
Abstract. Recent studies of meson spectra have enabled the
resonance structure of the IJPC � 00��, 10��, 02��, 12��,
and IJP � 1

2 0
� waves to be found for masses ranging up to

1900 MeV, thus fully reconstructing the 13P0q�q and 23P0q�q
meson multiplets. There is firm experimental evidence for the
existence of five scalar ± isoscalar states in this mass range, four
of which are q�q states and members of the 13P0q�q and 23P0q�q
nonets, whereas the fifth falls out of the quark picture and
displays all the properties of the lightest possible scalar glueball.
A dispersion analysis of the 00�� wave elucidates how the
mixture of the pure glueball state (or gluonium) with neighbor-
ing scalar q�q states forms: three scalar mesons, namely two
relatively narrow f0(1300) and f0(1500) resonances and a very
broad f0(1530

�90
ÿ250) resonance, share the gluonium, the broad

resonance being the gluonium's descendant and accounting for
about 40 to 50% of it.

To the memory of Yuri|̄ Dmitrievich Prokoshkin

1. Introduction: retrospective view
and the current state of the problem

A great variety of the currently observed mesons and
baryons represent systems built of quarks: baryons, which

are three-quark systems �qqq�, and mesons, which are
quark ± antiquark bound states �q�q�. More than 20 years
ago the problem arose [1] of whether additional hadrons
exist which are built out of another fundamental QCD
particle, the gluon. An intensive search for the glueball Ð
a particle consisting of gluons Ð has been carried out
throughout these decades.

The first evaluation of glueball masses for different JPC

was done in the bag model [2]. According to this, the lightest
glueballs are scalars and tensors, 0�� and 2��; then follow
pseudoscalar and pseudotensor glueballs, 0ÿ� and 2ÿ�.

Recently considerable progress has been achieved in
lattice QCD calculations. The UKQCD Collaboration [3]
obtained the following mass values for the lightest gluodyna-
mical glueballs (i.e. glueballs without quark degrees of
freedom taken into account):

mG�0��� � 1549� 53MeV; mG�2��� � 2310� 110MeV;

mG�0ÿ�� � 2332� 264MeV : �1:1�

Systematic errors are not included into the values given in
Eqns (1.1); they are of the order of 100 MeV.

The IBM group obtained a slightly different value for the
mass of the lightest scalar glueball [4]:

mG�0��� � 1740� 71MeV : �1:2�

The result of Ref. [5] is as follows:

mG�0��� � 1630� 60� 80MeV ;

mG�2��� � 2400� 10� 120MeV : �1:3�
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However, in the lattice calculations cited above the quark
degrees of freedom have not been taken into account, since
the existing computing facilities did not allow it. Quark
degrees of freedom may significantly shift the position of the
glueball mass. The dispersion relation analysis of meson
spectra [6, 7], based on a restoration of the propagator
matrix for scalar±isoscalar resonances, shows that mixing
with q�q states results in a mass shift of the order of 100 ± 300
MeV. It should be stressed that, according to the 1=N-
expansion rules [8] (N � Nf � Nc, where Nf and Nc stand for
the light flavor and color numbers), the mixing of a glueball
with q�q states is not suppressed.

Experimental searches for the glueballs have been
particularly intensive over the last decade. There exist
reactions where one could expect an enhanced production of
glueballs. Central hadron production at the high-energy
hadron ± hadron collisions provides us with an example of
such a reaction, because the particles in the central region are
produced in the transition pomerons! hadrons. The
pomeron is a gluon-rich system, so one could expect to find
dominant production of glueballs among secondary hadrons,
while the production of q�q states is expected to be small.
However, the data on central hadron production, with
statistics sufficient to perform a reliable partial wave
analysis, are only now appearing. More accessible for
experimental study appeared to be another reaction, which
is governed by the transition gluons! hadrons, i.e. radiative
decays J=c! g� hadrons. In these decays, hadrons are
formed by gluons created in c�c annihilation; therefore one
may expect dominant production of glueballs in this reaction.
The experimental study of hadron spectra in radiative J=c
decays has been carried out for 2 decades, and is still going on.
Experimental information accumulated at the beginning of
the 90's seemed to be rather discouraging: in radiative J=c
decays q�q states have been strongly produced. Meson
production branching ratios presented in the Particle Data
Group compilation [9] show a number of resonances
produced with similar probabilities, such as Z, Z0, f2�1270�,
f2�1525�, etc., which certainly are q�q-dominant systems. Such
a situation presents a dilemma:

(1) the glueball does not exist; it is `an unfulfilled promise
of QCD' [10];

(2) glueball states are mixed strongly with the q�q mesons,
so in experiments one observes just these mixed states.

Analysis of the 00�� wave [6, 7] definitely supports the
second scenario.

Experimental data on the transition formfactors
gg ��Q2� ! p0;Z;Z0 [11] provide the following restrictions
for probabilities of finding the glueball components in Z and
Z0 mesons: WZ 4 8%, WZ 0 4 20% [12]. This means that in
the q�q mesons observed in radiative J=c decay one could find
a glueball component at the level of 5 ± 10%. Hence, the
admixture of the q�q component in the glueball should be
considerably more, since the glueball can mix with several q�q
mesons. This qualitative estimate agrees with that obtained in
the framework of the 1=N expansion: according to this, the
glueball component in each q�q meson is of the order of 1=Nc,
while the q�q component in the glueball is of the order of
Nf=Nc [13]. Of course, it should be stressed that some specific
cases may differ from this general evaluation, because the
mixing depends strongly on the relative spacing of mixed
levels.

If scenario (2) with strong mixing of the glueball and q�q
states is realized in nature, the search for the glueball is a

laborious and difficult task involving the identification of
mesons and their systematics. Naive expectations, such as a
study of gluon-rich gg reactions with the purpose of seeing
direct glueball production cannot be expected to succeed.

The main channel of radiative J=c decays, as deduced
from experimental data, is the production of broad hadron
clusters. The production of these clusters may be viewed as a
direct signal of strong mixing between the glueball and q�q
mesons. What happens is that, through mixing, one reso-
nance accumulates the widths of other resonances. This effect
was first observed in Ref. [14], where the low-energy part of
the spectrum of the 00�� wave was analysed, and it was
investigated in detail in Refs [6, 7]. When the two resonances
mix completely with each other, one of them gets almost the
whole width G1 � G2, while the width of the other tends to
zero. In the case of an `ideal' mixing of three resonances, the
width of one of them accumulates the widths of the other two,
G1 � G2 � G3, and the widths of the others tend to zero. In
reality, when the scalar glueball mixes with neighboring
states, a qualitatively similar effect occurs; that is, a glueball
situated among the scalar q�q states mixes with them and
accumulates a considerable part of their widths. From this
point of view, the appearance of a broad resonance which is
the glueball descendant is an inevitable consequence of the
mixing. The broad resonance must be a neighbor of
comparatively narrow resonances, which are the descen-
dants of pure q�q states; the broad resonance contains a
considerable glueball admixture. The analysis of the 00��

wave in the mass range 1200 ± 1800 MeV [6, 7], based on the
dispersion relation representation, reconstructs just this
picture of the lightest scalar glueball mixing with q�q
members of multiplets 13P0 and 23P0. One may predict that
such a scenario of mixing is common for all low-lying
glueballs.

Thus, the strong mixing of q�q states with a gluonium does
not allow easy identification of the glueball. In this case the
only reasonable strategy is to study the systematics of all
resonances in terms of q�q multiplets. The extra states which
do not fit into the systematics should be regarded as
candidates for the glueballs or other exotic mesons. This
investigation program has been declared in Ref. [13], and at
the same time the first steps have beenmade in carrying it out:
in Ref. [14] the K-matrix analysis has been performed for the
low-energy part of the wave IJPC � 00��.

Detailed analysis of meson states in the region 1000 ±
2000 MeV was possible due to the huge amount of experi-
mental data collected in the last decade by Crystal Barrel and
GAMSCollaborations. TheCrystal Barrel Collaboration has
high-precision data on the production of three neutral mesons
in the p�p-annihilation reaction at rest,

p�p �at rest� ! p0p0p0 ; p0p0Z ; p0ZZ ; (1.4)

with event numbers of 1500000 for �p0p0p0�, 280000 for
�p0p0Z� and 185000 for �p0ZZ�. The data on the reaction
p�p �at rest�! p0p0p0 with somewhat lower statistics were
published in 1991 [15]. However, the first fits of the spectra
did not provide a correct identification of scalar resonances,
for certain special features of the three-particle decaywere not
taken into account. A critical analysis of the situation has
been made in Refs [16, 17], where it was shown that a
resonance near 1500 MeV, which had earlier been identified
as a tensor one, AX2�1520�, is actually a scalar resonance. Re-
analysis of the reactions (1.4) within the T-matrix formalism
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performed together with the Crystal Barrel Collaboration has
confirmed the existence of new scalar resonances: f0�1500�
[18] and a0�1450� [19]. In addition, in Refs [16 ± 18] a
significant production of the resonance f0�1360�, with a half-
width equal to 130MeV, was identified, although at that time
it was not quite clear whether this was a newly observed
resonance or a fragment of the broad resonance E�1300�,
widely discussed over the last decades. Later on, after having
performed theK-matrix analysis for larger samples of data, it
became clear that in this mass region there are two resonances
Ð a comparatively narrow one, f0�1300�, and a rather broad
one, f0�1530�90ÿ250�.

In the first stage of the investigation, the data fitting was
done in the framework of the T-matrix technique. The reason
was obvious: the T-matrix representation of the amplitude is
simpler for data fitting; the advantages of the K-matrix
approach reveal themselves only when information exists for
all possible channels of the reaction. In themass region 1000 ±
1500MeV, there are the following channels in the 00�� wave:
pp, K �K, ZZ, and pppp, while in the region above 1500 MeV
the channel ZZ0 becomes also important. It was obvious that
the application of the sophisticated K-matrix technique for
fitting to a limited number of channels (1.4) would lead to
some ambiguities.

The discovery of the resonance f0�1500� immediately gave
rise to hypotheses of a close relation to the lightest scalar
glueball, and the possibility of such a relation was stressed in
Refs [17, 18]. In papers [13, 20 ± 23], several schemes were
suggested for themixing of the lightest scalar glueball with the
neighboring q�q states. However, none of these schemes took
account of the special features of the mixing which are due to
the transition of a resonance into real mesons, although these
very transitions, as was shown in a specified K-matrix
analysis, determine the structure of the 00�� wave around
1500 MeV.

At the next stage of the 00��-wave analysis, the GAMS
data on the spectra p0p0, ZZ, and ZZ0 were included; these
were obtained in the reactions [24 ± 26]

pÿp! np0p0 ; nZZ ; nZZ0 �1:5�
together with the data of the CERN±MuÈ nich Collaboration
[27]:

pÿp! np�pÿ �1:6�
and BNL [28] group:

pp! K �K : �1:7�
Simultaneous analysis of the whole data sample (1.4) ± (1.7)
was carried out in Refs [14, 29, 30] in the framework of theK-
matrix technique; in this way the range of masses under
investigation and the number of channels covered by the K-
matrix fit of the 00�� amplitude gradually increased.

The first investigation [14] was done in the region of
invariant meson energies

��
s
p

4 1100 MeV for two channels
only, namely, pp and K �K. In this analysis an observation was
made, which became later important: the transitions which
are responsible for the decay of meson states are also
responsible for a strong mixing of these states. Moreover,
the masses of mixed states differ essentially from the primary
ones. These `primary mesons' were called `bare mesons' [14],
in contrast to physical states, for which the cloud of real
particles, pp and K �K, plays an important role in their
formation. The masses of bare states are defined as the K-
matrix poles. The above-mentioned accumulation of widths

of the primary states by one of the resonances due to mixing,
was also observed in Ref. [14].

