected as small compared to the
remaining terms in Eqn (16). Taking gradients on both sides
of the equation now yields

m
q
qt
v� H

�
1

2
mv2 � Vext � gn

�
� 0 : �19�

Eqns (15) and (19) no longer contain �h and are just
classical hydrodynamical equations for the potential motion
of a medium with the pressure depending on density as
P � gn2=2. Note a special symmetry property resulting from
this equation of state: it turns out that the governing
equations are invariant under the transformations
v! Cv; n! C2n, r! Cr, C being a constant.

Equation (19) shows that in the above large N limit, the
ground state density distribution has the simple `Thomas ±
Fermi' form [12, 14]

nTF�r� � mÿ Vext�r�
g

: �20�

Recalling the quasiclassical requirement of constancy for
the chemical potential of a system in a field,

ml
�
n�r��� Vext�r� � m � const ; �21�

one recognizes that Eqn (20) specifies this requirement for a
gas with local chemical potential ml�n� � gn (the term local
meaning the value for the homogeneous gas of the same
density n).

In the same approximation the chemical potential m is
related to the number of atoms N by

mTF �
�hoH

2

�
15N

a

aH

�2=5

: �22�

Note that Eqn (20) is meaningful only if the scattering
amplitude a, and hence the coupling constant g, are positive,
i.e., when atoms effectively repel each other. Indeed, the
solution of Eqn (20) for g < 0 is readily verified to
correspond to a maximum (rather than minimum) of energy
and is therefore completely unstable. The gas in this case has a

{ Henceforth the subscript `0' is omitted when there is no possible

confusion.

June, 1998 Bose ëEinstein condensation in magnetic traps. Introduction to the theory 571



negative compressibility, dn= dP < 0. In the opposite limiting
case N5 aH=jaj the coupling term in Eqn (17) may be
neglected, which enables a steady-state solution to be
constructed. This latter is metastable, however, in that a
strong enough compression will bring the gas into an
interaction-dominated state, after which it will compress
itself infinitely Ð in so far, at least, as Eqn (17) holds. The
reasoning above implies that a metastable solution may exist
only for N below a certain Nc � aH=jaj [13, 14]. Although
atoms with a < 0 have been studied experimentally [4], this
subject need not be pursued here.

One of the most interesting applications of Eqs (15) and
(19) is the problem of condensate oscillations, which have
been studied experimentally [16, 17] and represent a very
effective tool for diagnosing systems of interest here. To find
condensate eigenfrequencies, a system of linearized equations
(15), (19) must be solved. This has been done by Stringari [18].

Linearizing Eqs (15) and (19) and eliminating the velocity
one easily obtains the following equation for the small
deviation dn of the density from its equilibrium value (20):

mo2dn � ÿH �
n�

mÿ Vext�r�
�
Hdn

o
: �23�

The reason that this equation does not contain the coupling
constant g explicitly is that the hydrodynamical limit
corresponds, in a sense, to the limit g!1. Equation (23)
can be solved analytically for an isotropic trap
ox � oy � oz � oH when the eigenfrequencies are of the
form

o � oH�2n2r � 2nrl� 3nr � l�1=2 ; �24�

where l and nr are integers, l determining the angular
momentum of the oscillations.

In most experiments thus far, traps have been axisym-
metric: ox � oy � o?, oz � lo?, implying that the z
component of the angular momentum is conserved and that
the eigenfrequencies may be characterized by specifying the
azimuthal quantum number m.

Note, first of all, that the motion of the mass center in a
harmonic trap is totally separable and that the frequencies of
interest therefore have a free-particle form, o � o?, m � �1
ando � oz,m � 0. The lowest three `non-trivial' frequencies
are

o2 � 2o2
? ; m � �2 ; �25�

and

o2 � o2
?

�
2� 3

2
l2 � 1

2

���������������������������������
9l4 ÿ 16l2 � 16

p �
; m � 0 : �26�

Although frequency measurements have now reached an
accuracy level where the above hydrodynamic approximation
is no longer valid, direct (and very involved) numerical
frequency computations using the complete Eqn (9) [18]
have showed a very good agreement with experiment.

The hydrodynamic approximation can also be applied to
the nonlinear dynamics of the condensate, in which case the
additional symmetry property noted above is important.
Owing to this symmetry, the hydrodynamical equations
have exact solutions in which the density n and velocity v are
a second-order polynomial in coordinates and a linear
function of coordinates, respectively.

Let us next consider the example problem of spherically
symmetrical gas pulses in an isotropic trap. Taking the
solution in the form v � u�t�r, n � c1�t� � c2�t�r2, substitut-
ing into Eqns (15) and (19), eliminating c1 and c2, and
introducing an unknown function w defined by u � _w=w, we
obtain [20 ± 22]

�w� o2
H

wÿ 1

w4
� 0 : �27�

Equation (27) is readily integrated in quadratures. Lineari-
zing Eqn (27) around the equilibrium value w � 1 yields
harmonic oscillations of frequency o � ���

5
p

oH in consistence
with Eqn (24) with l � 0, nr � 1.

