
Abstract. The key problems of modern cosmology, such as the
cosmological singularity, initial conditions, and the quantum
tunneling hypothesis, are discussed. The relationship between
the latest cosmological trends and L D Landau's old ideas is
analyzed. Particular attention is given to the oscillatory ap-
proach to singularity; quantum tunneling processes determin-
ing wave function of the Universe in the presence of a complex
scalar field; and the role of quantum corrections in these pro-
cesses. The classical dynamics of closed models with a real
scalar field is investigated from the standpoint of chaotic,
fractal, and singularity-avoiding properties.

1. Introduction

Talking with his students in the 1950s, Lev Davidovich
Landau listed three problems as the most important for
theoretical physics still waiting to be solved: the problem of
the cosmological singularity, the problem of phase transi-
tions, and the problem of superconductivity [1]. Today one
may say that there has been a major breakthrough in the
studies of superconductivity [2] and phase transitions [3]. At
the same time, the problem of the cosmological singularity
still remains intriguing, in spite of the substantial advances in
studies of different aspects of it.

For example, R Penrose and S Hawking [4] proved the
impossibility of indefinite continuation of geodesics under
certain conditions. This was interpreted as pointing to the

existence of a singularity in the general solution of the
Einstein equations. However, these theorems were based on
topological methods, and did not allow for finding the
particular analytical nature of the singularity. It was only
in the papers by E M Lifshitz and I M Khalatnikov [5, 6],
and V A Belinski|̄, E M Lifshitz and I M Khalatnikov [7, 8,
12] that the analytical behavior of the general solutions of
the Einstein equations was investigated in the neighborhood
of the singularity. It is important that the results exhibited a
dependence on the required number of arbitrary functions,
which was an indication of their universality [9, 10]. These
papers for the first time, revealed the intriguing phenomenon
of an oscillatory approach of the Universe to the singularity
[5 ± 13], which has become known as theMixmaster Universe
[14]. A simple model with three degrees of freedom (a
Bianchi IX model of the Universe) was used to demonstrate
that the Universe approaches the singularity in such a way
that its contraction along two axes is accompanied by an
expansion with respect to the third axis, and the axes change
their roles according to a rather complicated law. The
dynamics of the oscillatory approach to the singularity
turned out to be extremely rich, and attracted the attention
of researchers using a broad variety of mathematical
methods, from number theory [15] to the theory of
catastrophes [16].

From a physical standpoint, we are especially interested in
the analysis of the probability distribution of the initial data
for the expanding oscillatory Universe, started in Ref. [11]
and further developed in Ref. [13]. This analysis anticipated
the quantum-cosmological attempts at establishing the base-
line for cosmological evolution through constructing the
wave function of the Universe [17, 18]. It would be appro-
priate here to recall Landau's words [19] that a consistent
physical theory of the future should include not only the
correct equations of motion, but also the initial conditions. It
is this problem that is one of the main tasks of quantum
cosmology today.

It is interesting that the concept of quantum tunneling has
recently been widely used for constructing the wave function
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of the Universe (in a sense, this idea is equivalent to the use of
Euclidean space ± time and the sign-change transitions; see
Ref. [20]). Owing to the multidimensionality of the problem,
one is faced with the complexification of time and paths [21 ±
23], which is discussed in the textbook on non-relativistic
quantum mechanics by L D Landau and E M Lifshitz [24]
with references to Landau's paper from as early as 1932!
Another feature of the quantum birth of the Universe owing
to quantum tunneling and the change of sign of space ± time is
that this allows the avoidance of the `fall into singularity'. In
other words, the models of quantum birth of the Universe
assume that, considering the inverse time evolution of the
Universe, there is a recoil rather than a singularity Ð the
collapse of the Universe stops short and expansion begins.
The evolution towards a smaller Universe is only possible
through an analytical extension of time into the complex
plane Ð in other words, through tunneling. In this way, the
wave function of the Universe based on the concept of
quantum tunneling allows avoidance of the singularity,
which is intuitively attractive. It is interesting that the study
of classical cosmological scenarios avoiding the singularity
goes well back in time [25 ± 29] and is still being pursued [30 ±
33].

As regards the idea of Landau [19] that a consistent theory
should define not only the correct equations of motion but
also the initial conditions, it is naturally related to another
ideawhich has recently become very popular. This is what one
might call the concept of quantum self-consistency. It appears
that the quantum theory of elementary particles and funda-
mental forces should define the content of the matter fields
and hence the spectrum of particles, while the relevant
restrictions can be derived from the requirement of intrinsic
self-consistency in the theory. A classic example is the so-
called mechanism of Glashow ± Iliopoulos ±Maiani [34], who
introduced a fourth quark into the theory of electroweak
interactions in order to suppress the neutral currents affecting
the strangeness and to eliminate the chiral anomaly. Later this
quark was observed experimentally and became known as
`charmed'. Even more spectacular was the appearance of the
critical dimensions in the theories of strings and superstrings
[35], which pose a claim to becoming fundamental theories of
physics. As is known, the theory of boson strings can be
consistently formulated in a space of dimensionality d � 26
[36], whereas a superstring exists in a space of dimensionality
d � 10.

It is well known that cosmological observations may serve
as a test ground for various models of the physics of
elementary particles (see, for example, Ref. [37]). A less
known fact is that even the requirement of self-consistency
of quantum cosmology imposes various restrictions on the
spectrum of the theory [38 ± 44, 22, 23].

In this review we are going to consider some directions in
contemporary quantum and classical cosmology which relate
to such ideas of Landau as the importance of the problem of
the singularity, the complexification of time associated with
tunneling, the relevance of the initial conditions in the
framework of the fundamental theory, and the related
concept of quantum self-consistency. Section 2 is devoted to
the oscillatory approach to singularity; in Section 3 we
consider the theory of cosmological tunneling transitions
using the model with a complex scalar field [45 ± 49, 32, 33].
Section 4 deals with the calculation of loop corrections in
quantum cosmology, and with such aspects of the wave
function of the Universe as its normalizability and ability to

predict the initial conditions of cosmological evolution. In
Section 5 we consider the scheme of the Hamiltonian BRST
(Becchie ±Rue ± Stora ±Tyutin) quantization of closed cos-
mological models and its implications. Sections 6 and 7 deal
with the feasibility of avoiding the singularity even within the
framework of classical cosmology with a scalar field. The
main results of these studies are summarized in the conclu-
sion.

2. Oscillatory approach to the singularity

One of the first exact solutions obtained within the frame-
work of the general theory of relativity was the Kasner
solution [50] for a cosmological model like Bianchi I, which
considers a gravitation field in empty space with Euclidean
metrics whose time dependence is described by

ds2 � dt 2 ÿ t 2p1 dx2 ÿ t 2p2 dy2 ÿ t 2p3 dz2 ; �2:1�

where the exponents p1, p2, p3 satisfy the condition

p1 � p2 � p3 � p21 � p22 � p23 � 1 : �2:2�

Arranging the exponents in the order

p1 < p2 < p3 ; �2:3�

one can parametrize them:

p1 � ÿu
1� u� u2

; p2 � 1� u

1� u� u2
;

p3 � u�1� u�
1� u� u2

: �2:4�

If the parameter u varies in the range u5 1, the exponents p1,
p2, p3 all assume allowable values:

ÿ 1

3
4 p1 4 0 ; 04 p2 4

2

3
;

2

3
4 p3 4 1 : �2:5�

With u < 1, we have the same ranges for p1, p2, p3, since

p1

�
1

u

�
� p1�u� ; p2

�
1

u

�
� p3�u� ; p3

�
1

u

�
� p2�u� :

�2:6�

For Bianchi VIII and Bianchi IX models, the Kasner
regime (2.1), (2.2) is no longer an exact solution of the
Einstein equations; it is possible, however, to construct the
generalized Kasner solutions [5 ± 8]. It is also possible to
construct a perturbation theory for which the exact Kasner
solution (2.1), (2.2) serves as the zero approximation, while
the perturbations are represented by those terms in the
Einstein equations which depend on the curvature of space
(such terms are obviously not present in the Bianchi I model).
This perturbation theory holds in the neighborhood of the
singularity Ð that is, at t! 0. The remarkable fact is that
these perturbations lead to the transition from one Kasner
regime to another with different parameters. The metrics of
the generalizedKasner solution in the synchronous frame can
be written as

ds2 � dt 2 ÿ �a2lalb � b2mamb � c2nanb� dxa dx b ; �2:7�
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where

a � t pl ; b � t pm ; c � t pn : �2:8�

The three-dimensional vectors l, m, n define the directions in
which the spatial dimensions exhibit a power-law time
dependence (2.8). Let pl � p1, pm � p2, pn � p3, so that

a � t p1 ; b � t p2 ; c � t p3 ; �2:9�

that is, theUniverse contracts in the directions ofm and n, and
expands along l.