As the next step, the K-matrix analysis was extended to
1550 MeV [29], with the additional channels ZZ and pppp
included. The channel pppp is rather important for the
correct description of spectra from 1300 to 1600 MeV, since
s�pp! pppp�=s�pp! pp� is of the order of 0.5 at 1300MeV
and about 1.5 at 1500 MeV [31]. The use of the channels pp,
K �K, and ZZ provides an opportunity to perform the q�q
classification of bare 00�� states, f bare0 , below 1600 MeV [29].
The point is that q�q-meson decays go to the new q�q pair via
the production of intermediate gluons. According to the rules
of the 1=N expansion, the main contribution to the decay
constant comes from planar diagrams. When an isoscalar q�q
meson disintegrates into two pseudoscalar mesons P1P2,
namely,

pp ; K �K ; ZZ ; ZZ0 ; Z0Z0 ; �1:8�

the coupling constants can be determined, up to a common
coefficient, by two factors. The first is the quark content of the
q�q meson:

q�q � n�n cosf� s�s sinf ; �1:9�
where n�n � �u�u� d�d�= ���

2
p

. The second is the parameter l,
which characterizes the relative probability of producing non-
strange and strange quarks by gluons in soft processes:

u�u : d�d : s�s � 1 : 1 : l : �1:10�
Experimental data provide the following values for this
parameter: l ' 0:5 [32] in central hadron production in
hadron ± hadron high-energy collisions, l � 0:8� 0:2 [33]
for the decays of tensor mesons and l � 0:6� 0:1 [34, 35]
for the ratio of yields of Z and Z0 mesons in the decays
J=c! gZ=gZ0.

The coupling constants for the decay q�q! P1P2 into
channels (1.8), which are defined by the leading planar
diagrams in the 1=N expansion, may be presented as

g�q�q! P1P2� � CP1P2
�f; l�gL ; �1:11�

where CP1P2
�f; l� is a wholly calculable coefficient depending

on themixing anglef and parameter l; gL is a common factor
describing the unknown dynamics of the process. Therefore,
experimental investigation of resonance decays into channels
(1.8) allows us to reconstruct the quark content of the state
(i.e. its mixing angle f), thus making it possible to establish
the meson systematics.

However, on the basis of the decay constant analysis, it is
impossible to determine unambiguously whether we are
dealing with a q�q meson or with a glueball. The reason is
that the glueball decay is a two-stage process, with the
subsequent production of two q�q pairs. After the production
of the first q�q pair, in the intermediate state a q�q system exists
with the following content:

n�n cosfG � s�s sinfG ; tanfG �
���
l
2

r
: �1:12�

For l � 0:45ÿ0:80 the mixing angle is fG � 25�ÿ32�. At the
second stage, the intermediate q�q state (1.12) turns into the
P1P2 mesons; this means that the relations between the
glueball coupling constants are the same as for the decay of
the q�q meson with f � fG.

Analysis of the pp, K �K, and ZZ spectra performed in
Ref. [29] proved that in the region below 1600 MeV there are
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four scalar±isoscalar states, and only one of them is an s�s-
dominant state. Since each of the 3P0q�q multiplets contains
two I � 0 states, which refer to two flavor combinations, n�n
and s�s, then, as a result of the analysis of Ref. [29], the
following dilemma becomes apparent:

(1) In the region 1000 ± 1800 MeV there are three 3P0q�q
nonets: the basic one, 13P0q�q, and two radial excitations,
23P0q�q and 33P0q�q. In this case, there should exist two s�s-
dominant scalar mesons in the region 1600 ± 1800 MeV.

(2) At 1600 ± 1800 MeV, there is only one s�s-dominant
state. Then, one of the three mesons from the region 1200 ±
1600 MeV is an extra one from the point of view of q�q
systematics, and it should be considered as a candidate for an
exotic meson: the ratios of couplings to the channels (1.8)
found in Ref. [29] provide the basis to consider it as the
lightest scalar glueball.

Thus, after carrying out the analysis of Ref. [29], the
immediate task was to extend the K-matrix analysis of the
00�� wave to the region 1600 ± 1900 MeV. Such an
extension suggested the inclusion of the ZZ0 channel into
the fitting procedure; this has been done in Ref. [30],
where the K-matrix analysis was performed in the mass
region 500 ± 1900 MeV, with the following five channels
taken into consideration: pp, K �K, ZZ, pppp, and ZZ0. It
was shown that in the range 1600 ± 1900 MeV there exists
only one f0 meson with a dominant s�s component, hence
the analysis [30] confirmed case (2). In this way, it was
also shown that there are two variants for fixing the scalar
glueball.

Solution I. Two bare states, f bare0 �720� 100� and
fbare0 �1260� 30�, are members of the multiplet 13P0q�q, and
fbare0 �720� is the s�s-rich state, with f�720��ÿ69��12�. The
bare states f bare0 �1600� 50� and fbare0 �1810� 30� aremembers
of the 23P0q�q nonet , and fbare0 �1600� is dominantly n�n state,
with f�1600� � ÿ6� � 15�. The state f bare0 �1235� 50� is
superfluous from the point of view of the q�q classification;
its coupling constants satisfy the ratios relevant to gluonium.
Therefore, this state may be considered as a candidate for the
lightest scalar glueball.

Solution II. The basic scalar nonet is the same as in
Solution I. The members of the next nonet, 23P0q�q, are as
follows: f bare0 �1235� 50� and fbare0 �1810� 30�. Both these
states contain a considerable admixture of the s�s compo-
nent: f�1235� � 42� � 10� and f�1810� � ÿ53� � 10�. The
state f bare0 �1560� 30� is an extra one from the point of view of
q�q systematics and it may be regarded as a good candidate for
the lightest scalar glueball.

The existence of two variants corresponds to the impos-
sibility of answering unambiguously, on the basis of the
information on the decay channels (1.8), if we are dealing
with a glueball or q�q meson with a mixing angle
f � 25�ÿ32�, as was stressed above.

Both K-matrix solutions, I and II, lead to practically
identical positions of the amplitude poles in the complex
mass plane. The amplitude has five poles:

The broad resonance f0�1530�90ÿ250� is not a new object in
meson physics: this is the one called E�1300�. A large width
of f0�1530�90ÿ250� is due to the accumulation of widths of
neighboring resonances.

A reliable and unambiguous identification of the scalar
glueball must be based upon a complete reconstruction of the
multiplets 13P0q�q and 23P0q�q. Each of these nonets consists
of two scalar±isoscalar states f0, one isovector±scalar state a0,
and the scalar kaon K0. As was stated above, it is reasonable
to perform the nonet classification of highly-excited q�q states
in terms of bare states, which do not contain clouds of real
mesons. The analysis [30] fixed four f bare0 mesons, which are
necessary for the construction of two nonets; the two lightest
isotriplet resonances, a0�980� and a0�1450�, are also known
(see Ref. [9]). A full K-matrix analysis of the 10�� wave, [36],
provided the following resonance masses:

a0�980� ! �988� 6� ÿ i�46� 10�MeV;

a0�1450� ! �1565� 30� ÿ i�146� 20�MeV : �1:14�

It should be pointed out that in the Particle Data Group
compilation [9] themass of the second resonance is too low by
about 100 MeV. Corresponding bare states are as follows:

abare0 �964� 16�; abare0 �1670� 70� : �1:15�

The identification of scalar resonances as members of the
multiplets 13P0q�q and 23P0q�q always raised problems.
Namely, according to Refs [9, 37], the masses of the two
lightest kaons are 1429� 4� 5 MeV and
1945� 10� 20 MeV; these are noticeably higher than the
average masses of other mesons which are candidates for the
scalar-nonet members. This high position on themass scale of
the scalar kaon K0�1430� gave impetus to models where the
basic 13P0q�q multiplet was fixed in the region 1350 ± 1500
MeV, and the resonances f0�980� and a0�980�were considered
as exotic states Ð hadron molecules [38], multiquark bags
[39], or minions [40, 41].

In Ref. [42] a K-matrix re-analysis of the S-wave Kp
spectrum was carried out to determine the Kbare

0 . Another
reason to re-analyse it was as follows. In Ref. [37] the Kp
spectra were investigated in two separate mass regions, 820 ±
1580 MeV and 1780 ± 2180 MeV, but the mass region 1580 ±
1780 MeV was not included into the analysis of the Kp
amplitude. Our experience in fitting the 00�� wave [30]
teaches us that separate consideration of different mass
regions leads to the loss of certain information. In order to
get a full picture, a simultaneous fit is needed; moreover, at
1580 ± 1780 MeV there is a rapid change of the amplitude.

As follows from the K-matrix fit of the IJP � 1
2 0
� wave

[42], for a good description of the Kp spectrum in the region
800 ± 2000 MeV at least two K0 states are necessary.
Correspondingly, the 1

2
0� amplitude of this minimal solution

has poles near the physical region on the sheet II (under the
Kp cut) and on the sheet III (under the Kp and KZ0 cuts), at
the following complex masses:

�1415� 30� ÿ i�165� 25�MeV ;

�1820� 40� ÿ i�125� 35�MeV : �1:16�

The KZ0 threshold, being in the vicinity of the resonance (at
1458 MeV), strongly influences the 1

2 0
� amplitude, so the

lowest K0 state has a second pole which is located above the
KZ0 cut, at M � �1525� 125� ÿ i�420� 80�MeV: the situa-

Resonance: Location of pole (MeV):

f0�980�,
f0�1300�,
f0�1500�,
f0�1750�,
f0�1530�90ÿ250�,

1015� 15ÿ i�43� 8�,
1300� 20ÿ i�120� 20�,
1499� 8ÿ i�65� 10�,
1750� 30ÿ i�125� 70�,
1530�90ÿ250 ÿ i�560� 140�.

(1.13)
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tion is analogous to that observed for the f0�980� meson,
which also has a two-pole structure for the amplitude due to
the K �K threshold. The KZ channel weakly influences the
1
2 0
� Kp amplitude: experimental data [37] prove it as well as

the quark combinatorial rules.
The minimal solution contains two Kbare

0 states:

Kbare
0 �1200�60ÿ110� ; Kbare

0 �1820�40ÿ75� : �1:17�

In this minimal solution, the lightest scalar bare kaon appears
200 MeV lower than the amplitude pole, and this latter
circumstance makes it easier to build the basic scalar nonet,
with masses in the range 900 ± 1200 MeV.

It is worth noting that the Kp spectra also allow solutions
with three poles, with much better w2; still, for these solutions
the lightest kaon state, Kbare

0 , does not leave the range 900 ±
1200 MeV. In the tree-pole solution we have

Kbare
0 �1090� 40�; Kbare

0 �1375�125ÿ40 �; Kbare
0 �1950�70ÿ20� ;

�1:18�

and the Kp amplitude has the poles:

Sheet II ÿÿM � 998� 15ÿ i�80� 15�MeV ;

Sheet II ÿÿM � 1426� 15ÿ i�182� 15�MeV ;

Sheet IIIÿÿM � 1468� 30ÿ i�309� 15�MeV ;

Sheet IIIÿÿM � 1815� 25ÿ i�130� 25�MeV : �1:19�
The state Kbare

0 �1375�125ÿ40 �, being near the KZ0 threshold,
results in doubling the amplitude poles around 1400 MeV. It
should be underlined that masses of the lightest bare kaon
states obtained by the two- and three-pole solutions coincide
within the errors.

The K-matrix fit of the 1
2
0� Kp wave makes it possible to

complete, in terms of bare states, the construction of the two
lowest scalar nonets. In line with the result for the 00�� wave
[30], where two solutions for an extra state (a candidate for
the glueball) were found, there are two variants for the nonet
classification of scalar mesons. The basic 13P0q�q nonet is the
same for both variants:

abare0 �960� 30�; f bare0 �720� 100�;

f bare0 �1260�100ÿ30 �; Kbare
0 �1200�90ÿ150� : �1:20�

It should be particularly stressed that the wave function
fbare0 �720� in the flavor space is close to an octet one; indeed,
f�720� � ÿ69� � 12�, while foctet � ÿ54:7�. Correspond-
ingly, f bare0 �1260� is close to the flavor singlet. A similar
situation is observed in the pseudoscalar sector where the
flavor wave functions Z and Z 0 are close to octet and singlet
ones. It is even more analogous, if one takes into considera-
tion that themass difference of isoscalar states in these sectors
coincide with each other, and the scalar masses are not much
larger than the corresponding masses of pseudoscalars,
ms ÿmps ' �200� 100� MeV. Such coincidences clearly
point towards parity degeneration of the interaction forces
in isoscalar channels.

