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Beginning from the early works of Boltzmann, Gibbs, and
Maxwell, the theory of stochastic systems has attracted
considerable attention but recently it has experienced an
explosive-like growth of interest. Let alone the numerous
conferences, several dedicated journals have sprung into life
(Physical Review, for example, has introduced the E series)
and a lot of monographs devoted to various aspects of the
theory of stochastic systems have been published (see Refs
[1 ± 5] and the bibliographies therein). Among them the
Springer series in synergetics, edited by H Haken, is one of
the best. The monograph written by his collaborator H
Risken was included in the 18th volume of this series and
was first published in 1984 and then, with a few corrections
and additions, in 1989. It is frequently cited in the English
scientific literature but, unfortunately, is almost unknown in
the CIS. Therefore it is advantageous to become familiar with
its content ± the more so as the book written by HRisken is in
my opinion one of the best monographs on the theory of
stochastic systems.

First and foremost, its value is in the absence of any spells
like `it is easy to see that...', to which the Russian audience is
accustomed due to the Course of Theoretical Physics by
Landau and Lifshitz{. Risken set forth all the aspects of the
topic in succession, without going into unnecessary details,
whether for the well-known theory of Brownianmovement of
particles or special approaches to the Fokker ± Planck
equation. In addition the author never `pours water' and the
book is written in splendid scientific language Ð it is a sheer
pleasure to read!

The monograph is quite voluminous: it has over 470
pages, 441 references, twelve main chapters, appendices,
additions (to the first edition), and an extensive subject
index. Somewhat arbitrarily the material can be grouped
into three parts. The introductory Chapters 1 ± 3 introduce
the fundamental notions of the theory of stochastic systems,
present the required data from the theory of probability, and
consider the Langevin equation. The central Chapters 4 ± 10
are dedicated to the major subject of the monograph, to the
Fokker ± Planck equation (FPE). Chapter 4 is the key chapter
of the book. Here various presentations of the FPE are given.

Then Chapters 5 and 6 describe how the FPE can be solved in
the case of one or more variables. Chapter 7 stands somewhat
apart and is devoted to a presentation of the fundamental
data on correlative functions and susceptibilities. Chapter 8
considers how the number of determining variables in the
system can be decreased. InChapter 9 the FPE is solved by the
recursive method, the use of which results in the introduction
of continued fractions. In Chapter 10 this method is applied
to the Kramers equation, the special case of the FPE for the
diffusion of particles in an arbitrary potential. More than a
third of the book is filled by the presentation of various
applications: Chapter 11 considers the Brownian movement
of particles in a periodic potential, and Chapter 12 sets forth
the statistical properties of laser radiation. It is somewhat
wearing to read through these last chapters because of the
abundance of specific results but it seems inevitable for
Chapters 11, 12, where Risken set forth the material close to
his field of scientific interests.

Here we shall dwell in more detail on the cited topics. We
shall present as many details as required for the reader to get
the overall impression about the issues covered and the
essence of methods used, even if he or she has not touched
this book.

The introductory Chapter 1 includes the following
sections: 1.1 Brownian motion; 1.2 Fokker-Planck equation;
1.3 Boltzmann equation; 1.4 Master equation. Section 1.1
shows how the Langevin stochastic equation can be derived
from the equation of motion of a ball in a liquid. White and
colour noises are defined and the white noise intensity is
found based on the equipartition law. It is shown that the x�t�
solution to the stochastic equation at t, due to its random
nature, can be associated with the distribution function
W�x; t�, the form of which is found from the FPE. Section
1.2 lists the principal types of the FPE. In its general form this
is the Chapman ±Kolmogorov equation

qW�x; t�
qt

�
�
M�x; t; x 0; t 0�W�x 0; t 0� dx 0�t 0� ; �1�

where the memory function M�x; t; x 0; t 0� accounts for the
distribution function W�x 0; t 0� in the previous instances of
time t 0 < t. Expansion of the kernel M in terms of the
difference xÿ x 0 yields a generalized (in the sense of the
memory effects) Kramers ±Moyal equation

qW�x; t�
qt

�
X1
n�1
�ÿH�n

�t
ÿ1

D�n��x; tÿ t 0�W�x; t 0� dt 0 ; �2�

where H � q=qx and the coefficients D�n� are the moments of
the memory function M divided by n!. In the case of
Markovian processes they are proportional to d�tÿ t 0� and
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the integration in (2) vanishes. In addition, in the case of the d-
correlated (white) noise we have D�n� � 0 for n > 2, and Eqn
(2) brings about the conventional form of the FPE:

qW�x; t�
qt

� LFPW�x; t� ; LFP � ÿHiD
�1�
i �x� � HiHjD

�2�
i j �x� ;
�3�

where the equation is extended to the case of several variables
so that fxig � x and Hi � q=qxi, the summation is taken over
repeating indices, and the quantities D

