
Abstract. This paper considers tunneling traversal time; tunnel-
ing through an alternating potential, its enhancement and its
fractal (Hofstadter butterfly) and chaotic resonances; andHar-
tree liquid resonance tunneling and its (specifically quantum)
instability and turbulence.

1. Introduction

One of the main manifestations of quantum mechanics is
tunneling. Tunneling is involved in the decay of heavy nuclei,
field emission from an atom or a solid surface, paraelectric
defects in solid, metal ± insulator ±metal, and Josephson
junctions, p ± n diodes, superconducting quantum interfer-
ence device (SQUID) rings, transport in superlattices,
quantum diffusion, absorption, and desorption. Quantum
transport (e.g., variable-range-hopping conductivity), as well
as wave propagation beyond the geometrical-optics region, is
related to tunneling.

The knowledge of the tunneling traversal time (TTT) is
important in a wide range of physical problems, from
tunneling chemical reactions to stationary many-body trans-
port [1]. That is why it is almost as old as quantummechanics
itself [2]. It was studied byWigner [3], was brought into sharp
focus by BuÈ ttiker and Landauer [4], and has drawn much
attention recently [5]. Bosanac [6] and Band [7] discussed
anomalously large traversal (electromagnetic waves) veloci-
ties. It was demonstrated [8] that the velocity of the
probability density maximum may be infinite or even
negative (cf. Ref. [9]). Recently Enders and Nimtz and others
rediscovered [10] infinite and superluminal velocities for the
evanescent mode packet phase, whose propagation is equiva-
lent to quantum tunneling. These experiments were discussed
by Landauer [11] (see also Ref. [1b]). The possibility of time-
scale invariance in tunneling (which implies no characteristic
TTT)was also established [12]. The situation clearly calls for a

physically meaningful answer to the question: what is TTT,
what it is not, and how to reconcile presumably infinite and
superluminal velocities with the uncertainty principle, rela-
tivity and causality [13].

Tunneling and activation in an alternating potential are
important in a variety of physical problems [11 ± 15]: inter-
band breakdown, charge exchange between deep-lying
impurity centers in semiconductors, resonance tunneling
[16], Coulomb blockades [17], and the destruction of
adiabatic invariants [18a]. The study of the alternating
potential may also be useful for stationary many-body
tunneling and evaporation, if the latter is reduced to an
approximate single-particle problem. Then some of the
degrees of freedom adjust to the progress in particle escape
and yield an effective time-dependent potential. Also, the
characteristic time T of an alternating potential may be
related to the effective temperature y � �h=T. Hence, an
alternating-potential study may be helpful for the quantum
transport problem (e.g., variable-range hopping conductiv-
ity).

An extensive and accurate study of particle transmission is
also important in view of the experimental rates, often being,
by dozens of orders of magnitude, above the theoretical
values [19, 20], and even the upper bound [21].

A wave function collapse (WFC), when a probability
density disappears in one place and emerges in another, is
one of the fundamental concepts in quantum mechanics. It is
usually thought of as the implication of a measurement by a
classical device [18].Meanwhile, effectiveWFCoccurs in each
Mott hop [22] which determines electron transport in
disordered semiconductors [23]. It may also be important
for the Mott hopping frequency dependence, tunneling and
relaxation [1], quantum electronics [24], transport in dis-
ordered systems in general [25], time-dependent Zener
tunneling and breakdown, as well as for other problems in
postmodern quantum mechanics (to use the term coined by
R Harris), discussed in four papers in Physics Today in 1993
alone [26]. The improvements in the technology in the last two
decades, the success in the fabrication of quantum dots and
mesoscopic systems [26, 27], and the experiments on single
electron transport [26] allow for a microscopic study of a
WFC in a single Mott-type hop.

The resonant tunneling first observed by Chang, Esaki
and Tsu [28] is rich in physics. It exhibits structures related to
phonon [29] and plasmon [30] assisted tunneling, Landau
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level matching [31], intrinsic dynamic bistability, hysteresis
[32], oscillations{ [16], quantum chaos [33] and Coulomb
blockades [17]. Recently, Heilblum et al. studied resonance
tunneling and its phase evolution through a single quantum
dot [34]. Resonant tunneling and activation in an alternating
potential are important in the Mott hopping frequency
dependence [35]. An alternating potential leads to resonant
activation [36], oscillatory wave function collapse [37],
evanescent modes [38], photoassisted tunneling [39], and
left-right symmetry breaking [40]. The nonlinear Hartree-
type Bogolyubov ±Pitaevski|̄ ±Gross equation [42] in an
external potential [43] numerically demonstrated dynamic
evolution to chaos [33].

This paper considers three problems specified above: the
tunneling traversal time; the tunneling through an alternating
potential; and the Hartree liquid tunneling and its intrinsic
turbulence.

