<u>ΥCΠΕΧИ ΦИЗИЧЕСКИХ НАУК</u>

ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ

Легчайший скалярный глюбол

В.В. Анисович

Проведенные в последние годы исследования мезонных спектров дали возможность определить резонансную структуру волн $IJ^{PC} = 00^{++}, 10^{++}, 02^{++}, 12^{++} u IJ^{P} = \frac{1}{2}0^{+}$ в области масс до 1900 МэВ и, тем самым, полностью восстановить мезонные мультиплеты $1^{3}P_{0}q\bar{q} u \ 2^{3}P_{0}q\bar{q}$. Экспериментальные данные весьма определенно указывают на то, что в этой области масс находятся пять скалярных–изоскалярных состояний: четыре из них являются $q\bar{q}$ -состояниями — членами нонетов $1^{3}P_{0}q\bar{q} u \ 2^{3}P_{0}q\bar{q}$, а пятое состояние, будучи лишним с точки зрения кварковой систематики, обладает в то же время всеми свойствами легчайшего скалярного глюбола. Анализ 00^{++} -волны, проведенный в дисперсионной технике, позволяет восстановить картину смешивания чисто глюбольного состояния (глюониума) с близлежаиµми скалярными $q\bar{q}$ -состояниями, членами нонетов $1^{3}P_{0}q\bar{q} u \ 2^{3}P_{0}q\bar{q}$; три скалярных мезона поделили между собой глюониум — это два относительно узких резонанса $f_{0}(1300) u f_{0}(1500) u$ очень широкий резонанс $f_{0}(1530^{+90}_{-250})$. Широкий резонанс является потомком глюониума, сохраняя около 40-50 % его компоненты.

PACS numbers: 12.39.Mk, 12.38.-t, 14.40.-n

Содержание

- Введение: ретроспективный взгляд и современное состояние проблемы (481).
- К-матрица и дисперсионное N/D-представление амплитуды рассеяния (486).

2.1. Амплитуда рассеяния, *Т*-матрица и *К*-матрица. 2.2. Дисперсионный *N/D*-метод и *К*-матричное представление амплитуды.2.3. Многоканальное рассеяние. 2.4. qq-мезоны: проблема малых и больших расстояний. 2.5. Константы связи глюониума и qq̄-состояний с мезонными каналами: правила 1/*N*-разложения и кварковые комбинаторные соотношения.

 К-матричный анализ спектров и классификация qq
-состояний по нонетам (491).

3.1. К-матричный фит 00⁺⁺-волны: спектры $\pi\pi$, $K\bar{K}$, $\eta\eta$ и $\eta\eta'$. 3.2. Результаты К-матричного фита волны 00⁺⁺ при массах ниже 1900 МэВ. 3.3. Резонансы: пики в спектрах или провалы? 3.4. Резонанс f₀(980): $K\bar{K}$ -молекула или потомок легчайших скалярных q \bar{q} -состояний? 3.5. Волна $IJ^{PC} = 10^{++}$. 3.6. К-матричный анализ $K\pi$ S-волны.

- 4. Матрица пропагаторов: анализ волны $IJ^{PC} = 00^{++}$ (496).
 - 4.1. Смешивание двух нестабильных состояний. 4.2. Случай перекрытия большого числа резонансов: построение матрицы пропагаторов. 4.3. Полное перекрытие резонансов: эффект аккумулирования одним из резонансов ширин резонансов – соседей.

В.В. Анисович. Петербургский институт ядерной физики, 188350 Гатчина, Санкт-Петербург, Россия Факс (812) 713-19-63 E-mail: anisovic@thd.pnpi.spb.ru

Статья поступила 4 ноября 1997 г.

4.4. Резонансы f₀(1300), f₀(1500), f₀(1530⁺⁹⁰₋₂₅₀) и f₀(1780). 4.5. Динамика смешивания глюбола с qq̄-состояниями.

5. Заключение (501). Список литературы (501).

> Памяти Юрия Дмитриевича Прокошкина посвящается

1. Введение: ретроспективный взгляд и современное состояние проблемы

Огромное разнообразие мезонов и барионов, наблюдаемых в настоящее время, представляет собой системы, построенные из кварков: это барионы — трехкварковые системы (qqq), мезоны — связанные кварк-антикварковые состояния (q \bar{q}). Более двадцати лет назад возникла проблема [1]: существуют ли адроны, построенные с помощью другой фундаментальной частицы КХД глюона. Интенсивные поиски глюболов — частиц, состоящих из глюонов, — велись все это время.

Первые оценки масс глюболов с различными J^{PC} были сделаны в модели кварковых мешков [2]: согласно им легчайшими глюболами должны быть скалярный и тензорный, 0^{++} и 2^{++} , далее следуют псевдоскалярный и псевдотензорный, 0^{-+} и 2^{-+} .

В последние годы был достигнут значительный прогресс в проведении расчетов КХД на решетке. Коллаборация UKQCD [3] дает следующие значения масс легчайших глюодинамических (т.е. без учета кварк-антикварковых примесей) глюболов:

$m_{\rm G}(0^{++}) = 1549 \pm 53 {\rm M}\Im{\rm B},$	$m_{\rm G}(2^{++}) = 2310 \pm 110 {\rm M} \Im {\rm B},$
$m_{\rm G}(0^{-+}) = 2332 \pm 264 {\rm M}\Im{\rm B}.$	(1.1)

Группа IBM получила несколько другое значение массы легчайшего глюбола [4]:

$$m_{\rm G}(0^{++}) = 1740 \pm 71 \,{\rm M} \Im {\rm B}$$
 (1.2)

Результат, полученный в [5], следующий:

$$m_{\rm G}(0^{++}) = 1630 \pm 60 \pm 80 \,{\rm M}_{2}{
m B},$$

 $m_{\rm G}(2^{++}) = 2400 \pm 10 \pm 120 \,{
m M}_{2}{
m B}.$ (1.3)

Однако во всех этих решеточных вычислениях не учитываются должным образом кварковые степени свободы: существующие вычислительные возможности не позволяют этого сделать. Кварковые степени свободы могут заметно сместить положения масс глюболов. Дисперсионный анализ мезонных спектров, связанный с восстановлением матрицы пропагаторов [6, 7], показывает, что смешивание с qq̄-состояниями приводит к сдвигу масс порядка 100–300 МэВ. Следует подчеркнуть, что согласно правилам 1/N-разложения [8] ($N = N_f = N_c$, где N_f — число легких флейверов (ароматов), а N_c — число цветов), смешивание глюбольных и qq̄-состояний не подавлено.

Экспериментальные поиски глюболов особенно интенсивно велись в последнее десятилетие. Есть несколько типов реакций, в которых можно было бы ожидать более высокую вероятность рождения глюболов. Рождение адронов в центральной области в адронадронных столкновениях при высоких энергиях является примером такой реакции: частицы центральной области образуются в результате перехода *помероны* \rightarrow *адроны*. Так как померон является доминантно глюонной системой, то можно было бы ожидать в пучке вторичных адронов доминантного рождения глюболов и подавленного рождения qq-мезонов. Экспериментальные данные по центральному рождению адронов с высокой статистикой, позволяющей проведение достаточно надежного парциально-волнового анализа пучка адронов, появились лишь в самое недавнее время. Более доступной для экспериментального изучения оказалась другая реакция, обусловленная переходом глюоны — адроны: радиационный распад $J/\psi \rightarrow \gamma + адроны$. В этом распаде адроны формируются глюонами, образовавшимися в результате сс-аннигиляции, поэтому в этой реакции также можно было бы ожидать доминантного рождения глюболов. Экспериментальное изучение спектров адронов в радиационном J/ψ-распаде велось в течение многих лет и продолжается до сих пор. Экспериментальная информация, накопленная к началу девяностых годов, оказалась весьма обескураживающей: в радиационном J/ψ-распаде довольно интенсивно рождаются qq-мезоны. Относительные вероятности рождения мезонов суммированы в компиляции [9]: большая группа резонансов рождается с примерно равной вероятностью, среди них заведомо доминантные q \bar{q} -системы, такие как η , η' , $f_2(1270)$, f₂(1525) и т.д. Такая ситуация допускает двоякую интерпретацию:

1) глюбольных состояний не существует; глюбол является "нереализованным обещанием КХД" [10];

2) глюбольные состояния интенсивно смешиваются с $q\bar{q}$ -мезонами; на опыте наблюдаются именно эти смешанные состояния.

Результаты анализа 00⁺⁺- волны [6, 7] определенно указывают, что реализуется именно второй вариант.

Экспериментальные данные по переходным формфакторам $\gamma \gamma^*(Q^2) \to \pi^0, \eta, \eta'$ [11] дают следующие ограничения на вероятности глюбольных компонент в η-и η'мезонах: $W_{\rm n} \leq 8$ %, $W_{\rm n'} \leq 20$ % [12]. Это означает, что в $q\bar{q}$ -мезонах, наблюдаемых в радиационном J/ ψ -распаде, следует ожидать глюбольных компонент на уровне 5-10 %. Отсюда же следует, что в глюболе примесь qqкомпоненты должна быть заметно больше, так как глюбол может смешиваться с несколькими qq-мезонами. Эта качественная оценка согласуется с оценкой, получаемой в рамках правил 1/*N*-разложения: согласно этим правилам, глюбольная компонента в каждом из qqмезонов порядка 1/N_c, а qq-компонента в глюболе порядка $N_{\rm f}/N_{\rm c}$ [13]. Конечно, при этом следует иметь в виду, что конкретные случаи могут заметно отличаться от этих общих качественных оценок, так как величина смешивания существенно зависит также от взаимной близости (или удаленности) смешивающихся состояний.

Поиск глюбола в случае реализации в природе варианта 2), т.е. если происходит интенсивное смешивание глюбольных и qq̄-компонент, предполагает кропотливую и трудную работу по идентификации и систематизации мезонов. Не оправдались наивные ожидания, инициировавшие активные исследования на ранней стадии. Например, предполагалось, что в обогащенных глюонами реакциях, таких как фотон-фотонные соударения, мы увидим рождение глюболов, однако увидели рождение адронов, $\gamma\gamma \rightarrow адроны$, и не наблюдали рождение глюболов.

Основной канал в радиационных распадах J/ψ , как видно из рассмотрения экспериментальных данных, это рождение широких адронных кластеров. Фактически рождение этих кластеров есть прямое указание на сильное смешивание глюбола с qq-мезонами. Дело в том, что при смешивании нескольких резонансов существует эффект аккумулирования одним из резонансов ширин других. Этот эффект наблюдался в [14] при анализе низкоэнергетической части спектров 00++волны и был детально исследован в [6, 7]. А именно, в случае полного смешивания двух резонансов один из резонансов приобретает суммарную ширину $\Gamma_1 + \Gamma_2$, а ширина второго резонанса стремится к нулю. В случае идеального смешивания трех резонансов ширина одного из резонансов равна сумме ширин начальных состояний, $\Gamma_1 + \Gamma_2 + \Gamma_3$, а ширины двух других состояний стремятся к нулю. В реальном случае смешивания скалярного глюбола с близлежащими qq-состояниями происходит качественно близкий эффект: глюбол, появившись в ряду скалярных qq-состояний, смешивается с ними и аккумулирует значительную часть их ширин. С этой точки зрения, появление широкого резонанса — преемника чистого глюбола (глюониума) — есть неизбежное следствие смешивания. Широкий резонанс должен соседствовать с относительно узкими резонансами, которые являются преемниками чистых qq̄-состояний и содержат значительную примесь глюониума. Анализ 00⁺⁺-волны, выполненный на основе дисперсионных соотношений в области 1200-1800 МэВ [6, 7], воспроизвел именно эту картину смешивания легчайшего скалярного глюбола с $q\bar{q}$ -состояниями мультиплетов $1^{3}P_{0}$ и $2^{3}P_{0}$. Можно полагать, что такая картина является общей для всех низколежащих глюболов.

Итак, сильное смешивание qq̄-состояний и глюониума не позволяет легко идентифицировать глюболы. Единственно разумная стратегия в этом случае последовательная систематизация всех резонансов по qq̄-мультиплетам. Состояния, являющиеся лишними с точки зрения этой классификации, должны рассматриваться как кандидаты в глюболы или в другие экзотические мезоны. Такая программа исследования была декларирована в [13], и одновременно были сделаны первые шаги в ее реализации: в [14] был проведен *К*матричный анализ низкоэнергетической части волны $IJ^{PC} = 00^{++}$.

Детальный анализ мезонных состояний в области 1000-2000 МэВ оказался возможным благодаря богатой экспериментальной информации, накопленной в последнее десятилетие коллаборациями Crystal Barrel и GAMS. Коллаборация Crystal Barrel имеет прецизионные данные по рождению трех нейтральных мезонов в pp-аннигиляци в покое,

$$p\bar{p} (e \text{ nokoe}) \to \pi^0 \pi^0 \pi^0, \quad \pi^0 \pi^0 \eta, \quad \pi^0 \eta \eta, \quad (1.4)$$

с числом событий 1500000 ($\pi^0\pi^0\pi^0$), 280000 ($\pi^0\pi^0\eta$) и 185000 ($\pi^0\eta\eta$). Данные по реакции pp (*в покое*) $\rightarrow \pi^0\pi^0\pi^0$, хотя и с несколько меньшей статистикой, были опубликованы в 1991 г. [15]. Однако первоначальная обработка спектров, не учитывающая всех особенностей трехчастичного распада, не привела к корректной идентификации скалярных резонансов. Критический анализ ситуации дан в [16, 17], где было указано, что резонанс вблизи 1500 МэВ, ранее идентифицированный как тензорный AX₂(1520), в действительности является скалярным. Повторный анализ реакций (1.4), проведенный в [19] совместно с Crystal Barrel в рамках Т-матричного формализма, зафиксировал существование новых скалярных резонансов $f_0(1500)$ [18] и $a_0(1450)$. Кроме того, в [16-18] указывалось на весьма заметное рождение резонанса $f_0(1360)$ с полушириной 130 МэВ, однако в то время не было ясно, наблюдается ли рождение нового резонанса или же это есть проявление широкого резонанса $\epsilon(1300)$, достаточно интенсивно обсуждавшегося в течение последних десятилетий. Только после проведения К-матричного анализа более широкого круга экспериментальных данных стало ясно, что в этом районе существуют два резонанса: сравнительно узкий $f_0(1300)$ и очень широкий $f_0(1530^{+90}_{-250})$.

На первой стадии исследований фитирование данных проводилось в рамках *T*-матричной техники: *T*-матричное представление амплитуды проще для обработки данных, а преимущества *K*-матричного подхода проявляются только тогда, когда имеется экспериментальная информация о всех возможных каналах. В интервале 1000-1500 МэВ в волне 00^{++} существенны следующие каналы: $\pi\pi$, $K\bar{K}$, $\eta\eta$ и $\pi\pi\pi\pi$, а выше 1500 МэВ заметную роль играет еще и канал $\eta\eta'$. Очевидно, что использование изощренной *K*-матричной техники для фитирования ограниченного числа каналов (1.4) привело бы к большим неоднозначностям.

Открытие резонанса $f_0(1500)$ сразу же породило гипотезы о его тесной связи с легчайшим скалярным глюболом: возможность такой связи подчеркивалась уже в [17, 18]. В последовавших далее работах [13, 20–23] было предложено несколько схем смешивания легчайшего скалярного глюониума с близлежащими qq̄-

состояниями. Однако во всех этих схемах не учитывалась специфика, обусловленная переходом резонансов в реальные мезоны, а именно эти переходы, как показал далее детальный *К*-матричный анализ, определяют структуру 00^{++} - волны вблизи 1500 МэВ.

На следующем этапе в анализ волны 00^{++} были включены данные GAMS по спектрам $\pi^0 \pi^0$, $\eta \eta$ и $\eta \eta'$, полученные в реакциях [24–26]

$$\pi^- p \to n \pi^0 \pi^0$$
, $n \eta \eta$, $n \eta \eta'$, (1.5)

наряду с данными группы CERN-Münich [27]:

$$\pi^- p \to n \pi^+ \pi^- \tag{1.6}$$

и группы BNL [28]:

$$\pi\pi \to K\bar{K}$$
. (1.7)

Одновременный анализ всей совокупности данных (1.4)– (1.7) был проведен в цикле работ [14, 29, 30] в рамках *К*матричной техники, при этом область исследуемых масс и число каналов, включенных в *К*-матричный фит 00⁺⁺амплитуды, постепенно увеличивались.

Первое исследование этого цикла, [14], ограничивалось двумя каналами, $\pi\pi$ и KK, и инвариантной энергией мезонов $\sqrt{s} \le 1100$ МэВ. В этом анализе было сделано важное для дальнейшего наблюдение: переходы, ответственные за распад мезонных состояний, ответственны также и за активное смешивание этих состояний. При этом массы смешанных состояний заметно отличаются от масс начальных состояний. Эти "начальные" мезоны были названы в [14] "голыми мезонами" в отличие от физических состояний, в формировании которых, как оказалось, существенную роль играет облако реальных частиц: пп и КК. Массы голых состояний задаются полюсами К-матрицы. В [14] был также отмечен эффект, который обсуждался нами выше: аккумулирование ширин начальных состояний одним из резонансов, возникающих в результате смешивания.