�1�
i , D

�2�
i j � D

�2�
ji > 0

determine the intensities of drift and diffusion processes. In
the Kramers equation the set of variables fxig is reduced to a
coordinate and a velocity of one-dimensional Brownian
motion. For a large viscosity, the inertial terms in the
stochastic equation can be neglected and the velocity of a
Brownian particle can be factored out. As a result the set fxig
is reduced to a coordinate and the FPE takes the simplest
form of the Smoluchowski equation.

The list of cases when an analytical solution of the FPE
can be found is very interesting (Section 1.2.4). Both steady
and unsteady analytical solutions exist when the drift factor
D�1��x� depends linearly on the diffusion coefficient D�2� and
the latter is constant. The steady distribution can be reduced
to quadratures provided that a detailed balance exists and the
flow of probability is zero. In addition, in Section 1.2.4
various methods for solving the FPE are cited, including
computer simulation, numerical integration, reduction to the
SchroÈ dinger equation, analytical solution (especially for the
one-dimensional case) when the dependencesD

�1�
i �x�,D�2�i j �x�

have a special form, an unsteady solution for a weak external
action (theory of linear response), and the method of
continued fractions. Unfortunately, this list misses the
important case of the analytical solution to the FPE in the
unsteady self-modelling regime (this solution was first
obtained in 1958 by I M Lifshits and V V Slezov when they
considered the phase decomposition ensemble in the course of
coalescence). With the use of the self-similarity condition for
such a system, the dependenceW�x; t� on the two variables x
and t can be reduced to one on a single argument y � x=a�t�,
where a�t� represents the efficient scale of x. It turns out that
as in the aforementioned simple cases the W�y� dependence
can be presented as an exponential Gibbsian distribution.

In Section 1.3, the kinetic Boltzmann equation is
compared with the FPE. They differ in that the first equation
describes the ensemble evolution when all the particles are
similar, while the second one governs the stochastic behaviour
of a probe (large) particle. With linearization of the collision
integral, the Boltzmann equation takes the form of the
Kramers equation.

Section 1.4 gives the groundwork for the master equation
governing the microscopic behaviour of a stochastic system.
For example, it presents an expression for the d-shaped
microstate transition rate when the master equation takes
the form of the FPE.

Chapter 2 under the title `Probability Theory' starts with
the definitions of probability and probability density through
the Heaviside and Dirac functions, respectively. It is shown
how the features of the latter can be used to go over to other
stochastic variables. Primary emphasis is placed on the
characteristic (generating) function C�u�, which is the
average of the exponent exp�iuz�, where z is a random
variable and u is an arbitrary parameter. If follows from the
definition that, firstly, the characteristic function is the

Fourier image of the probability density and, secondly, for
u � 0 it is reduced to a partition function. If the dependence
C�u� is expanded into a Maclaurin series in terms of u, then
the factors are reduced to the moments Mn for a random
variable z. However, since it is the free energy ÿT lnC�0�
(where T is the temperature) that is physically meaningful
rather than the statistical sum C�0�, the expansion lnC�u�
should be used (the expansion coefficients are referred to as
cumulants Kn and in diagrams they are presented as
irreducible graphs). The author presents explicit expressions
forKn viaMn (and vice versa) for n � 1; . . . ; 4 and, moreover,
he finds determinant expressions to go over from Mn�Kn� to
Kn�Mn� for any n. The consideration is conducted first for a
single stochastic variable and then generalized to several
variables. A relationship between the conditional and total
probabilities is found. The Gaussian distribution is consid-
ered separately (in my opinion it is not quite adequate; in any
case there is a better and fuller description in Appendix 2.1 to
the book [6]). Sections 2.4 and 2.5 are devoted to the study of
stochastic processes, in which the stochastic variable is a
function of time. It is shown that the distribution function of
several variables can be reduced to a product of appropriate
functions of a single variable for purely random processes. In
going to Markovian processes we obtain the product of pair
functions of conditional probability. This yields the integral
Chapman ±Kolmogorov equation, from which the desired
probability can be found (see Section 2.4.2). In conclusion to
Chapter 2, the Wiener ±Khinchin formula is given for the
Fourier image of the correlation function of randomvariables
through the Fourier images of these variables.