It was demonstrated [7] that the perturbations caused by
the terms with spatial curvature lead to a transition to a
different Kasner regime characterized by the following
formulas:

a � t p
0
l ; b � t p

0
2 ; c � t p

0
3 ; �2:10�

where

p 0l �
jp1j

1ÿ 2jp1j ; p 0m � ÿ
2jp1j ÿ p2
1ÿ 2jp1j ;

p 0n � ÿ
p3 ÿ 2jp1j
1ÿ 2jp1j : �2:11�

We see that the perturbations give rise to a transition from
one `Kasner epoch' to another, in which the negative power of
t shifts from direction l to direction m. In the course of
transition, the function a�t� achieves its maximum, and the
function b�t� goes through a minimum. Accordingly, the
previously decreasing b starts to increase, and a starts to
decrease, whereas c�t� remains a decreasing function. The
perturbation that initiated the transition from regime (2.9) to
regime (2.10) decreases and almost disappears. Then another
perturbation starts to grow and gives rise to a transition from
this Kasner epoch to yet another one, and so on.

We would like to emphasize that the successful applica-
tion of perturbation theory relies on the fact that the
perturbation affects the dynamics of the system in such a
way that the initial perturbation is eliminated. A rather
remote but interesting analogy can be traced with the
phenomenon of asymptotic freedom in quantum field theory
[51], where the perturbative calculation of quantum correc-
tions in non-Abelian Yang ±Mills model and some other
models reduces the magnitude of the relevant coupling
constants, thus justifying the method itself.

Going back to the rules that govern the shift of the
negative exponent from one direction to another, one can
show that they can be expressed with the aid of a parame-
trization of Eqn (2.4):

pl � p1�u� ; pm � p2�u� ; pn � p3�u� �2:12�

and then

p 0l � p2�uÿ 1� ; p 0m � p1�uÿ 1� ; p 0n � p3�uÿ 1� :
�2:13�

The larger of the two positive exponents remains positive.
Consecutive changes of Eqn (2.13), accompanied by the

toggle of the negative exponent between directions l and m,
continue till the integer part of u is exhaustedÐ that is, until u

becomes less than one. Then, in accordance with Eqn (2.6),
the value of u < 1 can be converted into u > 1. At this time
one of the exponents pl or pm is negative, and pn becomes the
least of the two positive numbers �pn � p2�. The next series of
changes will toggle the negative exponent between directions
n and l, or n and m.

Evolution of the model towards the singularity consists of
consecutive periods (called eras), within which the dimensions
along two axes oscillate, whereas the scale along the third axis
decreases monotonically, and the volume decreases with time
according to a near-linear law. In the course of the transition
from one era to the next, the axes along which the scale
decreases monotonically exchange their roles. The order of
change of the eras of varying duration assume a random
nature.

Each sth era corresponds to a decreasing sequence of
values of the parameter u. This sequence has the form
u
�s�
max; u

�s�
max ÿ 1; . . . ; u

�s�
min, where u

�s�
min < 1. Let us introduce the

following notation:

u
�s�
min � x�s� ; u�s�max � k�s� � x�s� ; �2:14�

that is, k�s� � �u�s�max� (the brackets indicate the largest
integer less or equal to u

�s�
max). The number k�s� determines

the length of the era. For the next era we get

u�s�1�max �
1

x�s�
; k�s�1� �

�
1

x�s�

�
: �2:15�

The ordering of durations k�s� of consecutive eras
(determined by the number of Kasner epochs in each)
asymptotically tends to assume a random nature. The
stochastic nature of the process is explained by rules (2.14),
(2.15) which govern the transitions from one era to the next in
the infinite series of values of u. If this sequence starts with a
certain initial value u

�0�
max � k�0� � x�0�, then the lengths of

sequences k�0�; k�1�; . . . can be represented as the numbers
involved in the expansion of the continued fraction

k�0� � x�0� � k�0� � 1

k�1� � 1=�k�2� � . . .� : �2:16�

This succession of eras can be described statistically if in
place of the given initial value u

�0�
max � k�0� � x�0� we consider

the distribution x�0� over the interval �0; 1�, governed by a
certain probability law. Then it is possible to obtain certain
distributions of the values x�s�, truncating each sth set of
numbers. It can be demonstrated that, as s increases, these
distributions tend to a stationary (independent of s) prob-
ability distribution w�x�, for which x�s� is completely
`forgotten':

w�x� � 1

�1� x� ln 2 : �2:17�

FromEqn (2.17) it follows that the probability distribution of
the lengths of series of k is given by

W�k� � 1

ln 2
ln
�k� 1�2
k�k� 2� : �2:18�

Moreover, it is also possible to calculate exactly the
probability distributions for other parameters, such as the
parameter d which defines the relationship between the
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amplitudes of logarithms of functions a, b, c and the
logarithmic time [13].

In this way, a statistical analysis of the evolution in the
neighborhood of the singularity [11] indicates that the
stochasticity and probabilistic distributions of parameters
already arise in classical general relativity. One may say that
this probabilistic description of the classical Universe at the
beginning of its existence may serve as prototype of the
probability distribution for the initial state of the Universe
which arises in quantum cosmology as a result of construction
of the wave function of the Universe.

The dynamics of an oscillatory approach to singularity
are still being actively discussed in the literature. For example,
the fact that the dynamics are actually chaotic was challenged
on the grounds that the corresponding Lyapunov exponents
vanish [52]. Later, however, it was found that different
parametrizations of the time variable give rise to different
values of the Lyapunov exponents. This called for the
development of invariant methods for studying chaos in
cosmology. The equations which describe the approach to
singularity using the PainleveÂ test were analyzedÐ that is, the
search for singular points whose location depends not only on
the equations themselves, but also on the initial conditions.
The type of singularity at these points allows the possible
nonintegrability of the dynamic equations to be detected [53].
The results of these studies point to the chaotic nature of the
approach to the singularity [54], although the authors point
out that these statements do not yet hold the status of
theorems.

In Ref. [15], the study of chaos was based on observer-
independent fractal techniques. A large number of quasi-
periodical paths were constructed Ð that is, paths for which
the durations of the Kasner eras obey a periodical law, where
the total volume of the Universe monotonically decreases. It
is interesting that these quasi-periodical paths correspond to
the so-called periodical irrational values of the parameter u,
represented by periodical continued fractions. It was known
even to Lagrange that such numbers are the roots of
quadratic equations with integer coefficients{. The set of
these numbers is countable and has measure zero over the
set of all values of the parameter u. These paths form a strange
repeller of non-trivial fractal dimension. The existence of such
a repeller and its parameters brought the authors of Ref. [15]
to the definite conclusion that the oscillatory approach to
singularity has a chaotic nature.

Another interesting aspect of the approach to singularity
is the question concerning the composition of the matter that
preserves the oscillations. It has long been known [10] that the
assumption of the negligibly small role of matter near the
singularity only holds for matter whose equation of state
satisfies the condition p4 2E=3, where p is the pressure and E
is the density of energy. At the same time, it has been
demonstrated [55] that the general solution of the gravitation
equations for the cosmological model with a massless scalar
field exhibits monotonic power-law asymptotic behavior
instead of the oscillatory regime. This is quite natural, since
this model is equivalent to the model with hydrodynamic
matter whose equation of state is p � E. In the light of this fact
it would be quite natural to conclude that the oscillatory

regime is not realized in string cosmology [56], since the
massless dilaton field is an integral part of string cosmologi-
cal models [57].

The nature of the dynamic evolution in the Bianchi IX
model was also studied [58] using the very popular formalism
of Ashtekar variables [59]. Using them in the context of the
Hamiltonian formalism, it was demonstrated that the Bianchi
II models may be treated as perturbations of the Bianchi I
models, and are integrable. The Bianchi IX model is in turn a
perturbation of the Bianchi II model; in this case, however,
the algorithm of integrability does not work, which in the
opinion of the authors explains the chaotic dynamics of the
Bianchi IX model.

To conclude this section, we shall mention paper [16]
where the dynamics of the Bianchi IX model were analyzed
using the methods of the theory of catastrophes [60]; then the
transition from one Kasner era to the next is equivalent to a
fold-type catastrophe.

In this way, the study of the oscillatory approach to
singularity attracts much interest, and is in a sense becoming
a chapter of modern mathematical physics in its own right.

3. Quantum tunneling and wave function of the
Universe, model with a complex scalar field

In recent years, the branch of theoretical physics known as
quantum cosmology has been on the rise. It is important
because it is linked with the development of a consistent
scheme of quantization of gravitation, which is necessary
for constructing a unified theory of fundamental interac-
tions, as well as because it has the potential for predicting
the initial conditions for the inflation model of the Universe
[61, 37], which has won the status of a verifiable and even
observable theory after the discovery of the anisotropy in
the background radiation [62] predicted almost two decades
ago [63].

Inflation cosmology is essentially based on the assump-
tion that the early cosmological evolution passed through an
inflational (or quasi-De-Sitter) stage of near-exponential
expansion, which was then superseded by the conventional
Friedmann power-law expansion. This assumption removes a
number of old difficulties from the theory of a hot Universe
and correctly accounts for the anisotropy of the background
radiation.

The question concerning the origin of the inflationary
Universe, however, remains open. To resolve it, one has to
address the principles of quantum cosmology. The main
principle of quantum cosmology is that the Universe is
treated as a single quantum object, whereas the quantization
of gravitation is performed in the language of dynamics of
systems with constraints. Such an approach goes back to the
early works of P Dirac, J A Wheeler, B S DeWitt, and others
[64]. In the context of this approach, one may define the wave
function of a closed Universe which obeys the Wheeler ±
DeWitt equation

HC��3�g;F� � 0 : �3:1�

Here C��3�g;F� is the wave function of the Universe, which
depends on the 3-metric �3�g and the matter fields F, whereas
H is a constraint of the first kind called the super-
Hamiltonian, whereby all fields and their canonically con-
jugate momenta are interpreted as operators satisfying the
canonical commutative relations.