В [29] К-матричный анализ был продлен до 1550 МэВ с включением дополнительных каналов пр и лллл. Канал лллл весьма важен для корректного описаспектров в интервале 1300 - 1600M₂B: ния $\sigma(\pi\pi \to \pi\pi\pi\pi)/\sigma(\pi\pi \to \pi\pi)$ порядка 0,5 при 1300 МэВ и около 1,5 при 1500 МэВ [31]. Использование в [29] данных по двухчастичным каналам ππ, КК и ηη дало возможность провести qq-классификацию голых 00⁺⁺-состояний, f₀^{bare}, при массах меньше 1600 МэВ. Дело в том, что распад qq-мезона происходит путем рождения глюонами новой $q\bar{q}$ -пары. Согласно правилам 1/N-разложения, основной вклад в константу распада дают планарные диаграммы. При распаде изоскалярного qq-мезона на два псевдоскалярных мезона Р₁Р₂, а именно,

$$\pi\pi$$
, $K\bar{K}$, $\eta\eta$, $\eta\eta'$, $\eta'\eta'$, (1.8)

константа связи определяется, с точностью до общего множителя, кварковым составом qq-мезона:

$$q\bar{q} = n\bar{n}\cos\phi + s\bar{s}\sin\phi, \qquad (1.9)$$

где n $\bar{n} = (u\bar{u} + d\bar{d})/\sqrt{2}$, а также параметром λ , который характеризует относительную вероятность рождения глюонами странных и нестранных кварков в мягких

процессах:

$$u\bar{u}: dd: s\bar{s} = 1:1:\lambda. \tag{1.10}$$

Экспериментальные данные дают следующие значения этого параметра: $\lambda \simeq 0,5$ [32] для рождения адронов в центральной области адрон-адронных столкновений при высоких энергиях, $\lambda = 0,8 \pm 0,2$ [33] для распадов тензорных мезонов и $\lambda = 0,6 \pm 0,1$ [34, 35] для отношения выходов η и η' мезонов в распадах $J/\psi \rightarrow \gamma \eta / \gamma \eta'$.

Константы связи распада $q\bar{q} \rightarrow P_1P_2$ в каналы (1.8), определяемые планарными диаграммами, которые являются лидирующими в 1/N-разложении, могут быть записаны как

$$g(q\bar{q} \to P_1 P_2) = C_{P_1 P_2}(\phi, \lambda) g^{\mathsf{L}}, \qquad (1.11)$$

где $C_{P_1P_2}(\phi, \lambda)$ — полностью вычисляемый коэффициент, зависящий от угла смешивания ϕ и параметра λ , и g^L общий множитель, характеризующий неизвестную нам динамику процесса. Поэтому экспериментальное изучение распадов резонансов в каналы (1.8) позволяет восстановить кварковый состав состояния (т.е. угол смешивания ϕ) и провести тем самым кварковую систематизацию мезонов.

Однако, основываясь только на анализе распадных констант, невозможно однозначно определить, имеем ли мы дело с qq-мезоном или же с глюболом. Причина в том, что распад глюбола — двухэтапный процесс с последовательным рождением двух qq-пар. После рождения первой qq-пары мы имеем в промежуточном состоянии следующую qq-систему:

$$n\bar{n}\cos\phi_{\rm G} + s\bar{s}\sin\phi_{\rm G}, \quad \tan\phi_{\rm G} = \sqrt{\frac{\lambda}{2}}.$$
 (1.12)

При $\lambda = 0.45 - 0.80$ угол смешивания равен $\phi_{\rm G} = 25^{\circ} - 32^{\circ}$. Уже на втором этапе промежуточная система qq̄ трансформируется в мезоны P₁P₂: это означает, что константы распада глюбола удовлетворяют тем же соотношениям, что и в случае распада qq̄-мезона с $\phi = \phi_{\rm G}$.

Анализ спектров $\pi\pi$, КК и $\eta\eta$, проведенный в [29], показал, что при массах меньше 1600 МэВ имеется четыре скалярных–изоскалярных состояния, причем только одно из них является доминантно ss-состоянием. Так как каждый из ³P₀qq-мультиплетов содержит два I = 0 состояния, которые соответствуют двум флейверным комбинациям, пл и ss, то в результате проведенного анализа возникла следующая дилемма:

1) либо в районе 1000 - 1800 МэВ находятся три ³P₀qq̄нонета: один базисный $1^{3}P_{0}qq̄$ и два радиально-возбужденных, $2^{3}P_{0}qq̄$ и $3^{3}P_{0}qq̄$ (в этом случае в интервале 1600 - 1800 МэВ должны существовать два ss̄-доминантных скалярных мезона);

2) либо в области 1600-1800 МэВ имеется только одно ss-доминантное состояние (тогда один из трех мезонов в районе 1200-1600 МэВ является лишним с точки зрения qq-систематики и должен рассматриваться как кандидат в экзотический мезон: соотношения между константами связи с каналами (1.8), найденные в [29], давали основания предполагать, что это легчайший скалярный глюбол).

Итак, после выполнения анализа [29] первоочередной задачей явилось распространение *К*-матричного анализа волны 00⁺⁺ на область масс 1600–1900 МэВ. Продвижение анализа в область $\sqrt{s} > 1600$ МэВ предполагало включение канала $\eta\eta'$ в процедуру фита. Это было сделано в [30], где *К*-матричный анализ был проведен для масс 500–1900 МэВ с рассмотрением пяти каналов: $\pi\pi$, K \bar{K} , $\eta\eta$, $\pi\pi\pi\pi$, $\eta\eta'$. Оказалось, что в интервале 1600–1900 МэВ находится только один f_0 -мезон, при этом, действительно, с доминантной ss-компонентой, т.е. анализ работы [30] показал, что осуществляется случай 2). При этом было обнаружено, что существует два варианта выбора скалярного глюбола.

Решение І. Два голых состояния $f_0^{bare}(720 \pm 100)$ и $f_0^{bare}(1260 \pm 30)$ являются членами мультиплета $1^3P_0q\bar{q}$, при этом $f_0^{bare}(720)$ представляет собой состояние, обогащенное ss-компонентой, $\phi(720) = -69^{\circ} \pm 12^{\circ}$. Голые состояния $f_0^{bare}(1600 \pm 50)$ и $f_0^{bare}(1810 \pm 30)$ являются членами нонета $2^3P_0q\bar{q}$, причем в $f_0^{bare}(1600)$ доминирует пл-компонента, $\phi(1600) = -6^{\circ} \pm 15^{\circ}$. Состояние $f_0^{bare}(1235 \pm 50)$ — лишнее с точки зрения $q\bar{q}$ -классификации; его константы связи удовлетворяют соотношениям, характерным для глюониума, так что это состояние можно рассматривать в качестве кандидата на легчайший скалярный глюбол.

Решение II. Базисный скалярный нонет — тот же самый, что и в первом решении. Члены следующего нонета $2^{3}P_{0}q\bar{q}$ такие: $f_{0}^{bare}(1235\pm50)$ и $f_{0}^{bare}(1810\pm30)$. Оба эти состояния содержат значительные примеси sā-компоненты: $\phi(1235) = 42^{\circ} \pm 10^{\circ}$ и $\phi(1810) = -53^{\circ} \pm 10^{\circ}$. Состояние $f_{0}^{bare}(1560\pm30)$ является лишним с точки зрения qq̄-систематики и может рассматриваться как хороший кандидат в глюболы.

Существование двух вариантов обусловлено тем, что основываясь только на информации о распадах в каналы (1.8), невозможно получить однозначный ответ на вопрос, имеем ли мы дело с глюболом или же с $q\bar{q}$ -мезоном с углом смешивания $\phi = 25^{\circ} - 32^{\circ}$, о чем говорилось выше.

Оба К-матричных решения, I и II, приводят практически к идентичным положениям полюсов амплитуды в комплексной плоскости масс. Амплитуда имеет пять полюсов, приведенных ниже.

Резонанс:	Положение полюса (МэВ):	
f ₀ (980),	$1015 \pm 15 - i(43 \pm 8),$	
$f_0(1300),$	$1300 \pm 20 - i(120 \pm 20),$	
$f_0(1500),$	$1499 \pm 8 - i(65 \pm 10),$	(1.13)
$f_0(1750),$	$1750 \pm 30 - i(125 \pm 70),$	
$f_0(1530^{+90}_{-250}),$	$1530^{+90}_{-250} - i(560 \pm 140).$	

Широкий резонанс $f_0(1530^{+90}_{-250})$ не является совершенно новым объектом в мезонной физике: это как раз тот резонанс, который долгое время назывался $\epsilon(1300)$. Большая ширина $f_0(1530^{+90}_{-250})$ обусловлена эффектом аккумулирования ширин при смешивании резонансов.

Базисом для надежной и однозначной идентификации скалярного глюбола является полное воссоздание мультиплетов $1^{3}P_{0}q\bar{q}$ и $2^{3}P_{0}q\bar{q}$. Каждый из этих нонетов состоит из двух скаляров–изоскаляров, f_{0} , одного изовектора–скаляра, a_{0} , и скалярного каона, K_{0} . Как говорилось выше, нонетную классификацию высоковозбужденных $q\bar{q}$ -состояний разумно осуществлять в терминах голых состояний, которые не включают компоненты с

k

состояниями реальных мезонов. Обсуждавшийся выше анализ [30] определил четыре f_0^{bare} -мезона, необходимых для построения двух нонетов; два легчайших изотриплетных резонанса также известны — это $a_0(980)$ и $a_0(1450)$ [9]. Полный *К*-матричный анализ волны 10^{++} [36] дал следующие значения масс резонансов:

$$\begin{split} a_0(980) &\to (988\pm 6) - i(46\pm 10) \ \text{M} \mbox{\tiny 3B} \,, \\ a_0(1450) &\to (1565\pm 30) - i(146\pm 20) \ \text{M} \mbox{\tiny 3B} \,. \end{split} \eqno(1.14)$$

Следует подчеркнуть, что масса второго резонанса занижена в [9] примерно на 100 МэВ. Соответствующие голые состояния следующие:

$$a_0^{\text{bare}}(964 \pm 16), \quad a_0^{\text{bare}}(1670 \pm 70).$$
 (1.15)

Идентификация скалярных резонансов как членов мультиплетов 1³P₀qq и 2³P₀qq всегда вызывала проблемы: согласно [9, 37] массы двух легчайших каонов соответственно равны $1429 \pm 4 \pm 5$ МэВ и $1945 \pm 10 \pm 20$ МэВ, что заметно выше средних положений масс других мезонов, являющихся кандидатами в члены скалярных нонетов. Именно высокое расположение на шкале масс скалярного каона $K_0(1430)$ в немалой степени инициировало появление моделей, в которых базисный $1^{3}P_{0}q\bar{q}$ -мультиплет фиксируется в районе 1350 - 1500 МэВ, а резонансы $f_0(980)$ и $a_0(980)$ рассматриваются как экзотические состояния — адронные молекулы [38], многокварковые мешки [39] или миньоны [40, 41].

В [42] был проведен повторный *К*-матричный анализ S-волнового К π -спектра, необходимый для воссоздания K₀^{bare}. Другая причина повторного анализа обусловлена тем, что в [37] рассмотрение К π -спектров проводилось отдельно для двух областей масс, 820–1580 МэВ и 1780– 2180 МэВ, а область масс 1580–1780 МэВ и 1780– 2180 МэВ, а область масс 1580–1780 МэВ не была включена в анализ К π -амплитуды. Опыт фитирования 00⁺⁺-волны [30] подсказывает, что при независимом рассмотрении отдельных массовых областей теряется часть информации: для полного ее извлечения необходим одновременный фит, тем более, что в интервале 1580–1780 МэВ наблюдаются значительные изменения амплитуды.

Согласно К-матричному фиту ($IJ^{\rm P} = \frac{1}{2}0^+$)-волны [42], для удовлетворительного описания К π -спектра в интервале 800–2000 МэВ необходимо, как минимум, два К₀состояния. Соответственно, $\frac{1}{2}0^+$ -амплитуда этого минимального решения имеет вблизи физической области полюса́ на II листе (под К π -разрезом) и на III листе (под К π - и К η '-разрезами) при следующих комплексных массах:

$$(1415 \pm 30) - i(165 \pm 25) M_{2}B,$$

 $(1820 \pm 40) - i(125 \pm 35) M_{2}B.$ (1.16)

К η' -порог, находясь в окрестности резонанса (при 1458 МэВ), оказывает сильное воздействие на $\frac{1}{2}0^+$ -амплитуду, так что низшему К $_0$ -состоянию соответствует и второй полюс, расположенный за К η' -разрезом при $M = (1525 \pm 125) - i(420 \pm 80)$ МэВ: ситуация здесь аналогична той, которая наблюдается в f $_0(980)$ -мезоне, которому также соответствует двухполюсная стуктура амплитуды, обусловленная К \bar{K} -порогом. Канал К η слабо влияет на $\frac{1}{2}0^+$ К π -амплитуду: на это указывают

как экспериментальные данные [37], так и кварковые комбинаторные соотношения.

Минимальное решение содержит два K_0^{bare} -состояния:

$$\mathbf{K}_{0}^{\text{bare}}(1200_{-110}^{+60}), \quad \mathbf{K}_{0}^{\text{bare}}(1820_{-75}^{+40}).$$
 (1.17)

В минимальном решении легчайший голый скалярный каон оказался на 200 МэВ ниже полюса амплитуды: это обстоятельство облегчает построение базисного скалярного нонета с массами в районе 900–1200 МэВ.

Следует заметить, что К π -спектры допускают решения с тремя полюсами, которые имеют заметно лучший χ^2 , однако и в этих решениях легчайшее каонное состояние K_0^{bare} не покидает область 900–1200 МэВ. В трехполюсном решении имеем

$$K_0^{\text{bare}}(1090 \pm 40), \quad K_0^{\text{bare}}(1375^{+125}_{-40}), \quad K_0^{\text{bare}}(1950^{+70}_{-20}),$$
(1.18)

и Кπ-амплитуда имеет полюса:

II лист —
$$M = 998 \pm 15 - i(80 \pm 15) \text{ МэВ};$$

II лист — $M = 1426 \pm 15 - i(182 \pm 15) \text{ МэВ};$
III лист — $M = 1468 \pm 30 - i(309 \pm 15) \text{ МэВ};$
III лист — $M = 1815 \pm 25 - i(130 \pm 25) \text{ МэВ}.$ (1.19)

Состояние $K_0^{bare}(1375^{+125}_{-40})$, находясь около $K\eta'$ -порога, приводит к удвоению полюсов амплитуды вблизи 1400 МэВ. Подчеркнем, что массы легчайших голых каонных состояний в двухполюсном и трехполюсном решениях совпадают в пределах ошибок.

К-матричный фит $\frac{1}{2}0^+$ К π -волны позволяет завершить построение двух низших скалярных нонетов в терминах голых состояний. В соответствии с тем, что анализ 00^{++} -волны [30] дал два решения, отличающихся значением массы "лишнего" состояния (кандидата в глюболы), мы имеем также два варианта нонетной классификации скалярных мезонов. Базисный $1^3 P_0 q \bar{q}$ -мультиплет выглядит одинаково в обоих вариантах:

$$\begin{aligned} &a_0^{\text{bare}}(960 \pm 30), \ f_0^{\text{bare}}(720 \pm 100), \\ &f_0^{\text{bare}}(1260^{+100}_{-30}), \ \mathbf{K}_0^{\text{bare}}(1200^{+90}_{-150}). \end{aligned}$$

Слеует специально подчеркнуть: волновая функция $f_0^{\text{bare}}(720)$ в пространстве флейверов близка к октетной, а именно, $\phi(720) = -69^{\circ} \pm 12^{\circ}$, тогда как $\phi_{\text{octet}} = -54,7^{\circ}$. Соответственно, состояние $f_0^{\text{bare}}(1260)$ близко к флейверному синглету. Подобная ситуация наблюдается и в псевдоскалярном секторе, где флейверные волновые функции η и η' близки к октетной и синглетной. Аналогия усиливается, если учесть, что расщепления масс изоскалярных состояний в обоих секторах совпадают, а массы скаляров не намного больше соответствующих масс псевдоскаляров, $m_s - m_{\rm ps} \simeq (200 \pm 100)$ МэВ. Такие совпадения явно указывают на вырождение по четности сил взаимодействия в изоскалярном канале.

Итак, можно заключить: базисный нонет скалярных мезонов однозначно фиксируется *К*-матричным фитом мезонных спектров. Он расположен низко на массовой шкале, в районе 750–1250 МэВ. В этом диапазоне, при массах меньше 1200 МэВ, не остается места для экзотических состояний.

$$a_0^{\text{bare}}(1640 \pm 40), \ f_0^{\text{bare}}(1600 \pm 50), \ f_0^{\text{bare}}(1810^{+30}_{-100}),$$

 $K_0^{\text{bare}}(1375^{+125}_{-40})$ или $K_0^{\text{bare}}(1820^{+40}_{-60}).$ (1.21)

"Лишним" состоянием, с точки зрения нонетной классификации, является $f_0^{\text{bare}}(1235^{+150}_{-30})$.

В решении II нонет 2³Р₀qq выглядит следующим образом:

$$a_0^{\text{bare}}(1640 \pm 40), f_0^{\text{bare}}(1235^{+150}_{-30}), f_0^{\text{bare}}(1810^{+30}_{-100}),$$

 $\mathbf{K}_0^{\text{bare}}(1375^{+125}_{-40})$ или $\mathbf{K}_0^{\text{bare}}(1820^{+40}_{-60}).$ (1.22)

"Лишним" состоянием в этом решении является $f_0^{bare}(1600 \pm 50)$; еще раз подчеркнем — масса этого состояния оказалась как раз в том районе, который дают решеточные вычисления для массы легчайшего скалярного глюониума, а константы связи с мезонными каналами удовлетворяют кварковым комбинаторным соотношениям для распада глюониума.