Chapter 3 is devoted to the Langevin equation, on which
the entire theory of stochastic systems is based (in the absence
of a regular force it describes a Wiener process, and with a
linear dependence of the force on a stochastic variable it
describes the Ornstein ±Uhlenbeck process). The considera-
tion starts from the simplest case of Brownian motion
(Section 3.1). Here the feature of the book that we noted at
the very beginning of the review is most conspicuous as the
author goes into details of calculation of the velocity and drift
correlators of Brownian particles at an arbitrary instant of
time (usually only the t!1 asymptotics are given).

The derivation of theMaxwellian distribution through the
calculation of moments and the definition of a generating
function are very instructive. The Ornstein ±Uhlenbeck
process is considered based on the Green function method,
the use of which enables the time dependences to be found for
the two first moments as t! 0. Due to the linear nature of the
Ornstein ±Uhlenbeck equation, the exact solution can be
obtained in going over to the Fourier images with respect to
time. The analysis of the Langevin equation

dx

dt
� h�x� � g�x�z�t� ; hzi � 0 ; hz�t�z�t 0�i � 2d�tÿ t 0�

�4�

in Section 3.3, where h�x� is the deterministic force, and g�x� is
the amplitude of a random force z�t� (a multiplicative
function), plays a leading part not only in Chapter 3 but in
the entire theory of stochastic systems as well. Firstly (Section
3.3.1) the author determines the time dependences of
moments for a Wiener process (the force is h � 0) with the
noise amplitude g � x (the Verhulst model). It turns out that
although the deterministic force h is absent, the drift
coefficient D�1� / x is not zero. In the general case of several
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variables xi, if the noise amplitude is a function gi j�x� of a
random variable xi, then the drift and diffusion coefficients
are

D
�1�
i � hi � gkjHkgi j ; D

�2�
i j � gikgjk : �5�

Thus, the multiplicative nature of noise brings about a
fictitious force in addition to a real force hi. This addition
appears when the Stratonovich calculus is used and vanishes
when we apply the Ito calculus (Section 3.3.3). They differ in
the choice of the point ~tn � tn � lDtn, l 2 �0; 1� for an
infinitesimal time interval Dtn � tn�1 ÿ tn ! 0, on which the
stochastic variable xi�t� is defined. In the Ito calculus this
point is taken at the left end of the interval (l � 0), whereas in
the Stratonovich calculus it is taken in the middle (l � 1=2).
Unfortunately, the author prefers the Stratonovich calculus
and does not mention that a continuum set of calculuses is
possible, depending on the choice of the parameter l 2 �0; 1�.
However, in this way the reader is saved from the probable
vague speculations as in Ref. [4], the reading of which gives
the idea that the authors do not understand what they are
writing about. At the end of Chapter 3 the relationships are
found between the coefficientsD

�1�
i andD

�2�
i j depending on the

choice of the stochastic variables xi (Section 3.4.2). It is shown
how a non-Markovian process can be presented as a
Markovian process through introduction of an auxiliary
variable (Section 3.5), and how the Langevin equation can
be simulated on a computer (Section 3.6).

Chapter 4 presents an introduction to the principal subject
of investigation, which is the FPE. In Sections 4.1 and 4.2 the
author considers three different methods of how the forward
and backward Kolmogorov equations can be obtained for
opposite directions of the time arrow (the FPE is reduced to
the forward equation). These are formal methods and in
essence they consist in expanding either the generating
function, or d-function, or conditional probability in terms
of the difference xÿ x 0. In my opinion the common
derivation via the master equation as in Ref. [7] is more
physically meaningful, while the formal procedure is more
straightforward. The Pawula theorem is very important and
its simple formulation is based on the Schwartz inequality
(Section 4.3). This theorem shows that the Kramers ±Moyal
series (2) can be truncated either at the first term or at the
second term, and that the truncation procedure becomes
contradictory when an arbitrary number of terms n > 2 is
retained. In Section 4.4, the FPE is studied for the case of a
single variable. It is shown that it can be presented in the form
of the equation of continuity and that in this form it can be
reduced to the Maxwellian distribution by setting a steady
flow for the probability density equal to zero. For small times
the conditional probability takes the form of the functional
Gaussian distribution throughout the velocity _x, which is
shifted by an expectationD�1� with a variance 2D�2�. After the
consideration of some examples in Sections 4.5 and 4.6, the
author extends the results obtained to an FPE of several
variables (Section 4.7). In Section 4.8, some examples of an
FPE of several variables are given, including three-dimen-
sional Brownian motion in a velocity field, one- and three-
dimensional Brownian motion in an external field, and,
finally, the Brownian movement of two interacting particles.
Section 4.9 deals with going over to new variables in the FPE.
The parametersD