Thus, one may conclude: the basic nonet of scalar mesons
is uniquely fixed by the K-matrix fit of meson spectra. It is
located rather low on the mass scale, in the range 750 ±
1250 MeV. Here, at mass values below 1200 MeV, there is no
room for exotic states.

The 23P0q�q nonet contains the following states in
Solution I:

abare0 �1640� 40�; f bare0 �1600� 50�; f bare0 �1810�30ÿ100�;
Kbare

0 �1375�125ÿ40 � or Kbare
0 �1820�40ÿ60� : �1:21�

An extra state with respect to the nonet classification is
f bare0 �1235�150ÿ30 �.

In Solution II the 23P0q�q nonet looks like

abare0 �1640� 40�; f bare0 �1235�150ÿ30 �; f bare0 �1810�30ÿ100�;
Kbare

0 �1375�125ÿ40 � or Kbare
0 �1820�40ÿ60� : �1:22�

In this solution an extra state is f bare0 �1600� 50�; once again it
should be stressed that the mass of this state appears just in
the mass region where lattice calculations for the mass of the
lightest scalar gluonium point; also the coupling constants for
meson channels agree with the quark combinatorial ratios for
the gluonium decay.

Immediately after performing theK-matrix analysis in the
range up to 1900 MeV, the problem of presentation of the
00�� amplitude as a dispersion integral was raised. The
dispersion N=D representation correctly restores the analytic
properties of partial amplitude over the whole complex s-
plane. In addition, and this is the principal point, within the
dispersion representation it is possible to reconstruct the
propagator matrix, thus evaluating the mixing of the q�q
states and the glueball, and then to restore correctly the
gluonium mass. The dispersive N=D description of the wave
00�� was performed inRefs [6, 7]: inRef. [6] the region 1200 ±
1700 MeV, where three scalar±isoscalar states are located,
was studied; then, in Ref. [7] the region under investigation
was extended to 1900 MeV, with the fourth state, f0�1780�,
taken in consideration.

The results of the N=D representation of the 00�� wave
allowed us to draw a picture of themixing for the lowest scalar
gluonium: it mixes with the two neighboring q�q states Ð
members of the multiplets 13P0 and 23P0, and the resonance,
which is descendant of a pure glueball, accumulates large
parts of the widths of the neighboring resonances, being
transformed into the broad state f0 1530 �90ÿ250

ÿ �
.

It should be emphasized that the state f bare0 , which was
found in the K-matrix fit, does not explicitly describe the
gluodynamic glueball, for the state f bare0 contains non-gluonic
degrees of freedom related to real parts of the loop diagrams
(imaginary parts are responsible for the decay process). The
dispersion relationN=Dmethod is able to restore the real and
imaginary parts of the loop diagrams, thus providing a
complete picture of the mixing, so it also restores the mass
of gluonium. In Solution I it is equal to

mgluonium � 1225 MeV �1:23�

and

mgluonium � 1633 MeV �1:24�

in Solution II. The value (1.24) agree well with themass values
of the lightest scalar glueball obtained in lattice calculations.

It is rather striking that both solutions obtained in the
dispersive technique provide practically the same structure
for the 00�� wave and the quark ± gluon content of physical
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resonances: in both solutions the broad resonance,
f0�1530�90ÿ250�, is a descendant of the gluonium, keeping about
40 ± 50% of its component, while the remnant part of the
gluonium is shared between f0�1300� and f0�1500�. From this
point of view, the structure of resonances in the range 1300 ±
1600 MeV is uniquely solved.

The formation of the broad state which is seen in the 00��

wave raises a question about the presence of such effects in
other waves as well, for it is reasonable to believe that exotic
mesons (glueballs and hybrids) with other quantum numbers
can also afford a width accumulation. Because of that, the
search for other exotic mesons must be inseparably linked
with the study of broad resonances.

Another problem appears which is no less intriguing: the
broad resonance, after having absorbed the widths of its
neighboring resonances, plays the role of a locking state, since
it prevents the decay of neighboring states with the same
quantum numbers. This means that the broad resonance
actually plays the role of a dynamic barrier for the nearby
states. How does this dynamic barrier relate to the confine-
ment barrier? Ð Only detailed investigations of broad
resonances in other waves may answer this question.

2. K matrix and the dispersive
N=D representation of the scattering amplitude

In this section a brief review is made of the technique used in
the analysis of meson spectra. Namely, the analytic properties
of the amplitude are discussed together with the connection of
the dispersionN=D representation to theK-matrix approach.
The role of short and large distances in the formation of
meson spectra under investigation is also discussed, and in
this connection the notion of a `bare state' is introduced. The
quark combinatorial relations between the coupling con-
stants for the glueball decay to meson channels are consid-
ered in comparison with similar relations for q�q states: these
relations provide the basis for the nonet systematics of
mesons.

2.1 Scattering amplitude, T matrix and K matrix
Using a simple example, let us get over the terminology and
notations used for the analysis of meson spectra.

In terms of the wave function, which expresses the relative
motion of two spinless particles, the scattering at large
distances is described by incoming plane wave and outgoing
spherical wave, rÿ1f �y� exp�ikr�, with the coefficient related
to the partial amplitudes as follows:

f�y� � 1

2ik

X1
l�0
�2l� 1�Pl�cos y�

n
exp
�
2idl�k�

�ÿ 1
o
: �2:1�

This formula is written for one-channel scattering in the
absence of absorbtion (k is the momentum of the relative
motion, l is the angular momentum and y is the scattering
angle). The T-matrix element is determined by the scattering
phase shift dl:

Tl � 1

2i

�
exp�2idl� ÿ 1

� � exp�idl� sin dl : �2:2�

For the investigation of analytic properties, it is suitable to
use an amplitude with another normalization:

Al � 1

2ir�k�
�
exp�2idl� ÿ 1

�
; �2:3�

where r�k� is the invariant two-particle phase space factor:

r�k� �
�
dF �P; k1; k2� ;

dF�P; k1; k2�

� 1

2

d3k1

�2p�32k10
d3k2

�2p�32k20
�2p�4d�4��Pÿ k1 ÿ k2�: �2:4�

The invariant phase space factor is determined by three four-
momenta: the total momentum of scattered particles, P, with
P 2 � s, and the momenta of particles 1 and 2, k1 and k2,
respectively. For equal masses of particles 1 and 2, we get

r�k� � k

8p
��
s
p ; k �

��������������
s

4
ÿm2

r
: �2:5�

The K-matrix representation of the amplitude Al reads

Al � Kl�k2�
1ÿ ir�k�Kl�k2� : �2:6�

Kl is real in the physical region; the imaginary part of the
amplitude is explicitly written in Eqn (2.6). In addition, Kl

being a function of the invariant energy squared s, is analytic
near the threshold singularity, s � 4m2; a singular term is
singled out, it is explicitly given by the two-particle phase
space factor r.

In the presence of absorbtion, the scattering is described
by the absorbtion coefficient Zl inserted to the partial wave
expansion (2.1):�

exp�2idl� ÿ 1
�! �

Zl exp�2idl� ÿ 1
�
: �2:7�

Here 04Zl 4 1; the case Zl � 0 corresponds to full absorb-
tion.

It is suitable to display the energy-dependent amplitudeTl

on the Argand diagram, which is an appropriate instrument
for searching resonances. The T-matrix element at fixed k (or
s) corresponds to a point on the plane �ReTl; ImTl�. As a
function of k, it draws a trajectory on the circle with a radius
of 1=2 and center at the point �0; i=2�. In the inelasticity case,
the trajectory Tl enters the internal part of the circle.

The K-matrix representation of the amplitude with an
absorbtion requires fixing the inelastic channels. Consider the
inelasticity occurring due to another two-particle channel; we
denote these channels by the indices 1 and 2. Then the elastic
scattering amplitude 1� 10 ! 1� 10 (denoted as A11; the
index of the partial wave l is omitted) can be represented in
the form of Eqn (2.6):

A11 � K�k2�
1ÿ ir1K�k2�

: �2:8�

However, the block K�k2� has an imaginary part above the
threshold of the second channel:

K�k2� � K11 � i
K12 r2K21

1ÿ ir2K22
: �2:9�

Here r2 is phase space factor of the second channel 2� 2 0,
and the matrix elements K11, K12 � K21 and K22 are real
functions of k2 in the physical region. The threshold
singularities of channels 1 and 2, which are located at s �
�m1 �m 01�2 (threshold of channel 1) and at s � �m2 �m 02�2

424 V V Anisovich Physics ±Uspekhi 41 (5)



(threshold of channel 2), are explicitly written in Eqns (2.8)
and (2.9) Ð they are present in the phase space factors r1 and
r2, respectively. The function K�k2� is real below the thresh-
old of the second channel, �m1 �m 01�2 < s < �m2 �m 02�2,
because in this region r2 � ijr2j.

2.2 Dispersion relation N=D method
and the K-matrix representation
The dispersion relation N=D method [43] correctly repro-
duces the analytic properties of the amplitude on the whole s-
plane. FollowingRefs [44, 45], we present here the elements of
this method which are used in the analysis of meson spectra.

The partial amplitude A�s� (as before, the index l is
omitted for brevity) is written in the form of the ratio

A�s� � N�s�
D�s� ; �2:10�

N�s� is a function of the complex variable s. It has only left-
hand side singularities of the amplitude, which are related to
the interaction forces, i.e. to the diagrams with meson
exchanges in the crossing channels (Fig. 1). These singula-
rities are located on the left of the threshold singularities, at
s � �m1 �m 01�2 ÿm2

crossing.
The D-function contains only right-hand side singulari-

ties, which result from the rescattering of particles in the s-
channel. Figure 1 shows the corresponding rescattering
processes.

First, we consider the one-channel case, with equal
particle masses m1 � m 01. In this case the D-function assumes
the following form:

D�s� � 1ÿ B�s� ; B�s� �
�1
4m2

ds 0

p
N�s 0�r�s 0�
s 0 ÿ sÿ i0

: �2:11�

Here the index 1 is omitted: m1 ! m, r1 ! r. The form of
Eqn (2.11) suggests that D�s� ! 1 at s!1 [more generally,
D�s� ! const at s!1, since this case can be reduced to Eqn
(2.11) by the re-definition ofN�s�]. Moreover, in Eqn (2.11) it
is also suggested that the D-function does not contain the
Castillejo ±Dalitz ±Dyson poles (a detailed description of the
N=D method may be found in Refs [43, 44]).

Representation of the N-function in the form of a sum of
separable vertex functions [44] is likely to be a reasonable
ansatz: this technique is successfully applied to the description
of the nucleon ± nucleon scattering amplitude [45]; in addi-
tion, the technique is elaborated for the presentation of the t-

channel exchange diagrams as a sum of separable vertex
functions [46]. For the simplest case, which is discussed
below, N�s� � g2�s�. Then

A�s� � g2�s�
1ÿ B�s� ; B�s� �

�1
4m2

ds 0

p
g�s 0�r�s 0�g�s 0�
s 0 ÿ sÿ i0

: �2:12�

Expanding Eqn (2.12) in a series with respect to B�s�, we
represent the amplitude A�s� as a sum of the diagrams shown
in Figs 2a ± 2c, etc.; B�s� in Eqn (2.12) is a loop diagram. At
s > 4m2, the loop diagram is a complex quantity:

ImB�s� � g2�s�r�s� ; ReB�s� � P

�1
4m2

d�s 0�
p

g2�s 0�r�s 0�
s 0 ÿ s

:

�2:13�

The amplitude (2.12) stands for the case when the partial
wave amplitude does not contain input particles: the bound
states, if any, are formed by particle interaction taken in the
N-function. The inclusion of input particles into the ampli-
tude corresponds to the assumption of D�s� increasing as
s!1. The linearly growing D�s� can be written in the form

D�s� � m2
0 ÿ sÿ B�s� ; B�s� �

�1
4m2

d�s 0�
p

g2�s 0�r�s 0�
s 0 ÿ sÿ i0

:

�2:14�

The amplitude

A�s� � g2�s�
m2

0 ÿ sÿ B�s� �2:15�

is an infinite set of diagrams shown in Figs 2d ± 2f, etc.; B�s�
stands for the loop diagram and �m2

0 ÿ s�ÿ1 is the propagator
of the input particle.