Сразу же после получения К-матричного решения в области до 1900 МэВ возникла проблема записи амплитуды 00⁺⁺-волны в виде дисперсионного представления. Дисперсионное *N/D*-представление восстанавливает корректным образом аналитические свойства парциальной амплитуды во всей комплексной s-плоскости. Кроме того, и это является главным, в рамках дисперсионного представления возможно последовательно построить матрицу пропагаторов и оценить эффекты смешивания qq-состояний и глюбола, а тем самым и корректно восстановить массу глюониума. Дисперсионное N/Dописание волны 00⁺⁺ было проведено в [6, 7]: в [6] была рассмотрена область 1200-1700 МэВ, где расположены три скалярных-изоскалярных состояния, а затем в [7] исследуемая область масс была расширена до 1900 МэВ с включением в рассмотрение четвертого состояния $f_0(1780).$

Результаты N/D-представления волны 00^{++} дали возможность воссоздать картину смешивания низшего скалярного глюониума: он смешался с двумя близлежащими qq̄-состояниями, членами мультиплетов $1^{3}P_{0}$ и $2^{3}P_{0}$, причем резонанс — преемник чистого глюбола — аккумулировал значительную часть ширин резонансов – соседей, превратившись в очень широкий резонанс $f_{0}(1530_{-250}^{+90})$.

Обратим внимание, что состояние f_0^{bare} не описывает буквально глюодинамический глюбол: состояние f_0^{bare} содержит неглюонные степени свободы, обусловленные реальными частями петлевых диаграмм (мнимые части этих диаграмм ответственны за распад состояния). Дисперсионный N/D-метод, восстанавливая реальные и мнимые части петлевых диаграмм, воссоздает тем самым полную картину смешивания состояний, т.е. восстанавливает также и массу глюониума. Она равна в решении I:

$$m_{\rm gluonium} = 1225 \text{ M} \Im \text{B} , \qquad (1.23)$$

и в решении II:

$$m_{\rm gluonium} = 1633 \text{ M} \Im \text{B} . \tag{1.24}$$

Масса (1.24) хорошо согласуется со значениями массы легчайшего скалярного глюбола, полученными в решеточных вычислениях.

Весьма примечательно, что оба дисперсионных решения приводят к практически одинаковому ответу для структуры 00⁺⁺-волны и кварк-глюонного состава физических резонансов: в обоих решениях широкий резонанс $f_0(1530_{-250}^{+90})$ является преемником глюониума, сохраняя 40–50% его компоненты, тогда как остальная часть глюониума поделена примерно поровну между резонансами $f_0(1300)$ и $f_0(1500)$. С этой точки зрения, структура резонансов в районе 1300–1600 МэВ определена однозначно.

Наблюдаемый в 00⁺⁺-волне эффект образования широкого состояния ставит проблему существования подобных широких резонансов и в других волнах: разумно полагать, что экзотические мезоны (глюболы, гибриды) с другими квантовыми числами также вызывают эффект аккумулирования ширин. Поэтому поиск других экзотических мезонов должен быть неразрывно связан с исследованиями широких резонансов.

Возникает и другая, не менее интригующая проблема: широкий резонанс, аккумулировав ширины своих резонансов – соседей, играет роль "запирающего состояния", так как он препятствует распаду соседних состояний с аналогичными квантовыми числами. Это означает, что широкий резонанс играет роль динамического барьера для соседних состояний. Как соотносится этот динамический барьер с барьером конфайнмента? Ответ на этот вопрос сможет дать только детальное исследование роли широких резонасов в различных волнах.

2. К-матрица и дисперсионное N/D-представление амплитуды рассеяния

Дан краткий обзор техники, используемой при анализе мезонных спектров: обсуждаются аналитические свойства амплитуды и демонстрируется связь дисперсионного N/D-представления с K-матричной записью. Обсуждается также роль малых и больших расстояний в формировании наблюдаемых мезонных спектров, в связи с чем вводится понятие "голого состояния". Рассматриваются кварковые комбинаторные соотношения между константами распада глюбола в различные мезонные каналы, а также аналогичные соотношения для qq̄-состояний: эти соотношения являются основой для нонетной систематизации мезонов.

2.1. Амплитуда рассеяния, Т-матрица и К-матрица

Поясним на простом примере терминологию и обозначения, используемые при анализе мезонных спектров.

В терминах волновой функции относительного движения двух бесспиновых частиц процесс рассеяния описывается на больших расстояниях падающей плоской волной и расходящейся сферической, $r^{-1}f(\theta) \exp(ikr)$, коэффициент перед которой характеризуется парциальными амплитудами рассеяния

$$f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) P_l(\cos \theta) \left\{ \exp[2i\delta_l(k)] - 1 \right\}. \quad (2.1)$$

Эта формула написана для одноканального рассеяния без поглощения (k — импульс относительного движения, θ — угол вылета рассеянной частицы). Элемент

решении I:

Т-матрицы определяется фазой рассеяния δ_l :

$$T_l = \frac{1}{2i} \left[\exp(2i\delta_l) - 1 \right] = \exp(i\delta_l) \sin \delta_l \,. \tag{2.2}$$

При рассмотрении аналитических свойств удобно использовать амплитуду с другой нормировкой:

$$A_l = \frac{1}{2i\rho(k)} \left[\exp(2i\delta_l) - 1 \right], \qquad (2.3)$$

где $\rho(k)$ — инвариантный двухчастичный фазовый объем:

$$\rho(k) = \int d\Phi(P; k_1, k_2),$$

$$d\Phi(P; k_1, k_2) =$$

$$= \frac{1}{2} \frac{d^3 k_1}{(2\pi)^3 2k_{10}} \frac{d^3 k_2}{(2\pi)^3 2k_{20}} (2\pi)^4 \delta^{(4)} (P - k_1 - k_2). \quad (2.4)$$

Инвариантный фазовый объем определяется четырехмерными импульсами: полным импульсом сталкивающихся частиц P, причем $P^2 = s$, и импульсами частиц 1 и 2, k_1 и k_2 . Когда массы частиц 1 и 2 одинаковы, имеем

$$\rho(k) = \frac{k}{8\pi\sqrt{s}}, \quad k = \sqrt{\frac{s}{4} - m^2}.$$
(2.5)

К-матричное представление амплитуды связано с записью A_l в форме:

$$A_{l} = \frac{K_{l}(k^{2})}{1 - i\rho(k)K_{l}(k^{2})} .$$
(2.6)

Функция K_l действительна в физической области: мнимая часть амплитуды выписана в явном виде в (2.6). Кроме того, K_l , рассматриваемая как функция квадрата инвариантной энергии *s*, аналитична вблизи пороговой сингулярности амплитуды $s = 4m^2$; сингулярный член также выделен в явном виде, он содержится в двухчастичном фазовом объеме ρ .

Рассеяние с поглощением описывается введением коэффициента поглощения η_l в парциальном разложении (2.1):

$$\left[\exp(2\mathrm{i}\delta_l) - 1\right] \to \left[\eta_l \exp(2\mathrm{i}\delta_l) - 1\right] \tag{2.7}$$

с $0 \leq \eta_l \leq 1$; случай $\eta_l = 0$ соответствует полному поглощению.

Энергетическую зависимость амплитуды T_l удобно представлять на диаграмме Аргана (Argand plot), которая является полезным инструментом для поиска резонансов. Элемент *T*-матрицы при фиксированном *k* (или *s*) изображается точкой в плоскости (Re T_l , Im T_l). С изменением *k T*-матричный элемент дает набор точек на единичном круге радиуса 1/2 с центром в точке (0, i/2); с появлением неупругости траектория T_l уходит внутрь круга.

К-матричное представление амплитуды при возникновении поглощения требует фиксации неупругих каналов. Обозначим два канала индексами 1 и 2 и рассмотрим случай, когда неупругость обусловлена вторым двухчастичным каналом. Тогда амплитуда упругого рассеяния $1 + 1' \rightarrow 1 + 1'$, которую мы обозначим как A_{11} (индекс парциальной волны *l* опущен), может быть по-прежнему записана в форме (2.6):

$$A_{11} = \frac{K(k^2)}{1 - i\rho_1 K(k^2)}, \qquad (2.8)$$

но блок $K(k^2)$ является комплексной величиной выше порога второго канала:

$$K(k^2) = K_{11} + i \frac{K_{12} \rho_2 K_{21}}{1 - i\rho_2 K_{22}}.$$
(2.9)

Здесь ρ_2 — фазовый объем второго канала 2 + 2', а матричные элементы K_{11} , $K_{12} = K_{21}$ и K_{22} являются действительными функциями k^2 в физической области. Пороговые сингулярности каналов 1 и 2, которые находятся при $s = (m_1 + m'_1)^2$ (порог канала 1) и при $s = (m_2 + m'_2)^2$ (порог канала 2), выделены в (2.8) и (2.9) явным образом — они содержатся в фазовых объемах ρ_1 и ρ_2 , соответственно. Ниже порога второго канала при $(m_1 + m'_1)^2 < s < (m_2 + m'_2)^2$ функция $K(k^2)$ действительна, так как в этой области $\rho_2 = i|\rho_2|$.

2.2. Дисперсионный *N/D*-метод и *К*-матричное представление амплитуды

Дисперсионный *N/D*-метод [43] удобен тем, что он корректно задает аналитические свойства амплитуды во всей комплексной плоскости *s*. Мы изложим здесь, следуя [44, 45], элементы этого метода, необходимые далее для анализа мезонных спектров.

Парциальная амплитуда A(s) (как и выше, индекс l опускается для краткости) представляется как отношение

$$A(s) = \frac{N(s)}{D(s)}, \qquad (2.10)$$

N(s), рассматриваемая как функция комплексной переменной *s*, содержит только "левые" сингулярности парциальной амплитуды, обусловленные силами взаимодействия, т.е. диаграммами с обменом мезонами в перекрестных каналах (рис. 1). Эти особенности находятся слева от пороговых сингулярностей при $s = (m_1 + m'_1)^2 - m^2_{\text{crossing}}$.

D-функция содержит только правые сингулярности, обусловленные перерассеяниями частиц в *s*-канале: на рис. 1 показаны соответствующие им процессы перерассеяния.

Рис. 1. Комплексная плоскость *s* и положения сингулярностей парциальной амплитуды: правые сингулярности при $s \ge (m_1 + m_1')^2$ обусловлены упругими и неупругими перерассеяниями, левые сингулярности — силами взаимодействия, т.е. обменами частиц в перекрестных каналах.

Рассмотрим сначала одноканальную задачу. Тогда *D*-функция может быть записана в следующем виде (для простоты считаем массы частиц одинаковыми $m_1 = m'_1$):

$$D(s) = 1 - B(s), \qquad B(s) = \int_{4m^2}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{N(s')\rho(s')}{s' - s - \mathrm{i}0}. \quad (2.11)$$

Здесь опущен индекс 1, т.е. $m_1 \rightarrow m$, $\rho_1 \rightarrow \rho$. Запись (2.11) предполагает, что $D(s) \rightarrow 1$ при $s \rightarrow \infty$ (более обобщенно, $D(s) \rightarrow \text{const}$ при $s \rightarrow \infty$, так как этот случай сводится к (2.11) переопределением N(s)). Кроме того, в (2.11) предположено, что *D*-функция не содержит полюсов Кастильехо-Далица-Дайсона (более подробное изложение N/D-метода можно найти в [43, 44]).

Хорошим предположением является запись *N*-функции в виде суммы сепарабельных вершинных функций [44]. Такая техника удобна для описания амплитуды нуклон-нуклонного рассеяния [45]; более того, разработана методика представления *t*-канальных обменных диаграмм в виде суммы сепарабельных вершинных функций [46]. В простейшем случае, который обсуждается далее, $N(s) = g^2(s)$. Тогда

$$A(s) = \frac{g^2(s)}{1 - B(s)}, \qquad B(s) = \int_{4m^2}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{g(s')\rho(s')g(s')}{s' - s - \mathrm{i0}}.$$
 (2.12)

Раскладывая (2.12) в ряд по B(s), мы имеем представление амплитуды A(s) в виде суммы диаграмм, показанных на рис. 2а – в и т.д.; *B*(*s*) в (2.12) есть петлевая диаграмма, записанная в виде дисперсионного интеграла. При $s > 4m^2$ петлевая диаграмма комплексна:

Im
$$B(s) = g^2(s)\rho(s)$$
, Re $B(s) = P \int_{4m^2}^{\infty} \frac{d(s')}{\pi} \frac{g^2(s')\rho(s')}{s'-s}$.
(2.13)

Амплитуда (2.12) соответствует случаю, когда парциальная волна не содержит затравочных частиц: связанные состояния, если они существуют, обусловлены взаимодействием, формирующим *N*-функцию. Включение затравочных частиц эквивалентно предположению о росте D(s) при $s \to \infty$. Если D(s) растет линейно с s, то функция D(s) может быть записана как

$$D(s) = m_0^2 - s - B(s), \qquad B(s) = \int_{4m^2}^{\infty} \frac{d(s')}{\pi} \frac{g^2(s')\rho(s')}{s' - s - i0}.$$
(2.14)

Амплитуда

$$A(s) = \frac{g^2(s)}{m_0^2 - s - B(s)}$$
(2.15)

представляет собой бесконечную сумму диаграмм, показанных на рис. $2\Gamma - e$ и т.д.; B(s) по-прежнему петлевая

Рис. 2. Диаграммы, описывающие *s*-канальное рассеяние.

диаграмма, и $(m_0^2 - s)^{-1}$ есть пропагатор затравочной частины.

K-матричное представление амплитуды A(s) связано с выделением в явном виде мнимой части петлевой диаграммы:

$$A(s) = \frac{g^2(s)}{m_0^2 - s - \operatorname{Re} B(s) - i\rho(s)g^2(s)} = \frac{K(s)}{1 - i\rho(s)K(s)},$$

$$K(s) = \frac{g^2(s)}{m_0^2 - s - \operatorname{Re} B(s)}.$$
(2.16)

В двухчастичной петлевой диаграмме функция $\operatorname{Re} B(s)$ аналитична в точке $s = 4m^2$. Это означает, что особенностями K(s) в физической области могут быть только полюса. Однако в левой полуплоскости s K(s) содержит сингулярности, обусловленные *t*-канальными обменами.

Полюс амплитуды A(s), определяемый равенством

$$m_0^2 - s - B(s) = 0, \qquad (2.17)$$

соответствует существованию частицы с квантовыми числами рассматриваемой парциальной волны. Если полюс находится выше порогового значения $s = 4m^2$, то мы имеем дело с резонансом: далее рассматривается именно такой случай. Пусть условие (2.17) выполняется в точке

$$s = M^2 \equiv \mu^2 - i\Gamma\mu.$$
(2.18)

Разложим реальную часть знаменателя (2.15) вблизи $s = \mu^2$:

$$m_0^2 - s - \operatorname{Re} B(s) \simeq [1 + \operatorname{Re} B'(\mu^2)](\mu^2 - s) - \mathrm{i}g^2(s)\rho(s).$$

(2.19)

Стандартная аппроксимация Брейта-Вигнера возникает при фиксации Im B(s) в точке $s = \mu^2$. Если полюс находится недалеко от пороговой сингулярности $s = 4m^2$, то необходимо сохранить *s*-зависимость фазового объема. Тогда используют модифицированную формулу Брейта – Вигнера:

$$A(s) = \frac{\gamma}{\mu^2 - s - i\gamma\rho(s)}, \qquad \gamma = \frac{g^2(\mu^2)}{1 + \text{Re}\,B'(\mu^2)}.$$
 (2.20)

Аналогичная резонансная аппроксимация может быть проведена и при К-матричной записи амплитуды. Она соответствует разложению функции K(s), записанной в форме (2.16), в ряд вблизи точки $s = \mu^2$:

$$K(s) = \frac{g^2(K)}{\mu^2 - s} + f.$$
 (2.21)

Здесь

$$g^{2}(K) = \frac{g^{2}(\mu^{2})}{1 + \operatorname{Re} B'(\mu^{2})},$$

$$f = \frac{g^{2}(\mu^{2})}{2[1 + \operatorname{Re} B'(\mu^{2})]} - \frac{2g(\mu^{2})g'(\mu^{2})}{1 + \operatorname{Re} B'(\mu^{2})}.$$
 (2.22)

2.3. Многоканальное рассеяние

Резонансная амплитуда (2.15) может быть обобщена на многоканальный случай. Пусть имеется *n* каналов, тогда амплитуда перехода $b \rightarrow a$ равна:

$$A_{ab}(s) = \frac{g_a(s)g_b(s)}{m_0^2 - s - B(s)}, \qquad B(s) = \sum_{c=1}^n B_{cc}(s), \qquad (2.23)$$

где *B_{cc}* определяется стандартным выражением (см. (2.14)) с соответствующей фиксацией фазового объема, вершинной функции и области интегрирования:

$$g^{2}(s')\rho(s') \to g^{2}_{c}(s')\rho_{c}(s'), \quad 4m^{2} \to 4m^{2}_{c}.$$
 (2.24)

Амплитуды перехода *A*_{ab} образуют матрицу *A*. *К*-матричная запись амплитуды гласит:

$$\hat{A} = \hat{K} \frac{I}{I - i\hat{\rho}\hat{K}}, \qquad (2.25)$$

где \hat{K} есть матрица размерности $n \times n$, причем $K_{ab}(s) = K_{ba}(s)$, I — диагональная единичная $n \times n$ матрица, I = diag(1, 1, ..., 1), и $\hat{\rho}$ — диагональная матрица фазовых объемов:

$$\hat{\rho} = \operatorname{diag}(\rho_1(s), \rho_2(s), \dots, \rho_n(s)).$$
(2.26)

Резонансная амплитуда (2.23) может быть представлена в *К*-матричной форме (2.25); элементы *К*-матрицы равны:

$$K_{ab}(s) = \frac{g_a(s)g_b(s)}{m_0^2 - s - \operatorname{Re} B(s)} .$$
(2.27)

Вблизи резонанса элементы *К*-матрицы могут быть разложены в ряд: в этом случае мы имеем представление *К*-матричных элементов, аналогичное (2.21).