�1�
i andD

�2�
i j are shown to be transformed by

means of the same formulae as those found in Section 3.4.2 on
consideration of the Langevin equation. And, finally, Section

4.10 shows that using a common construction of differential
geometry the FPE can be presented in a covariant form,
where the diffusion coefficient D

�2�
i j matrix plays the role of a

contravariantmetric tensor and the inverse diffusionmatrix is
a covariant tensor.

It is a real pleasure to read Chapter 5, where the single-
variable FPE is solved. The introductory Section 5.1 shows
that using the transformation of variable from Sections 3.4,
4.9 the diffusion coefficient D�2��x� can be reduced to a
constant D > 0. As a result the steady solution of the FPE
takes an exponential form with index ÿF � ÿV=D,
V � ÿ � D�1� dx (Section 5.2). In the simple case of the
Ornstein ±Uhlenbeck process (D�1� / x), the steady distribu-
tion takes a Gaussian form (Section 5.3). Expansion of the
Fokker ± Planck operator LFP � ÿHD�1� � H 2D�2� �
HD�2� exp�ÿF�H expF in terms of the eigenfunctions jn is
one of the primary methods for solving the FPE. In Section
5.4, the operator is shown to haveHermitian properties under
the transformation exp�F=2�. The relevant eigenfunction
c � exp�F=2�j has a steady form c0 / exp�ÿF=2� (and the
eigenvalue is l � 0). The eigenvalue problem is related to the
FPE solution by the following equality for the pair distribu-
tion function

W2�x; t; x 0; t 0� � c0�x�c0�x 0�
X
n

cn�x�cn�x 0�

� exp
ÿÿ lnjtÿ t 0j� : �6�

As is known, the principal problem of quantum
mechanics is how to determine eigenvalues ln and eigenfunc-
tions cn�x�. It turns out that the Hermitian operator
L � exp�F=2�LFP exp�ÿF=2� can be written as a common
Hamiltonian in the SchroÈ dinger equation:

L � DH 2 ÿU�x� ; U � D

4
�HF�2 ÿ 1

2
HDHF ; �7�

where the quantity
�������
2D
p

plays the part of the Planck
constant, and the drift coefficient D�1� � ÿHV determines
the effective potential energy U�x�. Moreover, expression
(7) can be presented in a quadratic form L � a�a, where the
operators a�, a are obtained from the momentum operators
p� � ÿi ����Dp H, p � i

����
D
p

H as a result of the transforms
exp�F=2�, exp�ÿF=2� and obey the commutation relation
�a; a�� � ÿH 2V. Hence, besides an analogy with the
SchroÈ dinger equation, powerful methods of supersymmetry
from quantum theory can be used to solve the FPE [8].
Unfortunately, these methods are totally ignored by the
author. Instead, the analogy with the SchroÈ dinger equation
receives primary attention. For example, in Sections 5.5 ±
5.10 it is used to study the parabolic, inverse parabolic, V-
shaped (V � Dkjxj), bistable, metastable (both discontinu-
ous and smooth) types of potential V�x� and that associated
with a rectangular well-like dependence U�x� in Eqn (7).
Section 5.8 shows how the solution for the inverse potential
ÿV�x� can be reconstructed when the solution for the direct
potential V�x� is known. Section 5.9 is concerned with
numerical methods for calculation of eigenfunctions and
eigenvalues. In the final section 5.10, the rate of escaping the
potential barrier is determined for the system in a
metastable state. It is shown, within the scope of the
quasi-classical approach and according to the Kramers
formula, to be proportional to exp�ÿD=D�, where D is the
barrier height. On the other hand, this rate is reduced to the
least eigenvalue l0, the reciprocal of which is the time it
takes to escape the potential barrier.
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Chapter 6 differs from the preceding one in that it
considers the case of several variables. However, since in this
case the transformation of variables, by which the diffusion
coefficient matrix is reduced to constant quantities, is not
always possible, then the conditions should be studied under
which the solution of the FPE can be reduced to the
eigenvalue problem. To this end the drift coefficient
Di � D

�s�
i �D

�a�
i should be divided into symmetric

D
�s�
i � HjDi j ÿDi jHjF and antisymmetric D

�a�
i components.