The K-matrix representation of the A�s� amplitude is
related to the explicit separation of the imaginary part of the
loop diagram:

A�s� � g2�s�
m2

0 ÿ sÿReB�s� ÿ ir�s�g2�s� �
K�s�

1ÿ ir�s�K�s� ;

K�s� � g2�s�
m2

0 ÿ sÿReB�s� : �2:16�

In the two-particle loop diagram, the function ReB�s� is
analytical at the point s � 4m2. This means that poles are the
only singularities of K�s� in the physical region. However, in
the left half-plane s, K�s� has singularities related to the t-
channel exchanges.

The poles of the amplitude A�s�, which are determined by
the condition

m2
0 ÿ sÿ B�s� � 0 ; �2:17�

1 2 3mcr

�m1 �m 01�2 ÿm2
cr �m1 �m 01�2

�m2 �m 02�2 �m3 �m 03�2

M2

Figure 1. Complex s-plane and positions of singularities of the partial

amplitude: the right-hand singularities at s5 �m1 �m 01�2 are due to elastic
and inelastic rescatterings, the left-hand ones are due to the interaction

forces, that is, particle exchanges in the crossing channels.

a b c

+ + + . . .

fed

+ + + . . .

Figure 2.Diagrams representing s-channel scattering.

May, 1998 The lightest scalar glueball 425



are related to particles with quantum numbers of the partial
wave under consideration. If the pole is above the threshold,
at s � 4m2, we are dealing with the resonance; this very case
is studied further. Let the equality (2.17) be satisfied at the
point

s �M 2 � m2 ÿ iGm : �2:18�

Expanding the real part of the denominator (2.15) in a series
near s � m2, one has

m2
0 ÿ sÿReB�s� ' �1�ReB 0�m2���m2 ÿ s� ÿ ig2�s�r�s� :

�2:19�

The standard Breit ±Wigner approximation comes when
ImB�s� is fixed at the point s � m2. If the pole is located not
far from the threshold singularity s � 4m2, it is necessary to
keep the s-dependence in the phase space factor, and we use
the modified Breit ±Wigner formula:

A�s� � g
m2 ÿ sÿ igr�s� ; g � g2�m2�

1�ReB 0�m2� : �2:20�

A similar resonance approximation may be also carried out
for the K-matrix amplitude representation, that corresponds
to the expansion for K�s� given by Eqn (2.16) near the point
s � m2:

K�s� � g2�K�
m2 ÿ s

� f : �2:21�

Here

g2�K� � g2�m2�
1�ReB 0�m2� ;

f � g2�m2�
2
�
1�ReB 0�m2��ÿ 2g�m2�g 0�m2�

1�ReB 0�m2� : �2:22�

2.3 Multichannel scattering
The resonance amplitude (2.15) can be easily generalized for
the case of n channels. The corresponding transition ampli-
tude b! a is

Aab�s� � ga�s�gb�s�
m2

0 ÿ sÿ B�s� ; B�s� �
Xn
c�1

Bcc�s� ; �2:23�

where Bcc is defined by the standard expression [see
Eqn (2.14)] with the properly chosen phase space factor,
vertex function and integration region:

g2�s 0�r�s 0� ! g2c�s 0�rc�s 0� ; 4m2 ! 4m2
c : �2:24�

The transition amplitudes Aab form a matrix Â. The
amplitude written in the K-matrix representation reads:

Â � K̂
I

Iÿ ir̂K̂
; �2:25�

where K̂ is the n� nmatrix,Kab�s� � Kba�s�, I is the unit n� n
matrix, I � diag�1; 1; . . . ; 1�, and r̂ is the diagonal matrix of
phase space factors:

r̂ � diag
ÿ
r1�s�; r2�s�; . . . ; rn�s�

�
: �2:26�

The K-matrix elements are

Kab�s� � ga�s�gb�s�
m2

0 ÿ sÿReB�s� : �2:27�

In the vicinity of the resonance, theK-matrix elements may be
expanded in a series: in this case we have a representation of
the K-matrix elements similar to that of Eqn (2.21).

2.4 q�q mesons: the problem of small and large distances
The q�q classification of meson states in the vicinity of 1000 ±
2000MeV faces the problem of quark ± hadron duality as well
as a tightly related problem of separating large- and small-
distance interactions contributing to the formation of meson
spectra.

Let us discuss these problems using the language of the
standard quark model. In this model the q�q levels are
determined by the potential which increases infinitely with r,
V�r� / ar (Fig. 3a). An infinitely rising potential creates an
infinite set of q�q levels. However, it is obvious that the
standard quark model is a simplified picture, since only the
lowest q�q levels are stable with respect to hadron decays. The
heavier states decay by hadron channels: an excited �q�q�a
state produces a new q�q pair, then the �q�q�a � �q�q� quarks
recombine into mesons, which leave the confinement trap
with the formation of a continuous meson spectrum. This
structure is conventionally shown in Fig. 3b, where the
interaction related to the confinement is shown as a certain
potential barrier, namely, the interaction at r < Rconfinement

creates the discrete levels of q�q spectra, while the transitions
into the region r > Rconfinement give rise to the continuous
meson spectrum. This very meson spectrum is observed in the
experiment. This problem of reconstruction of the q�q levels
created at r < Rconfinement is directly related to the determina-
tion of the effect of the meson decay spectra on the level shift:
the classification of q�q levels requires the elimination of the
decay products of real mesons.

TheK-matrix representation of the amplitude resolves the
problem of excluding the components of real mesons;
formally, it corresponds to the limit ra ! 0 in Eqn (2.25). If
only leading pole singularities are taken into account, the
transition amplitude b! a assumes the form

Abare
ab �s� � Kab�s� � ga�K�gb�K�

m2 ÿ s
� fab : �2:28�

Vr

a

r

continuous
spectrum

Vr

b

r
r � Rconfinement

Figure 3. (a) The standard quark model potential with stable q�q levels. (b)

The potential with unstable highly excited levels, corresponding to the

realistic situation for q�q states.
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Thus, the K-matrix pole corresponds to the state with the
removed cloud of real mesons. For this reason, we call the
corresponding states `bare mesons' [29, 30]. However, one
should distinguish between this notation and that of `bare
particles' of field theory, where a cloud includes virtual mass-
off-shell particles as well.

In the case when the q�q spectrum contains several states
with the same quantum numbers, the amplitude Abare

ab �s� is
determined by the sum of the corresponding poles:

Abare
ab �s� �

X
a

g
�a�
a �K�g�a�b �K�

m2a ÿ s
� fab : �2:29�

Representation of the amplitude responsible for the
interaction at r < Rconfinement in the form of a series of poles
is not new: it was widely used in dual models for leading
contributions in the 1=Nc expansion. From the point of view
of these models, the s-independent term fab is the total
contribution of poles which are distant from the region
under consideration.

Coupling constants of the bare state, g
�a�
a �K�, are a source

of information on the quark ± gluon content of this state.

2.5 Coupling constants of the gluonium and q�q states
to meson channels: the rules of the 1=N expansion
and quark combinatorial relations
The quark ± gluon content of states related to the K-matrix
poles (bare states) is revealed in the relations between
couplings of these poles to meson channels, g

�a�
a .

First, let us evaluate these coupling constants using the
rules of 1=N expansion; this evaluation will be done both for
the transitions glueball! two mesons and for the transitions
q�q state! two mesons. For this purpose, we consider the
gluon loop diagram which corresponds to the two-gluon self-
energy part: glueball! two gluons! glueball (Fig. 4a). This
loop diagram is of the order of unity, provided the glueball is a
two-gluon composite particle: B�G! gg! G� �
g2G! ggN

2
c � 1, where gG! gg is the coupling constant of a

glueball to two gluons. Therefore,

gG! gg � 1

Nc
: �2:30�

The coupling constant for the transition gG! q�q is determined
by the diagrams of Fig. 4b. A similar evaluation gives:

gG! q�q � gG! gg g
2
QCDNc � 1

Nc
: �2:31�

Here gQCD is the quark ± gluon coupling constant, which is of
the order of 1=

������
Nc

p
[8]. The coupling constant for the

transition glueball! two mesons in the leading 1=Nc terms
is governed by the diagrams of Fig. 4c:

gLG!mm � gG! q�q g
2
m! q�qNc � 1

Nc
: �2:32�

Here the approximate equality gm! q�q � 1=
������
Nc

p
is usedwhich

follows from the fact that the loop diagram of the meson
propagator (see Fig. 4d) is of the order of unity:
B�m! q�q! m� � g2m! q�qNc � 1. A diagram of Fig. 4e-
type governs the coupling constants for the transition
glueball! two mesons in the next-to-leading terms of the
1=Nc expansion:

gNL
G!mm � gG! gg g

4
QCDg

2
m! q�qN

2
c �

1

N 2
c

: �2:33�

As was mentioned above, the glueball can decay into
channels (1.8). In this way, the production of light quarks by
gluons occurs with a violation of the flavor blindness,
u�u : d�d : s�s � 1 : 1 : l. Within such an assumption, the cou-
pling constants for the transition glueball! two pseudoscalar
mesons can be calculated using quark combinatorial rules.
These rules were successfully applied to the calculation of
yields of secondary particles in the hadron ± hadron high
energy collisions [47] and to the decay J=c! hadrons
[48]. The calculation of coupling constants for the decays
glueball! mesons has been carried out in Refs [20, 34, 49].

The glueball decay constants to channels (1.8) are given in
Table 1 for the leading, gL

G!mm, and next-to-leading, g
NL
G!mm,

terms of the 1=N expansion. The unknown dynamics of the

glueball glueball
g

g
a

glueball
q

�q
b

meson

mesonc

q

�q
d

g

fe

Figure 4.Diagrams for a glueball decay into two mesons.

Table 1.Coupling constants for a glueball decaying into two pseudoscalar
mesons, in the leading and next-to-leading terms of the 1=N expansion.
Y is the mixing angle for Zÿ Z0 mesons: Z � n�n cosYÿ s�s sinY and
Z0 � n�n sinY� s�s cosY.

Channel Coupling constants
in the leading term of
the 1=N expansion

Coupling constants in the
next-to-leading term of
the 1=N expansion

Identity
factor

p0p0

p�pÿ

K�Kÿ

K0K0

ZZ

ZZ0

Z0Z0

GL

GL���
l
p

GL���
l
p

GL

GL�cos2 Y� l sin2 Y�

GL�1ÿ l� sinY cosY

GL�sin2 Y� l cos2 Y�

0

0

0

0

2GNL

�
cosYÿ

���
l
2

r
sinY

�2

2GNL

�
cosYÿ

���
l
2

r
sinY

�

�
�
sinY�

���
l
2

r
cosY

�

2GNL

�
sinY�

���
l
2

r
cosY

�2

1

2

1

1

1

1

2

1

1

2
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decay is hidden in the parameters GL and GNL. The decay
constant to the channel n is a sum of both contributions:

gL
G!mm�n� � gNL

G!mm�n� : �2:34�

The second term is suppressed, as compared to the first one,
by a factor of Nc; experience in the calculation of quark
diagrams teaches us that this suppression is of the order of
1=10.

The sum of coupling constants squared satisfies the sum
rules:X

n

�
gL
G!mm�n�

�2
I�n� � 1

2
G 2

L�2� l�2 ;

X
n

�
gNL
G!mm�n�

�2
I�n� � 1

2
G 2

NL�2� l�2 ; �2:35�

where I�n� is an identity factor for the particles produced (see
Table 1). These sum rules follow from the quark ± hadron
duality: the sum of squared coupling constants over the whole
set of flavor states is equivalent to the sum of cut diagrams
with the quark loops (diagrams of the type of Fig. 4f for the
leading and of the type of Fig. 4g for next-to-leading terms).
Each quark loop contains the factor �2� l� related to the
summation over light flavors [see Eqn (1.10)].