2.4. qq-мезоны: проблема малых и больших расстояний

Задача классификации qq-состояний в области масс

1000 – 2000 МэВ сталкивается с проблемой кварк-адронной дуальности и тесно связанной с ней проблемой вклада больших и малых расстояний в формирование мезонного спектра.

Обсудим эти проблемы, используя язык стандартной кварковой модели. В этой модели qq-уровни определяются потенциалом, который бесконечно возрастает при больших *r*: $V(r) \propto \alpha r$ (рис. 3а). Бесконечно растущий потенциал порождает бесконечный ряд стабильных qqуровней. Однако понятно, что это упрощенная картина, так как только низшие qq-уровни стабильны по отношению к адронным распадам. Вышележащие состояния распадаются по адронным каналам: возбужденное $(q\bar{q})_a$ -состояние рождает новую $q\bar{q}$ -пару, и затем кварки $(q\bar{q})_a + (q\bar{q})$ рекомбинируют в мезоны, которые покидают "ловушку" конфайнмента, образуя тем самым непрерывный мезонный спектр. Условно эта структура спектра показана на рис. 3б, где взаимодействие, связанное с конфайнментом, присутствует как некий потенциальный барьер: взаимодействие при r < R_{confinement} формирует дискретный спектр qq-уровней, тогда как переходы в область $r > R_{\text{confinement}}$ формируют непрерывный мезонный спектр. Именно этот мезонный спектр наблюдается в эксперименте, и задача восстановления qqуровней, сформированных при *r* < *R*_{confinement}, прямо связана с задачей определения влияния распадных мезон-

Рис. 3. Потенциал стандартной кварковой модели со стабильными qq̄-уровнями (a); потенциал с нестабильными верхними уровнями, моделирующий реальную ситуацию для высоковозбужденных qq̄состояний (б).

ных спектров на сдвиг уровней: при qq-классификации уровней необходимо исключить влияние распадной мезонной компоненты.

Приближенно эта задача решается в рамках *К*матричного описания мезонных спектров, когда в *К*матричной амплитуде "ликвидируются" вклады, обусловленные переходами в реальные мезонные состояния: формально это эквивалентно переходу в (2.25) к пределу $\rho_a \rightarrow 0$. При учете только лидирующих полюсных сингулярностей амплитуда перехода $b \rightarrow a$ имеет вид

$$A_{ab}^{\text{bare}}(s) = K_{ab}(s) = \frac{g_a(K)g_b(K)}{\mu^2 - s} + f_{ab}.$$
(2.28)

Таким образом, полюс *К*-матрицы отвечает состоянию, у которого ликвидирована "шуба" реальных мезонов. Это дало основание назвать соответствующие состояния "голыми мезонами" [29, 30]. Следует, однако, отличать это определение от определения голых частиц в теории поля, где "шуба" включает и виртуальные состояния вне массовой поверхности.

В случае, когда q \bar{q} -спектр содержит ряд состояний с одинаковыми квантовыми числами, амплитуда $A_{ab}^{\rm bare}(s)$ определяется суммой соответствующих полюсов:

$$A_{ab}^{\text{bare}}(s) = \sum_{\alpha} \frac{g_a^{(\alpha)}(K)g_b^{(\alpha)}(K)}{\mu_{\alpha}^2 - s} + f_{ab}.$$
(2.29)

Аппроксимация амплитуды при $r < R_{\text{confinement}}$ в виде ряда полюсов не нова: она широко используется в дуальных моделях и при рассмотрении вкладов, лидирующих в $1/N_c$ -разложении. С точки зрения таких моделей, не зависящее от *s* слагаемое f_{ab} представляет собой суммарный вклад полюсов, удаленных от области рассмотрения.

Константы связи голого состояния, $g_a^{(\alpha)}(K)$, являются источником информации о кварк-глюонном составе этого состояния.

2.5. Константы связи глюониума и qq-состояний с мезонными каналами: правила 1/*N*-разложения и кварковые комбинаторные соотношения

Кварк-глюонный состав состояний, соответствующих Кматричным полюсам (голым состояниям), проявляется в соотношениях между константами связи этих полюсов с мезонными каналами, $g_a^{(\alpha)}$.

Оценим прежде всего эти константы в рамках правил 1/N-разложения: оценку проведем как для перехода глюбол $\rightarrow dba$ мезона, так и для перехода $q\bar{q}$ -состояние $\rightarrow dba$ мезона. С этой целью рассмотрим глюонную петлевую диаграмму, соответствующую двухглюонной собственноэнергетической части: глюбол $\rightarrow dba$ глюона $\rightarrow глюбол$ (рис. 4а). Эта петлевая диаграмма порядка единицы, если глюбол является двухглюонной составной системой: $B(G \rightarrow gg \rightarrow G) \sim g^2_{G \rightarrow gg} N_c^2 \sim 1$, где $g_{G \rightarrow gg}$ — константа связи глюбола с двумя глюонами. Таким образом,

$$g_{\rm G \to gg} \sim \frac{1}{N_{\rm c}} \,. \tag{2.30}$$

Константа перехода $g_{G \to q\bar{q}}$ определяется диаграммами типа представленной на рис. 4б. Аналогичная оценка дает

$$g_{\rm G \to q\bar{q}} \sim g_{\rm G \to gg} g_{\rm QCD}^2 N_{\rm c} \sim \frac{1}{N_{\rm c}} \,. \tag{2.31}$$

Здесь g_{QCD} — кварк-глюонная константа связи, которая порядка $1/\sqrt{N_c}$ [8]. Константа связи перехода *елюбол* $\rightarrow \partial 6a$ мезона в членах, лидирующих в $1/N_c$ -разложении, задается диаграммами типа показанной на рис. 4в:

$$g_{G \to mm}^{L} \sim g_{G \to q\bar{q}} g_{m \to q\bar{q}}^{2} N_{c} \sim \frac{1}{N_{c}}$$
 (2.32)

Здесь учтено, что $g_{m\to q\bar{q}} \sim 1/\sqrt{N_c}$: это обусловленно тем, что петлевая диаграмма мезонного пропагатора (рис. 4г) порядка единицы, а именно, $B(m\to q\bar{q}\to m)\sim \sim g_{m\to q\bar{q}}^2 N_c \sim 1$. Диаграмма на рис. 4д определяет константы перехода *глюбол* $\to dea$ мезона в членах следующего порядка в $1/N_c$ -разложении:

$$g_{G \to mm}^{NL} \sim g_{G \to gg} g_{QCD}^4 g_{m \to q\bar{q}}^2 N_c^2 \sim \frac{1}{N_c^2}$$
 (2.33)

Как говорилось выше, глюбол может распадаться в каналы (1.8). При этом процесс рождения глюонами легких кварков происходит с нарушением флейверной слепоты, $u\bar{u}: d\bar{d}: s\bar{s} = 1:1:\lambda$. В рамках такого предпо-

Рис. 4. Диаграммы, определяющие распад глюбола в два мезона.

Константы распада глюбола в каналы (1.8) приведены в табл. 1 для вкладов, лидирующих в 1/N-разложении, $g_{G \to mm}^L$, и следующих за лидирующими, $g_{G \to mm}^{NL}$. Неизвестная нам динамика распада скрыта в параметрах G_L и G_{NL} . Константа распада в определенный канал *n* равна сумме обоих вкладов:

$$g_{\mathrm{G}\to\mathrm{mm}}^{\mathrm{L}}(n) + g_{\mathrm{G}\to\mathrm{mm}}^{\mathrm{NL}}(n) \,. \tag{2.34}$$

Второе слагаемое подавлено по сравнению с первым в N_c раз, и опыт расчета кварковых диаграмм показывает, что величина этого подавления порядка 1/10.

Сумма квадратов констант связи удовлетворяет правилам сумм:

$$\sum_{n} \left[g_{G \to mm}^{L}(n) \right]^{2} I(n) = \frac{1}{2} G_{L}^{2} (2 + \lambda)^{2} ,$$

$$\sum_{n} \left[g_{G \to mm}^{NL}(n) \right]^{2} I(n) = \frac{1}{2} G_{NL}^{2} (2 + \lambda)^{2} , \qquad (2.35)$$

где I(n) есть фактор идентичности рожденных частиц (см. табл. 1). Эти правила сумм являются следствием кваркадронной дуальности: сумма квадратов констант связи по полному набору флейверных состояний эквивалентна сумме разрезанных диаграмм с кварковыми петлями (диаграммы на рис. 4е для лидирующих вкладов и на рис. 4ж для следующих за лидирующими). Каждая кварковая петля содержит фактор $(2 + \lambda)$, связанный с суммированием по легким флейверам (см. (1.10)).

Таблица 1. Константы распада глюбола на два псевдоскалярных мезона в главном и в следующем за главным порядках 1/N-разложения; Θ — угол смешивания $\eta - \eta'$ мезонов: $\eta = n\bar{n}\cos\Theta - s\bar{s}\sin\Theta$ и $\eta' = n\bar{n}\sin\Theta + s\bar{s}\cos\Theta$

Канал	Константы распада глюбола в главном порядке по 1/ <i>N</i> - разложению	Константы распада глюбола в следующем за главным порядке по 1/ <i>N</i> -разложению	Фактор тождест- венности частиц
$\pi^0\pi^0$	$G_{\rm L}$	0	$\frac{1}{2}$
$\pi^+\pi^-$	$G_{ m L}$	0	1
K^+K^-	$\sqrt{\lambda}G_{ m L}$	0	1
K^0K^0	$\sqrt{\lambda}G_{ m L}$	0	1
ηη	$G_{\rm L}(\cos^2\Theta + \lambda\sin^2\Theta)$	$2G_{\rm NL}\left(\cos\Theta-\sqrt{\frac{\lambda}{2}}\sin\Theta\right)^2$	$\frac{1}{2}$
ηη′	$G_{\rm L}(1-\lambda)\sin\Theta\cos\Theta$	$2G_{\rm NL}\left(\cos\Theta - \sqrt{\frac{\lambda}{2}}\sin\Theta\right) \times$	1
		$ imes \left(\sin \varTheta + \sqrt{rac{\lambda}{2}} \cos \varTheta ight)$	
η'η'	$G_{\rm L}(\sin^2\Theta + \lambda\cos^2\Theta)$	$2G_{\rm NL}\left(\sin\Theta+\sqrt{\frac{\lambda}{2}}\cos\Theta\right)^2$	$\frac{1}{2}$

Рис. 5. Диаграммы, определяющие распад $(q\bar{q})_a$ -состояния в два мезона.

Кварковые комбинаторные правила могут быть применены и для расчета констант связи $(q\bar{q})_a$ -мезонов с псевдоскалярными каналами (1.8). Имеется два типа переходов $(q\bar{q})_a$ -состояние $\rightarrow dea$ мезона: они показаны на рис. 5а, б. Процесс на рис. 5а является лидирующим согласно правилам 1/N-разложения; его константа связи порядка

$$g_{m(a) \to mm}^{L} \sim g_{m \to q\bar{q}}^{3} N_{c} \sim \frac{1}{\sqrt{N_{c}}}$$
 (2.36)

Константа распада в процессе на рис. 56 порядка

$$g_{m(a) \to mm}^{NL} \sim g_{m \to q\bar{q}}^3 N_c^2 g_{m \to q\bar{q}}^4 \sim \frac{1}{N_c \sqrt{N_c}}$$
 (2.37)

Константы связи распадов $(q\bar{q})_a \rightarrow \pi\pi$, $K\bar{K}$, $\eta\eta$, $\eta\eta'$, $\eta'\eta'$ приведены в табл. 2 как для лидирующих вкладов, так и для вкладов, следующих за лидирующими; g^L и g^{NL} являются параметрами, в которых скрыта не известная

Таблица 2. Константы распада qq-мезонов на два псевдоскалярных мезона в главном и в следующем за главным порядке 1/N-разложения; ϕ — угол смешивания nn- и ss-состояний (см. (1.9))

Канал	Константы распада	Константы распада
	qq-мезонов на два	qq-мезонов на два
	псевдоскалярных мезона	псевдоскалярных мезона
	в главном порядке	в следующем за главным
	1/N-разложения	порядке 1/ <i>N</i> -разложения
$\pi^0\pi^0$	$g^{L}\cos\frac{\phi}{\sqrt{2}}$	0
$\pi^+\pi^-$	$g^{L}\cos\frac{\phi}{\sqrt{2}}$	0
K^+K^-	$\frac{g^{\rm L}(\sqrt{2}\sin\phi + \sqrt{\lambda}\cos\phi)}{\sqrt{8}}$	0
K^0K^0	$\frac{g^{\rm L}(\sqrt{2}\sin\phi + \sqrt{\lambda}\cos\phi)}{\sqrt{8}}$	0
ηη	$g^{\rm L} \left(\cos^2\Theta\cos\frac{\phi}{\sqrt{2}}+\right.$	$\sqrt{2} g^{\rm NL} \left(\cos \Theta - \sqrt{\frac{\lambda}{2}} \sin \Theta \right) \times$
	$+\sqrt{\lambda}\sin\phi\sin^2artheta ight)$	$\times (\cos\phi\cos\Theta - \sin\phi\sin\Theta)$
ηη′	$g^{\rm L}\sin\Theta\cos\Theta\left(\cos\frac{\Phi}{\sqrt{2}}-\right.$	$\sqrt{\frac{1}{2}}g^{\rm NL}\left[\left(\cos\Theta-\sqrt{\frac{\lambda}{2}}\sin\Theta\right)\times\right.$
	$-\sqrt{\lambda}\sin\phi\Big)$	$\times (\cos\phi\sin\Theta + \sin\phi\cos\Theta) +$
		$+\left(\sin\varTheta+\sqrt{rac{\lambda}{2}}\cos\varTheta ight) imes$
		$\times (\cos\phi\sin\Theta - \sin\phi\cos\Theta) \Big]$
η'η'	$g^{L}\left(\sin^{2}\Theta\cosrac{\phi}{\sqrt{2}}+ ight.$	$\sqrt{2}g^{\mathrm{NL}}\left(\sin\Theta+\sqrt{\frac{\lambda}{2}}\cos\Theta\right)\times$
	$+\sqrt{\lambda}\sin\Phi\cos^2artheta ight)$	$\times (\cos\phi\cos\Theta + \sin\phi\sin\Theta)$

нам динамика мягкого процесса распада. Как и для распада глюбола, константа распада $(q\bar{q})_a$ -мезона в канал *n* есть сумма обоих слагаемых:

$$g_{m(a) \to mm}^{L}(n) + g_{m(a) \to mm}^{NL}(n)$$
. (2.38)

Оба слагаемых в (2.38) определяют константу распада $(q\bar{q})_a$ -мезона в общем случае: различные варианты выбора соотношений между константами связи обусловлены выбором тех или иных соотношений между g^L и g^{NL} . Примеры различных фиксаций g^L/g^{NL} можно найти в [40, 49].

Подчеркнем еще раз, что соотношения между константами связи для $(q\bar{q})_a$ -состояния (см. табл. 2) становятся идентичными соотношениям для констант распада глюбола, когда $\phi = \arctan\sqrt{\lambda/2}$: это относится как к лидирующим вкладам, так и к вкладам, следующими за лидирующими. Это означает, что, базируясь только на соотношениях между константами связи с адронными каналами распадов, невозможно однозначно определить, имеем мы дело с глюболом или же с I = 0 $(q\bar{q})_a$ -мезоном, имеющим угол смешивания ϕ близкий к 30°.

3. К-матричный анализ спектров и классификация qq-состояний по нонетам

В этом разделе излагаются результаты анализа волн 00^{++} , 10^{++} , 02^{++} , 12^{++} и $\frac{1}{2}0^{+}$, выполненного в [30, 36, 42]. На основе этого анализа проведена классификация qq̄-состояний по нонетам.

3.1. К-матричный фит 00⁺⁺-волны: спектры ππ, KK, ηη и ηη'

Для описания 00⁺⁺-амплитуды в [30] используется стандартное *К*-матричное представление, причем K_{ab} есть матрица 5 × 5 (a, b = 1, 2, ..., 5) со следующим обозначением каналов 1 = $\pi\pi$, 2 = K \bar{K} , 3 = $\eta\eta$, 4 = $\eta\eta'$, 5 = ($\pi\pi\pi\pi$ + другие многомезонные состояния).

Матричные элементы *K*_{*ab*} параметризованы в форме, близкой к (2.28):

$$K_{ab} = \left(\sum_{\alpha} \frac{g_a^{(\alpha)} g_b^{(\alpha)}}{M_{\alpha}^2 - s} + f_{ab} \frac{1 \Gamma_{\Im} \mathbf{B}^2 + s_0}{s + s_0}\right),$$
(3.1)

причем введено ограничение $s_0 \ge 1 \ \Gamma \ni \mathbf{B}^2$.

Следующие формулы описывают спектры $\pi\pi$, $\eta\eta$ и $\eta\eta'$, полученные группой GAMS в реакциях с *t*-канальным обменом пионом:

$$A_{\pi N \to Nb} = g(\psi_N \gamma_5 \psi_N) F(t) D(t) K_{1a}(t) (1 - i\hat{\rho} \hat{K})_{ab}^{-1}, \quad (3.2)$$

$$K_{1a}(t) = \left(\Sigma_{\alpha} \frac{g_1^{(\alpha)}(t)g_a^{(\alpha)}}{M_{\alpha}^2 - s} + f_{1a}(t) \frac{1 \Gamma \Im B^2 + s_0}{s + s_0}\right).$$
(3.3)

Здесь D(t) — пионный пропагатор, $F_N(t)$ — нуклонный формфактор в вершине πNN , а $g_1^{(\alpha)}(t)$ и $f_{1a}(t)$ — формфакторы пионного блока.