2. Tunneling traversal time

Start with a stationary flow of free quantum particles. To
measure its traversal time, from point A to point B, measure
at B the linear response to a time dependent perturbation
potential at A. The perturbation Fourier transformation
yields arbitrarily high (albeit of correspondingly low
probability) frequencies. They allow for an arbitrarily high
energy increase, zero minimal traversal time in non-
relativistic mechanics and light speed traversal in the
relativistic case. Any singularity in the perturbation time
dependence (which may accurately determine the moment
when it is switched on) only increases the probability
density of such a response. An analytical time dependence
with the characteristic switching time dt implies a character-
istic energy e change de � h=dt, a relative velocity v change
dv=v � de=e and a relative traversal time change
�vdt=Dx� � �de=e� � �hn=deDx� � �de=e�, where Dx is the
distance from A to B. The minimal inaccuracy, in agreement
with the Heisenberg uncertainty, is dt=Dt � �ldB=Dx�1=2,
where ldB � h=p is the de Broglie wave length for the
momentum p and Dt � Dx=v. Then the traversal time
corresponds to the maximal response (which is followed by
an infinitely long and correspondingly weak retarded
response to vanishing frequencies in the perturbation spec-
trum).

Now we apply the same approach to the tunneling of a
stationary flow through an opaque barrier. Then dt, which is
small compared to the BuÈ ttiker ±Landauer time [4]
tBL �

�
dx=jvj, implies an exponentially higher probability

of activation above the barrier than the probability of
tunneling. Then the response may be exponentially stronger
for a much weaker, but significantly shorter, perturbation. In
particular, the response may reach its maximum prior to the
maximum of the stronger perturbation. Not surprisingly Ð
the maxima belong to unrelated phenomena [44]. (This is the
origin of the pseudo-superluminal velocities in Ref. [10].) But
even a rapid perturbation yields arbitrarily low frequencies in
the general case, and thus an arbitrarily delayed time
response, and an arbitrarily long traversal time. A slow
perturbation �dt4 tBL� implies a correspondingly low prob-
ability for the particle energy increase. However, it also

implies a correspondingly slow response, and the correspond-
ing inaccuracy in the traversal time determination. (Thus,
traversal time is not universal for a given barrier and
incoming energy. Rather, it crucially depends on the way it
is determined.)

The BuÈ ttiker ± Landauer time determines the transition
from tunneling to activation and thus provides an estimate of
the tunneling response time. Clearly, since the characteristic
tunneling de Broglie wave length is approximately the barrier
width, there can be no accurate definition of the tunneling
traversal time. This is specially explicit in resonant tunneling.
If h=dt exceeds its (exponentially narrow) width, it exponen-
tially reduces the transmittance, and implies a characteristic
time of resonance tunneling of approximately the dwell time
at the quasi-eigenstate in the well.

To quantitatively study time dependent tunneling we
introduce a model. Consider two remote potential wells,
separated by an opaque potential barrier. Initially the
particle density is localized in one of the wells �A�, with an
exponentially small tail in the other well �B�. A fluctuation is
modeled by a time-dependent potential, which exists over a
finite time. I demonstrate that only under special conditions
the particle density practically completely shifts to the other
well. This happens periodically with the potential strength
change in the general case, and at certain values in the case
which models Mott hopping.

The SchroÈ dinger equation in the potential V�t; r� for a
particle with mass 1=2 and �h � 1 reads

i _c� Dcÿ V�t; r�c � 0 ; V�t;1� � 0 ; �1�

where _c � qc=qt. The physics is elucidated by two extreme
cases.

(i) If V changes adiabatically with time t, then the particle
eigenstate follows its instantaneous value. Until the eigenstate
is not too close to the degenerate one, the particle is localized
in well A. When the eigenenergies of A and B come to the
closest distance o allowed by the level repulsion (`quaside-
generacy'), one may easily prove (see later) that the particle
moves to the well B. Then the level repulsion shifts the levels
back to their initial positions. As a result, when V returns to
its initial value, the particle returns to well A Ð see Fig. 1,
curve 1 (where z is related to themaximal change inV and Z to
its characteristic time).

(ii) IfV at t � t1 jumps to a new value, the continuity of the
wave function at t � t1 distributes the particle between the
states which correspond to V�t1 ÿ 0�. At t � t1 the wave
function continuity preserves it in A. At t1 < t < t2 the states
interfere, and the probability density oscillates between the
wells. So, the result of the second jump of V at t � t2 to the
initial value V�t1 ÿ 0� depends on and oscillates with a time
lag Dt � t2 ÿ t1. If at t � t2 ÿ 0 the particle is approximately
in well B, the jump at t � t2 fixes it there forever (if there are
no further jumps). A similar situation occurs when V quickly
(compared to oÿ1) reaches quasidegeneracy and slowly
(compared to the eigenperiod) passes it Ð see Fig. 2.
Characteristically, case (ii) has very quick (quasijumps) and
very slow (quasistationary) potential changes. The latter (see
later) must be slow compared to the quasidegenerate
instantaneous level splitting (which is related to the exponen-
tially weak tunneling through the opaque interwell barrier) to
significantly shift the particle to B.