Quark combinatorial rules may be applied to the calcula-
tion of couplings of �q�q�a mesons to pseudoscalar channels
(1.8). There exist two types of transitions �q�q�a state! two
mesons: they are shown in Fig. 5. The type of process
represented by the diagram of Fig. 5a is leading according to
the rules of 1=N expansion; its coupling constant is of the
order of

gL
m�a�!mm � g 3

m! q�qNc � 1������
Nc

p : �2:36�

The decay constant for the process of Fig. 5b is of the order of

gNL
m�a�!mm � g 3

m! q�qN
2
c g

4
m! q�q �

1

Nc

������
Nc

p : �2:37�

The coupling constants for the decays �q�q�a ! pp, K �K, ZZ,
ZZ0, and Z0Z0 are shown in Table 2 both for the leading and
next-to-leading orders; gL and gNL are the parameters, in
which the unknown dynamics of the soft decay is hidden.
Concerning the glueball decay, the coupling constant for the
�q�q�a-meson decay to the channel n is the sum of two terms:

gL
m�a�!mm�n� � gNL

m�a�!mm�n� : �2:38�

These two terms in Eqn (2.38) define the decay constant of the
�q�q�a meson in the general case: different variants of fixing the
ratios of coupling constants correspond to different choices of

the ratio gL to gNL. Examples of different fixations of gL=gNL

may be found in Refs [40, 49].
Let us stress once again that the coupling constant ratios

for the �q�q�a states (see Table 2) become identical to those of
the glueball, when f � arctan

��������
l=2

p
: this is valid for leading

and next-to-leading contributions. Therefore, on the basis of
a study of couplings to the hadron decay channels only, it is
impossible to distinguish between a glueball and an I � 0
�q�q�a meson with the mixing angle f � 30�.

3. K-matrix analysis of meson spectra
and the nonet classification of q�q states

In this section the results obtained in Refs [30, 36, 42] for the
waves 00��, 10��, 02��, 12��, and 1

2
0� are presented. On the

basis of this analysis, the nonet classification of q�q states is
established.

3.1 K-matrix fit of 00�� wave: the spectra pp, K�K, gg,
and gg 0
To describe the spectra, in Ref. [30] the standard K-matrix
representation of the 00�� amplitude (2.25) was used, where
Kab is a 5� 5 matrix �a; b � 1; 2; . . . ; 5�, with the following
notations for channels: 1 � pp, 2 � K �K, 3 � ZZ, 4 � ZZ0,
5 � (pppp� other multi-meson states).

The matrix elements Kab are parametrized in a form
similar to Eqn (2.28):

Kab �
�X

a

g
�a�
a g

�a�
b

M 2
a ÿ s

� fab
1 GeV2 � s0

s� s0

�
; �3:1�

with the restriction s0 5 1 GeV2.

�q�q�a

meson

meson
b

�q�q�a

meson

meson
a

Figure 5.Diagrams for the decay of the �q�q�a state into two mesons.

Table 2. Coupling constants for a q�q meson decaying into two pseudosca-
lar mesons in the leading and next-to-leading terms of the 1=N expansion.
f is the mixing angle for n�n and s�s states [see Eqn (1.9)].

Channel Coupling constants
in the leading term
of the 1=N expansion

Coupling constants
in the next-to-leading term
of the 1=N expansion

p0p0

p�pÿ

K�Kÿ

K0K0

ZZ

ZZ0

Z0Z0

gL cos
f���
2
p

gL cos
f���
2
p

gL� ���2p sinf� ���
l
p

cosf����
8
p

gL� ���2p sinf� ���
l
p

cosf����
8
p

gL

�
cos2 Y cos

f���
2
p

� ���
l
p

sinf sin2 Y
�

gL sinY cosY
�
cos

F���
2
p

ÿ ���
l
p

sinf
�

gL

�
sin2 Y cos

f���
2
p

� ���
l
p

sinF cos2 Y
�

0

0

0

0

���
2
p

gNL

�
cosYÿ

���
l
2

r
sinY

�
��cosf cosYÿ sinf sinY����
1

2

r
gNL

��
cosYÿ

���
l
2

r
sinY

�
��cosf sinY� sinf cosY�

�
�
sinY�

���
l
2

r
cosY

�
��cosf sinYÿ sinf cosY�

�
���
2
p

gNL

�
sinY�

���
l
2

r
cosY

�
��cosf cosY� sinf sinY�
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The following formulae provide the description of the
spectra pp, ZZ and ZZ0, obtained by GAMS group for the
reactions with a t-channel pion exchange:

ApN!Nb � g��cNg5cN�F�t�D�t�K1a�t��1ÿ ir̂K̂�ÿ1ab ; �3:2�

K1a�t� �
�
Sa

g
�a�
1 �t�g�a�a

M 2
a ÿ s

� f1a�t� 1 GeV2 � s0
s� s0

�
: �3:3�

Here D�t� is the pion propagator, FN�t� is the nucleon
formfactor related to the vertex pNN, and g

�a�
1 �t� and f1a�t�

are the formfactors of the pion block.
The part of the amplitude for the reaction p�p (at

rest)! p0p0p0, p0ZZ, which describes the formation of two
mesons in the 00�� state, is written as follows:

Ap�p!mesons � A1�s23� � A2�s13� � A3�s12� : �3:4�

The amplitudeAk�sij� corresponds to the process with the `last
interaction' of particles ij, while the particle k remains a
spectator.

The amplitude A1�s23� for the spectra pp and ZZ has the
following form (b � pp, ZZ):

A1�s23� � Kp�pp; a�s23��1ÿ irK�ÿ1ab ;

Kp�pp; a�sij� �
�X

a

L�a�p�pp g
�a�
a

M 2
a ÿ sij

� fp�pp; a
1 GeV2 � s0

sij � s0

�
: �3:5�

In the reaction p�p (at rest) ! p0p0p0, the amplitude is
symmetric with respect to permutation of pion indices, i.e.
A1�sij� � A2�sij� � A3�sij�. The p0p0 interaction in the reac-
tion p�p (at rest)! p0p0Z is determined as follows (below
b � pp):

A1�s23� � Kp�pZ; a�s23��1ÿ irK�ÿ1ab ;

Kp�pZ; a�sij� �
�X

a

L�a�p�pZ g
�a�
a

M 2
a ÿ sij

� fp�pZ; a
1 GeV2 � s0

sij � s0

�
: �3:6�

The parameters La
p�pp, fp�pp, Lp�pZ, and fp�pZ can be complex

magnitudes with different phases, that follows from the three-
particle interaction; a more detailed discussion of the
amplitude p�p! three mesons is given in Ref. [50].

3.2 Results of the K-matrix fit for the 00�� wave
in the region below 1900 MeV
A simultaneous K-matrix fit of the 00�� spectra in the mass
region 550 ± 1900 MeV performed in Ref. [30] pointed to the
existence of five bare states, f bare0 . Only two of them, f bare0 (720)
and fbare0 (1810), contain a large s�s component. This means
that only two 3P0q�q nonets can be built in the mass region
below 1900 MeV.

The following requirements provide the basis for the
nonet classification of bare states:

(1) nonet partners are orthogonal in flavor space, i.e. they
must have mixing angle differences [see Eqn (1.9)] equal to
90�: f1 ÿ f2 � 90� (for this value the corridor 90� � 5� is
allowed);

(2) the coupling constants gL and gNL (see Table 2) are
approximately equal for the nonet partners: gL

1 ' gL
2 and

gNL
1 ' gNL

2 .
The standard quark model requires the equality of

coupling constants. However, the s-dependent vertex func-

tions and loop diagrams violate this equality because of the
presence of mass differences of nonet partners. Moreover, the
K-matrix coupling constants have an additional s-dependent
factor

�
1� B 0�s��ÿ1 [see Eqn (2.22)]. This factor strongly

affects the region of small masses (the region of basic 13P0

nonet), where the thresholds and left-hand singularities of
partial amplitude play a more important role.

Fitting to experimental data (1.4) ± (1.7) resulted in two
solutions, I and II. First, let us sum up the results for
Solution I.

In Eqn (3.7) the `flavor wave function' is introduced for
the glueball. It describes the flavor content of the intermediate
state for the glueball decay, see Fig. 4c.

Now let us summarize the results for Solution II.

The quality of the data description by Solutions I and II can
be seen in Figs 6 to 9 (dashed and solid curves, respectively).

3.3 The resonances: are they bumps or dips in the spectra?
For decades the search for meson resonances meant the
search for bumps in the particle spectra. Only recently the
understanding came that it is not always so, and the resonance
f0�980� provides us with an example. In the peripheral pp
spectra it reveals itself as a dip, and a number of papers were
devoted to this phenomenon (see, for example, Refs [9, 51]).
The study of the 00�� wave proved that meson resonances in
the region 1000 ± 1600MeV appear not only as bumps or dips,
but also shoulders in the spectra. The fundamental character-
istic of a resonance is not to be a bump or a dip in the
spectrum, but to provide a circle on the Argand diagram.

Figures 10 and 11 demonstrate the Argand diagrams
relevant to the fits of spectra under discussion. In Fig. 10
one can see the 00�� amplitudes App! pp, App!K �K, App!ZZ,
and App!ZZ 0 as functions of the energy. Indeed, rather
distinct circles were obtained for the resonances f0�980�,
f0�1300�, f0�1500�, and f0�1780�. The manifestation of the
resonances f0�980� and f0�1300� in the form of circles is rather
clear for the amplitudes Ap�t�p! pp at large jtj (see Fig. 11).

3.4 Resonance f0(980): is it the K�K molecule or the
descendant of the lightest scalar q�q states?
This is a principal problem for the q�q systematics, which was
first investigated in Ref. [14] using aK-matrix analysis for the

Type of state: Flavour wave
function:

f bare0 �720� ! 13P0q�q

fbare0 �1260� ! 13P0q�q

fbare0 �1600� ! 23P0q�q

fbare0 �1810� ! 23P0q�q

fbare0 �1235� ! glueball!

0:40n�nÿ 0:92s�s

0:92n�n� 0:40s�s

0:995n�nÿ 0:10s�s

0:10n�n� 0:995s�s

0:91n�n� 0:42s�s .

(3.7)

Type of state: Flavour wave
function:

f bare0 �720� ! 13P0q�q

fbare0 �1260� ! 13P0q�q

fbare0 �1235� ! 23P0q�q

fbare0 �1810� ! 23P0q�q

fbare0 �1600� ! glueball!

0:40n�nÿ 0:92s�s

0:92n�n� 0:40s�s

0:74n�n� 0:67s�s

0:67n�nÿ 0:74s�s

0:91n�n� 0:42s�s .

(3.8)
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low-energy part of the 00�� wave. Following this paper, we
provide arguments that f0�980� is the descendant of the
lightest q�q states.

The two poles correspond to the resonance f0�980�, with
the following complex masses: M � 1015ÿ i46 MeV on the
second sheet (under the pp cut) andM � 936ÿ i238 MeV on
the third sheet (under the pp and K �K cuts). The second pole,
at 936ÿ i238 MeV, appears because of a well-known
doubling of poles affected by the proximity of the K �K
threshold (see, for example, Refs [51, 52]). The first pole at
1015ÿ i46 MeV dominates in the pp spectrum, providing a
sharp dip in the pp! pp spectrum or a bump in the spectrum

pp�t� ! pp at large jtj [24]. Let us study the dynamics of this
pole, when the decays into the channels 1 � pp and 2 � K �K
are subsequently switched on and off. To this end, let us
substitute the following into the K-matrix amplitude:

g1�720� ! x1g1�720� ; g2�720� ! x2g2�720� ; �3:9�

with xa varying over the interval 04xa 4 1. At x1 ! 0 and
x2 ! 0 the decay channels for the lightest 00�� state are
switched off, and we are dealing with the `bare' state, in terms
of Refs [29, 30]. At x1 � x2 � 1 the real case is restored. At
x1 ' x2 ' 0 the mass of the bare state is in the vicinity of
720 MeV, while, with the increase of xa, the lightest scalar
state acquires the components of real mesons, pp and K �K,
and, due to transitions to these states, it mixes with the other
scalar ones. As a result, the mass of the lightest scalar state
increases approaching the region around 1000 MeV. At
x1 � x2 � 1, the pole of the amplitude is at

M�real case� � 1015ÿ i46 MeV ; (3.10)

i.e. near the K �K threshold. Therefore, the K �K component is
of the quasi-molecular type: the relative momentum of K
mesons is small, hence the mean distance between the K
mesons is comparatively large. However, one can see that the
K �K component weakly affects the formation of the final
state. Indeed, let us switch off the K �K state, i.e. let us put in
the amplitude x1 � 1 and x2 � 0. Then, the pole appears at
the point

M�without K �K� � 979ÿ i53 MeV : (3.11)

Actually the mass shift

M�real case� ÿM�without K �K� � 36� i7 MeV
(3.12)

is comparatively small, thus making the role of the K �K
component in the formation of the real f0�980� state
insignificant.