Accordingly, the operator L � exp�F=2�LFP exp�ÿF=2� is
divided into the Hermitian
LH � exp�F=2�HiDi j exp�ÿF�Hj exp�F=2� � L�H and anti-
Hermitian LA � ÿ exp�F=2�HiD

�a�
i exp�ÿF=2� � ÿL�A com-

ponents (the latter satisfies the condition LAW
1=2
0 � 0, where

W0 is a steady solution). Given D
�s�
i , the quantities

Ai � HiF � Dÿ1i j �HkDjk ÿD
�s�
i � can be found such that the

potentiality condition HjAi � HiAj is satisfied and the
exponent index ÿF for the steady distribution is defined by
the equality F � � Ai dxi. Then the Hermitian component LH

takes the form of Eqn (7), where D, H should be replaced by
Di j, Hi and the eigenfunctions jn, j

�
n of the FPE can be

expressed via the eigenfunctions cn, c
�
n for the operators LH,

L�A as jn � exp�ÿF=2�cn, j
�
n � exp�F=2�c�n . Moreover, the

Hermitian component cH
0 / exp�ÿF=2� corresponding to

the eigenvalue l � 0 is reduced to the square root of the
steady distribution function. In Section 6.4, the potentiality
condition (and hence the splitting of the drift coefficients into
symmetric and antisymmetric components) is shown to
follow from the detailed balance condition. The last condi-
tion implies that microscopic transitions to and from an
arbitrary level occur at the same rate at any instant of time.
It can be expressed formally by the equality LFP�x�W0�x� �
�W0�ex�L�FP�ex�, where the time reversal operator is ei � 1
for even coordinate-like variables, and ei � ÿ1 for odd
velocity-like variables. It turns out that with this operator
the quantities Di�x�, LFP�x�, L�x� can be divided in the
aforementioned way according to the definitions
D
�s�
i �x� � eiD

�s�
i �ex�, D�a�i �x��ÿeiD�a�i �ex�; L�s�FP�x��L�FP�ex�,

L
�a�
FP�x� � ÿL�a�FP�ex�, andL�x� � L��ex� (the last equation for

eigenfunctions means that cn�x� � c�n �ex�). Thus, under the
detailed balance conditions the solution to the FPE of several
variables is obtained principally in the same manner as in the
case of a single variable for the Ornstein ±Uhlenbeck
equation (see Section 6.5). The final Section 6.6 lists the
methods by which the FPE can be solved when the detailed
balance condition is broken: the elimination of rapidly
changing variables (adiabatic approximation); the transfor-
mation of variables under which the FPE is reduced to the
integrable SchroÈ dinger equation; the variational method of
fitting eigenfunctions to minimize the eigenvalue; reduction
of the problem to the Hermitian operator L�FPLFP; numerical
integration; expansion in terms of basis functions; themethod
of continued fractions, and, finally, the quasi-classical
approximation.

Chapter 7 `Linear Response and Correlation Functions'
seems, in my opinion, not quite adequate. The author
considers three different proofs of the fluctuation-dissipa-
tion theorem, and according to the proverb `not seeing the
wood for the trees' the content of this chapter seems some-
what arbitrary. Certainly this is not the case and the
consideration of this subject by D Forster in Ref. [9] is more
appropriate.

Chapter 8 is concerned with three cases when the number
of variables used to describe a stochastic system can be

reduced. For example, Section 8.1 studies the T-time
problem of the first passage out of a given region �x1; x2�
when the time derivative vanishes. The quantity T is
distributed according to the probability density w�x 0;T� �
ÿ � x2x1

_P
ÿ
x;Tjx 0; 0� dx, whereP�x;Tjx 0; 0� is the probability of

transition from the state x 0 at t � 0 into the state x at t � T.
The solution of this problem amounts to determining the
moments Tn�x 0��

�1
0 Tnw�x 0;T� dT � � x2x1

pn�x; x 0� dx or
the relevant densities pn�x; x 0�. The equations for the
moments L�FP�x 0�Tn�x 0� � ÿnTnÿ1�x 0�, n5 1 follow from
the backward Kolmogorov equation, and the recurrent
relations LFPpn�x; x 0� � ÿnpnÿ1�x; x 0�, n5 1 follow from
the FPE. Section 8.2 deals with a particular case of the FPE
when the coefficients D