Та часть амплитуды в реакциях р \bar{p} (*в покое*) $\rightarrow \pi^0 \pi^0 \pi^0$, $\pi^0 \eta \eta$, которая описывает рождение двух мезонов в состоянии 00^{++} , записывается как

$$A_{p\bar{p}\to \text{mesons}} = A_1(s_{23}) + A_2(s_{13}) + A_3(s_{12}).$$
(3.4)

Амплитуда $A_k(s_{ij})$ определяет вклад, где частицы ij осуществляют "последнее" парное взаимодействие, а частица k остается спектатором.

Амплитуда A₁(s₂₃) для спектров ππ и ηη имеет следующую форму ($b = \pi \pi, \eta \eta$):

$$A_{1}(s_{23}) = \mathbf{K}_{p\bar{p}\pi,a}(s_{23})(1-1\rho\mathbf{K})_{ab} ,$$

$$K_{p\bar{p}\pi,a}(s_{ij}) = \left(\sum_{\alpha} \frac{A_{p\bar{p}\pi}^{(\alpha)} g_{\alpha}^{(\alpha)}}{M_{\alpha}^{2} - s_{ij}} + \phi_{p\bar{p}\pi,a} \frac{1}{s_{ij} + s_{0}} \right).$$
(3.5)

· v)-1

В реакции pp (в покое) $\rightarrow \pi^0 \pi^0 \pi^0$ амплитуда симметрична при перестановке индексов пионов: $A_1(s_{ij}) = A_2(s_{ij}) = A_3(s_{ij})$. Взаимодействие $\pi^0 \pi^0$ в реакции рр (в покое) $\rightarrow \pi^0 \pi^0 \eta$ определяется слагаемым ($b = \pi \pi$):

$$A_{1}(s_{23}) = K_{p\bar{p}\eta,a}(s_{23})(1 - i\rho K)_{ab}^{-1},$$

$$K_{p\bar{p}\eta,a}(s_{ij}) = \left(\sum_{\alpha} \frac{A_{p\bar{p}\eta}^{(\alpha)} g_{a}^{(\alpha)}}{M_{\alpha}^{2} - s_{ij}} + \phi_{p\bar{p}\eta,a} \frac{1 \Gamma \Im B^{2} + s_{0}}{s_{ij} + s_{0}}\right).$$
(3.6)

Параметры $\Lambda^{\alpha}_{p\bar{p}\pi}, \phi_{p\bar{p}\pi}, \Lambda_{p\bar{p}\eta}$ и $\phi_{p\bar{p}\eta}$ могут быть комплексными величинами с различными фазами из-за трехчастичного взаимодействия — более подробное обсуждение структуры амплитуд pp̄ → *mpu мезона* можно найти в [50].

3.2. Результаты К-матричного фита волны 00⁺⁺ при массах ниже 1900 МэВ

Одновременный К-матричный анализ 00⁺⁺-волновых спектров в диапазоне масс 550-1900 МэВ, проведенный в [30], указал на существование пяти голых состояний f_0^{bare} . Только два из этих состояний, $f_0^{\text{bare}}(720)$ и $f_0^{\text{bare}}(1810)$, содержат большую ss-компоненту. Это означает, что только два ${}^{3}P_{0}q\bar{q}$ -нонета могут быть построены в районе масс ниже 1900 МэВ.

Следующие требования лежат в основе нонетной классификации голых состояний:

1. Партнеры по нонету ортогональны в пространстве флейверов, т.е. они должны иметь разность углов смешивания (см. (1.9)) равную 90°: $\phi_1 - \phi_2 = 90^\circ$ (для этой величины был разрешен коридор $90^{\circ} \pm 5^{\circ}$). 2. Константы связи g^{L} и g^{NL} (см. табл. 2) примерно

равны для партнеров по нонету: $g_1^L \simeq g_2^L$ и $g_1^{NL} \simeq g_2^{NL}$.

Стандартная кварковая модель требует равенства констант связи, но s-зависимость вершинных функций и петлевых диаграмм нарушает это равенство из-за разности масс партнеров по нонету. Кроме того, К-матричные константы связи содержат дополнительный s-зависимый фактор $[1 + B'(s)]^{-1}$ (см. (2.22)): этот фактор особенно заметно влияет на район малых масс (область базисного нонета $1^{3}P_{0}$), где более существенны пороги и левые сингулярности парциальной амплитуды.

Фит экспериментальных данных (1.4)-(1.7) привел к двум решениям: I и II. Результаты, полученные в решении I, показаны ниже.

Тип состояния:	Флейверная волновая функция:	
$f_0^{bare}(720) \ \rightarrow 1^3 P_0 q \bar{q}$	$0{,}40n\bar{n}-0{,}92s\bar{s}$	
$f_0^{bare}(1260) \rightarrow 1^3 P_0 q \bar{q}$	$0{,}92n\bar{n}+0{,}40s\bar{s}$	
$f_0^{bare}(1600) \rightarrow 2^3 P_0 q \bar{q}$	$0{,}995n\bar{n}-0{,}10s\bar{s}$	(3.7)
$f_0^{bare}(1810) \rightarrow 2^3 P_0 q \bar{q}$	$0{,}10n\bar{n}+0{,}995s\bar{s}$	
$f_0^{bare}(1235) \rightarrow Glueball \rightarrow$	$0{,}91n\bar{n}+0{,}42s\bar{s}$.	

В (3.7) введена "флейверная волновая функция глюбола": это флейверное промежуточное состояние, образующееся в процессе распада глюбола.

Приведем результаты для решения II.

Тип состояния:	Флейверная волнов функция:	ая
$f_0^{bare}(720) \ \rightarrow 1^3 P_0 q \bar{q}$	$0{,}40n\bar{n}-0{,}92s\bar{s}$	
$f_0^{bare}(1260) \rightarrow 1^3 P_0 q \bar{q}$	$0{,}92n\bar{n}+0{,}40s\bar{s}$	
$f_0^{bare}(1235) \rightarrow 2^3 P_0 q \bar{q}$	$0{,}74n\bar{n}+0{,}67s\bar{s}$	(3.8)
$f_0^{bare}(1810) \rightarrow 2^3 P_0 q \bar{q}$	$0{,}67n\bar{n}-0{,}74s\bar{s}$	
$f_0^{bare}(1600) \rightarrow Glueball \rightarrow$	$0,91nar{n}+0,42sar{s}$.	

Описание экспериментальных данных решениями I и II представлено на рис. 6-9 (пунктир и сплошная линия, соответственно).

Рис. 6. Квадраты S-волновых амплитуд и их описание в [30]: сплошная линия — решение II.

3.3. Резонансы: пики в спектрах или провалы?

В течение десятилетий поиск мезонных резонансов означал поиск пиков в спектрах частиц. Только недавно пришло понимание, что это не всегда так: пример дал резонанс $f_0(980)$. В периферических $\pi\pi$ -спектрах он проявляет себя как провал — обсуждению этого явления посвящен ряд работ (см., например, [9, 51]). Исследование 00++-волны показывает, что мезонные резонансы в области 1000-1600 МэВ проявляются не только в виде пиков или провалов, но и как разнообразные "плечи" в спектрах. Основная характеристика резонанса — не пик или провал в спектре, а петля на диаграмме Аргана.

Рисунки 10 и 11 демонстрируют диаграммы Аргана, соответствующие показанным фитам спектров. На рисунке 10 изображены 00^{++} -амплитуды $A_{\pi\pi \to \pi\pi}$,

Рис. 7. Число событий в реакции $\pi^- p \rightarrow \pi^0 \pi^0 n$ в зависимости от инвариантной массы $\pi\pi$ -системы, отобранных в различных интервалах значений квадрата переданного импульса *t*. Сплошная линия соответствует решению II, пунктирная — решению I.

 $A_{\pi\pi\to K\bar{K}}$, $A_{\pi\pi\to\eta\eta}$ и $A_{\pi\pi\to\eta\eta'}$ как функции энергии. В самом деле, видно, что резонансам $f_0(980)$, $f_0(1300)$, $f_0(1500)$ и $f_0(1780)$ соответствуют достаточно хорошо обозначенные петли. Проявление резонансов $f_0(980)$ и $f_0(1300)$ в виде петель особенно хорошо видно в амплитудах $A_{\pi(t)\pi\to\pi\pi}$ при больших |t| (см. рис. 11).

3.4. Резонанс $f_0(980)$: К \bar{K} -молекула или потомок легчайших скалярных $q\bar{q}$ -состояний?

Это принципиальный вопрос для $q\bar{q}$ -систематики, и он при проведении *К*-матричного анализа 00⁺⁺-волны исследовался в первую очередь [14]. Следуя этой работе, приведем аргументы, указывающие на то, что f₀(980) является потомком легчайших $q\bar{q}$ -состояний.

Резонансу $f_0(980)$ соответствуют два полюса амплипри следующих комплексных туды массах: M = 1015 - i46 МэВ — второй лист (под $\pi\pi$ -разрезом) и M = 936 - i238 МэВ — третий лист (под $\pi\pi$ и ККразрезами). Второй полюс при 936 – i238 МэВ появился благодаря хорошо известному раздвоению полюсов, обусловленному близостью КК-порога (см., например, [51, 52]). Первый полюс при 1015 – i46 МэВ оказывает доминирующее влияние на спектр ππ-системы, приводя к резкому провалу в $\pi\pi \to \pi\pi$ спектре или к пику в спектре $\pi\pi(t) \rightarrow \pi\pi$ при больших |t| [24]. Проследим динамику поведения этого полюса при включении и выключении распадных каналов, т.е. переходов в каналы 1 = $\pi\pi$, $2 = K\bar{K}$. Для этой цели произведем следующую замену в К-матричной амплитуде:

$$g_1(720) \to \xi_1 g_1(720), \qquad g_2(720) \to \xi_2 g_2(720), \qquad (3.9)$$

где параметры ξ_a меняются в интервале $0 \leq \xi_a \leq 1$. При $\xi_1 \to 0$ и $\xi_2 \to 0$ распадные каналы легчайшего 00^{++} -

Рис. 8. Описание моментов углового распределения $\pi\pi$ в решении II в [30], измеренных в реакции $\pi^- p \rightarrow n\pi^- \pi^+$ [27].

Рис. 9. Спектры $\pi^0 \pi^0$ в реакциях $p\bar{p} \to \pi^0 \pi^0 \pi^0 \pi^0$ и $p\bar{p} \to \eta \pi^0 \pi^0$, спектр $\eta \eta$ в реакции $p\bar{p} \to \pi^0 \eta \eta$ и спектр $\eta \pi^0$ в реакции $p\bar{p} \to \pi^0 \pi^0 \eta$. Сплошная линия соответствует решению II [30].

Рис. 10. Диаграмма Аргана для унитарной S-волновой амплитуды в реакциях $\pi\pi \to \pi\pi, \pi\pi \to K\bar{K}, \pi\pi \to \eta\eta$ и $\pi\pi \to \eta\eta'$ [30].

Рис. 11. Диаграмма Аргана для S-волновой амплитуды $\pi\pi(t) \to \pi\pi$ рассеяния [30] при различных значениях квадрата энергии виртуального пиона *t*.

состояния выключены, и мы имеем "голое состояние" в терминологии [29, 30], тогда как при $\xi_1 = \xi_2 = 1$ восстанавливается реальный случай. При $\xi_1 \simeq \xi_2 \simeq 0$ масса голого состояния находится в районе 720 МэВ, и далее при увеличении ξ_a , легчайшее скалярное состояние приобретает компоненты реальных мезонов, $\pi\pi$ и K \bar{K} , и благодаря переходам в эти состояния смешивается с другими скалярными состояниями. В результате масса легчайшего скалярного мезона увеличивается, приближаясь к области 1000 МэВ. При $\xi_1 = \xi_2 = 1$ полюс амплитуды находится при

$$M(peanbhoe noложение) = 1015 - i46 MэB,$$
 (3.10)

т.е. вблизи К \bar{K} -порога. Поэтому К \bar{K} -компонента является квазимолекулярной: относительный импульс К-мезонов мал, а значит, среднее расстояние между Кмезонами достаточно велико. Однако можно убедиться, что влияние К \bar{K} -компоненты на формирование конечного состояния мало. Действительно, выключим К \bar{K} состояние из игры, т.е. положим в амплитуде $\xi_1 = 1$ и $\xi_2 = 0$. Тогда полюс оказывается в точке

$$M(\delta e_3 \text{ KK}) = 979 - \text{i}53 \text{ M}_{3}\text{B}. \tag{3.11}$$

Мы видим, что массовый сдвиг

$$M(peaльноe положение) - M(без K\bar{K}) = 36 + i7 MэB$$

(3.12)

сравнительно невелик, а это значит, что роль $K\bar{K}$ -компоненты в формировании реального состояния $f_0(980)$ действительно невелика.

Итак, К-матричный анализ 00⁺⁺-волны восстанавливает следующую картину формирования $f_0(980)$. До смешивания имелось легчайшее скалярное–изоскалярное qq̄-состояние $f_0^{\text{bare}}(720 \pm 100)$ с флейверной волновой функцией, близкой к октетной:

$$\begin{split} \psi_{\text{flavour}}(720) &= \cos\theta_{\text{S}}\,\psi_{8} - \sin\theta_{\text{S}}\,\psi_{1}\,, \qquad \theta_{\text{S}} = 14^{\circ} \pm 12^{\circ}\,, \\ (3.13) \\ \psi_{1} &= \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})\,, \qquad \psi_{8} = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d}) - \sqrt{\frac{2}{3}}\,s\bar{s} \end{split}$$

Смешивание с другими состояниями, осуществляемое переходом $f_0^{\text{bare}}(720) \rightarrow \pi\pi$, приводит к возникновению резонанса с характеристиками весьма близкими к значениям, наблюдаемым на опыте (см. (3.11)). Включение K \bar{K} -компоненты $f_0^{\text{bare}}(720) \rightarrow K\bar{K}$ приводит к незначительному сдвигу массы и ширины (см. (3.12)).

Отметим, что прямые измерения также указывают на то, что $f_0(980)$ имеет значительные компоненты, сформированные на малых расстояниях: рождение $f_0(980)$ не подавлено в реакции $\pi^- p \rightarrow f_0(980)$ р при больших переданных импульсах [24, 53] и в радиационном J/ ψ -распаде [54].

Необходимо обратить внимание на то, что легчайшее изоскалярное–псевдоскалярное состояние, η-мезон, также имеет флейверную волновую функцию, близкую к октетной: $\eta = \cos \theta_{\rm P} \psi_8 - \sin \theta_{\rm P} \psi_1$ с $\theta_{\rm P} = -16,7^\circ \pm 2,8^\circ$ [12].

3.5. Волна *IJ*^{PC} = 10⁺⁺

Два изовекторных–скалярных резонанса хорошо видны в реакциях (1.4) [18, 19]. Легчайший из них есть хорошо известный $a_0(980)$, тогда как следующий резонанс — это недавно открытый $a_0(1450)$: согласно компиляции [9], он имеет массу 1450 ± 40 МэВ и ширину $\Gamma = 270 \pm 40$ МэВ. Отметим, что в результате фитирования последних высокостатистических данных [30, 36, 56] масса этого резонанса оказалась несколько выше — 1520 ± 40 МэВ.

Для описания изовекторной (скалярной) амплитуды в [36] использована двухполюсная 4×4 *К*-матрица с каналами $1 = \pi \eta$ $2 = K\bar{K}$, $3 = \pi \eta'$, 4 = *многомезонные состояния*. Константы связи с двухмезонными каналами определяются кварковыми комбинаторными соотношениями (см. табл. 3); напомним, что константы g^{L} одинаковы для всех членов мультиплета. На первом этапе фита константы связи легчайшего резонанса a_0 варьировались в интервале, ограниченном константами $g^{L}[f_0^{\text{bare}}(720)]$ и $g^{L}[f_0^{\text{bare}}(1260)]$. Во всех вариантах фита константа связи с двумя π -мезонами, $g^{L}[a_0^{\text{bare}}(necuality)]$, оказалась очень близкой к $g^{L}[f_0^{\text{bare}}(1260)]$; в окончательном фите эти константы положены равными друг другу. Константы связи следующего изовекторного–скалярного резонанса с двумя π -мезонами также фиксированы: они равны для всех состояний мультиплета $2^{3}P_{0}$.

Таблица 3. Костанты переходов $K^0_0 \to dea$ мезона и а $^- \to dea$ мезона с учетом лидирующих и следующих за лидирующими членов разложения по 1/N

Канал	Константы связи для лидирующих членов	Члены, следующие за лидирующими
$K^{+}\pi^{-}$	$\frac{g^{L}}{2}$	0
$K^0\pi^0$	$-\frac{g^{L}}{\sqrt{8}}$	0
$K^0\eta$	$\left(\cos\frac{\varTheta}{\sqrt{2}} - \sqrt{\lambda}\sin\varTheta\right)\frac{g^{\rm L}}{2}$	$\left(\sqrt{2}\cos\Theta - \sqrt{\lambda}\sin\Theta\right)\frac{g^{\rm NL}}{2}$
$K^0\eta^\prime$	$\left(\sin\frac{\Theta}{\sqrt{2}} + \sqrt{\lambda}\cos\Theta\right)\frac{g^{\rm L}}{2}$	$\left(\sqrt{2}\cos\Theta - \sqrt{\lambda}\sin\Theta\right)\frac{g^{\rm NL}}{2}$
K^-K^0	$\frac{g^{L}\sqrt{\lambda}}{2}$	0
$\pi^-\eta$	$\frac{g^{\rm L}\cos\varTheta}{\sqrt{2}}$	$\left(\sqrt{2}\cos\Theta - \sqrt{\lambda}\sin\Theta\right)\frac{g^{\rm NL}}{2}$
$\pi^-\eta'$	$\frac{g^{\mathrm{L}}\sin\Theta}{\sqrt{2}}$	$\left(\sqrt{2}\sin\Theta - \sqrt{\lambda}\cos\Theta\right)\frac{g^{\rm NL}}{2}$

Фит позволил найти два решения для волны 10⁺⁺, которые практически совпадают в членах, относящихся к резонансному сектору, и отличаются в фоновых членах. Положения полюсов амплитуды и соответствующие им голые состояния приведены в (1.14) и (1.15).