{ Finite continued fractions correspond to rational numbers. After a

number of oscillations started at a certain rational value of parameter u,

the Universe arrives at the state with u � 1, whose metric is equivalent to

the metric of the Minkowski space up to the Lorentz transform [9].
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The most common approach to the Wheeler ±DeWitt
equation is based on considering the so-called mini-super-
spaces which only involve a finite number of cosmological
degrees of freedom, the rest being `frozen'. Another useful
trick in studying Eqn (3.1) consists in the semiclassical
expansion of the functional integral formally representing
the solution of theWheeler ±DeWitt equation. This approach
has been actively pursued since the early 1980s, when two
ideologically close prescriptions for constructing the wave
function of the Universe were proposed [17, 18]. Both
approaches draw an analogy between the birth of the
Universe `from nothing' and the processes of tunneling in
quantum mechanics and quantum field theory, treated in the
semiclassical approximation. The probabilities of such
processes can be evaluated by calculating the Euclidean
action on the instantons Ð the solutions of the Euclidean
equations of motion for the systems in question [65].

On the tree level Ð that is, in the lowest order of the
perturbation theory Ð these functions can be represented in
the following form:

(1) the so-called `no-boundary' wave function [17]

CNB � exp�ÿI� ; �3:2�

(2) the tunneling wave function [18]

CT � exp��I� : �3:3�

Here I is the Euclidean action, which in the case of gravitation
occurs with a minus sign in the equations of motion, as
opposed to the situation with the conventional field theory.
One can demonstrate that both wave functions (3.2) and (3.3)
satisfy the Wheeler ±DeWitt equation (3.1) [21, 39]. The
proof of this fact relies heavily on the absence of a time
dependence in Eqn (3.1). Apparently, the probability dis-
tributions obtained from the wave functions (3.2) and (3.3)
are complementary to each other in the sense that the
maximum of the no-boundary wave function corresponds to
the minimum of the tunneling function, and vice versa.

One may say that the problem of reconciliation of
quantum cosmology and inflation cosmology consists
essentially in the search for a cosmological model whose
wave function defines such initial conditions for the
inflation stage as would correspond to today's large-scale
structure. Most of the cosmological models of recent time
involve the so-called inflaton scalar field with a non-zero
classical mean, which ensures the existence of the effective
cosmological constant at the early stage of cosmological
evolution. Moreover, the simultaneous evolution of the
space ± time geometry and the inflaton scalar field ensures
not only the inflation stage itself, but also a smooth
transition to the Friedmann evolution.

Unfortunately, the simple cosmological models with a
real scalar field, whose wave functions are calculated in the
tree-level approximation in accordance with Eqn (3.2) or
(3.3), are not capable of yielding a normalizable wave
function of the Universe [66] and ensuring such a probability
distribution for the initial value of the inflaton scalar field as
would guarantee a sufficiently long inflation stage [67].

A way out of this situation may be sought in various
directions. The one-loop treatment of the wave function of
the Universe [38 ± 43, 22, 23] gives a normalizable wave
function for the Universe and an acceptable probability
distribution for the initial value of the inflaton scalar field

provided that the spectrum of the theory is properly selected
(see Section 4).

Another direction of development of quantum cosmology
involvesmodelsmore sophisticated than themodel with a real
scalar field. For example, in Refs [45 ± 47] a model was
considered with a complex scalar field. For one thing,
complex scalar fields and non-Abelian multiplets of scalar
fields arise naturally in contemporary theories of elementary
particles. On the other hand, with a complex scalar field one
has the opportunity to introduce an additional quasi-
fundamental constant: the classical charge related to the
global symmetry of the Lagrangian of the theory with respect
to phase rotation of this field. The inclusion of this charge
gives rise to a centrifugal term in the effective Hamiltonian,
and the concept of a Euclidean region in the mini-superspace
is changed drastically. Euclidean, or `classically forbidden'
regions become compact and host the instanton solutions
with zero velocities on the boundary of the region [68]. Such
instanton solutions correspond to an extremum of the
Euclidean action and a peak in the probability distribution
for the no-boundary wave function [47]. In this way, such
instantons predict the initial conditions for the inflation stage,
and the subsequent evolution of the model ensures a smooth
transition to Friedmann's power-law expansion.

Recently, the models with non-minimal coupling between
the inflaton scalar field and gravitation have become very
popular [69]. On the one hand, such models offer many
opportunities for comparing theoretical predictions with
actual observations; on the other hand, they are more
consistent from the standpoint of quantum gravitation [70].
The cosmological model with non-minimal coupling of the
complex scalar field is quite rewarding [48, 49, 32, 33]. As
indicated above, the model with minimal coupling of the
scalar field admits only one instanton solution [45, 46]. This
solution may be extended into the Lorentz region in
accordance with the Lorentz equations of motion, thus
providing for the origin of inflation. Such a scheme
obviously favors a no-boundary wave function for the
Universe [47]. At the same time, in the case of non-minimal
coupling of the complex field we get a pair of instantons, of
which one ensures a peak for the no-boundary wave function,
whereas the other ensures a peak for the tunneling wave
function.

Let us consider the model with non-minimal coupling of
the complex scalar field in greater detail. Its action has the
form

S �
�
d4x

�������ÿgp �
m2

P

16p
�Rÿ 2L� � 1

2
g mnf�mfn

� 1

2
xRff� ÿ 1

2
m2ff� ÿ 1

4!
l�ff��2

�
; �3:4�

where x is the parameter of non-minimal coupling (for
convenience, here we use a sign opposite to that commonly
found in the literature), l is the parameter of self-interaction
of the scalar field,L is the cosmological term,m is the mass of
the scalar field. The complex scalar field f can be represented
in the form

f � x exp iy ; �3:5�

where x is the absolute value of the complex scalar field, and y
is its phase. We consider the mini-superspace model with
spatially homogeneous variables a (the cosmological radius in
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the Friedmann ±Robertson ±Walker metric), x and y. Now
the action (3.4) becomes

S � 2p2
�
dtNa3

(
m2

P

16p

�
6

�
_a2

N 2a2
� �a

N 2a
� 1

a2

�
ÿ 2L

�

� 1

2N 2
_x2 � 1

2N2
x2 _y2 � 3x

�
_a2

N 2a2
� �a

N 2a
� 1

a2

�
x2

ÿ 1

2
m2x2 ÿ 1

4!
lx4
)
; �3:6�

where N is the lapse function. Integrating by parts, we
eliminate the terms containing the second derivatives �a, and
rewrite Eqn (3.6) in a more convenient form:

S � 2p2
�
dtN

(
m2

P

16p

�
6

�
ÿ _a2a

N 2
� a

�
ÿ 2La3

�
� 1

2N 2
_x2

� 1

2N 2
x2 _y2 � 3x

�ÿ _a2a

N 2
� a

�
x2 ÿ 6x

_a _xa2x

N 2

� 1

2N 2
_x2a3 ÿ 1

2
m2x2a3 ÿ 1

4!
lx4a3

)
: �3:7�

Observe that the phase variable y is cyclical, and its
canonically conjugate momentum py must be conserved. We
call its value the charge of the Universe and denote it by Q:

py � Q � a3x2 _y : �3:8�

Going over to theHamiltonian formalism, wemay rewrite
the action (3.7) in the form

S � 2p2
�
dt �pa _a� px _xÿNH� ; �3:9�

where the super-HamiltonianH is

H � ÿ p2a
24a
�
m2

P=�16p� � xx2=2� 3x2x2
�

ÿ xpxpax

2a2
�
m2

P=�16p� � xx2=2� 3x2x2
�

� p2x
2a3

m2
P=�16p� � xx2=2

m2
P=�16p� � xx2=2� 3x2x2

ÿU�a; x� : �3:10�

The function U�a; x�, which will be referred to as the
superpotential, is

U�a; x� � a

�
m2

P

16p
�6ÿ 2La2� � 3xx2

ÿ Q2

a4x2
ÿ 1

2
m2x2a2 ÿ 1

24
lx4a2

�
: �3:11�

Variation of the action with respect to the lapse function N
yields the constraint

H � 0 ; �3:12�

whose quantum counterpart is the Wheeler ±DeWitt equa-
tion (3.1).