�1�
i �x�, D�2�i j �x� are independent of n

arbitrary components xi from the full set of variables fxigN,
N > n. In this case the Fourier images of these components
should be used. Then a component can be separated out from
the Fokker ± Planck operator such that it is independent of
the derivatives Hi, i � 1; . . . ; n, and thus the number of
variables in the FPE is reduced to Nÿ n. This procedure is
most efficient when the dependence on xi is periodic (for
example, a variable xi represents an angle). Fourier images
are also used when one wants to find the distribution of the
integral I�t� � � tt0 fÿx�t 0�� dt 0, where f�x� is a given function,
rather than the distribution of the stochastic variables xi�t�
themselves. In this case, if the equation _I�t� � f�x� is
interpreted as an addition to the Langevin system of
equations for initial stochastic variables xi, then the Fok-
ker ± Planck operator takes an elongated form L � LFP�x�ÿ
f�x��q=qI�. In going over to Fourier images with respect to I,
the derivative q=qI is changed for ik and the Fourier image of
the desired average quantity M�k; t� � � G�k; x; t� dx is given
by theGreen functionG of the elongated FPE: _W � LW. As a
result, if the dependence G�x� is known, then the Langevin
system ofN equations for the initial variables xi is reduced to
a single equation _M�k� � ÿik � f�x�G�k; x� dx for the
moment M. Section 8.3 is devoted to the adiabatic approx-
imation, under which fast-varying stochastic quantities can
be eliminated. Let, for example, the characteristic time it takes
for the variable y to change be g4 1 times less than that for
the variable x. Then the solution of the FPE
_W � �Lx � gLy�W can be conveniently represented as an
expansion W�x; y; t� �Pn Cn�x; t�jn�y; x� in terms of the
eigenfunctions jn of the operator Ly: Ly�y; x�jn�y; x� �
ÿln�x�jn�y; x� (here the slow-varying variable x is set to be
fixed). As a result the system of equations
_Cn � glnCn �

P
m LnmCm, Lmn �

�
j�n Lxjm dy are obtained

for the coefficients Cn. In the adiabatic approximation, the
time derivative is retained only for n � 0 since it is negligible
for n 6� 0 according to the condition g4 1. Consequently, the
coefficient C0 � g0 significantly exceeds all the others
Cn � gÿ1 and we have Cn ' Ln0C0=gln, n 6� 0 correct to
gÿ1 5 1. As a result the system can be described by the single
equation _C0 � �L00 � gÿ1

P
n L0nl

ÿ1
n Ln0�C0, n 6� 0 for the

quantity C0�x; t� �
�
W�x; y; t� dy �W�x; t�. In the final

Section 8.3.2, the Zwanzig ±Mori projection technique is
briefly considered. By this technique, the equations can be
reduced to a chain of equalities such that the correlator of the
quantity with the largest relaxation time is expressed via the
correlator of a faster variable; in a similar manner the latter is
expressed via the correlator of an even faster variable, and so
on. I would recommend the reader to look over book [9] if he
(or she) wants to get a deeper knowledge of this powerful
method.
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Chapter 9 is dedicated to the solution of the FPE with the
use of the continued fraction

a1

b1 �
�

a2
b2 � . . .

� � �a1; b1; a2; b2; . . .� ; �8�

where the pairs an, bn can be numbers, functions, operators,
etc. The principal advantage of using continued fractions is
that in this way the coefficients Cn�t� for the expansion of the
distribution functionW�x; t� �Pn Cn�t�cn�x� in terms of the
eigenfunctionscn�x� of the Fokker ± Planck operatorLFP can
be approximated most efficiently. The time dependences of
these coefficientsCn�t� � Gnm�t�Cm�0� are given by theGreen
matrix Gnm�t� reporting the solution of the equation