В [41] обсуждалась гипотеза, что резонансы $a_0(980)$ и f₀(980) относятся к специальному классу состояний (миньоны), которые слабо связаны с адронными каналами: малые ширины этих резонансов служили аргументами в пользу такой природы $a_0(980)$ и $f_0(980)$. Характеристики резонанса а₀(980) предоставляют хорошую возможность для проверки этой гипотезы, так как адронные компоненты, обусловленные распадом $a_0(980)$ на $\pi\eta$ и KK, слабо влияют на это состояние (см. (1.14) и (1.15)). К-матричный фит данных [36] показал, что $g^{L}[f_{0}^{bare}(964)]$ не мало, а имеет стандартную для адронных распадов величину; малая величина ширины $a_0(980)$ связана не с малой вероятностью распада, как это было бы при миньонной природе $a_0(980)$, а с пороговым эффектом; подчеркнем, что этот результат виден и при проведении Т-матричного анализа данных [19, 56].

3.6. К-матричный анализ Кπ S-волны

Парциально-волновой анализ К⁻ π^+ -системы для реакции К⁻р \rightarrow К⁻ π^+ п при 11 ГэВ с⁻¹ был выполнен в [37], где найдено два альтернативных решения для S-волны (решения А и В), различающихся только в области масс выше 1800 МэВ. В этой же работе проведен *T*-матричный фит К π S-волны, однако отдельно для областей 850–1600 МэВ и 1800–2100 МэВ. В первой области

масс был найден резонанс $K_0^*(1430)$:

$$M_{\rm R} = 1429 \pm 9 \text{ M} \Rightarrow \text{B}, \quad \Gamma = 287 \pm 31 \text{ M} \Rightarrow \text{B}.$$
 (3.15)

Во второй области масс решения A и B дают следующие параметры для резонанса $K_0^*(1950)$:

решение А:
$$M_{\rm R} = 1934 \pm 28 \text{ МэВ}, \quad \Gamma = 174 \pm 98 \text{ МэВ},$$

решение В: $M_{\rm R} = 1955 \pm 18 \text{ МэВ}, \quad \Gamma = 228 \pm 56 \text{ МэВ}.$
(3.16)

Очевидна необходимость усовершенствовать этот анализ. Прежде всего необходимо включить в рассмотрение область масс 1600–1800 МэВ, где амплитуда меняется очень быстро. Как подчеркивалось выше, известно, что благодаря сильной интерференции, резонанс может проявляться не только как пик в спектре, но так же и как провал или плечо: подобным образом ведут себя резонансы в волне 00^{++} . Далее, интерференционные эффекты также приводят к неоднозначностям. Напомним, что неоднозначности в волне 00^{++} были успешно устранены в [30, 36] только благодаря одновременному фиту различных мезонных спектров. В случае $\frac{1}{2}0^+$ -волны мы не имеем такого количества данных и поэтому можно ожидать, что решение, найденное в [37], не единственно.

К-матричный повторный анализ Кπ S-волны выполнен в [42]. Его целью являлось:

1) восстановление масс и констант связи голых состояний в волне $\frac{1}{2}0^+$ для проведения $q\bar{q}$ -классификации;

2) нахождение возможных альтернативных *К*-матричных решений для $K\pi$ S-волны в области масс до 2000 МэВ.

S-волновая К π -амплитуда рассеяния, выделяемая из реакции К⁻р \rightarrow К⁻ π ⁺п при малых переданных импульсах есть сумма двух компонент с изоспинами 1/2 и 3/2:

$$A_{\rm S} = A_{\rm S}^{1/2} + \frac{1}{2} A_{\rm S}^{3/2} = |A_{\rm S}| \exp(\mathrm{i}\phi_{\rm S}) \,, \tag{3.17}$$

где $|A_{\rm S}|$ и $\phi_{\rm S}$ суть измеряемые величины S-волновой амплитуды [37]. Компонента S-волновой амплитуды с изоспином I = 3/2 имеет нерезонансное поведение при рассматриваемых энергиях и поэтому может быть параметризована как:

$$A_{\rm S}^{3/2}(s) = \frac{\rho_{\rm K\pi}(s)a_{3/2}(s)}{1 - i\rho_{\rm K\pi}(s)a_{3/2}(s)}, \qquad (3.18)$$

где $a_{3/2}(s)$ — гладкая функция,
а $\rho_{\mathrm{K}\pi}(s)$ — фазовый объем К
т.

Для описания $A_{\rm S}^{1/2}$ амплитуды в [42] была использована *К*-матрица размерности 3 × 3 с каналами 1 = К π , 2 = К η' , 3 = К $\pi\pi\pi\pi$ + *многомезонные состояния*. Учет канала К η не влияет на описание данных, так как переход К π → К η подавлен [37] (это также согласуется с результатами кварковой комбинаторики, см. табл. 3). Фит волны $\frac{1}{2}0^+$ проведен в [42] в рамках стандартной параметризации K_{ab} , данной в (3.1). Анализируемые данные выделены из реакции К ^-p → К $^-\pi^+$ п при малых переданных импульсах, (|t| < 0,2 ГэВ²), поэтому в качестве первого шага эти данные фитировались унитарной амплитудой (3.1). На следующем шаге учли *t*-зависимость в *K*-матричной амплитуде. Амплитуда К $\pi(t) \rightarrow K\pi$ ($\pi(t)$ обозначает виртуальный пион) равна

Константы связи определяются правилами кварковой комбинаторики, они представлены в табл. 3. В [42] учитывались только лидирующие по 1/N члены разложения: в этом случае константы связи фиксированы фитом 00^{++} - и 10^{++} -волн, так как g^{L} является общим параметром для всех членов одного нонета.

Описание $\frac{1}{2}0^+$ -волны выполнено в рамках двух предположений — о двухполюсной и трехполюсной структуре волны в области масс ниже 2000 МэВ.

В [37] получено два решения, А и В, для $\frac{1}{2}0^+$ -волны, которые отличаются только при $M_{\pi K} > 1800$ МэВ. Соответственно, в [42] найдено два двухполюсных *К*-матричных решения, (А-1) и (В-1). Положения полюсов амплитуды в этих решениях практически совпадают: они приведены в (1.16). Данные показаны на рис. 12. Масса первого резонанса в (1.16) не сильно отличается от массы, полученной в [37] (см. (3.15)), однако ширина резонанса в *К*-матричном решении уменьшилась почти в два раза. Это связано с тем, что *К*-матричная амплитуда корректно учитывает К η' порог и обусловленное им удвоение полюсов. Масса второго резонанса уменьшилась в *К*-матричном решении по сравнению с результатом [37] более чем на 100 МэВ.

Рис. 12. Описание данных [37] в фитах с двухполюсной *К*-матрицей: решения (А-1) и (В-1). Сплошные линии соответствуют решению с унитарным выражением для амплитуды рассеяния, пунктирные — фиту с *t*-зависящей *К*-матрицей; $\phi_{\rm S}$ в градусах.

Массы голых скалярных каонов, соответствующие двухполюсному решению, приведены в (1.17). Масса легчайшего состояния равна 1200^{+60}_{-110} МэВ, т.е. этот скалярный каон находится в том же районе масс, что и другие скалярные состояния, являющиеся кандидатами в члены базисного нонета 1^{3} Р₀.

Описание данных в трехполюсных *К*-матричных фитах показано на рис. 13. В решениях (A-2) и (B-2) область высоких масс $M_{\rm K\pi} > 1700$ МэВ описывается двумя полюсами. Однако введение двухполюсной структуры практически не привело к изменению характеристик первых двух резонансов: они такие же, как и в

Рис. 13. Описание данных [37] в фитах с трехполюсной *К*-матрицей: решения (А-2), (В-2) и (В-3); $\phi_{\rm S}$ в градусах.

решениях (А-2) и (В-2). В решении (В-3) область $M_{K\pi} < 1600$ МэВ описывается двумя полюсами. Положение голых состояний в решении (В-3) дано в (1.18), соответствующее положение полюсов амплитуды — в (1.19).

Сплошные кривые на рис. 12 и рис. 13 соответствуют описанию Кπ-волны, задаваемой унитарным выражением, а пунктирные линии показывают фиты, где учтена *t*-зависимость К*π*-амплитуды. Как видно, *t*-зависимость позволяет лучше описать фазы в районе 1700 МэВ. Отметим, что в этом районе, как и в области масс выше 2000 МэВ для решения А, представленные данные нарушают унитарный предел. Маловероятно, что достаточно сильное нарушение унитарного предела есть следствие *t*-зависимости амплитуды; скорее всего это связано с недооценкой систематических ошибок в парциально-волновом анализе [37] в этих областях. Включение *t*-зависимости в фит не влияет серьезным образом на массы голых состояний и на положение полюсов амплитуды. Как правило, массы голых состояний, получаемые в *t*-зависимом фите, на 20-30 МэВ меньше масс, получаемых в фитах без *t*-зависимости.

4. Матрица пропагаторов: анализ волны $IJ^{PC} = 00^{++}$

Здесь суммированы результаты анализа 00^{++} -волны, проведенного в [6, 7] в терминах матрицы пропагаторов (*D*-матрицы). Техника *D*-матрицы, основанная на дисперсионном *N*/*D*-методе, позволяет реконструировать амплитуду, аналитическую во всей комплексной *s*-плоскости. Рассматриваются эффекты, обусловленные перекрытием и смешиванием резонансов: массовые сдвиги, аккумулирование одним из резонансов ширин резонансов – соседей. Проведено разложение реальных состояний по начальным (до смешивания).

Рассмотрение проводится для 00^{++} -волны, однако метод может быть легко обобщен и на другие волны с помощью техники, развитой в [44, 45].

4.1. Смешивание двух нестабильных состояний

В случае двух резонансов функция распространения состояния 1 определяется диаграммами, приведенными на рис. 14а. С учетом всех этих процессов пропагатор состояния 1 равен

$$D_{11}(s) = \left(m_1^2 - s - B_{11}(s) - \frac{B_{12}(s)B_{21}(s)}{m_2^2 - s - B_{22}(s)}\right)^{-1}.$$
 (4.1)

Здесь m_1 и m_2 — массы затравочных состояний 1 и 2, а петлевые диаграммы $B_{ij}(s)$ задаются выражением (2.21) с заменой $g^2(s) \rightarrow g_i(s)g_j(s)$. Полезно ввести матрицу пропагаторов D_{ij} , где недиагональные члены $D_{12} = D_{21}$ описывают переходы 1 \rightarrow 2 и 2 \rightarrow 1 (рис. 146). Матрица может быть записана в виде:

$$\hat{D} = \begin{vmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{vmatrix} = \\ = \frac{1}{(M_1^2 - s)(M_2^2 - s) - B_{12}B_{21}} \begin{vmatrix} M_2^2 - s & B_{12} \\ B_{21} & M_1^2 - s \end{vmatrix}.$$
(4.2)

Здесь введено обозначение:

$$M_i^2 = m_i^2 - B_{ii}(s), \quad i = 1, 2.$$
 (4.3)

Нули знаменателя в (4.2) определяют комплексные массы резонансов после смешивания:

$$\Pi(s) = (M_1^2 - s)(M_2^2 - s) - B_{12}B_{21} = 0.$$
(4.4)

Обозначим комплексные массы смешанных состояний через $M_{\rm A}$ и $M_{\rm B}$.

Рис. 14. Диаграммы, отвечающие функциям распространения *D*₁₁ (a) и *D*₁₂ (b) в случае взаимодействия двух голых состояний.

Рассмотрим простую модель: предположим, что *s*-зависимостью функций $B_{ij}(s)$ в области $s \sim M_A^2$ и $s \sim M_B^2$ можно пренебречь. Полагая M_i^2 и B_{12} константами, имеем

$$M_{\rm A,B}^2 = \frac{1}{2} (M_1^2 + M_2^2) \pm \sqrt{\frac{1}{4} (M_1^2 - M_2^2)^2 + B_{12} B_{21}} .$$
(4.5)

В случае, когда ширины начальных резонансов 1 и 2 малы (а значит, мала и мнимая часть переходной диаграммы B_{12}) уравнение (4.5) фактически представляет собой стандартную квантовомеханическую формулу для расщепления смешивающихся уровней, которые в результате смешивания отталкиваются. Тогда

$$\hat{D} = \begin{vmatrix} \frac{\cos^2 \theta}{M_A^2 - s} + \frac{\sin^2 \theta}{M_B^2 - s} & \frac{-\cos \theta \sin \theta}{M_A^2 - s} + \frac{\sin \theta \cos \theta}{M_B^2 - s} \\ \frac{-\cos \theta \sin \theta}{M_A^2 - s} + \frac{\sin \theta \cos \theta}{M_B^2 - s} & \frac{\sin^2 \theta}{M_A^2 - s} + \frac{\cos^2 \theta}{M_B^2 - s} \end{vmatrix},$$

$$\cos^2 \theta = \frac{1}{2} + \frac{1}{2} \frac{(1/2)(M_1^2 - M_2^2)}{\sqrt{(1/4)(M_1^2 - M_2^2)^2 + B_{12}B_{21}}}.$$
(4.6)

Состояния $|A\rangle$ и $|B\rangle$ являются суперпозицией начальных состояний $|1\rangle$ и $|2\rangle$:

$$|A\rangle = \cos\theta |1\rangle - \sin\theta |2\rangle, \quad |B\rangle = \sin\theta |1\rangle + \cos\theta |2\rangle.$$
(4.7)

Процедура представления состояний $|A\rangle$ и $|B\rangle$ в виде суперпозиций начальных состояний сохраняется в общем случае, когда *s*-зависимостью функций $B_{ij}(s)$ нельзя пренебречь и их мнимые части не малы. Рассмотрим матрицу пропагаторов вблизи $s = M_A^2$:

$$\hat{D} = \frac{1}{\Pi(s)} \begin{vmatrix} M_2^2(s) - s & B_{12}(s) \\ B_{21}(s) & M_1^2(s) - s \end{vmatrix} \simeq \simeq \frac{-1}{\Pi'(M_A^2)(M_A^2 - s)} \begin{vmatrix} M_2^2(M_A^2) - M_A^2 & B_{12}(M_A^2) \\ B_{21}(M_A^2) & M_1^2(M_A^2) - M_A^2 \end{vmatrix} .$$
(4.8)

В правой части (4.8) оставлены только сингулярные (полюсные) слагаемые. Детерминант матрицы в правой части (4.8) равен нулю:

$$\begin{bmatrix} M_2^2(M_A^2) - M_A^2 \end{bmatrix} \begin{bmatrix} M_1^2(M_A^2) - M_A^2 \end{bmatrix} - B_{12}(M_A^2) B_{21}(M_A^2) = 0.$$
(4.9)

Это равенство является следствием уравнения (4.4) и говорит о том, что $\Pi(M_A^2) = 0$. Равенство (4.9) позволяет ввести комплексный угол смешивания:

$$|A\rangle = \cos \theta_{\rm A} |1\rangle - \sin \theta_{\rm A} |2\rangle$$
. (4.10)

Правая часть (4.8) переписывается с использованием угла θ_A как

$$\left[\hat{D}\right]_{s\sim M_{\rm A}^2} = \frac{N_{\rm A}}{M_{\rm A}^2 - s} \begin{vmatrix} \cos^2 \theta_{\rm A} & -\cos \theta_{\rm A} \sin \theta_{\rm A} \\ -\sin \theta_{\rm A} \cos \theta_{\rm A} & \sin^2 \theta_{\rm A} \end{vmatrix},$$
(4.11)

где

$$N_{\rm A} = \frac{1}{\Pi'(M_{\rm A}^2)} \left[2M_{\rm A}^2 - M_1^2 - M_2^2 \right],$$

$$\cos^2 \theta_{\rm A} = \frac{M_{\rm A}^2 - M_2^2}{2M_{\rm A}^2 - M_1^2 - M_2^2},$$

$$\sin^2 \theta_{\rm A} = \frac{M_{\rm A}^2 - M_1^2}{2M_{\rm A}^2 - M_1^2 - M_2^2}.$$
(4.12)

2 УФН, т. 168, № 5

Напомним, что в формуле (4.12) функции $M_1^2(s)$, $M_2^2(s)$ и $B_{12}(s)$ фиксированы в точке $s = M_A^2$. В рассматриваемом случае, когда угол θ_A является комплексным, величины $\cos^2 \theta_A$ и $\sin^2 \theta_A$ не определяют вероятности состояний $|1\rangle$ и $|2\rangle$ в $|A\rangle$: величины $\sqrt{N_A} \cos \theta_A$ и $-\sqrt{N_A} \sin \theta_A$ являются амплитудами перехода $|A\rangle \rightarrow |1\rangle$ и $|A\rangle \rightarrow |2\rangle$. Поэтому соответствующие вероятности равны $|\cos \theta_A|^2$ и $|\sin \theta_A|^2$.