Now it will be convenient to write down the effective
Lagrangian which will only depend on a and x, and their
derivatives (the lapse function N is selected to be unity):

L �
�
m2

P

16p

�
6�ÿ _a2a� a� ÿ 2La3

�
� 3x�ÿ _a2a� a�x2 ÿ 6x _a _xa2x� 1

2
_x2a3

ÿ Q2

2a3x2
ÿ 1

2
m2x2a3 ÿ 1

4!
lx4a3

�
: �3:13�

This Lagrangian gives us the equations of motion

m2
P

16p

�
�a� _a2

2a
� 1

2a
ÿ La

2

�
� x _a2x2

4a
� x�ax2

2
� xx _x _a� x _x2a

2

� xx�xa

2
� xx2

4a
� a _x2

8
ÿm2x2a

8
� Q2

4a5x2
ÿ lx4a

96
� 0 �3:14�

and

�x� 3 _x _a

a
ÿ 6xx�a

a
ÿ 6x _a2x

a2
ÿ 6xx

a2
�m2xÿ 2Q2

a6x3
� lx3

6
� 0 :

�3:15�

In addition, we can write the first integral of motion for
our dynamic system:

ÿ 3

8p
m2

Pa _a2 ÿ 3xa _a2x2 ÿ 6xx _x _aa2 � a3

2
_x2 ÿU�a; x� � 0 :

�3:16�

Similar Euclidean equations of motion can be derived
from Eqns (3.14) ± (3.16) by changing the sign of the
derivative-containing terms. Now we must define the con-
cept of `Euclidean regions' in our mini-superspace. Observe
that the reference to `Euclidean' or `classically forbidden'
regions is rather a matter of convention, since, owing to the
indefiniteness of the supermetric, the Euclidean regions are
not inaccessible for the ordinary Lorentz paths. It is well
known that the Lorentz paths in the cosmological models
with scalar field can enter Euclidean regions, and the paths
corresponding to the Euclidean equations ofmotionmay pass
through the Lorentz region [29, 71, 21]. Nevertheless, the
Euclidean and the Lorentz regions make sense in the
description of processes of tunneling in cosmology and in
the physics of instantons [68] even in case of an indefinite
supermetric. The term `Euclidean region' can even be given a
precise meaning if we define it as a region which may host the
points of minimum contraction and maximum expansion of
the Universe. So, the Euclidean region is a region where

U�a; x� > 0 : �3:17�

Accordingly, the boundary of this region is defined by the
equation

U�a; x� � 0 : �3:18�

Instantons are solutions of the Euclidean equations of
motion for which both velocities _x and _a vanish on the
boundary. Such solutions correspond to the extremes of the
Euclidean action, and, accordingly, to the extremes in the
probability distributions derived from the wave functions.
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Now is the time to make a terminological point. Strictly
speaking, the concept of a `no-boundary' wave function
cannot be straightforwardly applied to the case of a complex
scalar field. The fact is that the prescription `no-boundary' in
the semiclassical approximation reduces to a continual
integration from a � 0 to a certain small cosmological radius
awith respect to compact metrics and regular matter fields. In
the presence of the phase variable y, however, the associated
centrifugal term makes the matter fields not regular at a � 0.
Because of this, we need to modify the `no-boundary' wave
function. The modification proposed in Ref. [47] consists in
that the wave function of the Universe must grow exponen-
tially in the Euclidean region, and be proportional to exp�ÿI�
in the semiclassical approximation. The instantons consid-
ered in Refs [45 ± 49] correspond to precisely this definition of
`no-boundary' wave function.

Now we can embark on studying the shape of the
Euclidean regions in the plane of superspace variables �a; x�
for different values of the parameters of the superpotential U
(3.11).

In the simplest case Q � L � l � x � 0, we get the
Euclidean region delimited by the hyperbolic curve
x � � ��������������

3=�4p�p
mP=�ma� (Fig. 1a). Introduction of the

cosmological term L 6� 0 closes the Euclidean region on the
right at a � ���������

3=L
p

(Fig. 1b).
Introduction of a non-zero classical charge for the scalar

fieldQ 6� 0 closes the Euclidean region on the left, and we get
a banana-like shape (Fig. 1c) [45, 46].

After the introduction of a small term accounting for the
non-minimal coupling between the scalar field and gravita-
tion �x 6� 0�, we get another Euclidean region in the upper
left-hand corner of the �x; a� plane [48]. This new region is not
compact, and is not limited from above (Fig. 1d). As x
increases, the second Euclidean region drops down, and at a
certain value of x joins the first banana-shaped Euclidean
region (Fig. 1e). As x increases further, we get a unified

Euclidean region whose boundary is partly concave, partly
convex (Fig. 1f). Further on, the boundary becomes convex
(Fig. 1g). After introduction of the self-interaction constant
l 6� 0, we may, depending on the values ofQ, l, x, and m, get
three different configurations of the Euclidean regions. For
example, with sufficiently small x and sufficiently large l, we
get one banana-shapedEuclidean region (Fig. 1h).With small
values of l, incapable of `closing' the upper region, we get two
separate Euclidean regions (rather similar to Fig. 1d). Finally,
with a sufficiently large value of x we get an open `bag' with
infinitely long narrow neck. We see that the inclusion of the
charge Q, non-minimal coupling x, and self-action for the
scalar field, offers a great diversity of possible geometries of
Euclidean regions.

Nowwe perform a numerical integration of the Euclidean
analogs of Eqns (3.14) and (3.15) to resolve the question
concerning the existence of instantons which realize the
extremes of Euclidean action. The numerical integration can
be supplemented by finding exact expressions for the possible
locations of the points of the largest expansion of the
Universe ( _a � 0, �a < 0) and the points of its lowest contrac-
tion ( _a � 0, �a > 0), as well as the point of maximum and
minimum x. Such an analysis has been carried out in detail in
Refs [49, 32, 33]. Here it will suffice to state that the instanton
paths must certainly cross the curves which separate the
points of the largest expansion and the lowest contraction of
the Universe, and the points of possible maximum and
minimum of x.

It is straightforward that instantons do not exist in the
framework of the simplest model with a real scalar field. If,
however, the charge Q is non-zero, the instanton may and
does exist (Fig. 2a). Using the end point of this instanton on
the right-hand boundary of the Euclidean banana-shaped
region as the initial point of the Lorentz path, we see that this
path exhibits quasi-inflation behavior [45 ± 49].

In the case of a model with a complex scalar field with
non-minimal coupling, when there are two separate Eucli-
dean regions (Fig. 1d), the instanton occurring in the banana-
shaped region may ensure acceptable initial conditions for
inflation (Fig. 2b). At the same time, there is another solution
of the Euclidean equations ofmotionwith zero velocity on the
boundary between the Euclidean and Lorentz regions: this
solution connects the Euclidean regions passing through the
Lorentz region. The behavior of the Lorentz path which starts
at the end point of the Euclidean path is definitely non-
inflationary, and cannot be used for describing the quantum
tunneling of the Universe from nothing.

Further on, as the constant of non-minimal coupling x
increases, the path made by this unusual instanton becomes
shorter. As soon as the two Euclidean regions meet, the
second instanton reduces to a point and disappears.

As x increases further, when we have a single Euclidean
region open from above, there are two instantons inside the
Euclidean region (Fig. 2c). The lower instanton corresponds
to the local maximum of the magnitude of Euclidean action,
and the upper to its local minimum. The end points of both
instantons can be used as the starting points of Lorentz paths
exhibiting quasi-inflationary behavior (Fig. 2c).

It is important to note that the upper instanton ensures the
existence of a peak in the probability distribution of the
tunneling wave function of the Universe [18], since in the
tree-level approximation this function behaves as CT �
exp�ÿjIj�. At the same time, the lower instanton ensures a
peak in the probability distribution of the no-boundary wave
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Figure 1. Geometry of the Euclidean regions for different values of

parameters.
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function [17], which behaves asCNB � exp��jIj�. Thus, if we
opt for the no-boundary wave function of the Universe, we
must use the end point of the lower instanton for defining the
most probable initial conditions of inflation, whereas the
upper instantonmust be used in the case of the tunnelingwave
function.

Finally, when x is large enough, and the boundary of the
Euclidean region is convex (Fig. 1g), there are no instantons
at all.

When the interaction term l 6� 0 is taken into account, the
overall pattern is more or less similar to that described above,
with some additional possibilities which are discussed in Refs
[49, 32, 33].

It would also be interesting to consider the case of a zero
cosmological constant �L � 0�. The vanishing of the cosmo-
logical constant opens up the Euclidean region on the right
(Fig. 2f). In place of two instantons we now have only one,
corresponding to the lowest magnitude of Euclidean action
and defining the peak of the probability distribution of the
tunneling wave function of the Universe. The second
instanton turns into a path that continues indefinitely within
the Euclidean region, never reaching its boundary. In this case
it is only the tunneling wave function of the Universe that can
predict the most probable conditions for the start of
cosmological evolution, as opposed to the situation with the
single Euclidean region, in which preference is given to the no-
boundary wave function. This fact may add vigor to the
discussions between advocates of different versions of the
wave function of the Universe [72, 73].

We end this section by noting that the instanton solutions
can also be obtained in the framework of themodel with a real
scalar field by selecting the potential which exhibits extreme
points at certain values of the inflaton field. Then we get the
instanton solutions with a constant inflaton field and a
cosmological factor which varies according to the Euclidean

De Sitter law:

a�t� � sinHt ;

where t is the Euclidean time. On the boundary between the
Euclidean and Lorentz regions, these solutions can be
analytically extended by accomplishing the analytic transi-
tion from Euclidean time to Lorentz time t:

t � p
2H
� it ; �3:19�

a�t� � coshHt : �3:20�

The instantons in models with a real scalar field have,
however, a considerable flaw: the inflation they predict is
eternal (at least when it starts from exactly the end point of the
instanton solution). A natural way out of inflation with
heating of the Universe and a transition to the Friedmann
stage is not available. By contrast, the inflation stage
predicted by the model with a complex inflaton field lasts
for long but not forever, and allows for an elegant way out of
inflation and on to the Friedmann Universe.