Typically a particle is finally redistributed between the
wells. The `ultimate' wave function collapse (WFC) corre-

{Ref. [41] demonstrated magnetic field induced oscillations in an asym-

metric double barrier structure.
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sponds to an exponentially small �/ o2� probability density
in wellA. The calculation specifies extremely rare fluctuations
which do it Ð cf. the role of `special' states in quantum
measurements and WFC in Ref. [45]. Such a fluctuation is
probable only in a macroscopic `classical' system (where o2

may also be vanishingly small), with its vast range of
fluctuations.

To describe a WFC analytically, consider the instanta-
neous eigenenergies. Suppose they are closest when t � 0 (if
this happens only once) or when t � t1; t2; . . . (if it happens
several times). Denote the corresponding instantaneous value
of V by V0�r� and present Eqn (1) as

i _c� Dcÿ V0c � cc ; V0�r� � V�t0; r� ; v � Vÿ V0 :

�2�

Choose a complete orthogonal and normalized set of
functions f, which yield

Dfn � �on ÿ V0�fn � 0 �3�

and present c in Eqn (2) in the form

c �
X
n

bn�t�fn�r� � b � ff : �4�

Then

i _b � �ô� v̂�b ; onn � dmn ; vmn �
�
vf�mfn dr �5�

(an asterisk denotes complex conjugation). Suppose
V0 � V1 � V2, where V1 and V2 correspond to wells A and
B. I am interested in the transitions between the wells. When
the characteristic frequency v is sufficiently low, their
probability exponentially decreases with jom ÿ onj. Suppose
the closest level corresponds to o1, o2 and keep in Eqn (4)
only n � 1; 2, thus reducing the problem to a two-level one.
To monitor the localization positions, we introduce (real
localization) eigenstates ~f in each of the wells and decom-
pose c with respect to ~f according to

c � exp

�
ÿiotÿ i

�t
u�t 0� dt 0

�
~fd : �6a�

Then the main equation of the problem reads

i _d � w o
o ÿw

� �
d ; �6�

where

o � o1 � o2

2
; o � 0:5�o2 ÿ o1� sin�2g� ;

w�t� �
�
v�~f2

1 ÿ ~f2
2� dr

2
; v �

�
v�~f2

1 � ~f2
2� dr

2
: �7�

Here g is the angle between f and ~f (for identical wells
g � p=4); the interwell (time dependent) interaction
o / ������

PT

p
, PT is the exponentially small tunneling transmis-

sion coefficient, and the proximity of levels implies jvj5 joj.
By Eqn (6), jd j2 is conserved and equal to l in the case
considered, while

��dm�t���2 is the probability of the state
localized in the mth well at moment t �m � 1; 2�.

When w is time independent, the solution to Eqn (6) is
obvious. When w�t� jumps at t � t1 from one constant value
of w to another, then the continuity d�t1 ÿ 0� � d�t1 � 0�
provides the transfer matrix for d�t� from t < t1 to t > t1. The
adiabatic solution is also straightforward.

Consider a general case. Tomodel a large fluctuation (like
the Mott one), assume maxt

��w�t���4o. When jwj4o,
Eqn (6) yields

d � B̂D ; �8a�
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Figure 1.Time dependence of the probability jd2�t�j2 of finding the particle
in well B for f �t� � 2=cosh tÿ 1 and z � 500, Z � 50 (curve 1); z � 100,

Z � 0:1 (curve 2).

ÿ4 ÿ2 0 2 t

1.0 1.5 2.0

1.0
jd2j2

0.8

0.6

0.4

0.2

0

0.965

0.925

3

3

1

1

2

Figure 2. As Fig. 1, but Z � 50 and z � 15000 (curve 1); z � 15001 (curve

2), i.e., z changed by approximately half a period (11); and z � 15002

(curve 3).
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where

B̂�F� � exp�ÿiF� 0

0 exp�iF�
� �

; F �
�t
0

w�t 0� dt 0 ; �8�

and D is time independent. (Further approximations in o=w
lead to an accurate solution.) In the vicinity of t � 0, where
w�t� � _w�0�t, the substitution d � exp

�ÿiw�0�t 2=2� f yields
d

dt

�
_f1 � 2i _w�0�t f1

�� o2f1 � 0 ;

f2 � Cÿ 2 _w�0�t f1
o

: �9�

This equation is linear in t and may be solved by the Laplace
method. The solution to Eqn (9) allows for the matching of d
from Eqn (8a) for t < 0 and t > 0, and yields the correspond-
ing transfer matrix for D from t < 0 to t > 0.

The change t � to= _w�0� in Eqn (6) demonstrates that
jMj4 1, M � o2= _w�0� implies an adiabatic case, while
jMj5 1 corresponds to a rapidly changing potential. Assume

w �Wf

�
t

y

�
; f ��1� � 1 ; f �0� � 0 ;

W4o;
1

y
: �10�

Introduce Z � oy, z �Wy (and thus M � Z2=z). Then one
arrives at the following results, which are readily verified with
numerical experiments using Eqn (6). Start with _w�0� 6� 0 and
the numerical example of f �t� � 2=cosh tÿ 1.