Similar solutions for an anisotropic trap are more
complex in nature, indicating in particular the development
of chaotic motion at large amplitudes [20].

2.3 Interference and vortices
The phenomena discussed in the preceding section cannot
strictly be termed a `macroscopic quantum effect' since the
Plank constant disappeared in proceeding from Eqn (16) to
(19). However, the complete equation (9) Ð and hence the
condensate wavefunction concept Ð can be verified experi-
mentally in a variety of interesting ways.

Unfortunately, the numerical integration of Eqn (9),
especially for non-steady multi-dimensional problems, is
extremely difficult even for state-of-the-art computation
facilities [23 ± 25], and under these circumstances the varia-
tional method of Ref. [26] may be of use.

The starting point for this method is to choose a trial
wavefunction c�r; ai� plausibly approximating the desired
solution and containing a number of parameters ai. Taking
the ai to be functions of time t, one substitutes c�r; ai�t�� into
the expression (12) for S and integrates over dr. The function
S� _ai; ai� so obtained is then varied with respect to the ai thus
giving a relatively simple system of ordinary first-order
differential equations in the ai�t�.

Recently, spectacular experiments on condensate inter-
ference have been conducted [27]. The authors had a cigar-
like trap at their disposal and employed a laser beam at a
frequency below the atomic absorption line, as their `working
tool'. Because the dielectric permittivity of the gas satisfies
inequality E�o� < 1 in this region, atoms are pushed out of the
beam thus dividing the condensate into two halves spatially.
Turning off the confining potential then causes the two halves
to expand and interfere with each other. Figure 1 shows the
experimental results along with those obtained theoretically
by integrating Eqn (9) numerically [28]. Theory and experi-
ment agree quite well if the computed curves are roughened
enough to account for the finite resolution of the experi-
mental apparatus.

Another interesting quantum effect described by Eqn (9)
is the Josephson effect. Suppose the magnetic trap consists of
two potential wells with a potential barrier in-between. If the
atomic chemical potentials in the wells are different, an
oscillating current of atoms will flow between the wells. Let
us consider the simplest possible example of a one-dimen-
sional symmetrical trap shown schematically in Fig. 2.

If the two wells contain different numbers of atoms, their
chemical potentials, m1 and m2, are also different. It will be
assumed that the barrier between the wells is high enough.
There are two types of solutions to Eqn (17). The first type,
which we shall denote c1�x�, corresponds to the chemical
potential m1 and is localized in well 1. The second, c2�x�, with
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chemical potential m2, is localized in well 2. These two
functions overlap only in the classically forbidden portion of
the barrier, where they are small in value so that the linear
term in the equation is negligible. As a result, the linear
combination

c�x; t� � c1�x� exp
�
ÿ i

m1t
�h

�
� c2�x� exp

�
ÿ i

m2t
�h

�
�28�

represents a time-dependent solution of Eqn (9). The atomic
flux corresponding to wavefunction (28) is:

I � i�h

2m

�
c�x; t� q

qx
c��x; t� ÿ c��x; t� q

qx
c�x; t�

�
: �29�

This has the typical Josephson form

I � I0 sin
�
F2�t� ÿ F1�t�

� � I0 sin
�m1 ÿ m2�t

�h
; �30�

where I0 � ��h=m��c1c
0
2 ÿ c2c

0
1� and I0 is calculated by

solving a rather peculiar nonlinear tunneling problem [29].
(The reader is referred to Ref. [30] for a more realistic
experimental set-up).

The major feature of superfluid systems is the presence of
Onsager-Feynman quantum vortices, i.e., of lines with the
property that the phase F of the condensate wavefunction
changes by 2pK (K being an integer) in bypassing the line.
Clearly, the velocity circulation around a vortex is 2p�hK=m.
One can employ Eqn (17) to construct the condensate
wavefunction in the trap in the presence of such vortices.
(Incidentally, it was the problem of vortices in a rarefied Bose
gas which was originally addressed in Refs [9, 10]).

Letting the vortex line be directed along the trap
symmetry axis z, the desired wavefunction may be taken in
the form

c�r� �
���������������
n�r?; z�

p
exp�iKf� ; �31�

(where r2? � x2 � y2 andf is an angle in the x, y plane), which
corresponds to a vertex with a tangential velocity
v � �hK=mr?. The solution of Eqn (17) for this form is given
elsewhere [31]. Figure 3 shows the results for the vortex with
K � 1 in a trap with the parameters from Ref. [2]. It is seen

that the vortex acts to push atoms away from the axis thus
producing a toroidal density distribution.

The problem of creating and observing vortex filaments in
a magnetic trap is one of the most challenging problems in the
subject of Bose ±Einstein condensation.