4. Energy scale of inflation and loop effects

The existence of instanton solutions in the model described
in the previous section allowed a description of the birth of
the Universe in a very simple manner. With other models,
where such solutions do not exist, the semiclassical analysis
of tunneling calls for the introduction of complex time and
complex paths. Such complexification becomes necessary
even when dealing with many-dimensional tunneling in non-
relativistic quantum mechanics [24]. In the context of the
quantum-cosmological problem, if we want to treat the
paths as being composed of two (Euclidean and Lorentz)
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sections Ð thus introducing the point where Euclidean time
converts into Lorentz time Ð we need that not only the
dynamic variables q satisfy the appropriate equations of
motion on each section of the path, but also that their
derivatives satisfy the following conditions at the point of
transition [21 ± 23]:

Re _qE � Im _qL ; Im _qE � ÿRe _qL : �4:1�

As it turns out, in some models the need for complex-
ification of the dynamic variables does not affect the
quantitative aspects of tunneling too much, and its effects
can be taken into account using the perturbation theory [22,
23]. In this section we are going to discuss somemodels of this
kind. There are two key aspects:

(1) going beyond the mini-superspace Ð that is, the
inclusion, along with the cosmological radius a and the
spatially homogeneous harmonic of the inflaton field j, of
perturbations of these and all other matter fields;

(2) going beyond the tree-level approximation for calcu-
lating the wave function of the Universe Ð that is, the
inclusion of loop corrections to the semiclassical formulas
(3.2), (3.3).

Such an approach not only allows a description of the
quantum birth of theUniverse and the prediction of the initial
conditions of inflation, but also ensures the normalizability of
the wave function of the Universe [22, 23, 38 ± 43], which is a
necessary condition for its probabilistic interpretation. In
turn, the requirement of normalizability imposes certain
restrictions on the spectrum of the theory, which is a non-
trivial manifestation of the principle of self-consistency
mentioned in the introduction.

Let us now briefly discuss the results of Refs [22, 23, 38 ±
43]. The wave function of the Universe in the one-loop
approximation is

C�q�T;NB � exp
ÿ�I�q� ÿW�q�� ; �4:2�

whereW is the one-loop correction to the effective action:

W � 1

2
TrM ln

F

m2
; F � d2I

dxdx
; �4:3�

x � �j; f �, f5j. Here x are the physical degrees of freedom,
j is the homogeneous mode of the inflaton field, f are the
inhomogeneous modes of all the fields, and m2 is the
renormalization mass parameter.

The linearized approximation for I is

I�g� � I� 1

2
f T�Dv�vÿ1f

���
t�
: �4:4�

Here I � I�g0� is a function of the homogeneous mode j, v is
the complete set of the basic functions of operator F, regular
on the De Sitter Euclidean sphere (inhomogeneous modes),
and D is a differential operator of the first order, Wronskian-
related to operator F. It can be demonstrated that the
expression for the `Euclidean' wave function of the Universe
is

CT;NB

ÿ
t�jj; f

� � 1

�det u�1=2
exp

�
�Iÿ 1

2
f T�Dv�vÿ1f

�
:

�4:5�

After the analytic extension into Lorentz space ± time, the
wave function (4.5) becomes

CT;NB

ÿ
tjj; f � � � 1

�det u��1=2
�R

� exp

�
ÿIB � iS� 1

2
if T�Dv�vÿ1f

�
�4:6�

and is a De Sitter invariant vacuum for f modes [74]. The
superscript R here denotes the renormalization of the infinite
product of basic functions; S is the Lorentz action. It is in this
way that the quantum state of matter fields in Lorentz space ±
time (and Lorentz space ± time itself) arises by virtue of
quantum tunneling from the classically forbidden Euclidean
world.

Information concerning the normalizability of the wave
function of the Universe (4.6) can be obtained from the
diagonal elements of the density matrix

r̂ � Trf jCihCj : �4:7�

It has been shown [43] that the quantity (4.7) can be expressed
as

r�tjj� � D1=2
j��uj�t��� exp��Iÿ G1 loop� ; �4:8�

where G1-loop is the one-loop correction to the effective action
calculated on the closed compact De Sitter instanton. This
quantity is conveniently calculated by the zeta-regularization
technique [75], which allows G1-loop to be represented as

G1 loop � ÿ 1

2
z 0�0� ÿ 1

2
z�0� lnm2R 2

0 ; �4:9�

where z�s� is the generalized Riemann zeta function, andR0 is
the radius of the instanton. The generalized Riemann zeta
function is defined as

z�s� �
X 1

ls
; �4:10�

where l are the eigenvalues of operator F. In the limit j!1
(or, which is the same, R0 ! 0), expression (4.10) reduces to

r�j� � exp��2IB�jÿZÿ2 ; �4:11�

where Z is the anomalous scaling of the theory, expressed in
terms of z�0� for all fields included in the model. The
requirement of normalizability�1

djr�j� <1 �4:12�

imposes a restriction on Z,

Z > ÿ1 ; �4:13�

which is required for the integral with respect toj to converge
at j!1.

The most convenient method for calculating the anom-
alous scaling is the Schwinger ±DeWitt expansion [76], since
z�0� is known to coincide with the second coefficient in this
expansion:

z�0� � A2 : �4:14�
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A comparison between the different models against the
criterion (4.13) on the assumption that the interaction
between the inflaton field and all other matter fields can be
neglected [40] brings one to the conclusion that supersymme-
trical models are more suitable. More interesting, however, is
the model with a strong non-minimal coupling between the
inflaton field and gravitation [69]. Such a model was
considered in Refs [22, 41, 42]. The Lagrangian of this
model is similar to that given by Eqn (3.4), but the inflaton
field is real. In addition, the matter fields interact with the
inflaton field, and in doing so acquire large masses at the
initial (inflation) stage of cosmological evolution. This model
not only ensures the normalizability of the wave function of
the Universe, but also features a peak in the probability
distribution corresponding to this wave function. It turns
out that the no-boundary wave function of the Universe
displays a peak in the probability distribution only with a
specially selected potential, and then inflation is eternal Ð
there is no elegant way out. By contrast, the tunneling wave
function exhibits a probability peak at a certain value of the
inflaton field jI, and the required duration of the inflation
stage (cosmological observations indicate that the Universe
during the inflation stage ought to expand by a factor of e60) is
ensured if the anomalous scaling of the model has a huge
value of

Z � 1011 : �4:15�

This value can be obtained naturally enough in the model
under consideration, where the leading contribution to Z is

Z � 6
x2

l
A�O�x� ; �4:16�

where

A � 1

2l

�X
w

l2w � 4
X
A

g4A ÿ 4
X
c

f 4
c

�
: �4:17�

Here l is the constant of self-action of the inflaton field; lw, gA
and fc are the constants of interaction of the inflaton with
scalar, vector and spinor fields, respectively. Since the usual
values for parameters for models with non-minimal coupling
[69] are l ' 0:05, x ' ÿ2� 104, l=x2 ' 10ÿ10, the required
value of Z is obtained if the parameter A, which depends on
the selected model of the physics of elementary particles, is
fixed within rather stringent limits:

0 < A < 1:3

This restriction once again points to a quasi-supersym-
metric nature for the model of the physics of elementary
particles, which has to maintain a rather precise balance
between bosons and fermions [see Eqn (4.17)].

Further andmuchmore extensive analysis was carried out
in Ref. [23], where not only the anomalous scaling was
calculated, but also the contribution from the function
z 0�0�, with due account for the distortion of the shape of the
instanton (caused by the time dependence of the inflaton
field). The main results of the earlier works [22, 41, 42] were
not much modified. Observe, however, that when speaking of
quasi-supersymmetry we only mean some balance between
bosons and fermions rather than a final selection of any
particular model of supersymmetry. Moreover, in Ref. [43] it

was demonstrated that it is hard to satisfy the criterion of
normalizability (4.13) in models with exact supersymmetry.

To end this section, we note that the results of Refs [22, 23,
38 ± 43] point to the existence of a deep relationship between
quantum gravitation, inflation cosmology, and the particle
physicsÐ combining the requirements which follow from the
general principles of quantum theory with observations
interpreted in the light of quantum cosmology, one may
draw certain conclusions regarding the structure of accepta-
ble models of the particle physics.

5. Hamiltonian quantization of gravitation and
quantum self-consistency

In a sense, quantum cosmology occupies a unique place in
contemporary theoretical physics. On the one hand, it is
linked (mainly through the inflation models [61, 37]) with
observational cosmology, including such successful branches
as the study of the microwave background and the large-scale
structure of the Universe. On the other hand, the mathema-
tical structure of quantum cosmology puts it close to such
branches of theoretical physics as the theory of superstrings
[35], the theory ofmembranes, etc. This last aspect seems to us
somewhat underexploited, and in this section we are going to
give a brief account of one attempt [44] to apply the new
methods tried out in the theory of strings to quantum
cosmology.

We are referring to the study of quantum anomalies using
the Hamiltonian BFV±BRST (Batalin ±Fradkin ±Vilko-
visky ±Becchie ±Rue ± Stora ±Tyutin) quantization [77],
which has proved its efficiency in the theory of strings [78].
We ought to add that for us the string theory was a well of
experience rather than a source of particular forms of
Lagrangians, as opposed to the currently popular string
cosmology [57]. To wit, we borrowed the idea concerning
the possible opening of the quantum algebra of constraints
from the string theory, as well as the existence of the critical
relations between the parameters of the theory. This idea was
applied to Einstein's theory of gravitation.

