
Abstract. Differences between translation-invariant and bro-
ken-symmetry bipolaron theories are analyzed in detail. It is
shown that the Bogolyubov ±Tyablikov canonical transforma-
tion allows collective coordinates to be introduced in a regular
way for two particles in a quantum field and that for the case of
the bipolaron the resulting electron-electron interaction in a
phonon field depends on the electron coordinate difference
alone. Predictions using a revised solution of the nonlinear
differential equations for a bipolaron are given. It is shown that
solving bipolaron equations numerically reduces the total bipo-
laron energies compared to known variational results.

1. Introduction

One of the main results of quantum field theory is the
statement that the interaction between the particles is caused
by the exchange of field quanta. In the case of two particles in
a homogeneous isotropic medium this interaction can only
depend on the difference in the particle coordinates. The
problem of the nature of the interaction between two particles
spaced from each other has always attracted the attention of
physicists. It will suffice to recall the prolonged debates about
the long-range or short-range character of the influence of
bodies on each other. In Newtonian mechanics the mutual
influence of bodies on each other is characterized by a force.
According to Newton's third law, the forces influencing both
the particles are equal and opposite, i.e.

qU
qr1
� ÿ qU

qr2
; �1�

where r1 and r2 are the coordinate vectors of both the
particles, and U�r1; r2� is the potential energy of the inter-
particle interaction. Relation (1) can be derived from a
fundamental property of the system under consideration, i.e.
its translation invariance. Indeed, the interaction energy
U�r1; r2� in a homogeneous isotropic medium does not
change if we simultaneously displace both the particles by a
distance a:

U�r1; r2� � U�r1 � a; r2 � a� : �2�

Since relation (2) is valid for any displacement a, it is
fulfilled only if

U�r1; r2� � U�r1 ÿ r2� : �3�

Thus, Newton's third law is a consequence of the
homogeneity and isotropy of a medium. In classical
mechanics, however, such a formulation of Newton's third
law is not commonly used, because, when postulating the
third law, Newton meant a contact interaction of bodies
rather than an interaction via a field.

The statement that the interaction between two particles
only depends on the difference in their coordinates is general
and central to the contemporary theory of interacting
particles. In particular, it was shown in Ref. [1] that the
interaction between two electrons in a phonon field is only
determined by the difference in the electron coordinates, the
result being true for any constant of the electron-phonon
coupling. This result is however in contradiction with well-
known results of strong coupling bipolaron theory.

Recall that a bipolaron represents a system of two
electrons coupled with each other due to a strong interaction
with themedium. In polar crystals an electron interacts with a
phonon field. Thus, a bipolaron in polar crystals can be
considered as two coupled polarons. According to the
bipolaron model, which was first suggested by S Pekar, the
lattice polarization is assumed to be static. It induces a
potential coupling electrons with opposite spins, and the
electrons maintain polarization through their electric fields,
i.e. the arising state is self-consistent and the symmetry of the
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total system appears to be spontaneously broken. Subse-
quently, the term `bipolaron' acquired a wider meaning and
now refers to electrons interacting with any phonons,
magnons and other quasi-particles.

The main goal of this paper is to discuss most thoroughly
the physical situation arising in the description of two
particles in a quantum field and to consider a mathematical
approach to describing a strong particle-field interaction.
Since the approach suggested is independent of the details of
the interaction between two particles, it can be applied to
various cases of interaction of particles with a quantum field.

The problems to be discussed are not new. They first arose
in the attempt to develop a translation-invariant theory for
one particle strongly interacting with a quantum field. As we
show below there is no consensus now even in this simplest
case. We hope that this discussion will help to clear up the
differences between the translation-invariant theories and the
theories with broken symmetry.

2. Physical reasons for the introduction
of collective coordinates in the bipolaron
problem

In the polaron case the electron interacts with the medium's
polarization induced by the electron itself. Thus, the electron
resides in a potential field j�rÿ r0�, where r0 defines the
position of the potential well induced by the polarization. In
an isotropic homogeneous medium r0 can be arbitrary. If the
field j was classical, the value r0 (in the reference system
where the polaron rests), once chosen, would remain fixed. In
quantum theory two approaches are possible. Either the well
can be considered fixed in space r0 � const, which corre-
sponds to the case of broken symmetry, or the well is not
spatially fixed and executes fluctuative motions so that it can
be found at any point in space with equal probability. This
latter case corresponds to the conservation of the translation
symmetry of the initial problem.

Historically, the polaron theory originally dealt with the
former approach based on the Pekar semiclassical theory [2];
the potential well was considered spatially fixed. The
subsequent quantum-field description of the polaron, the
foundation of which was laid by FroÈ hlich [3], remained, in
fact, within the same paradigm. Themost representative is the
quotation fromRef. [4]: `Self-trapping of an electron or a hole
presents an interesting example of a situation where the
reasoning of symmetry or group theory can lead to erroneous
results.'