(1) z4 Z4
���
z
p

corresponds to the adiabatic situation Ð
see Fig. 1, curve 1. A particle moves from A to B and then
returns to A.

(2)
���
z
p

4 14 Z is a rapidly changing �M5 1� potential,
which quickly (Z5 1, i.e., y5 1=o) passes the transition
interval jwj9o Ð see Fig. 1, curve 2. A particle always stays
in the same well, without ever noticeably moving to well B.

(3)
���
z
p

4 Z4 1 is a rapidly changing potential, which
slowly (Z4 1, i.e., y4 1=o) moves through the transition
interval Ð see Fig. 2. This is the only possibility for a high
probability of a hop. Note that its conditions are rather
special. The characteristic frequency 1=y of the potential
change must be low compared to an exponentially small
frequency o (which is related to the tunneling transmission).
The change 2W in the potential strength must be large
compared to o2y. In virtue of Eqn (8), it oscillates with W
with approximately the period DW � Dz=y,

Dz � p
��t2

t1
f �t� dt

�ÿ1
; f �t1� � f �t2� � 0 : �11�

The physical origin of the periodicity is the slow wave
function phase change when t1 < t < t2. The function f �t�
yields

Dz � 3p
2

�
2pÿ 3 ln�2�

���
3
p
�� � 2:0205 :

CertainW's change jd2j2 from 0 to 1 (WFC).

3. Tunneling in an alternating potential

The previous section's approach may be generalized to study
the impact of an alternating potential on tunneling [46]. It

implies, in particular, that transmission through a one-
dimensional (1D) barrier in an alternating potential has a
resonant nature, if part of the time the total potential has a
potential well. A 1D potential well always has an eigenstate.
An instantaneous eigenenergy of a time-dependent well
moves with time and disappears together with the well.
When a particle is activated to the lowest instantaneous
ground-state energy ~o (to bemore specific, to the correspond-
ing instantaneous tunneling resonance, which has a finite
width), then it is trapped there and follows this `elevator' free
of activation energy (`Elevator Resonance Activation' Ð
ERA). When ~o is less than the incoming particle energy O,
the activation energy is zero, although transmitted particles
have the instantaneous eigenenergy, significantly higher than
O. ERA also occurs in higher dimensionalities, when the
deepest instantaneous well has an eigenstate, and is a
possibility for all types of waves in their penetration into a
region forbidden by geometrical optics. Of course, all this is
true only for a sufficiently slow alternating potential.

Thus, a time-dependent opaque barrier may be a model
for exponentially enhanced space-time fluctuations and
transmission (and thus diffusion) rates. This may suggest
their common origin. The results are very general. They are
valid for the penetration of any waves (quantum, electro-
magnetic, sonic, hydrodynamic, etc.) into a classically
forbidden region.

To study resonance transmittance in an alternating
potential in more detail, consider non-linear activation and
tunneling through an arbitrary set of potential barriers and
wells in the presence of an alternating harmonic point
potential. The problem accurately reduces to a single one-
dimensional finite difference equation. Activation exhibits
fractal (Hofstadter butterfly-type) and chaotic resonances
and their cut-offs, which are related to the alternating
potential strength. At low frequencies activation yields a
strong dispersion and generates high frequencies. There are
evanescent modes below the vacuum (which do not exist in
the stationary case). The transmittance may be linear with the
alternating potential at certain (medium) frequencies only.
Activation is sensitive to the spatial heterogeneity of the
alternating potential. These predictions may be directly
tested in quantum dot experiments with an alternating gate
voltage at low frequencies and with an external microwave
field (modulating static potential) at higher frequencies (cf.
experiments in Ref. [32]).

The rich physics of activation is related to the super-
position of several factors. An alternating potential may
activate the incoming particle to an energy in the proximity
of a stationary resonance. (At low frequencies this happens
only in a sufficiently strong alternating potential.) Thereafter
the transmittance strongly depends on the proximity to and
the relative timespan at this energy. The timespan is affected
by transitions to and from the energy, especially by those to
other stationary resonances (which are quasi-equidistant in
semiclassics and equidistant in a parabolic well). Transitions
are sensitive to the commensurability of the alternating and
inter-resonance frequencies; this may lead to a fractal
Hofstadter butterfly picture of resonance frequencies. They
strongly depend on the heterogeneity of the alternating
potential, and the resonances are more pronounced, the
higher heterogeneity is.