Therefore, theK-matrix analysis of 00�� wave restores the
following picture of the formation of f0�980�. Before mixing,
there existed the lightest scalar±isoscalar q�q state
f bare0 �720� 100�, with the flavor wave function close to the
octet one:

cflavor�720� � cos yS c8 ÿ sin yS c1 ; yS � 14� � 12� ;
�3:13�

c1 �
1���
3
p �u�u� d�d� s�s� ; c8 �

1���
6
p �u�u� d�d� ÿ

���
2

3

r
s�s :

�3:14�

The mixing with other states, which goes through the
transition fbare0 �720� ! pp, leads to the formation of a
resonance with characteristics which are almost the same as
observed in the experiment [see Eqn (3.11)]. The onset of the
K �K component, f bare0 �720� ! K �K, effects a relatively small
shift of mass and width [see Eqn (3.12)].

It should be noted that direct measurements also point out
that f0�980� has considerable short distance components: the
production of f0�980� is not suppressed in the reaction
pÿp! f0�980�p at large momentum transfers [24, 53] as well
as in radiative J=c decay [54].
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One should pay attention to the fact that the lightest
pseudoscalar±isoscalar state, that is, the Z meson, also has
flavor wave function close to the octet one:
Z � cos yP c8 ÿ sin yP c1 with yP � ÿ16:7� � 2:8� [12].

3.5 The wave IJPC� 10��
Two isovector±scalar resonances are clearly seen in reactions
(1.4) [18, 19]. The lightest of them is the well-known a0�980�,
while the next resonance is the recently discovered a0�1450�
(according to Ref. [9], its mass is 1450� 40 MeV and the
width G � 270� 40MeV). Note that fitting to the latest high
statistics data [30, 36, 56] provided us with a greater mass
value: 1520� 40 MeV.

For a description of the scalar±isoscalar amplitude,
in Ref. [36] the two-pole 4� 4 K matrix was used,
with the channel notations: 1 � pZ 2 � K �K, 3 � pZ0,
4 � multi-meson states. The couplings to the two-meson
channels are defined by the quark combinatorial relations
(see Table 3). We recall that the constants gL are the same for
all multiplet members. At the first stage of the fit, the coupling
constants of the lightest resonance a0 were varied over the
interval limited by the constants gL�f bare0 �720�� and
gL�f bare0 �1260��. In all variants of the fit the coupling constant
gL�abare

0 (lightest state)� was found to be rather close to
gL�f bare0 �1260��; so in the final variant of the fit these coupling
constants were taken as equal to each other. The coupling
constants of the next isovector±scalar resonance to two
mesons were also fixed to be equal to each other for all 23P0-
multiplet members.

The fit allowed us to find two solutions for the wave 10��,
which practically coincide for the resonance sector and differ
for background terms. The positions of the amplitude poles
and relevant bare states are shown in Eqns (1.14) and (1.15).

In Ref. [41], a hypothesis was discussed that the
resonances a0�980� and f0�980� belong to a special class of
states (minions), which are loosely bound to hadron channels:
the small widths of a0�980� and f0�980� were considered as
arguments in favor of this particular nature. The character-
istics of resonance a0�980� provide a good opportunity to
check this hypothesis: actually the components of real mesons
yielded by the decays of a0�980� into pZ andK �Kweakly affect
this state [see Eqns (1.14) and (1.15)]. The K-matrix fit of the
data [36] proved that gL�f bare0 �964�� is not small, being of the

order of a standard hadronic value, and the small width of
a0�980� is related not to the small probability of the decay, as
could follow from the minion nature of a0�980�, but to the
threshold effect. It should be emphasized that this result is
also seen in the T-matrix analysis of the data [19, 56].

3.6 K-matrix analysis of the Kp S-wave
A partial-wave analysis of the Kÿp� system for the reaction
Kÿp! Kÿp�n at 11 GeV sÿ1 has been carried out in
Ref. [37], where two alternative solutions (A and B), which
differ only in the region above 1800 MeV, were found for the
S-wave. In paper [37] the T-matrix fit for the Kp S-wave was
performed as well, though independently for the regions
850 ± 1600 MeV and 1800 ± 2100 MeV. In the first region,
the resonance K�0�1430� was found:

MR � 1429� 9 MeV ; G � 287� 31 MeV : �3:15�

In the second mass region, Solutions A and B provided the
following parameters for the description of the resonance
K�0�1950�:
Solution A : MR � 1934� 28 MeV ; G � 174� 98 MeV ;

Solution B : MR � 1955� 18 MeV ; G � 228� 56 MeV :

�3:16�
The necessity of improving this analysis is obvious. Firstly,
the mass region 1600 ± 1800MeV, where the amplitude varies
quickly, must be included into the consideration. As was
stressed above, it is well-known that, due to the strong
interference, a resonance may reveal itself not only as a
bump in the spectrum but also as a dip or a shoulder:
likewise, resonances appear in the 00�� wave. Secondly, the
interference effects are also the source of ambiguities. It is
worth noting that the ambiguities in the 00�� wave were
successfully removed in Refs [30, 36], that was due only to a
simultaneous fit of different meson spectra. For the wave 1

2
0�,

the data available are not copious, therefore one may suspect
that the solution found in Ref. [37] is not unique.

The K-matrix re-analysis of the Kp S-wave has been
carried out in Ref. [42], with the purpose of:

(i) restoring masses and coupling constants of the bare
states for the wave 1

2
0�, in order to establish the q�q

classification;
(ii) finding out all possible K-matrix solutions for the Kp

S-wave in the mass region up to 2000 MeV.
The S-wave Kp scattering amplitude extracted from the

reaction Kÿp! Kÿp�n for small momentum transfers is a
sum of two components with isotopic spins 1=2 and 3=2:

AS � A
1=2
S �

1

2
A

3=2
S � jASj exp�ifS� ; �3:17�

where jASj and fS are measurable quantities entering the S-
wave amplitude [37]. The S-wave part of the amplitude with
isotopic spin I � 3=2 has a non-resonance-type behavior at
the energies under consideration, so it may be parametrized as
follows:

A
3=2
S �s� �

rKp�s�a3=2�s�
1ÿ irKp�s�a3=2�s�

; �3:18�

where a3=2�s� is a smooth function and rKp�s� is the Kp phase
space factor.

For the description of the A
1=2
S amplitude, the 3� 3 K

matrix was used in Ref. [42], with the following channel

Table 3. Coupling constants for the transitions K0
0 ! two mesons and

aÿ ! two mesons in the leading and next-to-leading terms of the 1=N
expansion.

Channel Coupling constants
in the leading terms

Coupling constants
in the next-to-leading terms

K�pÿ

K0p0

K0Z

K0Z0

gL

2

ÿ gL���
8
p�
cos

Y���
2
p ÿ

���
l
p

sinY
�
gL

2�
sin

Y���
2
p �

���
l
p

cosY
�
gL

2

0

0� ���
2
p

cosYÿ
���
l
p

sinY
� gNL

2� ���
2
p

cosYÿ
���
l
p

sinY
� gNL

2

KÿK0

pÿZ

pÿZ0

gL
���
l
p

2

gL cosY���
2
p

gL sinY���
2
p

0� ���
2
p

cosYÿ
���
l
p

sinY
� gNL

2� ���
2
p

sinYÿ
���
l
p

cosY
� gNL

2
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notations: 1 � Kp, 2 � KZ0, 3 � Kppp � multi-meson states.
Accounting for the KZ-channel does not affect the descrip-
tion of the data, for the transition Kp! KZ is suppressed
[37], that also agrees with quark combinatorial results (see
Table 3). In Ref. [42] the fit of the wave 1

2
0� was performed

with the parametrization of Kab given in Eqn (3.1). For the
reaction Kÿp! Kÿp�n the data analysed with small
momentum transfers (jtj < 0:2 GeV2) were singled out , and
at the first stage the data were fitted to the unitary amplitude
(3.1). At the next stage, the t-dependence of the K-matrix
amplitude was taken into consideration. The amplitude
Kp�t� ! Kp [p�t� labels virtual pion] is equal to
A

1=2
S � K1a�t� �Iÿ irK�ÿ1a1 : the parametrization of the matrix

K1a�t� is given in Eqn (3.3).
The coupling constants are determined from the quark

combinatorial rules, they are presented in Table 3. InRef. [42]
only the leading terms in the 1=N expansion were taken into
consideration: in this case coupling constants are fixed by the
fit of the 00�� and 10�� waves, because gL is a common
parameter for all the nonet members.

The description of the 1
2
0� wave was performed under two

assumptions, namely, with the two- and three-pole structure
of the wave in the mass region below 2000 MeV.

In Ref. [37], two solutions, A and B, were found for the
wave 1

2
0�; they differ atMpK > 1800MeV only. Correspond-

ingly, in Ref. [42] the two two-pole K-matrix solutions, (A-1)
and (B-1), were obtained. The positions of the amplitude
poles are practically the same for both solutions; they are
given by Eqn (1.16). The description of data is shown in
Fig. 12. The mass of the first resonance in Eqn (1.16) does not
strongly differ from that of Ref. [37] [see Eqn (3.15)], but the
width for the resonance found in theK-matrix solution is half
that. This follows from the correct accounting for the KZ0

threshold in the K-matrix solution and relevant doubling of
poles. The mass of the second resonance in the K-matrix
solution decreased, as compared to the value of Ref. [37], by
more than 100 MeV.

The masses of bare kaon states related to the two-pole
solution are given in Eqn (1.17). The mass of the lightest state
is 1200�60ÿ110 MeV, i.e. this scalar kaon is located in the same
mass region as the other scalars Ð candidates for the basic
13P0-nonet members.

The description of data in the three-pole K-matrix fit is
shown in Fig. 13. The high mass range, MKp > 1700 MeV,
is described in Solutions (A-2) and (B-2) by the two poles.
However, the two-pole structure of the amplitude did not
change the characteristics of the two first resonances Ð they
are identical to Solutions (A-2) and (B-2). In Solution (B-3)
the region MKp < 1600 MeV is described by two poles. The
positions of bare states in Solution (B-3) are given in
Eqn (1.18) and the corresponding positions of poles in
Eqn (1.19).

The solid curves in Figs 12 and 13 represent the
description of the Kp wave by the unitary amplitude, and
the dashed lines correspond to the fits performed with the t-
dependent Kp amplitude. It is seen that the t-dependence
allows us to get a better description of the phase shifts around
1700 MeV. It should be noted that in this region, as well as in
the mass region above 2000 MeV for Solution A, the data
under consideration violate the unitary limit. It is hardly
possible that the rather strong violation of unitarity is a
consequence of the amplitude t-dependence; more likely it is
related to the underestimation of systematic errors in the
partial-wave analysis of Ref. [37] in those regions. The t-
dependence included in the fitting procedure does not
strongly affect the masses of the bare states and the positions
of the amplitude poles. As a rule, the masses of bare states
found in the t-dependent fit are 20 ± 30 MeV less than the
masses obtained in the t-independent fits.
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Figure 12. Description of data in Ref. [37] in the two-pole K-matrix fit:

Solutions (A-1) and (B-1). The solid curves correspond to the solution

found for unitary amplitude; the dashed lines stand for the fit with the t-

dependent Kmatrix; fS is in degrees.
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4. Propagator matrix:
the analysis of the IJPC� 00�� wave

Here we are summing the results of the analysis of the 00��

wave performed in Refs [6, 7], in terms of the propagator
matrix (D matrix). The D-matrix technique is based on the
dispersion relation N=D method, allowing us to reconstruct
the amplitude, which is analytical over the whole complex s-
plane. We discuss the effects which are due to resonance
overlapping and mixing; namely, the mass shifts and
accumulation of widths by one of the neighboring reso-
nances. An expansion of the physically observed states in a
series with respect to initial (non-mixed) states is performed.