Recall that the main equations of canonical quantum
gravitation and cosmology include, in addition to the
Wheeler ±DeWitt equation (3.1), the so-called equations of
supermomenta

Hijci � 0 ; �5:1�

which correspond to the invariance of the wave function of
the Universe with respect to spatial diffeomorphisms. It is
usual to require that Eqns (3.1) and (5.1) be satisfied
simultaneously. This approach goes back toDirac's quantiza-
tion of systems with constraints. As a matter of fact, these
constraints at the classical level are constraints of the first
kind, and are involutive with respect to the Poisson brackets
[80]. When, however, we consider operators and their
commutators, the algebra may become open, and Dirac's
quantization is not feasible. Such a situation is well known in
the theory of strings, where (for example, in the quantum
theory of boson string) the closed algebra of constraints of the
first kind is replaced with a centrally extended Virasoro
algebra. Accordingly, only half of the constraints eliminate
the physical states, and the quantum theory is only self-
consistent when the dimensionality of the embedding space is

D � 26 : �5:2�
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One way to obtain Eqn (5.2) is to use the Hamiltonian BRST
quantization [77]. In the context of this approach, the
verification of self-consistency reduces to some straightfor-
ward algebra.

An attempt at Hamiltonian BFV±BRST quantization of
closed cosmological models in Ref. [44] took advantage of the
similar symmetries of the theory of strings and the general
relativity (both theories are reparametrization-invariant).
The proposed method reduces to the following scheme:

(1) both the dynamic variables of the theory and the
constraints are expanded in harmonics;

(2) subalgebra of area-conserving diffeomorphisms is
extracted from the algebra of constraints, and the remaining
constraints are used for constructing the so-called Virasoro-
like generators;

(3) the model is selected: the calculations turn out to be
simplest in the so-called extended Bianchi I stationary model,
in which space is represented as a time-independent N-
dimensional torus;

(4) the constraints and structure functions of the pseudo-
algebra of constraints are expanded in perturbation theory in
the small parameter lP=V

1=N, where lP is the Planck length,
and V is the volume of the Universe;

(5) the BRST operator O is constructed and the quantum
condition of nilpotency Ô2 � 0 verified;

(6) this verification on the one-loop level (that is, the
calculation of the first quantum correction to commutators of
constraints) results in the following critical relation:

d � 30� 5

2
�N� 1��Nÿ 2� : �5:3�

Here d is the number of massless scalar fields in the theory.
The generalization of Eqn (5.3) for a field of arbitrary spins
will be given below.

Let us briefly comment on the steps described above.
Considering compact manifolds, one may express phase
variables and constraints in terms of a discrete set of
coefficients of expansion in harmonics. The functional base
of this expansion is formed by the eigenfunctions of the
Laplace operator defined over the maximally symmetrical
space of the given topology (in the case of the extended
Bianchi I model, these functions are multi-dimensional
Fourier harmonics on a torus). While the expansion of
dynamic variables in harmonics is standard in cosmology
[81, 10], the expansion of constraints with respect to a discrete
base is a novel feature. Contracting the generators of super-
momentum (5.1) with the transverse vector harmonics, we
obtain the generators of area-conserving diffeomorphisms
introduced by V I Arnold in hydrodynamics [82], and widely
employed in the p-brane theories [83]. The remaining super-
momenta (longitudinal) together with the super-Hamiltonian
can be used for constructing the Virasoro-like generators,
similar to the Virasoro generators in the theory of the closed
boson string. The structure coefficients in the new discrete
base are expressed in terms of the integrals of triple products
of the relevant harmonics, which in turn are expressed in
terms of the quadratic combinations of Clebsch ±Gordan
coefficients of the relevant symmetry group in accordance
with the Wigner ±Eckart theorem [84]. These coefficients are
very easy to calculate for the Bianchi I model. Observe that,
apart from its computational expedience, a torus topology for
the Universe is physically attractive for cosmologists, and
quite a few papers have been concerned with the observa-
tional limitations on the feasibility of such a model [85].

The expansion of themetric and the conjugatemomentum
with respect to the operators of creation and annihilation, and
the subsequent expansion of the constraints in powers of these
operators, naturally give rise to a small parameter lP=V

1=N.
Amazingly, the higher-order corrections to commutators of
Virasoro-type constraints are multiplied by this parameter,
thus justifying the use of the perturbation theory.

All information concerning the gauge symmetry of the
system can be formulated in the BFV±BRST formalism. In
the classical theory, one can construct a Grassmann object Ð
the BRST charge

O � c aTa � 1

2
PgU

g
abc

bc a ; �5:4�

where Ta are constraints of the first kind, U g
ab are the

structural constants of the algebra of constraints, c a are the
Faddeev ± Popov ghosts, and Pa are the conjugate momenta.
The disappearance of the generalized Poisson bracket or the
classical nilpotency of the BRST charge are equivalent to the
involution relations between the constraints

fTa;Tbg � U g
abTg ;

and the Jacobi identities.
Going over to quantum operators, one may impose the

following condition on the quantum states:

Ôjci � 0 ;

which is less stringent than Dirac's annihilation of the
physical state by all constraints. The condition of quantum
nilpotency or quantum self-consistency

Ô2 � 0 ;

carries information on quantum anomalies and conditions
for their cancellation owing to the ghosts' contribution. It is
from this condition that one can get the critical relations, like
d � 26 for boson strings, or Eqn (5.3).

For the model in question, the BRST charge involves
about a hundred terms. Ghosts corresponding to the
Virasoro-like generators are normally ordered (according to
Wick), whereas ghosts corresponding to area-conserving
diffeomorphisms are Weil-quantizable. It is this choice that
is self-consistent. The analysis of nilpotency condition Ô2 � 0
leads to the following condition of quantum self-consistency:

d� dV�Nÿ 1� � dF2
�Nÿ1�=2ÿ1 � 30� 5

2
�Nÿ 2��N� 1� :

�5:5�

Here d is the number of massless scalar fields, dV is the
number of massless fields of spin 1, and dF is the number of
massless fermion fields. Analyzing the implications of this
result, we would like to draw attention to the following:

1. Formula (5.5) is much simpler than the method used to
derive it, and has a rather natural structure. Observe that
�1=2��Nÿ 2��N� 1� is the number of transverse-traceless
gravitons in the �N� 1�-dimensional space ± time. It is
important that the coefficients on the right-hand side of Eqn
(5.5) are determined by the selection of vacuum for gravitons.

2. Formula (5.5) has a reasonable limit at N � 1 (the
boson string). If N � 1, then d � 25. This result can be easily
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understood from the standpoint of the string s-model without
Weil invariance [86].

3. For any N, an empty steady closed Universe of the
Bianchi I type is not quantum self-consistent.

4. With N � 3 (our Universe) the number of degrees of
freedom ofmatter fields is 40. This is obviously too small even
for the Standard Model, to say nothing of the models of the
Grand Unification or supersymmetrical models. This, how-
ever, should not discourage us, since we are almost certain
that our Universe is not toroidal, and in any case it is not
steady.

Let us finish this sectionwith a list of possible directions of
further development of this formalism:

(1) massive fields (which is a non-trivial task from a
technical standpoint);

(2) a non-stationary (expanding) Universe;
(3) a Universe with different topologies (in the first place,

the Bianchi IX model);
(4) Kaluza ±Klein models.

6. Dynamics of cosmological models with a
scalar field: chaos and fractality

In this section we shall consider a simple model whose action
can be found from Eqn (3.4), if we replace the complex scalar
field with a real scalar field and set x � l � L � 0. The
equations and the first integral of motion for this system are

m2
P

16p

�
�a� _a2

2a
� 1

2a

�
� a _j2

8
ÿm2j2a

8
� 0 ; �6:1�

�j� 3 _j _a

a
�m2j � 0 ; �6:2�

ÿ 3

8p
m2

P� _a2 � 1� � a2

2

ÿ
_j2 �m2j2

� � 0 : �6:3�

Looking at Eqn (6.3), we see at once that the points of
maximal expansion and minimal contraction may only exist
in the Euclidean region, where

j2 4
3

4p
m2

P

m2a2
; �6:4�

which is a region in the half-plane 04 a < �1,
ÿ1 < j < �1 delimited by the hyperbolic curves
j4

����������
3=4p

p
mP=ma and j5 ÿ ����������

3=4p
p

mP=ma (Fig. 3). Now
we have to find the possible locations of the points of
minimum contraction ( _a � 0, �a > 0), and maximum expan-
sion ( _a � 0, �a < 0). If _a � 0, then _j2 can be expressed from
Eqn (6.3). Substituting the resulting value of _j2 and _a � 0
into Eqn (6.1), we get

�a � 4pm2j2a

m2
P

ÿ 2

a
: �6:5�

From this equation we see that the possible points of
maximum expansion lie within the region

j2 4
1

2p
m2

P

m2a2
; �6:6�

whereas the possible points of minimum contraction lie
outside this region but not beyond the Euclidean region
(6.4) (see Fig. 3).