We start with a point alternating potential and consider
an arbitrary 1D static potential V0�x�, V0��1� � 0, which
may imply any number of barriers and wells. The wave
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function c yields the SchroÈ dinger equation

qc
qt
� q2c

qx2
� V0cÿ 2fcd�x� sin�ot� : �12�

The boundary conditions imply that at x! ÿ1 there is
only the incoming wave with energy O and that as x!1
there are no reflected waves. The solution to Eqn (12) may be
presented as

c �
X1
n�ÿ1

cn�x� exp�ÿiOnt� ; On � O� no ; �13�

where, by Eqns (12, 13),

c 00n � �On ÿ V0�cn � 0 ; �14�

dcn�0� � 0 ; dc 0n�0� � if
�
cn�1�0� ÿ cnÿ1�0�

�
: �15�

According to the boundary conditions,

cn � dn0~j�0 � vÿn jÿn if x < 0 ;

cn � v�n j�n if x > 0 ; �16�

where jÿn , j
�
n , ~j�0 are generated by the reflected, transmitted

and the (only) incoming waves correspondingly, i.e.,

~j�0 � exp�ik0x� ; jÿn � exp�ÿiknx� at x! ÿ1 ;

j�n � exp�iknx� at x!1 : �17�

Here kn � O1=2
n if On > 0, kn � jOnj1=2 (a.c. evanescent modes

below vacuum [19], which are non-existent in the stationary
case). Equations (13), (15), (16) accurately reduce, e.g., c�x�
at x > 0, to the solution wn of a finite difference equation
(which is very convenient in numerical calculations):

c�t; x� � ~w~j0�0�
w0

exp�ÿiOt�
X1

n�ÿ1

j�n �x�
j�n �0�

wn exp�ÿinot�; �18�

wnwn � if�wn�1 ÿ wnÿ1� � w0dn0 ; w�1 ! 0 ; �19�

wn �
�
ln

jÿn �0�
j�n �0�

�0
; ~w �

�
ln

jÿ0 �0�
~j�0 �0�

�0
; �20�

where the coefficients wn are related to stationary solutions of
the SchroÈ dinger equation. Consider a semiclassical U�x�,
which reduces to two opaque barriers, separated by the well.
Then the known transfer matrices [47] explicitly relate wn to
the phase areas in the well �dn �

�
Kn dx� and through the left

�S1� and right �S2� barriers �S �
� jKnj dx�; the wave vector

Kn �
�����������������
On ÿ V0

p
. With an accuracy/ exp

�ÿ2�S1 � S2�
�
, wn is

real, and Eqn (19) is Hermitian. The approximate Eqns (18) ±
(20) read:

w�nwn � if 2

2
�wn�1 ÿ wnÿ1� � w�0dn0 ; �21�

w�n � cos�dn� � i exp
�ÿ2S ��On�

�
sin�dn� ; �22�

c�t; 0� � q

w�0
exp
�ÿS1�O� ÿ iOt

�
G�ot� ;

G�j� �
X1
n�ÿ1

wn exp�ÿinj� ; �23�

where S � � min�S1;S2�; jqj � 1, f 2 � 2f=k0. Beyond the
barriers,

c�t; x� � 1

w�0
exp
�ÿS1�O� ÿ S2�O� � ik0xÿ iOt

�
�
X

wn exp

�
iox
�
do0

dk0

�ÿ1
ÿ iotÿ on

dS2�o0�
do0

�
:

If one disregards the exponentially small second term in
Eqn (22), then the homogeneous Eqn (21) becomes Hermi-
tian. It has a solution at resonance frequencies o, when the
solution of the inhomogeneous Eqn (21) diverges. Consider
no5O �. Then dn � d0 � pno=O �, whereO � is the eigenstate
distance (� constant in the semiclassical case). With such an
accuracy, the homogeneous Eqn (21) formally reduces to the
Harper equation at the band center in the fictitious magnetic
fluxo=O � per site [48]. This equation has solutions for fractal
values of the flux and phase d0 in the vicinity of f � � 1. (For a
solution see Ref. [48].) A more accurate calculation yields wn
[in Eqn (19)] oscillating with (in general, incommensurate)
phase areas in the well at x < 0 and x > 0. This `chaotizes' the
spectrum. (A set of more than two barriers also yields
irregular oscillations and leads to a chaotic spectrum.) Thus,
the transmittance may be chaotic and be a fractal function of
the alternating current frequency. When in Eqn (21) j f �j5 1
(this excludes fractality and chaos), we may derive an
analytical formula.

Consider j cos�dn�j5 j f �j. Then in the leading approx-
imation one may neglect wnÿ1 in Eqn (21) when n > 0 and
wn�1 when n < 0, and obtain wn exponentially vanishing with
jnj:

wn /
�� f ���ÿjnjY cos�dn� :

If
��cos�dn���5 f �5 1, this implies a narrow vicinity of the

resonance Ores � O� �n� ~n�o, where cos
�
d�Ores�

� � 0, n is
an integer, and j~nj < 1=2. There,

w�n �
iD� �nÿ nÿ ~n�o

~O
; �24�

where D � Im �w�n� is the natural resonance width, and ~O the
interresonance distance. The periodicG�j� from Eqn (23), by
Eqns (21), (24), is presented by an explicit analytical formula:

G�j� � s�
�
exp�2ps�� ÿ 1

�ÿ1
exp�ÿs�j� ig cosj�

�
�j�2p
j

exp�s�j 0 ÿ ig cosj 0� dj 0 ; �25�

s� � s� i�~n� n� ; s � D
o
; g � f � ~O

o
�

~f

o
:

Clearly, G�j� is non-linear in the alternating potential
strength g. By Eqns (18), (23), the transmission amplification
pn � jwnj2 (due to the activation by no) is related to the
Fourier component wn of G�j�. Equation (25) presents an
accurate analytical solution for approximation (24). It yields
several frequency regions.