Для анализа состава состояния $|B\rangle$ аналогичное разложение матрицы пропагаторов необходимо произвести вблизи $s = M_{\rm B}^2$. Введя

$$|B\rangle = \sin\theta_{\rm B}|1\rangle + \cos\theta_{\rm B}|2\rangle, \qquad (4.13)$$

имеем следующее представление для \hat{D} в окрестности второго полюса $s = M_{\rm B}^2$:

$$\left[\hat{D}\right]_{s \sim M_{\rm B}^2} = \frac{N_{\rm B}}{M_{\rm B}^2 - s} \left| \begin{array}{cc} \sin^2 \theta_{\rm B} & \cos \theta_{\rm B} \sin \theta_{\rm B} \\ \sin \theta_{\rm B} \cos \theta_{\rm B} & \cos^2 \theta_{\rm B} \end{array} \right|, \quad (4.14)$$

где

$$N_{\rm B} = \frac{1}{\Pi'(M_{\rm B}^2)} \left[2M_{\rm B}^2 - M_1^2 - M_2^2 \right],$$

$$\cos^2 \theta_{\rm B} = \frac{M_{\rm B}^2 - M_1^2}{2M_{\rm B}^2 - M_1^2 - M_2^2},$$

$$\sin^2 \theta_{\rm B} = \frac{M_{\rm B}^2 - M_2^2}{2M_{\rm B}^2 - M_1^2 - M_2^2}.$$
(4.15)

В (4.15) функции $M_1^2(s)$, $M_2^2(s)$ и $B_{12}(s)$ фиксированы в точке $s = M_B^2$.

В случае, когда B_{12} слабо зависит от *s* и этой зависимостью можно пренебречь, углы θ_A и θ_B совпадают. Но в общем случае они различны. В этом формулы матрицы пропагаторов отличаются от стандартного квантовомеханического рассмотрения. Еще одно отличие связано с характером сдвига уровней в результате смешивания: в квантовой механике уровни "отталкиваются" от среднего значения $1/2(E_1 + E_2)$ (см. также уравнение (4.5)). В общем случае формула (4.4) может дать как "отталкивание" квадратов масс от среднего значения $1/2(M_1^2 + M_2^2)$, так и их "притяжение".

Амплитуда рассеяния в одноканальном случае определяется следующим выражением:

$$A(s) = g_i(s)D_{ij}(s)g_j(s)$$
. (4.16)

В многоканальном случае $B_{ij}(s)$ есть сумма петлевых диаграмм:

$$B_{ij}(s) = \sum_{n} B_{ij}^{(n)}(s) , \qquad (4.17)$$

где $B_{ij}^{(n)}$ — петлевая диаграмма в канале *n* с вершинными функциями $g_i^{(n)}, g_j^{(n)}$ и фазовым объемом ρ_n . Парциальная амплитуда рассеяния в канале *n* равна:

$$A_n(s) = g_i^{(n)}(s) D_{ij}(s) g_j^{(n)}(s) .$$
(4.18)

4.2. Случай перекрытия большого числа резонансов: построение матрицы пропагаторов

Рассмотрим метод построения матрицы пропагаторов \hat{D} в случае произвольного числа резонансов. Элементы этой матрицы D_{ij} описывают переход из состояния *i* (пропагатор $(m_i^2 - s)^{-1}$) в состояние *j*. Они подчиняются

следующей системе линейных уравнений:

$$D_{ij} = D_{ik} B_{kj}(s) (m_j^2 - s)^{-1} + \delta_{ij} (m_j^2 - s)^{-1}, \qquad (4.19)$$

где $B_{ij}(s)$ функции, отвечающие однопетлевым диаграммам и рассмотренные в предыдущем разделе, а δ_{ij} символ Кронекера. Введем диагональную матрицу пропагаторов затравочных состояний \hat{d} :

$$\hat{d} = \text{diag}((m_1^2 - s)^{-1}, (m_2^2 - s)^{-1}, (m_3^2 - s)^{-1}, \ldots).$$
 (4.20)

Тогда система линейных уравнений (4.21) переписывается в следующей матричной форме:

$$\hat{D} = \hat{D}\hat{B}\hat{d} + \hat{d}. \tag{4.21}$$

Получаем

$$\hat{D} = \frac{I}{(\hat{d}^{-1} - \hat{B})} \,. \tag{4.22}$$

Матрица \hat{d}^{-1} является диагональной, следовательно, матрица $\hat{D}^{-1} = (\hat{d}^{-1} - \hat{B})$ имеет вид

$$\hat{D}^{-1} = \begin{vmatrix} M_1^2 - s & -B_{12}(s) & -B_{13}(s) & \dots \\ -B_{21}(s) & M_2^2 - s & -B_{23}(s) & \dots \\ -B_{31}(s) & -B_{32}(s) & M_3^2 - s & \dots \\ \vdots & \vdots & \vdots & \vdots & \end{vmatrix},$$
(4.23)

где M_i^2 определено соотношением (4.3). Обращая эту матрицу, имеем полный набор элементов $D_{ij}(s)$:

$$D_{ij}(s) = \frac{(-1)^{i+j} \Pi_{ji}^{(N-1)}(s)}{\Pi^{(N)}(s)} \,. \tag{4.24}$$

Здесь $\Pi^{(N)}(s)$ есть детерминант матрицы \hat{D}^{-1} , а $\Pi_{ji}^{(N-1)}(s)$ — матричное дополнение к элементу $[\hat{D}^{-1}]_{ji}$, т.е. детерминант матрицы \hat{D}^{-1} с исключенными *j*-й строкой и *i*-м столбцом.

Нули $\Pi^{(N)}(s)$ определяют полюса матрицы пропагаторов, которые соответствуют физическим резонансам, образовавшимся в результате смешивания. Обозначим комплексные массы этих резонансов как

$$s = M_{\rm A}^2, \, M_{\rm B}^2, \, M_{\rm C}^2, \dots$$
 (4.25)

Вблизи точки $s = M_A^2$ в матрице пропагаторов может быть оставлен только лидирующий полюсной член. Это означает, что свободным членом в уравнении (4.21) можно пренебречь, и мы получаем систему однородных уравнений:

$$D_{ik}(s)(\hat{d}^{-1} - \hat{B})_{ki} = 0.$$
(4.26)

Решение такой системы определено с точностью до нормирующего множителя и не зависит от начального индекса *i*. Тогда элементы матрицы пропагаторов можно записать в следующем факторизованном виде:

$$\left[\hat{D}^{(N)}\right]_{s\sim M_{\rm A}^2} = \frac{N_{\rm A}}{M_{\rm A}^2 - s} \cdot \begin{vmatrix} \alpha_1^2, & \alpha_1\alpha_2, & \alpha_1\alpha_3, & \dots \\ \alpha_2\alpha_1, & \alpha_2^2, & \alpha_2\alpha_3, & \dots \\ \alpha_3\alpha_1, & \alpha_3\alpha_2, & \alpha_3^2, & \dots \\ \dots & \dots & \dots & \dots \end{vmatrix}, \quad (4.27)$$

где $N_{\rm A}$ — нормирующий множитель, а комплексные константы связи нормированы условием:

$$\alpha_1^2 + \alpha_2^2 + \alpha_3^2 + \ldots + \alpha_N^2 = 1.$$
(4.28)

Константы α_i являются нормированными амплитудами перехода *резонанс* А \rightarrow *состояние i*. Вероятность обнаружить состояние *i* в физическом резонансе А равна

$$w_i = \left|\alpha_i\right|^2. \tag{4.29}$$

Аналогичные разложения матрицы пропагаторов можно производить и в окрестности других полюсов:

$$D_{ij}^{(N)}(s \sim M_{\rm B}^2) = N_{\rm B} \, \frac{\beta_i \, \beta_j}{M_{\rm B}^2 - s} \,,$$

$$D_{ij}^{(N)}(s \sim M_{\rm C}^2) = N_{\rm C} \, \frac{\gamma_i \, \gamma_j}{M_{\rm C}^2 - s} \,, \, \dots$$
(4.30)

Константы связи удовлетворяют нормирующим условиям, подобным (4.28):

$$\beta_1^2 + \beta_2^2 + \ldots + \beta_N^2 = 1, \qquad \gamma_1^2 + \gamma_2^2 + \ldots + \gamma_N^2 = 1, \ldots$$
(4.31)

Однако в общем случае нет условия полноты в обратном разложении:

$$\alpha_i^2 + \beta_i^2 + \gamma_i^2 + \ldots \neq 1.$$
(4.32)

Для двух резонансов это означает, что $\cos^2 \Theta_A + \sin^2 \Theta_B \neq 1$. Напомним, однако, что равенство единице левой части (4.32) имеет место в формулах (4.5)–(4.7), описывающих модель с петлевыми диаграммами B_{ij} , в которых зависимостью от *s* можно пренебречь.

4.3. Полное перекрытие резонансов: эффект аккумулирования одним из резонансов ширин резонансов – соседей

Рассмотрим два примера, описывающих идеализированную ситуацию полного перекрытия двух и трех резонансов. В этих примерах виден в невозмущенном виде эффект аккумулирования одним из резонансов ширин резонансов – соседей.

а. Полное перекрытие двух резонансов.

Для простоты рассмотрим случай слабой зависимости *B_{ij}* от *s*, т.е. используем формулу (4.5). Пусть

$$M_1^2 = M_R^2 - iM_R\Gamma_1, \qquad M_2^2 = M_R^2 - iM_R\Gamma_2, \qquad (4.33)$$

а также

$$\operatorname{Re} B_{12}(M_{\rm R}^2) = P \int_{(\mu_1 + \mu_2)^2}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{g_1(s')g_2(s')\rho(s')}{s' - M_{\rm R}^2} \to 0. \quad (4.34)$$

Обращение в нуль Re $B_{12}(M_R^2)$ возможно при положительных g_1 и g_2 , если вклад от интегрирования по области $s' < M_R^2$ компенсируется вкладом от области $s' > M_R^2$. В этом случае

$$B_{12}(M_{\rm R}^2) \to {\rm i}g_1(M_{\rm R}^2)g_2(M_{\rm R}^2)\rho(M_{\rm R}^2) = {\rm i}M_{\rm R}\sqrt{\Gamma_1\Gamma_2}$$
. (4.35)

Подставляя (4.33)-(4.35) в (4.5), имеем

$$M_{\rm A}^2 \to M_{\rm R}^2 - {\rm i} M_{\rm R} (\Gamma_1 + \Gamma_2) \,, \qquad M_{\rm B}^2 \to M_{\rm R}^2 \,.$$
 (4.36)
2*

Таким образом, после смешивания одно из состояний аккумулирует ширины начальных резонансов, $\Gamma_{\rm A} \rightarrow \Gamma_1 + \Gamma_2$, а другое состояние становится почти стабильной частицей, $\Gamma_{\rm B} \rightarrow 0$.

б. Полное перекрытие трех резонансов.

Рассмотрим уравнение

$$\Pi^{(3)}(s) = 0 \tag{4.37}$$

в том же приближении, что и в предыдущем примере. Соответственно, мы полагаем

$$\operatorname{Re} B_{ab}(M_{\mathrm{R}}^{2}) \to 0 \quad (a \neq b);$$

$$M_{i}^{2} = M_{\mathrm{R}}^{2} - s - \mathrm{i}M_{\mathrm{R}}\Gamma_{i} = x - \mathrm{i}\gamma_{i}.$$
(4.38)

Здесь введена новая переменная $x = M_R^2 - s$ и обозначено $M_R \Gamma_i = \gamma_i$. С учетом $B_{ij}B_{ji} = -\gamma_i\gamma_j$ и $B_{12}B_{23}B_{31} = -i\gamma_1\gamma_2\gamma_3$ уравнение (4.37) переписывается как

$$x^{3} + x^{2}(i\gamma_{1} + i\gamma_{2} + i\gamma_{3}) = 0.$$
(4.39)

Таким образом, при полном перекрытии резонансов

$$M_{\rm A}^2 \to M_{\rm R}^2 - {\rm i} M_{\rm R} (\Gamma_1 + \Gamma_2 + \Gamma_3) ,$$

$$M_{\rm B}^2 \to M_{\rm R}^2 , \qquad M_{\rm C}^2 \to M_{\rm R}^2 .$$
(4.40)

Резонанс А аккумулировал ширины всех трех начальных резонансов, а состояния В и С оказались почти стабильными и вырожденными.

4.4. Резонансы $f_0(1300)$, $f_0(1500)$, $f_0(1530^{+90}_{-250})$ и $f_0(1780)$ Результаты *К*-матричного анализа являются основой для исследования явления смешивания в скалярном секторе. Проведение анализа в рамках техники матрицы пропагаторов позволяет правильно учесть вклад реальных частей петлевых диаграмм, $B_{ij}(s)$, и тем самым корректно определить вклад начальных состояний в формирование физических резонансов.

Задача о смешивании резонансов в области 1200– 1600 МэВ сводится к двухканальной: кварк-адронная дуальность указывает, что можно проводить анализ, используя кварковые каналы nn и ss. Соответственно,

$$B_{ij}(s) = \cos\varphi_i \cos\varphi_j B_{ij}^{(n\bar{n})}(s) + \sin\varphi_i \sin\varphi_j B_{ij}^{(s\bar{s})}(s) , \quad (4.41)$$

где *i*, *j* пробегают значения 1,2,3,4 со следующим обозначением состояний: $1 = 1^{3}P_{0}(n\bar{n} \ rich), 2 = 2^{3}P_{0}(n\bar{n} \ rich), 3 = глоониум и 4 = 2^{3}P_{0}(s\bar{s} \ rich). Кварковые состояния удобно описывать в переменных светового конуса. В этих переменных$

$$B_{ij}^{(n\bar{n})}(s) = \frac{1}{(2\pi)^3} \int_0^1 \frac{\mathrm{d}x}{x} \int \mathrm{d}^2 k_\perp \frac{g_i(s')g_j(s')}{s'-s} 2(s'-4m^2) \,.$$
(4.42)

Здесь $s' = (m^2 + k_{\perp}^2)/x(1-x)$ и m — масса нестранного кварка. Фактор $2(s' - 4m^2)$ возник из-за учета спиновых переменных кварков:

Tr
$$[(\hat{k}+m)(-\hat{p}+\hat{k}+m)] = 2(s'-4m^2)$$
.

Аналогичное выражение с заменой $m \to m_{\rm s}$ определяет $B_{ii}^{(\rm ss)}(s)$.

Используется простейшая параметризация вершинной функции перехода состояния *i* в кварки:

$$g_i(s) = \gamma_i \sqrt[4]{s} \left[\frac{k_i^2 + \sigma_i}{k^2 + \sigma_i} - d_i \frac{k_i^2 + \sigma_i}{k^2 + \sigma_i + h} \right].$$
(4.43)

Здесь $k^2 = s/4 - m^2$ и $k_a^2 = m_a^2/4 - m^2$, где m — масса конституентного кварка, равная 350 МэВ для нестранного и 500 МэВ для странного кварков, а m_a — масса затравочного состояния.

Для первого состояния, $1^{3}P_{0}(n\bar{n} rich)$, и для глюониума положено $d_{1} = d_{3} = 0$. Второе состояние является радиальным возбуждением, $2^{3}P_{0}$, и его волновая функция ортогональна основному состоянию. Это означает, что реальная часть функции $B_{12}(s)$ должна обращаться в нуль при *s*, близком к массам резонансов. Такая ортогонализация проводилась в точке $\sqrt{s} = 1,5$ ГэВ, определяя тем самым значение коэффициента d_{2} . Вершинные функции для членов одного нонета равны: $g_{2}(s) = g_{4}(s)$.

Параметры m_a , γ_a , h и σ_a определяются массами и ширинами физических резонансов. Однако массы m_a приблизительно фиксируются массами *К*-матричных полюсов: $\mu_a^2 \simeq m_a^2 - \text{Re } B_{aa}(\mu_a^2)$. Подчеркнем, что m_3 есть масса чистого глюониума, который является объектом изучения решеточной КХД.

Положения полюсов амплитуды и массы затравочных состояний, полученные в [7] при фитировании 00^{++} -волны, приведены в табл. 4. Относительный вес начального состояния в физическом резонансе А определяется согласно (4.29); вероятности W_a для рассматриваемых резонансов также приведены в табл. 4.