3. Elementary excitations

3.1 Thermodynamical similarity
The structure of a Bose ±Einstein condensate is different for
traps at finite temperatures than for traps at T � 0. At finite
temperatures some of the atoms are outside the condensate,
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Figure 1. Density distribution for interference between two condensates:
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occupying excited levels produced by the trap potential.
These atoms form an `atmosphere' around the higher-
density condensate cloud and, together with the excitations
inside the condensate, determine the thermodynamic func-
tions of the systems. The calculation of these functions
therefore requires a detailed study of the excitations.
Although such a calculation depends crucially on the
assumption of a finite number of atoms in the trap, in this
section we will be concerned with the thermodynamic limit
N!1 (with N 1=3oH kept finite) which we mentioned in the
introduction. We shall see that in this limit the properties of a
gas in a trap can be expressed in terms of the properties of a
homogeneous gas and that the magnetic field only appears in
the combination withN [7] as we mentioned earlier. Since the
trap potential varies slowly in the limit oH ! 0, the
quasiclassical condition (21) is satisfied, but this time for the
gas as a whole rather than the condensate alone. Then, if
n�m;T� is the density of a homogeneous gas as a function of m
and T, the gas density at point r in the trap is found to be
n�mÿ Vext�r�;T�. The total numberN of atoms is obtained by
integrating over the volume. Changing the integration
variable to x � Vext gives

N � 2p
�

2

mo2
H

�3=2 �1
0

n�mÿ x;T�
���
x

p
dx ; �32�

indicating that trap parameters do not indeed appear unless in
the combination N1=3oH. Note that Eqn (32) determines the
chemical potential m of the system.

The above formulae hold for any system in a trap in the
thermodynamic limit. For a rarefied gas, where interaction is
characterized by a single parameter a, by simple dimensional
arguments m�N;T� � T 0

c n�z;T=T 0
c �, where T 0

c is given by Eqn
(6), z � �N1=3oHma2�=�h, and n is a dimensionless function
[32]. Note that in the limit considered the condensate has a
sharp boundary determined by n�m�N;T� ÿ Vext�r�;T� �
nc�T�, where nc�T� is the homogeneous gas density for which
T is the transition temperature.

A similar kind of analysis applies to other thermodynamic
functions. For the thermodynamic potential O�m;T�, for
example,

O�m;T� � 2p
�

2

mo2
H

�3=2 �1
0

Y�mÿ x;T�
���
x

p
dx ; �33�

where Y�m;T� is the potential per unit volume of a homo-
geneous gas. From this it is easily shown that the entropy per
particle S=N � s�z;T=T 0

c �, implying that in two experiments
with the same similarity parameter z we shall have equal
entropies provided the values ofT=T 0

c are equal. Calculations
show [32] that the thermodynamic functions are actually
dominated by the parameter z 1=5 and depend only slightly
on N.

We emphasize that the results above are valid in the
thermodynamic limit over the entire temperature range,
including the critical region near the transition. One cannot
expect, however, that these limiting relations will be very
accurate for the values of N currently achievable.

3.2 Condensation kinetics
Despite intense interest in the subject, few reliable results are
available on the time evolution of the condensation process.
The condensation of a homogeneous perfect gas was treated
in considerable detail in Ref. [33] in which Boltzmann's

equation is solved by assuming that the distribution function
f depends on the atomic energy alone. Boltzmann's equation
then becomes

df�E1�
dt
� C

�
F� f � P

p1
d E01 dE

0
2 ; �34�

where the constant C is proportional to g2, P equals the least
of the quantities p1, p2, p

0
1, p

0
2, the region of integration is

E1 < E01 <1, E1 ÿ E01 < E02 <1,

F� f � � �1� f1��1� f2� f 01 f 02 ÿ �1� f 01 ��1� f 02 � f1 f2 ; �35�

and E2 � E01 � E02 ÿ E1. By integrating Eqn (34) numerically it is
found that if the distribution function is initially a smooth
function of the energy, then in some finite time it becomes
infinity at E � 0, thus signaling that the condensate starts to
form. References [34, 35] come to different conclusions,
however, so that the question remains open at present. What
is going on at the next stage of the process, when the
condensate has already formed, is even less known. Some
plausible considerations may be found in Ref. [36].

3.3 Linearized equations
Turning now to elementary excitations we note that consider-
able simplifications are achieved by using the `classical'
equation (9). It suffices to find the classical frequencies ocl

of the oscillations described by the linearized version of this
equation, after which the energy levels of the elementary
excitations are written as E � �hocl.{ (Clearly, this procedure is
equivalent to the diagonalization of the Hamiltonian in the
Bogolyubov approximation).