(i) Very low frequencies: o5 ~f, D2=~f, i.e., 1 < jgj < s2.
This is an adiabatic regime, when transmission is the same as
in the instantaneous stationary potential. If ~f4D, n5s, then
G is very non-linear and non-monochromatic. It is � 1 when
t9D=o~f5 1=D (higher frequency � o~f=D generation; when
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~f � D2=O, then G � 1 when t � 1=D). Thereafter
G � D=~f sin�ot� decreases to D=~f. The energies which dom-
inate the transmission are � o~f=D < D in the vicinity of the
resonance.

(ii) Low frequencies: D2=~f < o < D, i.e., 1 < s2 < jgj.
ThenG � 0:5�1� i��p=g�1=2, jGj < 1, when t91=o

���
g
p

; there-
after G � D=

�
~f sin�ot��. Note that the characteristic time

scale is Dÿ1.
(iii) Medium frequencies: ~f < o < D2=~f, i.e., jgj < 1; s2.

This is the linear response case.
(iv) High frequencies: o > D, D2=~f, i.e., s2 < 1; jgj. When

s; j~nj5 1, then

G�j� � �ÿ1�n=2 s�

i~n� s
Jn�g� exp�ÿinj� ig cosj� : �26�

Thus,
��G�ot���2 is approximately stationary, non-linear and

oscillates with the alternating potential strength and o. If
there is a resonance at j~nj � s; when ~f4o, then jGj2 / o=~f.
The energy significantly increases, by � �h~f. By Eqn (25),

wn � s�

j~nj � s
Jnÿn�g�Jn�g� :

It is exponentially cut off when jnj > g or jnÿ nj > g (Fig. 3).
Sufficiently large ~f allows for a significant energy rise to a
resonance. In the leading approximation the current is also
approximately stationary (naturally, due to the superposition
of different frequencies) and significantly non-linear.

The total transmission at the moment t is proportional to��G�ot���2. It depends on the incoming frequency O, the
alternating potential strength ~f, and the frequency o.
Suppose jOÿ Oresj � O 04o. Then in the adiabatic case
~f > jO 0j yields a transmission resonance at ~f sin�ot� � O 0

with width odt � D=O 0 and Gmax � O 0=D. High frequency
transmission, by Eqn (26), is time independent and has a
resonance at ~f � O 0 with a relative width d~f=O 0 � jo=O 0j2=3
and Gmax � �O 0=o�2=3=�j~nj � s� < �O 0=D�2=3. In both cases
the resonant activation is by ~f.

4. Quantum turbulence and resonant tunneling

The Coulomb interaction in resonant tunneling leads to
turbulence of a specifically quantum nature. Indeed, sup-
pose the incoming energy slightly exceeds the well's eigen-
energy. If a random fluctuation increases the well's charge,
and thus the Coulomb and eigenstate energy, then the
tunneling approaches the resonance. This increases the
transmission and thus the well's charge. So, the eigenstate
energy further approaches the incoming energy, this further
increases the well's charge, and so on. Thus, the fluctuation
progressively grows. If, however, another random fluctua-
tion meanwhile decreases the well's charge, and thus its
eigenenergy, then the tunneling moves away from the
resonance and decreases. And thus further decreases the
well's charge and its eigenenergy, and so on. Therefore, such
a fluctuation also progressively grows. The fluctuation
increases may be exponentially high, since the charge
density in the well is exponentially higher than in the
incoming current at resonance and is exponentially lower
outside it, beyond the resonance width [47]. Even when the
incoming current is very low, such random fluctuations
specifically imply quantum turbulence, which is intrinsically
related to resonant tunneling. Resonant tunneling and thus
turbulence, are most pronounced in 1D, and in a double
barrier structure in a strong magnetic field, which effectively
reduces it to 1D (see later). The characteristic turbulence
timescale is related to the eigenstate width. On a shorter
timescale the tunneling current oscillates [16] and may have a
Coulomb blockade [17] type shape; in the general case its
charge transfer per period is fractional (see later). Similar
reasoning is applicable to resonant tunneling of the Ahar-
onov ±Bohm persistent current through a quantum dot, but
with three amendments. The energy fluctuations must exceed
the interlevel spacing in the ring (whose perimeter must be
correspondingly larger, the lower its temperature). Dissipa-
tion implies that an alternating current may survive only
over a time scale small compared to the dissipation time. The
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Figure 3. Transmission amplification p60 (due to the activation by 60o) vs. the reduced incoming energy s � �Ores ÿ O�=o for s � 0:01, g � 25 (a), 30 (b),

50 (c). Note the multiple resonances and their cut-offs (in s and g), which are determined by the alternating potential strength rather than by its frequency.
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magnetic field, which alternates with the corresponding
frequency, may allow one to observe intrinsic oscillations,
instability and turbulence of such a quasi-persistent current.