The investigation is made using the 00�� wave, but the
method can be easily generalized for the other waves by using
the technique developed in Refs [44, 45].

4.1 The mixing of two unstable states
In the case of two resonances, the propagator of state 1 is
determined by the diagrams of Fig. 14a. Having all these
processes accounted for, the propagator of state 1 is

D11�s� �
�
m2

1 ÿ sÿ B11�s� ÿ B12�s�B21�s�
m2

2 ÿ sÿ B22�s�
�ÿ1

: �4:1�

Herem1 andm2 are the masses of the input states 1 and 2, and
the loop diagrams Bij�s� are defined by Eqn (2.21), with the
substitution g2�s� ! gi�s�gj�s�. It will be helpful to introduce
the propagator matrix Dij, where the nondiagonal elements
D12 � D21 correspond to the transitions 1! 2 and 2! 1 (see
Fig. 14b). The matrix reads:

D̂ � D11 D12

D21 D22

���� ����
� 1

�M 2
1 ÿ s��M 2

2 ÿ s� ÿ B12B21

M2
2 ÿ s B12

B21 M2
1 ÿ s

���� ���� : �4:2�
Here the following notation is used:

M 2
i � m2

i ÿ Bii�s� ; i � 1; 2 : �4:3�

The zeros of the denominator of the propagator matrix (4.2)
define the complex resonance masses after the mixing:

P�s� � �M 2
1 ÿ s��M 2

2 ÿ s� ÿ B12B21 � 0 : �4:4�

We denote the complex masses of mixed states by MA and
MB.

Let us consider a simple model, where the s-dependence of
the function Bij�s� near the points s �M 2

A and s �M 2
B is

assumed to be negligible. M 2
i and B12 being constants, we

have:

M 2
A;B �

1

2
�M 2

1 �M 2
2 � �

�������������������������������������������������
1

4
�M 2

1 ÿM 2
2 �2 � B12B21

r
: �4:5�

In the case when the widths of the initial resonances 1 and 2
are small (hence the imaginary part of the transition diagram
B12 is also small), Eqn (4.5) turns into the standard formula of
quantum mechanics for the split of mixing levels, which
become repulsive as a result of mixing. Then

D̂ �
cos2 y
M 2

A ÿ s
� sin2 y
M 2

B ÿ s

ÿ cos y sin y
M 2

A ÿ s
� sin y cos y

M 2
B ÿ s

ÿ cos y sin y
M 2

A ÿ s
� sin y cos y

M 2
B ÿ s

sin2 y
M 2

A ÿ s
� cos2 y
M 2

B ÿ s

���������

��������� ;

cos2 y � 1

2
� 1

2

�1=2��M 2
1 ÿM 2

2 ����������������������������������������������������������
�1=4��M 2

1 ÿM 2
2 �2 � B12B21

q : �4:6�

The states jAi and jBi are the superpositions of the initial
levels, j1i and j2i, as follows:
jAi � cos yj1i ÿ sin yj2i ; jBi � sin yj1i � cos yj2i : �4:7�

Generally, the representation of the states jAi and jBi as
superpositions of initial states is valid when one cannot
neglect the s-dependence of functions Bij�s� and their
imaginary parts are not small. Let us consider the propagator
matrix near s �M 2

A:

D̂ � 1

P�s�
M 2

2 �s� ÿ s B12�s�
B21�s� M 2

1 �s� ÿ s

���� ����
' ÿ1

P 0�M 2
A��M 2

A ÿ s�
M 2

2 �M 2
A� ÿM 2

A B12�M 2
A�

B21�M 2
A� M 2

1 �M 2
A� ÿM 2

A

���� ���� :
�4:8�

In the left-hand side of Eqn (4.8), the singular (pole) terms are
the only surviving ones. The matrix determinant in the right-
hand side of Eqn (4.8) is equal to zero:�

M 2
2 �M 2

A� ÿM 2
A

��
M 2

1 �M 2
A� ÿM 2

A

�
ÿ B12�M 2

A�B21�M 2
A� � 0 : �4:9�

This equality follows from Eqn (4.4) which fixesP�M 2
A� � 0.

It allows us to introduce the complex mixing angle:

jAi � cos yAj1i ÿ sin yAj2i : �4:10�

The right-hand side of Eqn (4.8) can be re-written, using the
mixing angle yA, as follows:�

D̂
�
s�M 2

A

� NA

M 2
A ÿ s

cos2 yA ÿ cos yA sin yA
ÿ sin yA cos yA sin2 yA

���� ���� ;
�4:11�

where

NA � 1

P 0�M 2
A�
�
2M 2

A ÿM 2
1 ÿM 2

2

�
;

�m1

a

��m1 m1
B11

m1 m1 m1
B11 B11

� : : :
m1 m2 m1

B12 B21

� : : :
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B12 B22
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��m1 m2
B12
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B11 B12

Figure 14.Diagrams describing the propagation functionsD11 (a) andD12

(b) for the interaction of two bare states.
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cos2 yA � M 2
A ÿM 2

2

2M 2
A ÿM 2

1 ÿM 2
2

;

sin2 yA � M 2
A ÿM 2

1

2M 2
A ÿM 2

1 ÿM 2
2

: �4:12�

We recall that in Eqn (4.12) the functions M 2
1 �s�, M 2

2 �s� and
B12�s� are fixed at the point s �M 2

A. In the case under
consideration, when the angle yA is a complex magnitude,
the values cos2 yA and sin2 yA do not determine the prob-
abilities of states j1i and j2i in jAi; indeed, the values�������
NA

p
cos yA and ÿ �������

NA

p
sin yA are the transition amplitudes

jAi ! j1i and jAi ! j2i. Therefore, the corresponding
probabilities are equal to j cos yAj2 and j sin yAj2.

In order to analyse the content of the state jBi, an
analogous expansion of the propagator matrix should be
made near the point s �M 2

B. After introducing

jBi � sin yBj1i � cos yBj2i ; �4:13�

we have the following expression for D̂ in the vicinity of the
second pole s �M 2

B:�
D̂
�
s�M 2

B

� NB

M 2
B ÿ s

sin2 yB cos yB sin yB
sin yB cos yB cos2 yB

���� ���� ; �4:14�
where

NB � 1

P 0�M 2
B�
�
2M 2

B ÿM 2
1 ÿM 2

2

�
;

cos2 yB � M 2
B ÿM 2

1

2M 2
B ÿM 2

1 ÿM 2
2

;

sin2 yB � M 2
B ÿM 2

2

2M 2
B ÿM 2

1 ÿM 2
2

: �4:15�

In Eqn (4.15) the functionsM 2
1 �s�,M 2

2 �s� and B12�s� are fixed
at the point s �M 2

B.
If B12 depends weakly on s and one can neglect this

dependence, the angles yA and yB coincide. But generally
they are different. So the formulae for the propagator matrix
differ from the standard approach of quantum mechanics by
this very point.

Another distinction is related to the type of the level shift
afforded by the mixing; namely, in quantum mechanics the
levels `repel' each other from the mean value 1=2�E1 � E2�
[see also Eqn (4.5)]. Generally, Eqn (4.4) can cause the
`repulsion' of squared masses from the mean value,
1=2�M 2

1 �M 2
2 �, as well as their `attraction'.

The scattering amplitude for the one-channel case is
defined by the following expression:

A�s� � gi�s�Dij�s�gj�s� : �4:16�

In the multichannel case, Bij�s� is a sum of loop diagrams:

Bij�s� �
X
n

B
�n�
ij �s� ; �4:17�

where B
�n�
ij is the loop diagram in the channel n, g

�n�
i , the g

�n�
j

being vertex functions and rn the phase space factor. The
partial scattering amplitude in channel n is:

An�s� � g
�n�
i �s�Dij�s�g�n�j �s� : �4:18�

4.2 The overlapping of a large number of resonances:
construction of the propagator matrix
Let us consider the propagator matrix D̂ for an arbitrary
number of resonances. The matrix elements Dij describe the
transition from the input state i [with propagator �m2

i ÿ s�ÿ1]
to the state j. They obey a system of linear equations as
follows:

Dij � DikBkj�s��m2
j ÿ s�ÿ1 � dij�m2

j ÿ s�ÿ1 ; �4:19�

whereBij�s� is the loop diagram for the transition and dij is the
Kronecker symbol. Let us introduce the diagonal propagator
matrix d̂ for input states :

d̂ � diag
ÿ�m2

1 ÿ s�ÿ1; �m2
2 ÿ s�ÿ1; �m2

3 ÿ s�ÿ1; . . .
�
: �4:20�

Then the system of linear equations (4.19) can be re-written in
a matrix form, as follows:

D̂ � D̂B̂d̂� d̂ : �4:21�
We obtain

D̂ � I

�d̂ÿ1 ÿ B̂� : �4:22�

The matrix d̂ÿ1 is diagonal, thus D̂ÿ1 � �d̂ÿ1 ÿ B̂� is of the
form:

D̂ÿ1 �

M 2
1 ÿ s ÿB12�s� ÿB13�s� . . .

ÿB21�s� M 2
2 ÿ s ÿB23�s� . . .

ÿB31�s� ÿB32�s� M 2
3 ÿ s . . .

..

. ..
. ..

. ..
.

����������

����������
; �4:23�

where M 2
i is defined by Eqn (4.3). After inversion of this

matrix, we obtain a full set of elements Dij�s�:

Dij�s� �
�ÿ1�i�jP�Nÿ1�ji �s�

P�N��s� : �4:24�

Here P�N��s� is the determinant of the matrix D̂ÿ1 and
P�Nÿ1�ji �s� is a matrix supplement to the element �D̂ÿ1�ji, i.e.
the determinant of matrix D̂ÿ1 with the jth line and ith
column excluded.

The zeros of P�N��s� define the poles of the propagator
matrix which correspond to physical resonances formed by
the mixing. We denote the complex masses of the resonances
as

s �M 2
A; M

2
B; M

2
C ; . . . �4:25�

Near the point s �M 2
A, one can keep only the leading pole

term in the propagator matrix. This means that the free term
in Eqn (4.21) can be neglected, so we get a system of
homogeneous equations:

Dik�s�
ÿ
d̂ ÿ1 ÿ B̂�kj � 0 : �4:26�

The solution of this system defined up to the normalization
factor does not depend on the initial index i. Then the
elements of the propagator matrix may be written in a
factorized form as follows:

�
D̂�N�

�
s�M 2

A

� NA

M 2
A ÿ s

�
a21; a1a2; a1a3; . . .

a2a1; a22; a2a3; . . .

a3a1; a3a2; a23; . . .
. . . . . . . . . . . .

��������
�������� ; �4:27�
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where NA is the normalization factor and the complex
coupling constants obey the equation:

a21 � a22 � a23 � . . .� a2N � 1 : �4:28�

The constants ai are the normalized amplitudes for the
transition resonance A ! state i. The probability of finding
state i in a physical resonance A is

wi � jaij2 : �4:29�

An analogous representation of the propagator matrix can
also be made in the vicinity of other poles:

D
�N�
ij �s �M 2

B� � NB

bi bj
M 2

B ÿ s
;

D
�N�
ij �s �M 2

C� � NC

gi gj
M 2

C ÿ s
; . . . �4:30�

The coupling constants satisfy normalization conditions
similar to Eqn (4.28):

b 2
1 � b 2

2 � . . .� b 2
N � 1 ; g21 � g22 � . . .� g2N � 1 ; . . .

�4:31�

However, generally there is no completeness condition for the
inverse expansion:

a2i � b 2
i � g2i � . . . 6� 1 : �4:32�

For two resonances, this means that cos2 YA � sin2 YB 6� 1.
Still, let us recall that the equality in the inverse expansion,
which is relevant to the completeness condition, appears in
the models where the s-dependence of loop diagrams is
neglected [see Eqns (4.5) ± (4.7)].

4.3 Full resonance overlapping: the accumulation by one
resonance of the widths of its neighbors
Let us consider two examples which describe the idealized
situation of a full overlapping of two or three resonances. In
these examples, the effect of the accumulation by one
resonance of the widths of its neighbors can be seen in its
primary intact form.