_Gnm � Qÿn Gnÿ1m �QnGnm �Q�n Gn�1m ; �9�

to which the FPE is reduced upon substitution of the cited
expansion (Q�n , Qn are given constants; they depend on the
type of the LFP operator). The distinguishing feature of
Eqn (9) is that it establishes a relationship between three
neighbouring matrix elements Gnm, and because of this the
author calls it a `tridiagonal recurrence relationship'. It turns
out that it is a fundamental relationship for problems where
the solution can be reduced to a consideration of (either
ordinary or partial) differential equations of Bloch, Mathieu,
etc. types. For example, if a recurrent relation can be found
for 2L� 1, L > 1 matrix elements, rather than for 3 matrix
elements, then it can be reduced to (9) by introducing the L-
component vectors Gnm and L-rank matrices bQ�n , bQn.
Equation (9) can be solved on elimination of the derivatives
in t by going over to Laplace images in s and by introducing
the variables S�n � Gn�1m=Gnm, S

ÿ
n � Gnÿ1m=Gnm. The use of

these variables yields expressions for Gn�1m, Gnÿ1m via Gnm,
i.e. the index of a matrix element Gnm can be raised/lowered.
Limiting the index n in (9) by the upper N� and lower Nÿ
values and transferring from these limiting values to
m 2 �Nÿ;N�� we obtain, with the use of the S�n and Sÿn
operators, the following expressions via continued fractions:

S�m�s� � �ÿQÿm�1;Qm�1 ÿ s;ÿQ�m�1Qÿm�2;Qm�2 ÿ s; . . .� ;
Sÿm�s� � �ÿQ�mÿ1;Qmÿ1 ÿ s;ÿQÿmÿ1Q�mÿ2;Qmÿ2 ÿ s; . . .� :

�10�
They can be used to determine the memory function
Km � QÿmS

ÿ
m �Q�mS

�
m and the diagonal element

Gmm�s� � �sÿQm ÿ Km�s��ÿ1 for the Green function. For
n 6� m, we have Gnm�s� � Unm�s�Gmm�s�, where
Unm �

Qjnÿmj
l�1 S�n�l and the plus signs refer to the case n > m

while the minus signs refer to the case n < m. The above
method seems very similar to the Zwanzig ±Mori projection
technique, at least formally, since both of them use continued
fractions [9, 10].

Chapter 10 is devoted to the study of the Kramers
equation for Brownian motion in an external field as one
of the most popular forms of the FPE. The distinguishing
feature of the Kramers equation is that the drift coefficient
D�1� depends linearly on velocity. It is shown that the
operator LFP is divided into irreversible Lir and Lrev

reversible components. Under the transformation
expf�v=2�2 � V�x�=2Tg the former Lir / ÿb�bÿ is
expressed via the Bose operators b� � �q=qv� v=2, and
the latter has the form Lrev � ÿ�bÿaÿ � b�a��, where
a� � H�1� �1=2�V�x��, H � q=qx (here the coordinate x

and the velocity v are measured in units of �T=m�1=2). In
the case of a harmonic potential V�x� (Section 10.2), linear
combinations of the operators a�, b� form creation
operators c�1 , c

�
2 , n1-fold and n2-fold applications of which

to the function c00 / expfÿ�v=2�2 ÿ �ox=2�2g, where o is
the eigenfrequency, yield the eigenfunctions
cn1n2

� �n1!n2!�ÿ1=2� �c�1 �n1�c�2 �n2c00 and eigenvalues
ln1n2 � �g=2��n1 � n2�� ��g=2�2 ÿ o2�1=2�n1 ÿ n2�, where g is
a kinetic coefficient. Expansion in terms of eigenfunctions
leads to recurrence relations, the solutions of which are
expressed via continued fractions (Section 10.3). The final
Section 10.4 deals with the case of a large damping
coefficient g, when expansion in terms of the parameter
gÿ1 5 1 is possible. In this chapter the distinguishing feature
of this monograph that we have noted at the very beginning
of the review, namely, its comprehensive and accurate
consideration of the subject, is most pronounced.