Consider the relevant time scales. The shortest one is
related to the period of classical oscillations in a potential
well. This scale is usually a fraction of a nanosecond, and
determines [16] the oscillation period. Instability and turbu-
lence develop during the particle dwell time in the well. The
latter is inversely proportional to the barrier transmittance,
andmay reach the microsecond range. The dissipation time is
related to electron-phonon scattering and radiation, at 10mK
it is � 0:1 s. Alternating quasipersistent currents may be
observed when the ring perimeter (in mm) is 010ÿ7vF=T,
where the temperature T is in degrees of Kelvin, and vF is the
Fermi velocity (in cm sÿ1).

We also consider a Hartree liquid. The latter reduces to a
non-linear SchroÈ dinger equation, which is very rich in physics
and applications and has been extensively studied [49].
However, a conventional (in particular, solution) approach
is hardly applicable to a system in an external potential, and
especially to resonant tunneling, where the linear response
charge density, which is exponentially higher inside the
potential well than outside it, implies extreme space hetero-
geneity. Earlier this very heterogeneity elucidated the physics
of resonant turbulence.

Consider a geometry reduced to one dimension. Then the
non-linear SchroÈ dinger equation in the static potential U�x�
with the interaction potential V�x; x 0� � V�x 0; x� reads [42]:

i _c � Ĥc � ÿc00 �Uc� c
�
V�x; x 0���c�x 0; t���2 dx 0 ; �27�

where _c � qc=qt, c0 � qc=qx and V�x; x 0� � V�x 0; x� may
also account for the heterogeneous dielectric constant ed. [If
ed is homogeneous, then V�x; x 0� � V�jxÿ x 0j�]. The con-
served energy e is

e � i

�
c� _cdVÿ 1

2

�
V�x; x 0���c�x���2��c�x 0���2 dx dx 0 �28�

(a star denotes complex conjugation).We consider a potential
U which consists of two barriers with a well between them,
start with a stationary solution c � c0�x� exp�ÿio0t�, then
prove its instability, find time-dependent solutions and study
their stability. By Eqn (27), c0�x� yields

c000 �
�
c0 ÿUÿ

�
V�x; x 0���c0�x 0�

��2 dx 0�c0 � 0 : �29�

Suppose U�ÿx� � U�x�, each barrier is opaque, and the
incoming current is sufficiently weak to disregard the
interaction term outside the well. If the incoming energy
o0 is within the well eigenenergy width do, then in the well
jc0j is exponentially higher than outside it. In the semi-
classical case jc0j rapidly oscillates in the well, and in the
leading approximation one may replace jc0j2 there by its
average value


jc0j2
�
in the well. If o0 is outside do, then

jc0j nowhere exceeds its value jaj in the incoming wave, and
the interaction energy may be disregarded everywhere. So,
in a general semiclassical case the effective potential in
Eqn (29) is

Ueff � U� 
jc0j2
� �

V�x; x 0� dx 0 ;

and the transmittance T is [47]

T � 1

1� exp�ÿ4S� sin2 a ;

a � 2

�x1
0

k�x� dx ; S �
�x2
x1

��k�x��� dx ; �30�

k � �o0 ÿUeff�1=2 ; Ueff�x1� � Ueff�x2� � 0 ; x1 < x2 :

�31�

The transmittance is related [47] to

jc0j2

�
=jaj2:

T �

jc0j2

�
jaj2 exp�ÿ2S� : �32�

So, Eqns (30) and (31) determine T Ð see Fig. 4 [where
l � 2x1, L � x2 ÿ x1, Umax � max�U�]. The average interac-
tion energy in the well is � e2=l. So, when
jaj20�Umax=e

2� exp�ÿ2S�, the incoming energy o0 yields
non-resonant tunneling and multiple resonances (with the
resulting non-monotonic currentÐvoltage dependenceÐ cf.
experiments in Ref. [50]). The latter are related to self-
organized charge build-ups in the well, which lift different
eigenenergies to resonance with the incoming energy.