Let c � cg�r� � y�r; t�, where cg is the ground state
wavefunction obeying Eqn (17), and y � u�r� exp�ÿiot��
v�r� exp�iot�. Substituting this into Eqn (9) and linearizing
with respect to u and v we obtain after a little manipulation
[10]�
ÿ �h2H2

2m
� Vext�r� ÿ m� 2gn�r�

�
u�r� � gn�r�v�r� � Eu�r�;�

ÿ �h2H2

2m
� Vext�r� ÿ m� 2gn�r�

�
v�r� � gn�r�u�r� � ÿEv�r�;

�36�
where n � jcgj2.

We are now in a position to perform the `secondary
quantization' of y by introducing the excitation creation, â,
and annihilation, ây, operators. The operator ŷ can then be
expressed as

ŷ �
X
j

�
uj�r�âj � vj�r��âyj

�
; �37�

where uj and vj are solutions of Eqn (36) normalized so that
[38]

{ In this reviewwe aremainly concernedwith the case of low temperatures,

when the properties of elementary excitations are temperature indepen-

dent. Under realistic experimental conditions, however, these properties

do exhibit a temperature dependence, and this is rather difficult to take

into account theoretically [37, 38]. Note that the very concept of excita-

tions with a temperature dependent spectrum relies on the low-density

assumption.
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�
dr
�
u�i �r�uj�r� ÿ v�i �r�vj�r�

� � di j ; �38�

with juj�r�j2 ÿ jvj�r�j2 interpreted as the probability density
for the excited state j.

3.4 Quasiclassical approximation
Although Eqn (36) is not amenable to an analytical general
solution, fortunately, in many cases a quasiclassical approx-
imation can be employed [38, 40, 41]. In this spirit, let

u�r� � �u�r� exp �ij�r�� ; v�r� � �v�r� exp �ij�r�� ; �39�

where the j phase is related to the excitation momentum p by

p � �hHj : �40�

Now let p4 �h=aH, where aH � ��h=moH�1=2 is the magnetic
length defined in Eqn (18). [For the sake of simplicity we omit
the state-labeling subscript j in Eqns (39) ± (49)]. Also assume
that the amplitudes �u�r� and �v�r� vary slowly on the scale of
aH. Since the cloud outside of condensate is about
�2T=mo2

H�1=2 in size, the quasiclassical approximation is
valid only for T4 �hoH. Substituting Eqn (39) into (36) and
neglecting the derivatives of the amplitudes �u and �v and the
second derivatives of the phase j, we obtain�

p2

2m
� Vext�r� ÿ m� 2gn�r�

�
u�r� � gn�r�v�r� � E�p; r�u�r�;�

p2

2m
� Vext�r� ÿ m� 2gn�r�

�
v�r� � gn�r�u�r�

� ÿE�p; r�v�r� : �41�
In these equations the momentum p is a function of r defined
by Eqn (40). Writing the compatibility condition for these
equations determines the quasiclassical spectrum of elemen-
tary excitations [12, 40]:

E�p; r� �
��

p2

2m
� Vext�r� ÿ m� 2gn�r�

�2
ÿ g2n2�r�

�1=2

:

�42�
There are several interesting points to note about Eqn

(42). Inside the condensate cloud, where the Thomas ±Fermi
expression (20) for the equilibrium condensate density is
applicable, Eqn (42) can be rewritten in the form

E�p; r� �
��

p2

2m
� gn�r�

�2
ÿ g2n2�r�

�1=2

; �43�

which is exactly Bogolyubov's homogeneous gas spectrum. In
particular, in the p! 0 limit the dispersion relation takes the
phonon form E � c�r�p, with c � �gn=m�1=2 the sound
velocity. Importantly, Eqn (43) does not depend explicitly
on the external potential but only on the condensate density.
This is consistent with Landau's superfluidity theory in that
the energy of an elementary excitation depends on r only
through the coordinate dependence of the liquid density.

In the low-density region outside the condensate cloud,
Eqn (42) takes the free-atom form

E�p; r� � p2

2m
� Vext�r� ÿ m �44�

(note that this energy is measured from the chemical potential
m, however).

The fact that in the intermediate region the energy E
depends on both n and Vext makes it rather difficult to
construct a full system of equations for a Bose-gas con-
densate in a trap at finite temperature. Such a system, an
analog of the Landau-Khalatnikov system of equations for
superfluid helium (see, e.g., Ref. [42], æ 77), should contain a
kinetic equation for the momentum and coordinate distribu-
tions of elementary excitations, and provide a finite-tempera-
ture extension of Eqn (9) for the function c. Such a system is
still lacking, however. (See Refs [43] and [44] for a discussion
of the relevant problems).

The phase j satisfies the Hamilton ± Jacobi equation

E��hHj; r� � E ; �45�

where E is the prescribed excitation energy value. Solving Eqn
(45) with appropriate boundary conditions at the boundary
of the classically allowed region yields quasiclassical condi-
tions for the quantization of the excitation energy in the trap.