Chapter 11 `Brownian Motion in Periodic Potentials' is
highly voluminous. It consists of nine extensive sections,
occupies 97 pages, includes 94 figures, and refers to 57 papers
and monographs. Firstly (Section 11.1), the author reviews
problems that can be reduced to the problem of diffusion in a
periodic potential: a pendulum, superionic conductor,
Josephson contact, the rotation of a dipole in a constant
field, phase stabilization, and the relation to the sin-Gordon
equation. He distinguishes three different regimes depending
on a small, intermediate, or large coefficient of friction. In the
first case the particle coordinate plays a role of the hydro-
dynamic mode, so that the velocity drops out of the FPE and
the latter reduces to the Smoluchowski equation (Section
11.3). For weak friction the velocity as well as the coordinate
exhibit strongly fluctuating behaviour and the energy of
particles plays the part of a hydrodynamic mode (Section
11.4). The intermediate case can be studied only with the use
of continued fractions. If a homogeneous field is applied in
addition to a periodic one, then the particle undergoes a drift
with themobility depending on the given field strength and on
the noise intensity and being determined in Sections 11.3 ±
11.5. The graphical display of steady distributions of
coordinate and velocity for a particle for various homoge-
neous field strengths, coefficients of friction, and noise
intensity in Section 11.5 is very impressive. Section 11.6 is
devoted to the study of the transition from the localization
regime to the travelling particle regime. This transition is
shown to be possible only in the absence of noise as the
homogeneous field strength increases. Unsteady solutions are
studied in Section 11.7 with the use of Floquet's theorem to
determine the eigenfunctions. The diffusion coefficient and
mobility are shown to be related by the Einstein ± Smolu-
chowski equality and the Fourier images of the structural
factor is shown to take the diffusive form in the hydro-
dynamic limit. Section 11.8 deals with the determination of
the frequency dependence of susceptibility. The use of the
method of continued fractions shows that both the real and
imaginary components of the susceptibility have peaks at the
zero frequency o and o 6� 0; these peaks smooth out as
friction increases. And, finally, in Section 11.9 eigenvalues
and eigenfunctions are studied for different relations between
homogeneous and harmonic components, the coefficient of
friction and the noise intensity. The plots therein seem very
similar to the `web' of electronic energy spectra of a crystal.

The final Chapter 12 is concerned with the study of
statistical properties of laser radiation. Firstly, within the
framework of the microscopic approach, the operators
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corresponding to the electromagnetic wave amplitude on the
one side and to the electron polarization and population
difference in two energy levels on the other side are shown to
satisfy to the well-known Lorenz synergistic system. Then
within the framework of the adiabatic approximation this
system is shown to reduce to the familiar van der Pol
equation. With the introduction of stochastic sources, this
last equation yields the Langevin equation for laser radiation
with different intensities and phases. As a result the FPE and
the recurrent relation for the intensity distribution moments
are found. In Section 12.2, the steady intensity distribution is
shown to have the form of the Gibbsian distribution with the
Landau potential as an exponent. It is significant that the
moments of the distribution increase in magnitude infinitely
near the critical value of the controlling parameter as their
order increases. Section 12.3 is concerned with the problem of
presentation of eigenvalues and eigenfunctions. As is shown
in the next Section 12.4, the relevant expansion coefficients
are determined via the continued fractions, the use of which
makes it possible to find the probability that the laser will emit
spontaneously (Section 12.5). And, finally, in Section 12.6 it is
established how the distribution of spontaneous emission
intensity relates to that of photoelectrons emitted due to the
photon detector exposure to this radiation.

The book includes six appendices more or less related to
the use of the method of continued fractions and eleven
additions in the second edition. Most of the additions are
very concise and include references to other works, which
have been published since the first edition. Among them the
last Addition S.11 seems themost interesting since it considers
the FPE with negative elements in the diffusion coefficient
matrix and with third-order derivatives. Appendix A.1 and
Addition S.10 consider colour noise, whose intensity has an
exponential nature. It is shown that this case can be reduced
to additive noise using the colour noise intensity as a new
variable. In turn this enables the results of Chapters 3, 4 to be
reproduced based on the continued fraction method. Appen-
dix A.2 displays that the collision integral in the Boltzmann
equation can be transformed into the Fokker ± Planck
operator and, thus, a continued fraction can be applied to it.
Appendix A.3 presents calculations of matrix elements for
Green's function of a harmonic oscillator with the aid of a
continued fraction. In this way the results of Section 5.5 are
reproduced. In Appendix A.4, the quantum-mechanical FPE
is found using the characteristic function of a damped
harmonic oscillator and then the steady distribution is
derived from it. Appendix A.5 describes a very elegant
method (the fourth one!) to derive the FPE by averaging the
equation for the microcanonical distribution
d�t� � d�z�t� ÿ x�, where z�t� complies with the stochastic
equation of motion. And, finally, Appendix A.6 is devoted to
the van der Pol equation with a fluctuating controlling
parameter. The amplitude noise of the stochastic variable is
shown now to be proportional to the amplitude value and,
hence, the steady distribution can take a d-like form. Going
over to a logarithmic variable, the noise can be transformed
into an additive function and the FPE can be reduced to the
SchroÈ dinger equation with a Toda potential.
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