We now consider the stability of stationary tunneling.
According to Eqn (27), an infinitesimally weak perturbation
to c0 exp�ÿio0t�may be presented as

c � c0 exp�ÿio0t� � c� exp�ÿio�t� � cÿ exp�ÿioÿt� ;
o� � o0 � o : �33�

We introduce the vector wwith components c� and cÿ; the
Hermitian matrix ~W�x; x 0� with components�

~W�x; x 0���� � V�x; x 0�c0�x�c�0�x 0� ;�
~W�x; x 0���ÿ � V�x; x 0�c0�x�c0�x 0�

and the operator

Ŵw�
�

~W�x; x 0�w�x 0� dx 0 :

In the linear approximation Eqns (27), (33) yield:

�Ĥ0 � Ŵÿ oŝz�w� o0w ;

Ĥ0 � ÿ q
qx2
�U�

�
V�x; x 0���c0�x 0�

��2 dx 0 ; �34�

where ŝz is (formally, of course) the z-projection of the spin
operator. If the incoming current is fixed, w must yield
outgoing waves only, i.e. the stationary leakage from the
well. This is obviously impossible for any real eigenvalue o0

of the Hermitian operator, implying [18] Im �o� � do, and
thus, by Eqn (33), the instability of any stationary tunneling
in the Hartree model. [In the approximation do � 0, the
eigenvalues o in Eqn (34) imply the possibility of the
corresponding resonance.] Similar reasoning demonstrates
the instability of an alternating solution to Eqn (27).

An explicit analytical solution may be found in a shallow
well, i.e. in a model U � U1�x� ÿU0d�x�, V�x; x 0� �
V�x�d�x�d�x 0�. Then outside x 6� 0 Eqn (27) is leaner, and
cs (where s � �1 corresponds to x > 0 and s � ÿ1 to x < 0)
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may be presented as

cs �
�
a

2
�1ÿ s�ci�x�

�
�
aoscos�x� exp�ÿiot� do

�
exp�ÿio0t� : �35�

Outside the barrier the incoming ci�x� � exp
ÿ
ix

������
o0
p �

; the
reflected �s � ÿ1� and transmitted �s � �1� cos�x� �
exp
ÿ
ijxj ���������������o0 � o
p �. Matching conditions for c��0� and

c 0��0�, by Eqn (27), reduce c to j�t� � c��0; t� � c�ÿ0; t�
and yield the equation

k�o�jo � bd�o� � V0

ÿjjj2j�o ; �36�

k�o� �
�
ln

co��0�
coÿ�0�

�0
; b � aci�0�

�
ln

ci�0�
c0ÿ�0�

�0
: �37�

The subscript in Eqn (36) denotes the Fourier component.
When U1�x� is opaque, the coefficients k�o� and b are
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Figure 4. Transmittance T through identical opaque potential barriers separated by a semiclassical (deep) well vs. a dimensionless incoming wave vector
~k � l

������
o0
p

for different values of the dimensionless incoming particle density ~r � e2jaj2l2. The dimensionless potential height L2Umax � 1000; l and

L � l=3 are the well and the barrier widths; jaj is the incoming wave amplitude; ~r � 10ÿ4 (a) and ~r � 1 (b). Note that ~r � 1 yields 20 resonant branches at
~k=p � 9 (of course, each resonance has a narrow width which cannot be seen on this scale).
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readily calculated in the WKB approximation of the
stationary equation. Then Re

�
k�o�� � 2

��������������
q2 ÿ o

p
, q �

�max�U1� ÿ o0�1=2; Im
�
k�o��� exp�ÿ2S�, jbj � a exp�ÿ2S�.

Simple algebra ascertains the instability of a stationary
solution to Eqn (36).

To study the general case, consider a quasi-stationary j,
which is reduced to low frequencies o5 q2, and thus yields
k�o� � k1 � �o=q� � ik2, k1 � Re

�
k�0��, k2 � Im

�
k�0��, and

Eqn (36) may be rewritten as

�k1 � ik2�j� i _j
q
� b� V0jjj2j : �38�

We introduce

b � bk3=21

V
1=2
0

exp�iB� ; j �
�
k1
V0

�1=2

w exp�iBÿ iS� ;

k2
k1
� r ; tÿ t0 � t

k1q
; �39�

where w and b are positive and t0 is an arbitrary constant.
Then Eqn (38) reduces to

dw

dt
� b sinSÿ rw ;

dS

dt
� w2 � bwÿ1 cosSÿ 1 : �40�

When c1 > 2b, then j�t� is periodic in t with the period
Dt � �2= �����

c1
p �K� ������������

2b=c1
p �, where K is the complete elliptic

integral. If c1 � 2b, then jjj has a Coulomb blockade shape.
The charge transfer per period depends on j�t0� and is, in
general, fractional. The value of r is proportional to the
barrier transmittance exp�ÿ2S�. It is exponentially small in
an opaque barrier, and allows for perturbations in rw in Eqn
(17). At jtj4 1=r, depending on the initial conditions, the
solution either diverges as t! ÿ1 and approaches a
stationary solution (which was earlier demonstrated to be
unstable) at t!1, or vice versa. The numerical calculations
for Eqn (40) verify the above analytical results (Fig. 5).

Equations (40) explicitly demonstrate the origin of the
instability. They yield solutions, whose proximity allows for
fluctuation induced transitions [Fig. 5a; in particular, their
increasing proximity to the branching point w � 1 makes the
transitionmoment fromw > 1 tow < 1 unstable, but they are
remote elsewhere and finally diverge (Fig. 5b, c)].
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