It is important that all possible paths satisfying Eqns
(6.1) ± (6.3) contain the points of maximum expansion [87],
which allows us to use these points for constructing a
convenient classification scheme. The locations of points of
maximum expansion as defined by Eqn (6.5) have been earlier
described in the language of phase space in Ref. [71], and in
the language of configuration space in Ref. [29]. General
expressions describing these points for a broad class of
models can be found in Ref. [49].

We shall distinguish between the paths which are mono-
tonic with respect to a and j (that is, falling into the
singularity with a monotonically varying magnitude of the
scalar field), the bouncing paths (passing through the points
of maximum contraction), and those displaying extremes
with respect to j (we shall call them j-turns). Observe that
there is a certain pattern in the arrangement of the points of
maximum expansion corresponding to different types of
paths. Namely, the regions corresponding to the paths
which fall into the singularity after a number of j-turns,
alternate with those corresponding to the bouncing paths.

We are going to analyze the paths starting at certain
points of maximum expansion without looking into their
history. For velocities _j at a point of maximum expansion we
select the `upward' directionÐ that is, the sign is positive (the
pattern with the downward velocities _j can be obtained by
mirror reflection with respect to j � 0). Numerical integra-
tion of the equations of motion reveals that for the points of
maximum expansion located in region 0 in Fig. 4 the paths
steadily approach the singularity a � 0, j � �1 (some
typical paths of this kind are shown in Fig. 5a). This appears
quite natural, since in the region close to the axis of ordinates
a � 0 the system behaves like the model with a massless scalar
field, where bounces and j-turns are not possible. The paths
that start in region 1 in Fig. 4 exhibit a bounce. Typical paths
of this kind are shown in Fig. 5b. Then we have region �1 not
shown in the diagram; there is a bounce preceded by aj-turn.
Typical paths of this kind are shown in Fig. 5d. The boundary
between regions 1 and �1 is a locus where some periodical paths
which evade singularity may pass through the points of

a

j

Figure 3. Solid hyperbolic curves separate Euclidean and Lorentz regions

in the half-plane a5 0, j. Dashed hyperbolic curves separate the possible

points of maximum expansion from the possible points of minimum

contraction.
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maximum expansion. (Such paths were first discovered in
Ref. [28] and analyzed in detail in Ref. [29].) In particular, the
point j � 0 on the boundary between regions 1 and �1 is
crossed by a periodical path symmetrical with respect to j,
shown in Fig. 5c.

Region �1 hosts those paths which do not exhibit a bounce,
but fall into the singularity a � 0, j � ÿ1 after a j-turn
(Fig. 5e).

Now in region 2 (see Fig. 4) we have points of maximum
expansion which belong to the paths that, after a j-turn,
bounce off at j < 0, thus avoiding the singularity (Fig. 5f). In
region 2 0 we have paths that bounce immediately after two j-
turns. The boundary between regions 2 and 2 0 contains paths
that involve turnpoints, where we simultaneously have _a � 0,
_j � 0. Some of these paths are periodical; one is shown in
Fig. 5g.

Starting at the points of maximum expansion in region 2 0

(see Fig. 4), we have paths without bounces but with two j-
turns, which eventually fall into the singularity a � 0,
j � �1 (Fig. 5h).

Now it is easy to understand what the paths are
corresponding to the points of maximum expansion in
regions 3, �3, 3 0, 4, �4, 4 0, etc.

Observe that the most peculiar is the boundary between
region 1 and other regions in the upper half-plane. This
boundary is composed of two curves (see Fig. 4). The left-
hand curve is finite and separates region 1 from region 1 0,
whereas the right-hand curve is infinite and lies almost
parallel to the hyperbolic curve separating the possible
points of maximum expansion from the points of minimum
contraction. Observe also that this upper curve touches upon
all regions starting with region 1 0.

Figure 5i shows a path whose point of maximum
expansion occurs on the upper branch of region 1. This path
exhibits a j-turn right after a bounce, passes through the
second point of maximum expansion, and falls into the
singularity in the lower half-plane.

Recall that our classification is based on the `upward'
direction. The structure of regions corresponding to the
`downward' direction can be obtained by a mirror reflection
with respect to j � 0. We shall mark the `upward' and
`downward' directions with arrows " and #.

The most interesting are the bouncing paths, especially
those which feature many (ideally, infinitely many) bounces
Ð that is, the paths that avoid falling into the singularity.

Let us now pay attention to those paths whose points of
maximum expansion are located in regions 1, 2, 3, . . . , or 1 0,
2 0, 3 0, . . . ì that is, the paths that experience at least one
bounce. We look at the structure of these regions in the light
of where the second point of maximum expansion is located.
The substructure of region 1" is shown in Fig. 6, and the
shapes of the paths corresponding to different subregions of
regions 1 and 1 0 are shown in Fig. 7.

To the right of the boundary with region 1 0, we have a
subregion 1" 1 0# which corresponds to the paths that after a

a

j

0

Separating curve

Separating curve

1
2

1 0
2 0

0

Figure 4. Structure of the region of localization of the possible points of

maximum expansion.

a

j a

a

j b

a

j c

a

j d

a

j e

a

j f

a

j g

a

j h

a

j i

Figure 5. Paths starting at the points of maximum expansion in the regions

shown in Fig. 4.

a

a
j b

c

e

d

Figure 6. Structure of subregions of region 1. Narrow regions denoted b, c,

d, e correspond to the paths which feature at least two bounces. The

subregion a and other subregions between the narrow ones correspond to

the paths that fall into the singularity after one bounce.
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bounce come to the point of maximum expansion in region
1 0#, and experience another bounce. The next subregion to
the left of subregion 1" 1 0# is 1" 1 0#, which corresponds to the
paths that after a bounce come to the point of maximum
expansion in region 1 0#. Passing through this point of
maximum expansion, they feature a j-turn and arrive at the
singularity a � 0, j � ÿ1.

Next goes subregion 1" 1#, corresponding to paths with
two bounces. Then follows subregion 1" 1 0", and then 1" 2 ",
1" 2 0", 1# 2 0", 1" 1", 1" 2 0#, 1" 3 #, etc.

The structure of region 1 0" is much simpler: we only have
two subregions, 1 0" 1# and 1 0 0 #.

We see that regions 1", 1 0" contain infinitely many
subregions, whose structure is more or less similar to the
structure of the entire region of possible points of maximum
expansion. This structure is, however, kind of `triplicated'.
Indeed, the number of regions is doubled owing to the signs "
and #. On top of that, we have an infinite number of
intermediate regions 1 1. It can be demonstrated that the
structure of pairs of regions 22 0, 33 0, 44 0; . . . is quite similar
to the structure of the pair 11 0 as described above.

Analyzing the structure of subregions corresponding to
two bounces, we find that each of them has a `sub-
substructure' of infinitely many `sub-subregions'. Proceed-
ing ad infinitum, we find that the region of localization of
points of maximum expansion, corresponding to the paths
that avoid falling into singularity, is a result of an infinite
recurrent process, each stage of which generates self-similar
structures. Such self-similarity of structures arising at
different scales points to the fractal nature of the set obtained

through this infinite process [88]. In this way, although the set
of paths that avoid singularity and wander eternally between
the points of minimum contraction and maximum expansion
has measure zero on the set of all paths, it may at the same
time have a non-trivial fractal dimension. This phenomenon
was first discussed in somewhat different language in
Ref. [29].

The analysis of observations indicates that there may
currently exist a small cosmological constant [89]. In this
connection it would be interesting to analyze the dynamics of
the cosmological model which, along with the scalar field,
may feature a cosmological constant L Ð or, which is the
same, a constant term in the potential of the scalar field. Such
an analysis was carried out in Ref. [31].

First of all, we ought to observe that in this case the
conditions of the theorem stating the impossibility of infinite
expansion of the Universe are violated, and the phase space
features two singular points (attracting and repelling focuses),
corresponding to expanding and contracting De Sitter
Universes. If the field is massless, the picture becomes
especially clear: the focuses become nodes, and there are two
stationary saddle points, where the radius of the Universe is
fixed, and the magnitude of the scalar field grows linearly.
This picture corresponds to the known phase diagram for the
cosmological model with an ideal liquid and cosmological
constant [90], which is not surprising since the equation of
state for a massless scalar field is p � E, as indicated in Section
2 of this review.

In this case, we have three classes of paths:
(1) paths coming out of the repelling De Sitter point (that

is, paths that start to contract exponentially at very large
values of the cosmological radius), which pass through the
point of minimum contraction and go towards the attracting
De Sitter point (that is, to the regime of exponential
expansion);

(2) paths coming out of the repelling De Sitter point and
falling into the singularity, and paths coming out of the
singularity and expanding to the attracting De Sitter point;

(3) paths that start and end at a singularity.
If we include the mass of the scalar field, the picture

becomes more complicated since, like in the case without the
cosmological constant, the paths may wander between
singularities. Let us comment on the main features of this
picture. The shape of the boundary between Euclidean and
Lorentz regions is changed, and is defined by

j2 � 3m2
P

4a2
ÿ Lm2

P

4m2
: �6:7�

The Euclidean region occurs exclusively to the right for

a �
����
3

L

r
:

The region of localization of the possible points of maximum
expansion is separated from the possible points of minimum
contraction by the curve

j2 � m2
P

2pm2a2
ÿ Lm2

P

4pm2
; �6:8�

which crosses the abscissa at

a �
����
2

L

r
:

a

j e

a

j a

a

j b

a

j c

a

j d

Figure 7. Paths corresponding to different subregions of region 1 shown in

Fig. 6.
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When the cosmological constant L is smaller than the
mass of the scalar field m, the structure of regions containing
the points of maximum expansion corresponding to different
regimes resembles the structure described above. Namely,
there is an infinite number of regions which host an infinite
number of subregions, and so forth. It is interesting that an
infinite number of regions `fit' into the region limited from the
right, the right-hand boundary being a certain periodical path
that behaves as a repeller [31]. Like in the case without the
cosmological constant, the set of paths that avoid falling into
singularity has a fractal nature.