Equations (41) give only one relation between v and u. To
obtain the second relation necessary to find these functions, a
next-order quasiclassical equation is needed. A suitable
choice for this purpose is the continuity equation, whose
steady-state form is

H � �vg�juj2 ÿ jvj2�� � 0 ; �46�

where vg � qE=qp is the group velocity of the excitation. This
equation is satisfied by setting

u � UC�r�; v � VC�r� ; �47�

where the function C � A�r� exp�ij�r�� obeys the continuity
equation in its conventional form,

H � �vgjCj2� � 0 ; �48�

with jUj2 ÿ jVj2 � 1. From Eqn (38), the function C is
normalized so that

� jCj2 dr � 1. We thus see that the
function C is a quasiclassical wavefunction of an elementary
excitation in the usual sense of the word, with energy (42)
playing the role of the Hamiltonian; u and v being auxiliary
functions from this viewpoint.

The quantities U and V are now given by the well-known
Bogolyubov expressions, which are conveniently rewritten as

U;V � �
� �E2 � g2n2�r��1=2 � E

2E

�1=2

: �49�

The energy E here is different for different excited states.
Although we can simply set E � Ej, it is more convenient, in
some cases, to treat E as the function (42) with p̂ viewed as an
operator acting onCj. Then in the averaging procedure, Eqn
(50) described below, the quantity E will play the role of the
classical function E�p; r�.

The function C can be expressed analytically only in
some special cases, for example, in the variable-separa-
ting case of an isotropic trap. Very often, however, it
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suffices to take a quasiclassical limit of expressions like
tr�Q� �Pj

�
C�j Q�p̂; r�Cj dr, where Q�p̂; r� is a certain func-

tion of the operators p̂ and r. To calculate tr�Q�, note that the
trace of an operator can generally be calculated with respect
to any full basis set. In particular, we can take plane waves
Cp � exp�ipr�= ����

V
p

, where V is the volume of a certain large
`box' containing our system. The sum over j can be replaced
by an integration with respect to V dp=�2p�h�3. In the
quasiclassical limit we can consider the operators p̂ and r as
commutative, and all p̂ in Q as standing to the right of r and
hence acting on the function Cp alone. One then has

tr�Q� �
�
C�pQ�p̂; r�Cp

V dp dr

�2p�h�3

�
�
jCpj2Q�p; r�V dp dr

�2p�h�3 �
�
Q�p; r� dp dr

�2p�h�3 ;
�50�

thus reducing the calculation of tr�Q� to integrating the
classical function Q�p; r� over the phase space.

The considerations above provide the basis for the
calculation of the thermodynamic functions of a Bose-
condensed gas in a trap (see Ref. [38] and references therein).

As an example, we next estimate the number of atoms
excited from the condensate at finite temperatures. By
definition, this number can be written as

NT �
�
nT�r� dr �

� 

yy�r�y�r�� dr : �51�

The task now is to apply transformation (37) using the
quasiclassical expressions (47) and (49). Noting that the
expectation value hayj aji is the Bose distribution function

hayj aji ! f�p; r� � 1

exp
�
E�p; r�=T�ÿ 1

; �52�

and using Eqn (50) to sum over the states yields

NT �
�
nT�r� dr �

�
F�p; r� dp dr

�2p�h�3 ; �53�

where the atomic distribution function turns out to be

F�p; r� � �U2�p; r� � V 2�p; r�� f �p; r�
� ÿ

�
qE�p; r�
qm

�
n

f �p; r� �54�

with�
qE�p; r�
qm

�
n

� ÿ p2=2m� Vext�r� ÿ m� 2gn�r�
E�p; r� : �55�

It should be noted that the distribution functions of atoms
and excitations differ only if the excitation energy is low
enough. For high energies qE=qm! ÿ1, so that
F�p; r� � f �p; r�. The same is true for the region outside the
condensate [cf. Eqn (44)], where there is no line of separation
between the excitation and atom concepts. In the opposite
limit of small r, i.e., for phonons, F�p; r� � mc�r� f �p; r�=p, so
that F4 f.

The chemical potential m is defined by specifying the total
number of atoms,

N � N0�T� �NT �
�
n0�r� dr�

�
nT�r� dr : �56�

To conclude this section, let consider a limiting case
opposite to the quasiclassical example above, namely the
hydrodynamical limit of low-energy excitations. In this case
the frequencies can be found by solving Eqn (23) and the
functions u and v have the form [44]

u; v �
�
�

�����������
gn�r�
2o

r
� 1

2

�������������
o

2gn�r�
r �

w�r� ; �57�

where w is the eigenfunction of Eqn (23) obeying the normal-
ization condition

� jwj2 dr � 1.

3.5 Landau damping
We mentioned earlier that measuring condensate oscillation
frequencies gives values that agree well with theoretical
predictions. Another oscillation property measured experi-
mentally is the damping, which also poses a challenging
theoretical problem. The most probable damping mechan-
ism is Landau damping, in which the vibration energy is
absorbed by elementary excitations in a non-collisional
process. (This mechanism was first suggested in Ref. [46]).