(a) A full overlapping of two resonances.
For the sake of simplicity, let Bij be a weak s-dependent

function, so Eqn (4.5) can be used. We define:

M 2
1 �M 2

R ÿ iMRG1 ; M 2
2 �M 2

R ÿ iMRG2 ; �4:33�

and

ReB12�M 2
R� � P

�1
�m1�m2� 2

ds 0

p
g1�s 0�g2�s 0�r�s 0�

s 0 ÿM 2
R

! 0 : �4:34�

It is possible that ReB12�M 2
R� can be zero at positive g1 and

g2, provided the contribution from the integration region
s 0 <M 2

R cancels the contribution from the region s 0 >M 2
R.

In this case

B12�M 2
R� ! ig1�M 2

R�g2�M 2
R�r�M 2

R� � iMR

�����������
G1G2

p
: �4:35�

After substituting Eqns (4.33) ± (4.35) into Eqn (4.5), one has

M 2
A !M 2

R ÿ iMR�G1 � G2� ; M 2
B !M 2

R : �4:36�

Therefore, after the mixing, one of the states accumulates the
widths of the primary resonances, GA ! G1 � G2, and the
other state becomes a quasi-stable particle, with GB ! 0.

(b) A full overlapping of three resonances.
Consider the equation

P�3��s� � 0 �4:37�

in the same approximation as in the above example.
Correspondingly, we put

ReBab�M 2
R� ! 0 �a 6� b� ;

M 2
i �M 2

R ÿ sÿ iMRGi � xÿ igi : �4:38�

A new variable, x �M 2
R ÿ s, is used and we denote

MRGi � gi. Taking account of BijBji � ÿgigj and
B12B23B31 � ÿig1g2g3, we can re-write Eqn (4.37) as follows:

x3 � x 2�ig1 � ig2 � ig3� � 0 : �4:39�

Therefore, at full overlapping of the resonances, one obtains

M 2
A !M 2

R ÿ iMR�G1 � G2 � G3� ;

M 2
B !M 2

R ; M 2
C !M 2

R : �4:40�

Resonance A accumulates the widths of three primary
resonances, and the states B and C become quasi-stable and
degenerate.

4.4 The resonances f0(1300), f0(1500), f0(1530
�90
ÿ250), and

f0(1780)
TheK-matrix analysis provides a basis for the investigation of
the mixing phenomenon in the scalar sector. The propagator
matrix technique used in the next stage of the analysis allows
us to restore correctly the contribution from the real parts of
the loop diagrams, Bij�s�, thus having correctly calculated the
contribution of input states to the formation of physical
resonances.

The resonance mixing in the region 1200 ± 1600MeV may
be considered in the two-channel approximation, for the
quark ± hadron duality justifies the use of the quark channels
n�n and s�s. Correspondingly,

Bij�s� � cosji cosjjB
�n�n�
ij �s� � sinji sinjjB

�s�s�
ij �s� ; �4:41�

where i, j run over 1; 2; 3; 4 with the following notation for the
states: 1 � 13P0�n�n rich�, 2 � 23P0�n�n rich�, 3 � gluonium,
and 4 � 23P0�s�s rich�. The quark states are usually described
with light-cone variables. Then

B
�n�n�
ij �s� �

1

�2p�3
�1
0

dx

x

�
d2k?

gi�s 0�gj�s 0�
s 0 ÿ s

2�s 0 ÿ 4m2� :

�4:42�
Here s 0 � �m2 � k2?�=x�1ÿ x� and m is the non-strange
quark mass. The factor 2�s 0 ÿ 4m2� is due to the quark spin
variables:

Tr
��k̂�m��ÿp̂� k̂�m�� � 2�s 0 ÿ 4m2� :

An analogous expression, with the replacement m! ms,
defines B

�s�s�
ij �s�.
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The simplest parametrization of the vertex function for
the transition from input state i in quarks is:

gi�s� � gi
��
s4
p �

k2i � si
k2 � si

ÿ di
k2i � si

k2 � si � h

�
: �4:43�

Here k2 � s=4ÿm2 and k2a � m2
a=4ÿm2, where m is the

constituent quark mass equal to 350 MeV for a non-strange
quark and 500MeV for strange one, andma is the mass of the
input state.

For the first state, 13P0�n�n rich�, and for the gluonium we
put d1 � d3 � 0. The second state is radial excitation, 23P0,
and its wave function is orthogonal to that of the ground
state. This means that the real part of the functionB12�s�must
tend to zero at s close to resonance masses. Such an
orthogonalization was performed at the point

��
s
p � 1:5 GeV,

thus determining the value of the coefficient d2. The vertex
functions for the same nonet members are equal, so
g2�s� � g4�s�.

The parametersma, ga, h and sa are defined by the masses
and widths of physical resonances. However, the massma can
be approximately fixed by the K-matrix pole: m2a '
m2

a ÿReBaa�m2a�. It should be underlined that m3 is the mass
of a pure gluonium, which is a subject of lattice QCD.

The positions of the amplitude poles and the masses of
input states found in Ref. [7] by fitting the 00�� wave are
shown in Table 4. The relative weight of a primary state in the
physical resonance A is defined by Eqn (4.29); calculated in
such a way that the probabilitiesWa for the resonances under
investigation are shown in Table 4.

As was stressed above, in order tomake comparisons with
the QCD calculations, one should separate contributions
from large and small distances, that is, take into account the
short-range interaction component, r < r0 � Rconfinement, and
eliminate the contribution from large r. Therefore, in the

calculation of masses, which might be compared with the
results of QCD-motivated models, we should make a
replacement in the amplitude of the 00�� wave, as follows:

Bab�s� ! Re �Bab�s; k20�

� P

�1
4m2�4k2

0

ds 0

p
ga�s 0�r�s 0�gb�s 0�

s 0 ÿ s
2�s 0 ÿ 4m2� : �4:44�

The poles of the amplitude re-determined in this way provide
the masses which are related to the interaction at r < 1=k0.
One must compare the masses obtained with a cutting of the
order of k20 � 0:125 (GeV sÿ1)2, that corresponds to account-
ing for the quark interaction at r4 1 fm � Rconfinement with
the quark model results.

For Solution I we get (the values are given in GeV)

For Solution II:

In Refs [6, 7] the lightest q�q state, f bare0 �720�, has not been
included in the mixing machinery. In Eqns (4.45) and (4.46)
the mass corrections for this state have been evaluated to be
ma�k20� ' m2

a ÿRe �Baa�m2
a; k

2
0�. This approximate equality is

due to the comparative smallness of the non-diagonal loop
diagram contributions.

Results (4.45) and (4.46) prove that the values ma

(k20 � 0:125 GeV2) slightly differ from mbarea , while the
differences from the input masses ma can be significant. This
means that the K-matrix analysis provides approximately
correct meson characteristics, which may be compared with
the quark model results. On the contrary, one should
compare the values of the input masses, ma, which can differ
noticeably both from the masses of bare states, mbarea , and
from the masses of real resonances, with the results of lattice
QCD.

4.5 Dynamics of glueball mixing with the q�q states
To discover the glueball mixing with the q�q states, let us make
a replacement in the loop diagrams of the propagator matrix:

ga�s� ! xga�s� ; �4:47�

with the factor x changing in the interval 04x4 1. At x � 0
the mixing is switched off, and the amplitude has poles at
s � m2

a. Figure 15 demonstrates the position of the poles at
different x for Solutions I and II. With increasing x, the poles
move from the real axis to the lower part of the complex
plane. Let us discuss in detail the dynamics of the pole
movement for Solution II.

At x � 0:1ÿ0:5 the glueball state of Solution II is mainly
mixed with the state 23P0�n�n�, while at x � 0:8ÿ1:0 the
mixing with the state 13P0�n�n rich� becomes important. As a
result, the state which is the glueball descendant, sunk rather

Table 4. Masses and mixing angles of the input states, the content of
physical states and the positions of poles for the 00�� amplitude (masses in
GeV).

Solution I

Probability
of resonance

13P0�n�n rich�
f1 � 18�

m1 � 1:457

23P0�n�n rich�
f2 � ÿ6�
m2 � 1:536

Gluonium
f3 � 25�

m3 � 1:230

23P0�s�s rich�
f4 � 84�

m4 � 1:750

W
�
f0�1300�

�
1:300ÿ i0:115
W
�
f0�1500�

�
1:500ÿ i0:065
W
�
f0�1530�

�
1:450ÿ i0:450
W
�
f0�1780�

�
1:780ÿ i0:085

32%

25%

44%

1%

12%

70%

24%

1%

55%

3%

27%

0%

1%

2%

4%

98%

Solution II

Probability
of resonance

13P0�n�n rich�
f1 � 18�

m1 � 1:107

23P0�n�n rich�
f2 � 35�

m2 � 1:566

Gluonium
f3 � 25�

m3 � 1:633

23P0�s�s rich�
f4 � ÿ55�
m4 � 1:702

W
�
f0�1300�

�
1:300ÿ i0:115
W
�
f0�1500�

�
1:500ÿ i0:065
W
�
f0�1530�

�
1:450ÿ i0:450
W
�
f0�1780�

�
1:750ÿ i0:100

35%

1%

12%

0.1%

26%

64%

41%

0.2%

38%

35%

47%

0.2%

0.4%

0.4%

0.3%

99.5%

13P0�s�s rich� 13P0�n�n rich� 23P0�n�n rich� 23P0�s�s rich�
m�k20�0��mbarea

m�k20 � 0:125�
m�k20!1��ma

0.720

0.730

ì

1.360

1.340

1.457

1.577

1.560

1.536

1.791

1.780

1.750.

(4.45)

13P0�s�s rich� 13P0�n�n rich� 23P0�n�n rich� 23P0�s�s rich�
m�k20�0��mbarea

m�k20 � 0:125�
m�k20!1��ma

0.720

0.735

ì

1.357

1.340

1.107

1.585

1.570

1.566

1.734

1.725

1.702.

(4.46)
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deeply into the complex plane, acquires a mass
M � 1450ÿi450 MeV, and the glueball component of this
broad resonance is 47%. Likewise, in Solution I the broad
resonance is a glueball descendant as well.

The hypothesis about strong mixing of the gluonium with
q�q states had been raised formerly. But attempts of
quantitative reconstruction of the picture of mixing within
the standard quantum mechanics approach failed, for two
phenomena were lost:

(1) The q�q-glueball mixing described by the D matrix can
lead not only to the repulsion of levels, that follows from the
standard quantum mechanical approach, but to their attrac-
tion as well. The latest effect is caused by the presence of the
imaginary part in the loop diagram Bab, and it is important
that ImBab is not small near 1500 MeV.

(2) Resonance overlapping leads to the repulsion of poles
located on the imaginary axis of masses, and one resonance
accumulates the widths of the others.

Just this kind of mixing happened at 1500 MeV, and the
large width of one of the resonances is the inevitable
consequence. It is also natural that the broad resonance itself
is the gluonium descendant, for the gluonium mixes, without
any significant suppression, with the nearby q�q states, both of
them being dominantly non-strange ones.

5. Conclusions

The deconfinement of quarks from the excited q�q levels goes
in two stages:

(1) The unavoidable production of q�q pairs, which form
two or more white states (hadrons).

(2) The flying away of the produced hadrons, their
interaction and, as a result, the mixing of neighboring q�q
levels, that leads to the formation of a broad locking state,
which plays the role of a dynamical barrier for neighboring
levels.

This is the K-matrix analysis, together with the dispersion
N=D method, which are summoned to decipher the second
stage of the deconfinement. The analysis of the 00�� wave
carried out in the K-matrix or the propagator matrix
techniques demonstrated that the lightest scalar glueball,
being near the states 13P0q�q and 23P0q�q, after mixing turned
into a broad state, with G=2 ' 500 MeV. This broad state
f0�1530�90ÿ250� carries about half of the scalar gluonium
component, whereas the other components of the broad
resonance are 13P0q�q and 23P0q�q.

It looks like the waves 00ÿ� and 02�� behave similarly
[57], which allows us to believe that the future of the physics of
highly excited states is tightly related to the study of broad
states both in the search for exotic hadrons and the
investigation of confinement phenomenon.
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