However, at a certain large L � m2 the picture is changed
dramatically: the structure with an infinite number of
subregions disappears, and only two regions remain: region
number 0, from which the paths go into singularity, and
region number 1. The paths whose points of maximum
expansion occur in region 1 experience a bounce and go to
the De Sitter attracting focus. This means that with large
values of L the set of paths that avoid falling into singularity
no longer has a fractal nature.

7. Perturbation methods in cosmology

In this section we discuss an attempt to construct a
perturbation theory with respect to the exact solution of the
set of equations simplified for describing certain qualitative
effects presented in the preceding section. Namely, we take
advantage of the fact that it is possible to obtain exact
solutions for the closed Friedmann model with a spatially
homogeneous massless scalar field.

It is convenient to use the conformal time

Z �
�
dt

1

a�t� :

The equations of motion (6.2), (6.3) are rewritten in the form

j00 � 2j0a 0

a
�m2ja2 � 0 �7:1�

and

a 0 2

a2
� ÿ1� 4p

3m2
P

j0 2 � 4p
3m2

P

m2j2 : �7:2�

Here the prime ` 0 ' denotes differentiation with respect to Z.
With m � 0, Eqns (7.1) and (7.2) become

j00 � 2j0a 0

a
� 0 �7:3�

and

a 02

a2
� ÿ1� 4p

3m2
P

j0 2 : �7:4�

This set of equations can be integrated in quadratures.
Like in the previous section, for the starting point of evolution
we select the time when the Universe is at the point of
maximum expansion. Then we get

a � a0
�������������
cos 2Z

p
; �7:5�

a 0

a
� ÿ tan 2Z ; �7:6�

j0 �
���������
3m2

P

4p

r
1

cos 2Z
; �7:7�

and finally

j � j0 �
1

4

���������
3m2

P

4p

r
ln

1� sin 2Z
1ÿ sin 2Z

: �7:8�

These solutions correspond to those paths that start at one of
the singularities a � 0, j � �1, pass through the point of
maximum expansion a � a0, j � j0, and fall into the other
singularity a � 0, j � �1.

In the language of the previous sectionwemay say that the
entire half-plane �a;j� is occupied solely by region 0.

It is interesting that, upon transition to Euclidean time,
these solutions describe the well known wormhole of S B
Giddings and A Strominger [91], while a0 becomes the radius
of the entrance of the wormhole.

Nowwe construct the perturbation theory for solutions of
Eqns (7.1), (7.2), using the solutions of the massless equations
(7.5) ± (7.7) for the zero approximation. To simplify the
calculations, we confine ourselves to the symmetrical case of
j�0� � 0. In place of variable a we use variable h defined as

h � a 0

a
: �7:9�

Representing the solutions of equations of motion as

j � j�0� � dj �7:10�

and

h � h�0� � dh ; �7:11�

where j�0� and h�0� are given by Eqns (7.8) and (7.6),
respectively, we get the following equations in dj and dh:

dj00 � 2dj0h�0� � 2dhj�0� 0 �m2a�0�2j�0� � 0 �7:12�

and

h�0�dh � 4p
3m2

P

j�0� 0dj0 � 4p
3m2

P

m2j�0�2a�0�2

2
: �7:13�

Substituting the explicit expressions for j�0�, j�0� 0, h�0�, a�0�,
from Eqns (7.5) ± (7.8) into these equations, we get

dj00 ÿ 2 tan 2Zdj0 � 2dh

���������
3m2

P

4p

r
1

cos 2Z

� 1

4
m2a20 cos 2Z

���������
3m2

P

4p

r
ln

1� sin 2Z
1ÿ sin 2Z

� 0 �7:14�

and

h�0�dh �
���������
4p
3m2

P

s
1

cos 2Z
dj0 �m2a20

32
ln2

1� sin 2Z
1ÿ sin 2Z

: �7:15�

From these equations we see that the small parameter of the
perturbation theory is m2a20. Using Eqn (7.15), we express dh
via dj:

dh � ÿ
���������
4p
3m2

P

s
dj0

sin 2Z
ÿm2a20

32

cos2 2Z
sin 2Z

ln2
1� sin 2Z
1ÿ sin 2Z

: �7:16�
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Substituting dh from Eqn (7.16) into Eqn (7.14), we arrive at
the following equation in dj:

dj00 ÿ 2dj0
�
tan 2Z� 1

cos 2Z sin 2Z

�
ÿ

���������
3m2

P

4p

r
m2a20

�
cos 2Z

16 sin 2Z
ln2

1� sin 2Z
1ÿ sin 2Z

ÿ cos 2Z
4

ln
1� sin 2Z
1ÿ sin 2Z

�
� 0 : �7:17�

The solution of this equation is

dj0 �
���������
3m2

P

4p

r
m2a20
16

sin 2Z
cos2 2Z

�
�
2 sin 2Zÿ 1� sin2 2Z

2 sin 2Z
ln2

1� sin 2Z
1ÿ sin 2Z

ÿ cos2 2Z ln
1� sin 2Z
1ÿ sin 2Z

� ln2�1ÿ sin 2Z�

ÿ ln2�1� sin 2Z� � 2 ln 2 ln
1� sin 2Z
1ÿ sin 2Z

� 2Li2

�
1ÿ sin 2Z

2

�
ÿ 2Li2

�
1� sin 2Z

2

��
; �7:18�

where Li2�x� is the dilogarithm represented as a series

Li2�x� �
X1
n�1

xn

n2
:

Analyzing the behavior of dh and dj0, we see [30] that both
first corrections have signs opposite to the signs of the
respective functions in the zero approximation. We may say
therefore that the inclusion of the first corrections dj0 and dh
will describe a transition from the set of paths without
bounces and j-turns to the more sophisticated paths. It can
be demonstrated that the absolute value of dh=h�0� is every-
where greater than dj0=j�0�. This means that the bounce
occurs before the j-turn Ð accordingly, our perturbation
theory describes the transition from region 0 to region 1 (see
Section 6). (Obviously, the first approximation of the
perturbation theory only describes a few of the total number
of paths, since the regions located to the right of region 1
correspond to large values of parameter m2a20, and cannot be
described by the perturbation theory.)

Admittedly, this perturbation scheme stops workingwhen
the singularity is approached. Indeed, dh=h�0� reaches the
value of �ÿ1� at any value ofma0, which means that any path
features a bounce irrespective of the initial conditions. We
know, however, that for small a0 the paths lie in region 0, and
thus there are neither bounces norj-turns. Unfortunately, we
are not able to evaluate the parameters which characterize the
switch from one regime to another, since our perturbation
theory does not work in the neighborhood of singularity.
Nevertheless, we may draw some reasonable conclusions
from the combination of perturbation methods, numerical
calculations, and equations which describe the locations of
extreme points of the paths [30].

We end this section by noting that the perturbation theory
proposed here for the simplest model with a real scalar field is
much less efficient than the perturbation theory which
describes the oscillatory approach to singularity (see Section

2). This is because the perturbations dj and dh grow in such a
way that at a certain time Z they become greater than the
solutions themselves in the massless approximation. The
perturbation theory, so to say, destroys itself. This situation
can be compared to the known problem of null-charge in
quantum electrodynamics, where the one-loop correction to
the constant of electromagnetic interaction is greater than its
initial `tree-level' value [93]. Although this analogy is as
remote as the analogy between the application of perturba-
tion theory to the oscillatory approach to singularity and the
phenomenon of asymptotic freedom, mentioned in Section 2,
it is interesting that these two types of perturbation theory Ð
self-supporting and self-destructing Ð are found in different
branches of classical and quantum physics.

8. Conclusions

We have discussed such problems of quantum and classical
cosmology as the oscillatory approach to singularity, the
construction of the wave function of the Universe by
analyzing the process of quantum tunneling, the study of
probability distributions for the initial conditions of cosmo-
logical evolution, the calculation of quantum corrections on
cosmology, the analysis of quantum self-consistency of
different cosmological models, the analysis of classical
dynamics of isotropic cosmological models, and the construc-
tion of non-singular cosmological scenarios. The status of
these problems is not the same: while the study of the
oscillatory approach to singularity has become a separate
chapter of mathematical physics, the analysis of quantum
self-consistency of different cosmological models has only
just begun. In general, however, we believe that both
quantum and classical cosmologies are the most dynamic
branches of modern theoretical physics. We have tried to
trace the modern developments in cosmology back to the
ideas which Landau put forward at different times.We would
also like to observe that the study of chaos, actively pursued
now in different branches of physics, including such cosmo-
logical aspects as the dynamics of isotropic and anisotropic
models, was also one of the topics of interest to Landau, who
made an important contribution to the study of a major
problem: the problem of turbulence in hydrodynamics [94].
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