The standard approach to Landau damping is to use the
kinetic equation. For a gas in an external potential, the
problem is more conveniently treated by direct perturbation
theory, as was first done by Landau and Rumer in their work
on ultrasound attenuation in insulators (see, e.g., Ref. [42], æ
73). Let us denote by E the energy of a classical oscillation of
frequency o (we assume the number of quanta to be large
when speaking of classical oscillations). The elementary
excitations existing in the system may both absorb and emit
oscillation quanta. The energy loss rate is given by

_E � ÿ�ho�W �a� ÿW �e�� ; �58�

where W �a� and W �e� is the probability for a quantum of
frequency �ho to be absorbed (emitted). In perturbation
theory the transition probability is given by

W � p
X
i; k

��hkjVintjii
��2 ; �59�

where the matrix element is for the transition of the excitation
from state i to state k. Note that Ek � Ei � �ho when the
quantum is absorbed (a) and Ek � Ei ÿ �ho when it is emitted
(e).

The interaction operator here is given by the fourth-order
term in c which is involved in the energy expression (13) and
should in this context be treated as an `effective Hamiltonian':

V̂int � g

2

�
ĉyĉyĉĉ dr : �60�

The operator ĉ in Eqn (60) should be represented in the form
ĉ � c0 � ŷ, with ŷ given by Eqn (37). In the sum (37) we
should distinguish between operators for collective oscilla-
tions, whose damping we are seeking and for which we

{ The same approach can be used to retrieve Belyaev's [47] result on the

probability of one phonon decaying into two, when both the i and k

excitations are emitted and Ek � Ei � �ho (see Ref. [48]).
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introduce the quantities uosc, vosc, âosc, âyosc, and those for
`thermal' excitations, which will be referenced by employing
the subscripts i, k as in Eqn (59). Retaining only the terms
linear in âosc and âyosc, and those with products âykâi or âkâ

y
i in

Eqn (60), we now turn to the process of interest here, in which
a quantum �ho is absorbed or emitted with the i excitation
going over to the k excitation.{This yields the following result
for the energy loss rate

_E � ÿo2p
X
ik

jAkij2d�Ek ÿ Ei ÿ �ho��fk ÿ fi� ; �61�

where E � �honosc is the energy of the classical oscillation
(nosc 4 1) and the matrix element is [49]

Aki � 2g

�
drc0

��u�kvi � v�kvi � u�kui�uosc

� �v�kui � v�kvi � u�kui�vosc
�
: �62�

In deriving Eqn (61) it has been assumed that the occupation
probabilities of states i, k are given by the Bose function
fj ��exp�Ej=T� ÿ 1�ÿ1. Taking the oscillation g to be damped
according to _E � ÿ2gE we finally obtain

g � ÿop
X
ik

jAkij2d�Ek ÿ Ei ÿ �ho� qf�Ei�
qE

; �63�

where the additional assumption �ho5T has been made.
Equations (62) and (63) can be further simplified by

employing the hydrodynamic expressions (57) for the func-
tions uosc, vosc. Equation (63) can be used in calculating the
damping numerically. For a sufficiently large number of
atoms, the excitation spectrum of the system is virtually
continuous so that the summations may be replaced by
integrations, one of which eliminates the d-functions in Eqn
(63).

Analytical damping formulae can be derived for the case
of a homogeneous gas, when u and v are plane waves with
amplitudes of the form (49). We find

g
o
� �a3n0�T��1=2F�t� ; �64�

where t � T=mc2 and the function F is given by

F�t� � 4
���
p
p
t

�1
0

dx

�
1ÿ 1

2u
ÿ 1

2u2

�2

�
�
exp

�
x

2t

�
ÿ exp

�
ÿ x

2t

��ÿ2
; �65�

with u�x� � �1� x2�1=2.
At low temperatures (T5 m, where m � gn0�0� is the

chemical potential for T � 0), Eqn (64) becomes

g � 2p2T4

45�h3c5
� 27p

16

orn
r

; �66�

where rn is the density of the normal component of the
phonon gas. Equation (66) was first obtained by Hohenberg
and Martin [50].

Of much importance is the case of high temperatures
(T4 m, but, of course, T < Tc). While thermodynamic
functions in this case are dominated by excitations with
energies E � T, in function (65), which determines the
damping, the main contribution comes from energies
E � m � gn0 5T, which makes it possible to take the limiting
`Rayleigh ± Jeans' expression f�E� � T=E as the distribution

function. The resulting g is linear in temperature, and it is
worthwhile noting that at `high temperatures' this depen-
dence is also expected for a gas in a trap.