Как подчеркивалось ранее, для сравнения с результатами расчетов КХД необходимо провести разделение вкладов от взаимодействий на больших и малых расстояниях: учесть короткодействующую компоненту взаимодействия, $r < r_0 \sim R_{\rm confinement}$, и удалить вклад от

Таблица 4. Массы (в ГэВ) и углы смешивания затравочных состояний, состав физических состояний и положения полюсов 00⁺⁺амплитуды

	Решение І			
Вероятность резонанса	$1^{3}\mathbf{P}_{0}(\mathbf{n}\bar{\mathbf{n}}\ rich)$ $\phi_{1} = 18^{\circ}$ $m_{1} = 1,457$	$2^{3} \mathbf{P}_{0}(\mathbf{n}\bar{\mathbf{n}} \ rich)$ $\phi_{2} = -6^{\circ}$ $m_{2} = 1,536$	Глюониум $\phi_3 = 25^{\circ}$ $m_3 = 1,230$	$2^{3} P_{0}(s\bar{s} rich)$ $\phi_{4} = 84^{\circ}$ $m_{4} = 1,750$
$W[f_0(1300)]$ 1 300 - i0 115	32 %	12 %	55 %	1 %
$W[f_0(1500)]$ 1 500 - i0 065	25 %	70 %	3 %	2 %
$W[f_0(1530)]$	44 %	24 %	27 %	4 %
$W[f_0(1780)]$ 1,780 - i0,085	1 %	1 %	0 %	98 %
		Решение II		
Вероятность резонанса	$1^{3} \mathbf{P}_{0}(\mathbf{n}\bar{\mathbf{n}} \ rich)$ $\phi_{1} = 18^{\circ}$ $m_{1} = 1,107$	$2^{3}P_{0}(n\bar{n} \ rich)$ $\phi_{2} = 35^{\circ}$ $m_{2} = 1,566$	Глюониум $\phi_3 = 25^{\circ}$ $m_3 = 1,633$	$2^{3} \mathbf{P}_{0}(\mathbf{s} \bar{\mathbf{s}} \ rich)$ $\phi_{4} = -55^{\circ}$ $m_{4} = 1,702$
$W[f_0(1300)]$	35 %	26 %	38 %	0,4 %
$W[f_0(1500)]$ 1.500 - i0.065	1 %	64 %	35 %	0,4 %
$W[f_0(1530)]$	12 %	41 %	47 %	0,3 %
$[1,450 - 10,450] \\ W[f_0(1780)] \\ 1,750 - i0,100$	0,1 %	0,2 %	0,2 %	99,5 %

взаимодействия при больших *г*. Таким образом, при вычислении масс, которые можно сравнивать с результатами КХД-мотивированных моделей, мы должны сделать следующую замену в амплитуде 00⁺⁺-волны:

$$B_{ab}(s) \to \operatorname{Re} \bar{B}_{ab}(s, k_0^2) =$$

= $P \int_{4m^2 + 4k_0^2}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{g_a(s')\rho(s')g_b(s')}{s' - s} 2(s' - 4m^2).$ (4.44)

Полюса переопределенной таким образом амплитуды дают массы, которые обусловлены взаимодействием при $r < 1/k_0$. С результатами кварковой модели следует сравнивать массы, полученные при обрезании порядка $k_0^2 \sim 0.125$ (ГэВ с⁻¹)²: такое обрезание соответствует учету кваркового взаимодействия при $r \leq 1 \text{ fm} \sim R_{\text{confinement}}$.

Для решения I мы получаем (величины приведены в ГэВ):

 $1^{3}P_{0}(s\bar{s}\,rich)$ $1^{3}P_{0}(n\bar{n}\,rich)$ $2^{3}P_{0}(n\bar{n}\,rich)$ $2^{3}P_{0}(s\bar{s}\,rich)$

$m(k_0^2=0)=\mu_a^{\text{bare}}$	0,720	1,360	1,577	1,791
$m(k_0^2 = 0,125)$	0,730	1,340	1,560	1,780 (4.45)
$m(k_0^2 \rightarrow \infty) = m_a$	_	1,457	1,536	1,750.

В решении II:

	$1^{3}P_{0}(s\bar{s}rich)$	$1^{3}P_{0}(n\bar{n} \operatorname{rich})$	$2^{3}P_{0}(n\bar{n} rich)$) $2^{3}P_{0}(s\bar{s}ric$	h)
$m(k_0^2=0)=\mu_a^{\text{bare}}$	0,720	1,357	1,585	1,734	
$m(k_0^2 = 0,125)$	0,735	1,340	1,570	1,725 (4	.46)
$m(k_0^2\!\rightarrow\infty)\!=\!m_a$	_	1,107	1,566	1,702.	

Легчайшее qq̄-состояние, f₀^{bare}(720), не было включено в процедуру смешивания в [6, 7]. Для результатов (4.45) и (4.46) массовая поправка для этого состояния оценивалась по формуле: $m_a(k_0^2) \simeq m_a^2 - \text{Re} \, \bar{B}_{aa}(m_a^2, k_0^2)$. Это приблизительное равенство возникает из-за сравнительной малости вкладов недиагональных петлевых диаграмм.

Результаты (4.45) и (4.46) демонстрируют нам, что значения m_a ($k_0^2 = 0,125 \ \Gamma 3B^2$) слабо отличаются от μ_a^{bare} , тогда как отличия от затравочных масс m_a могут быть значительными. Это означает, что *К*-матричный анализ дает для мезонов приблизительно правильные значения характеристик, которые можно сравнить с результатами кварковых моделей. Напротив, с результатами расчетов решеточной КХД следует сравнивать значения затравочных масс m_a , которые могут заметно отличаться как от масс голых состояний μ_a^{bare} , так и от масс реальных резонансов.

4.5. Динамика смешивания глюбола с qq̄-состояниями

Чтобы проследить динамику смешивания глюбола с qq̄состояниями, произведем замену в петлевых диаграммах матрицы пропагаторов:

$$g_a(s) \to \xi g_a(s) \,, \tag{4.47}$$

с фактором ξ , меняющимся в интервале $0 \le \xi \le 1$; $\xi = 0$ соответствуют отсутствию смешивания. В этом случае все состояния стабильны, а амплитуда имеет полюса при $s = m_a^2$. Рисунок 15 показывает положения полюсов при различных ξ для решений I и II. С увеличением ξ полюса сдвигаются с действительной оси в нижнюю часть

1) неизбежное рождение qq-пар, которое приводит к рождению двух или более белых состояний (адронов);

 разлет рожденных адронов, их взаимодействие и, как результат, смешивание соседних qq̄-уровней, приводящее к образованию очень широкого запирающего состояния, которое выполняет роль динамического барьера для соседних уровней.

Именно расшифровку второй стадии деконфайнмента производят *К*-матричный анализ или анализ в рамках дисперсионного N/D-метода. Анализ 00⁺⁺волны, проведенный как в *К*-матричной технике, так и с помощью матрицы пропагаторов, показал, что легчайший скалярный глюониум, оказавшись в ряду состояний $1^{3}P_{0}q\bar{q}$ и $2^{3}P_{0}q\bar{q}$, превратился в результате смешивания в очень широкое состояние с $\Gamma/2 \simeq 500$ МэВ. Это широкое состояние $f_{0}(1530^{+90}_{-250})$ примерно наполовину состоит из скалярного глюониума, тогда как другие составляющие — это состояния $1^{3}P_{0}q\bar{q}$ и $2^{3}P_{0}q\bar{q}$.

Есть все основания полагать, что такая же ситуация имеет место и в волнах 00^{-+} и 02^{++} [57]. Это позволяет заключить, что будущее физики высоковозбужденных состояний должно быть неразрывно связано с изучением широких состояний как при поиске экзотических адронов, так и в изучении конфайнмента.

Благодарности. Автор признателен Л.Г. Дахно и В.А. Никонову за помощь. Данное исследование поддержано грантом РФФИ № 96-02-17934 и грантом INTAS-RFBR N 95-0267.

Список литературы

- Fritzsch H, Gell-Mann M, in Proc. of the XVI Int. Conf. on High Energy Physics, Batavia 2 135 (1972); Fritzsch H, Minkowski P Nuovo Cimento A 30 393 (1975); Freund P G O, Nambu Y Phys. Rev. Lett. 34 1645 (1975)
- 2. Jaffe R L, Johnson K Phys. Lett. B 60 201 (1976)
- 3. Bali G S et al. Phys. Lett. B 309 378 (1993)
- 4. Sexton J, Vaccarino A, Weingarten D Phys. Rev. Lett. 75 4563 (1995)
- Morningstar C J, Peardon M "Efficient glueball simulations on anisotropic lattices", hep-lat/9704011 (1997)¹
- Anisovich A V, Anisovich V V, Prokoshkin Yu D, Sarantsev A V Z. Phys. A 357 123 (1997)
- Anisovich A V, Anisovich V V, Sarantsev A V Phys. Lett. B 395 123 (1997); Z. Phys. A 359 173 (1997)
- t'Hooft G Nucl. Phys. B 72 461 (1974); Veneziano G Nucl. Phys. B 117 519 (1976)
- 9. Particle Data Group: Barnett R M et al. Phys. Rev. D 54 1 (1996)
- Heusch C A "Gluonium an unfulfilled promise of QCD?", in <u>QCD-20 Years Later</u> (Eds P M Zerwas, H A Kastrup) (Singapore: World Scientific, 1993)
- Savinov V (CLEO Collaboration) "A measurement of the form factors of light pseudoscalar mesons at large momentum transfered", hep-ex/9507005 (1995); Behrend H J et al. (CELLO Collaboration) Z. Phys. C 49 401 (1991); Aihara H et al. (TCP/2γ Collaboration) Phys. Rev. Lett. 64 172 (1990)
- Anisovich V V, Melikhov D I, Nikonov V A Phys. Rev. D 55 2918 (1997); Anisovich V V et al. Phys. Lett. B 404 166 (1997)
- 13. Анисович В В УФН 165 1225 (1995)
- 14. Anisovich V V et al. Phys. Lett. B 355 363 (1995).

Рис. 15. Изменение положения полюсов резонансов в комплексной плоскости M при варьировании констант связи $g_a \to \xi g_a$.

комплексной плоскости. Обсудим более детально динамику движения полюсов, например, в решении II.

При $\xi = 0, 1 - 0,5$ глюбольное состояние решения II смешивается в основном с состоянием $2^{3}P_{0}n\bar{n}$, тогда как при $\xi = 0,8 - 1,0$ становится существенным смешивание с состоянием $1^{3}P_{0}n\bar{n}$ *rich*. В результате состояние – потомок глюбола уходит достаточно глубоко в комплексную плоскость, имея массу M = 1450 - i450 МэВ, а глюбольная компонента этого широкого резонанса составляет 47%. Похожая ситуация имеет место и в решении I: широкий резонанс и в этом случае является потомком глюониума.

Гипотеза о том, что глюониум сильно смешивается с qq̄-состояниями выдвигалась и ранее, однако попытки восстановить количественную картину смешивания, предпринимавшиеся в рамках стандартной квантовой механики, оказывались неудачными, так как при этом не учитывались два явления:

1. Смешивание qq̄-глюбол, описываемое *D*-матрицей, может приводить не только к отталкиванию уровней (результат стандартного квантовомеханического приближения), но и к их притяжению. Последний эффект возникает из-за комплексности петлевых диаграмм B_{ab} ; при этом существенно, что Im B_{ab} не малы в районе 1500 МэВ.

2. Перекрытие резонансов приводит к отталкиванию положений полюсов амплитуды вдоль мнимой оси масс, причем один из резонансов аккумулирует ширины остальных.

Такое смешивание как раз и произошло в районе 1500 МэВ, и большая ширина одного из резонансов является неизбежным его результатом. Естественно также, что именно широкий резонанс является потомком глюониума, так как глюониум без заметного подавления смешивается с близлежащими qq̄-состояниями, оба которых являются доминантно-нестранными.

¹ См., например, http://xxx.lanl.gov.

- 15. Aker E et al. (Crystal Barrel Collaboration) *Phys. Lett. B* 260 249 (1991)
- Anisovich V V et al., in Proc. of Second Biennial Workshop on Nucleon-Antinucleon Physics (NAN'93) (Moscow, 1993); Анисович В В ЯФ 57 1666 (1994)
- 17. Anisovich V V et al. Phys. Rev. D 50 1972 (1994)
- Anisovich V V et al. (Crystal Barrel Collaboration) *Phys. Lett.* B 323 233 (1994)
- 19. Amsler C et al. (Crystal Barrel Collaboration) *Phys. Lett. B* **333** 277 (1994)
- 20. Amsler C, Close F E Phys. Rev. D 53 295 (1996); Phys. Lett. B 353 385 (1995)
- Close F E, Farrar G, Li Z P "Determining the gluonic content of isoscalar mesons", hep-ph/9610280 (1996)
- 22. Weingarten D "Scalar quarkonium and scalar glueball", hep-lat/ 9608070 (1996)
- 23. Genovese M "A unified picture of glueball candidates $f_0(1500)$ and $f_0(1700)$ " *Phys. Rev. D* (to be published)
- Alde D et al. Z. Phys. C 66 375 (1995); Прокошкин Ю Д, Кондашов А А, Садовский С А ДАН 342 473 (1995)
- 25. Binon F et al. Nuovo Cimento A 78 313 (1983)
- 26. Binon F et al. Nuovo Cimento A 80 363 (1984)
- 27. Hyams B et al. Nucl. Phys. B 64 134 (1973)
- Lindenbaum S J, Longacre R S *Phys. Lett. B* 274 492 (1992); Etkin A et al. *Phys. Rev. D* 25 1786 (1982)
- 29. Anisovich V V, Sarantsev A V Phys. Lett. B 382 429 (1996)
- Anisovich V V, Prokoshkin Yu D, Sarantsev A V Phys. Lett. 389 388 (1996)
- 31. Alston-Garnjost M et al. Phys. Lett. B 36 152 (1971)
- 32. Anisovich V V et al. *Phys. Rev. D* **42** 3045 (1990)
- 33. Peters K, Klempt E Phys. Lett. B 352 467 (1995)
- 34. Anisovich V V Phys. Lett. B 364 195 (1995)
- 35. Zou B S, частное сообщение (1996)
- 36. Anisovich V V, Kondashov A A, Prokoshkin Yu D, Sadovsky S A, Sarantsev A V "The two-pion spectra for the reaction $\pi^- p \rightarrow \pi^0 \pi^0 n$ at 38 GeV/c pion momentum and combined analysis of the GAMS, Crystal Barrel and BNL data", hep-ph/9711319
- 37. Aston D et al. Nucl. Phys. B 296 493 (1988)

- Weinstein J, Isgur N Phys. Rev. Lett. 48 659 (1982); Phys. Rev. D 27 588 (1983); 41 2236 (1990); Lohse D et al. Nucl. Phys. A 516 513 (1990); Janssen G et al. Phys. Rev. D 52 2690 (1995)
- Jaffe R J Phys. Rev. D 15 267 (1977); Achasov N N, Shestakov G N Z. Phys. C 41 309 (1988)
- 40. Ritter C et al. Phys. Lett. B 380 431 (1996)
- 41. Close F E et al. Phys. Lett. B 319 291 (1993)
- 42. Anisovich A V, Sarantsev A V "*K*-matrix analysis of the $K\pi$ S-wave in the mass region 900–2100 MeV and nonet classification of the scalar q \bar{q} -states", hep-ph/9705401, *Phys. Lett. B* **413** 137 (1997)
- 43. Chew G F, Mandelstam S Phys. Rev. 119 467 (1960)
- Anisovich V V et al. *Nucl. Phys. A* 544 747 (1992); Anisovich V V et al. *Nucl. Phys. A* 563 549 (1993)
- Анисович А В, Саранцев А В ЯФ 55 2163 (1992); Анисович А В, Садовникова В А ЯФ 55 2657 (1992)
- 46. Саранцев А В, Капитанов А В ЯФ 56 156 (1993)
- Anisovich V V, Shekhter V M *Nucl. Phys. B* 55 455 (1973); Bjorken J D, Farrar G R *Phys. Rev. D* 9 1449 (1974)
- 48. Волошин С А, Никитин Ю П, Порфиров П И ЯФ **35** 1006 (1982)
- 49. Gershtein S S, Likhoded A K, Prokoshkin Yu D Z. Phys. C 24 305 (1984)
- 50. Anisovich A V "Three-body dispersion relation equations for the coupled decay channels $p\bar{p} \rightarrow \pi\pi\pi$, $\eta\pi\pi$, $K\bar{K}\pi$ ", hep-ph/9610523 (1996); Анисович A B $\mathcal{A}\Phi$ 58 1467 (1995); Anisovich A V, Leutwyler H *Phys. Lett. B* 375 335 (1996)
- 51. Zou B S, Bugg D V Phys. Rev. D 50 591 (1994); Morgan D, Pennington M R Phys. Rev. D 48 1185 (1993)
- 52. Flatté S M Phys. Lett. B 63 224 (1976)
- Kondashov A A et al., in *Proc. 27th Intern. Conf. on High Energy Physics* (Glasgow, 1994) р. 1407; Кондашов А А и др., Препринт ИФВЭ 95-137 (Протвино: ИФВЭ, 1995)
- Zheng Z The XVI Int. Symp. on Lepton and Photon Interactions, Ithaca, New York, 1993 (Eds P Drell, D Rubin), in AIP Conf. Proc. 302 530 (1994)
- 55. Amsler C et al. *Phys. Lett. B* **342** 433 (1995); Amsler C et al. (Crystal Barrel Collaboration) **355** 425 (1995)
- Bugg D V et al. *Phys. Rev. D* 50 4412 (1994); Bugg D V, Sarantsev A V, Zou B S *Nucl.Phys. B* 471 59 (1996)
- 57. Bugg D V, частное сообщение (1997)

The lightest scalar glueball

V.V. Anisovich St. Petersburg Nuclear Physics Institute 188350 Gatchina, St. Petersburg, Russia Fax (7-812) 713-1963 E-mail: anisovic@thd.pnpi.spb.ru

Recent studies of meson spectra have enabled the resonance structure of the $IJ^{PC} = 00^{++}$, 10^{++} , 02^{++} , 12^{++} , and $IJ^P = \frac{1}{2}0^+$ waves to be found for masses ranging up to 1900 MeV, thus fully reconstructing the $1^3P_0q\bar{q}$ and $2^3P_0q\bar{q}$ meson multiplets. There is firm experimental evidence for the existence of five scalar (isoscalar) states in this mass range, four of which are $q\bar{q}$ states and members of the $1^3P_0q\bar{q}$ and $2^3P_0q\bar{q}$ nonets, whereas the fifth falls out of the quark picture and displays all the properties of the lightest possible scalar glueball. A dispersion analysis of the 00^{++} wave elucidates how the mixture of the pure glueball state (or gluonium) with neighbouring scalar $q\bar{q}$ states forms: three scalar mesons, namely two relatively narrow $f_0(1300)$ and $f_0(1500)$ resonances and a very broad $f_0(1530^{+90}_{-250})$ resonance, share the gluonium, the broad resonance being the gluonium's descendant and accounting for about 40 to 50% of its component.

PACS numbers: 12.39.Mk, 12.38.-t, 14.40.-n

Bibliography - 57 references

Received 4 November 1997