Integration within this limit yields [51, 52]

g � 3p
8

Taq

�h2
: �67�

This high-temperature regime has recently been used to
obtain a quantitative estimate for trap damping [46]. For q
taken to be of order �ho=c, where c � ��h=m��4pan0�r � 0��1=2
is the sound velocity at the center of the trap, the value of g is
found to be in semiquantitative agreement with experimental
data [17], thus supporting the view that the attenuation is due
to Landau damping. It has been suggested [53] that Eqn (67)
may also be applied to a gas in an anisotropic trap if the
average over the density distribution is taken properly.

4. Quantum fluctuations

4.1 Corrections to density distribution
By following the same procedure used in deriving Eqns (53) ±
(54) it is readily shown that for T � 0, in the quasiclassical
approximation, the atomic number density is given by the
integral

nout�r� �
�
V 2�p; r� dp

�2p�h�3 ; �68�

where V 2�p; r� is defined by Eqn (49). Integration yields the
same results as in the homogeneous case,

nout�r� � 8

3
���
p
p �

nTF�r�a
�3=2

; �69�

but this quantity is difficult to measure experimentally.
Of considerable interest are the corrections to Eqn (20) for

the gas density nTF, which are of two types. Firstly, there is a
quantum pressure correction, omitted in Eqn (20), which is
easily obtained from Eqn (9) by treating the pressure as a
perturbation. Our concern here is with the correlation which
results from the quantum fluctuations of c and which was
already omitted in Eqn (9). This correction is obtained most
easily by using the chemical potential expression for a
homogeneous gas,

m�n� � g

�
nTF � 32

3
���
p
p �nTFa�3=2

�
; �70�

which was obtained by Lee andYang [53] taking the quantum
correction into account. We are now in a position to employ
the equilibrium condition (21), with ml�n� given by Eqn (70).
Equation (21) can be solved by iteration bearing in mind,
however, that mTF should itself be corrected in order to have
the same total number of atoms N. For an isotropic trap we
find

n�r� � 1

g

�
mTF

�
1�

����
m
p
2�h

am1=2TF

�
ÿ Vext�r�

�
ÿ 32

3
���
p
p �nTFa�3=2 ; �71�
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where mTF and nTF are the density and the chemical potential
as given by the Thomas ±Fermi expressions (20) and (22),
respectively. The difference between Eqns (71) and (69) yields
the condensate density, n0�r� � n�r� ÿ nout�r�.

4.2 Phase fluctuations
Although Eqn (30) predicts the Josephson current to be fully
monochromatic, this prediction is invalidated by fluctuations
in the phase of the condensate wavefunction F. The spectral
distribution of the current may be characterized by the
Fourier components of its correlation function

C�t� � 
I�t� t�I�t�� : �72�

Since the calculation of C�t� is difficult and depends heavily
on the particular experimental setup, we limit ourselves to an
illustrative problem to demonstrate the general nature of the
relations involved.

Representing the phase in the form F�t� � ÿmt� dmt and
assuming the fluctuations of dm to be independent of t and
Gaussian, after taking the average and regrouping terms in
Eqn (30) we obtain (see Refs [55, 56])

C�t� � I 20 Re

�
exp�ÿioJt� exp

�
ÿ hdmi

2t2

�h2

��
� I20Re

�
exp�ÿioJt� exp

�
ÿ
�

t
t0

�2�
; �73�

where oJ � �m2 ÿ m1�=�h. In the temperature range T4 �hoH

hdmi2 � T
qm
qN

: �74�
The damping of correlations described by the above equation
is usually called the `phase diffusion' effect{. If, furthermore,
T5Tc, one can employ expression (22) for the chemical
potential, giving

t20 �
�h2

T

qN
qm
� 5�h2N

2mT
�75�

for the correlation function decay time t0. Thus the spectral
distribution of the current is found to be Gaussian with a
width of order 1=t0.

We will not discuss this important problem inmore detail,
though.

4.3 Quantum collapse of condensate oscillations
Note that quantum phase diffusion, discussed in the preced-
ing section can be observed because the number of atoms in
the trap is relatively low, which implies that our system may
be considered mesoscopic. Another mesoscopic phenomenon
with no classical analogy is the collapse and subsequent
revival of condensate oscillations, an effect which is due to
the amplitude dependence of the natural oscillation frequen-
cies. The observation of this phenomenon in classical wave

packets was predicted by Averbukh and Perelman [57]. Until
now, it has been observed for highly excited states of atomic
electrons, for molecular vibrations, and for atoms in interac-
tion with the resonator field. Bose ±Einstein condensation
allows this effect to be calculated on a macroscopic scale as a
quantum collapse of condensate oscillations (see Refs [58 ±
60] and references therein).

The basic idea is that, quantum-mechanically, the oscilla-
tion of a certain collective mode is a coherent superposition of
the stationary states of the oscillator, the scale of the
phenomenon depending on the shift in the oscillation
frequency as a function of its amplitude.

Let us write the frequency of a given mode in the form

o � o0 � do � o0�1� KE� ; �76�

where E is the oscillation energy. Assuming the frequency
shift to be small, jKjE5 1, and using the quasiclassical
relation �ho � �qEn=qn�, this is rewritten as
on � En=�h � o0n� bn2=2, where n is the number of quanta
at a given level En (n4 1), and b � �ho2

0K. Experimentally [15,
16], oscillations were excited by varying the magnetic trap
frequency in a sinusoidal fashion, thus bringing the oscillator
to a coherent state. The wavefunction of this state can be
expanded in terms of stationary state functions,

c �
X
n

cncn exp�ÿiont� ; �77�

with

jcnj2 � �nn

n!
exp�ÿ�n� � 1��������

2p�n
p exp

�
ÿ �nÿ �n�2

2�n

�
; �78�

where �n is the average number of excited quanta (�n4 1), and
the energy E � �ho0�n. We next ascribe a certain `coordinate'
x�t� to our oscillation and calculate the average of this
coordinate over the state (77), (78). For small nonlinearities
only the transitions n! n� 1 must be considered, giving


x�t�� /X
n

jcnj2 cos
��o0 � bn�t� : �79�

For times t long enough, the summation over n may be
replaced by integration, with the result that the average
value of hx�t�i undergoes an attenuation, or `collapse,'
hxi � exp�ÿ�nb2t 2=2� � exp�ÿ�t=tc�2�, with a characteristic
time

tÿ1c �
�

�n

2

�1=2

jbj � o0

�
E�ho0

2

�1=2

jKj : �80�

Because expression (79) is periodic, however, the oscillation
periodically `comes alive' with a period of tr � 2p=��ho2

0jKj�,
which is consistent with Ref. [57]. Note that
tc �

������������1=�n�p
tr 5 tr.

A general picture of the effect and the meaning of the
parameters tc and tr are shown schematically in Fig. 4 using
arbitrary units for time and the oscillator coordinate.

It should be emphasized that in quantum mechanics
measuring the coordinate x of the oscillator changes the
value of its momentum, so that the collapse and subsequent
revival of oscillations can only be observed by repeating the
experiment many times for various oscillation phases. This,
however, is exactly the approach used in Refs [16, 17].

{ One might argue (and some people do) that the existence of such

diffusion compromises the concept of the condensate wavefunction c0

obeying Eqn (9). It seems to me there is a misconception behind this view.

Although, as already pointed out, fluctuations are neglected in Eqn (9),

they can be included in the next-order approximation. In doing this, one

should calculate physical observables which are always gauge-invariant,

i.e., independent of the general phase of the function c0. Averaging the

gauge-invariant c0 itself over the phase fluctuation is meaningless.
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Turning now to the factor K, simple dimensional argu-
ments show that in the Thomas ±Fermi approximation

K � n
mTFN

; E � EmTFNA2 ; �81�

where A is the relative oscillation amplitude and n and E are
dimensionless factors of order unity. Thus

tc �
���
2
p

jnjo0

mN�����������
E�ho0

p �
���
2
p

jnj ��Ep o0

��������
mN
�ho0

r
1

A
: �82�

The experimental study of Ref. [15] was carried out for the
following values of the parameters involved (see also Table 1):
N � 4500,o?=2p � 132 Hz, l � ���

8
p

and a � 100a0, where a0
is the Bohr radius. For these values,

�����������������������
mTFN=�ho?

p � 195.
The frequency of the m � 2 mode in the linear limit is,

from Eqn (25), o0 �
���
2
p

o?. A calculation using Eqn (82)
yields n � 0:26, E � 0:57 [60] for this mode. For an amplitude
of order A � 0:2 the collapse time is approximately tc � 4:98
s, and for the lower m � 0 mode, Eqn (26), we similarly have
tc � 1:4 s. Reference [15] reports oscillation decay with a
characteristic time of order 100 ms, which means that under
the experimental conditions used, Landau damping masks
the quantum effects of interest here. Since, however, this
attenuation must rapidly decrease with temperature [cf. Eqn
(66)], it is hoped that lowering the temperature will allow
quantum collapse to be observed on our macroscopic object.

Among other mesoscopic problems one should mention
the possibility [61] that at T � 0 a gas in a trap is described by
a linear combination of wavefunctions for various numbers of
particles.

The present review is an extended and revised version of
the lecture in memory of E Finberg given by the author at the

July 1997 Ninth International Conference on the Theory of
Many Particle Systems in Sydney, Australia. The author is
grateful to F Dalfovo, S Giorgini, and S Stringari for many
helpful discussions, and to A Berengol'ts for his help in the
preparation of the paper.

Appendix

For purposes of reference, Table 1 lists the major parameters
used in the experimental studies cited in the text. One expects,
however, that owing to the spectacular development of
experimental technique Ð and considering the ever increas-
ing number of laboratories where Bose condensation has been
achieved Ð much more impressive results will undoubtedly
have been obtained by the time of publication of this review.
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