The latter approach is based on papers by Bogolyubov
andTyablikov [5, 6] who did not consider the potential well as
fixed in space. However, though the initial Hamiltonian was
written with a fixed potential well, the degeneration of the
Hamiltonian with respect to r0 was nevertheless taken into
account from the outset. This is achieved by the introduction
of a collective coordinate (more precisely, a group coordi-
nate). The electron radius-vector r is presented then as
r � q� l, where q is the translation-invariant part of the
electron coordinates, and l is the fluctuating part. All the
results in Refs [5, 6] are written in the coordinates q and l
which have mathematical rather than physical meaning. In
the case of one particle this situation is quite natural, since in
physically meaningful coordinates a potential well possessing
translation invariance must not depend on coordinates at all.
This would correspond to the existence of solutions only in
the form of plane waves.

As the theory with broken symmetry does not introduce
physically meaningless variables it has accepted wide recogni-
tion, while the translation-invariant approach has been dealt
with in only a few works. It is essential that in the case of one
polaron both approaches, i.e. that with broken symmetry and
the translation-invariant approach, yield the same result in
the zero approximation.

The situation changes, however, if we consider two
particles in a field. The Hamiltonian of the particle-field
interaction Hint will be

Hint � ej�r1 ÿ r0� � ej�r2 ÿ r0� ; �4�

where r1 and r2 are the coordinates of the first and the
second particles, respectively. The fact that the interaction
between two particles in an isotropic and homogeneous
system depends only on the distance between the particles
has never been doubted. In quantum field theory this
result follows immediately when the interaction is weak
and can be taken into account by the perturbation theory.
Suppose, for example, that Hamiltonian (4) describes the
interaction of two nonrelativistic particles with a scalar
field. Since the interaction is linear in field operators, Hint

can be written as

Hint �
X
k

gCk

n
b�k exp

�ÿ i�r1 ÿ r0�k
�

� bk exp
�ÿ i�r2 ÿ r0�k

��H:� c:
o
; �5�

where g is the coupling constant of the particle-field
interaction, Ck are some constants of the particle-field
interaction, and b�k , bk are the operators of creation and
annihilation of the field quanta with energy o�k�. For second
order perturbation theory the above interaction takes on the
form

U�r1 ÿ r2� � ÿ2
X
k

g2
jCkj2
ok

cos k�r1 ÿ r2� : �6�

It follows that the interaction caused by the exchange of
the field quanta depends only on the difference in the particle
coordinates. It should be emphasized that the inference about
the dependence of the interparticle interaction only on the
coordinate difference is valid in any order of the perturbation
theory. The second order of perturbation theory is considered
here only for interaction (6) to be written in an explicit form.
An interaction of the form (6), obtained with the use of
perturbation theory, provides the basis for many theories,
particularly, for the theory of nucleon-nucleon interaction
caused by the exchange of the meson-field quanta [7].

The most troublesome is the other limiting case, when
g4 1, i.e. the case of a strong particle-field interaction. In the
theories with broken symmetry (semiclassical theories) the
field j in (4) in the zero approximation is considered as
classical, which is consistent with the intuitive idea of the
motion of a particle in a fixed potential well. Thus, in this case
the interaction depends on each individual coordinates of the
particles and is not translation-invariant. The particles move
in a potential well whose position is fixed in space. The
situation is quite similar to a quantum field if r0 is fixed. In
this event the bipolaron theory leads to an interaction which
only depends on the individual vectors r1 and r2, and thereby
is not translation-invariant in physical variables.
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In the translation-invariant theories this intuitive idea
appears wrong. Actually, even in the limit g!1 the idea of
the existence of a classical component in the solution to a
translation-invariant quantum problem is untrue. Thus, for
example, in the case of a strong coupling polaron, which is the
simplest example of a particle interacting with a quantum
field, the Bogolyubov transformation converts the classical
static solution to an operator where only the group variable q,
which is the functional of the field operators, responds to the
translation transformations.

The bipolaron theory where the potential well is not
spatially fixed, i.e. r0 is considered as a collective variable,
was developed in Ref. [1]. The fundamental difference of the
case of two particles from that of one particle is in the fact that
the translation-invariant theory for two particles can be built
in physical coordinates. The reason is that in this event there is
a translation-invariant and nonconstant expression, given by
the interaction of two particles with the field, which only
depends on the difference in the particle coordinates.

3. Introduction of collective coordinates
in the bipolaron theory

To introduce collective coordinates, following Ref. [1], we
pass from the coordinates of particles r1 and r2 in Hamilto-
nian (5) to the coordinates of their centre of mass
R � �r1 � r2�=2 and the relative coordinates r � r1 ÿ r2. In
what follows the quantity r0 in (5) will be considered as a
collective coordinate rather than a fixed position of the
potential well. It should be reiterated that the Hamiltonian
of a system in which collective coordinates are not introduced
and the Hamiltonian which immediately includes collective
coordinates describe one and the same physical system. The
collective coordinates are introduced in order to develop a
translation-invariant theory. Using the complex coordinates
of the field qk related to operators of the creation and
annihilation of the field quanta b�k , bk as

qk � E�bk � b�ÿk����
2
p ; ÿi q

qqk
� i�b�k ÿ bÿk�

E
���
2
p ; �7�

where E is a dimensionless small parameter introduced with
the aim of showing explicitly that the oscillator frequencies
ok � E2nk are small, we express Hamiltonian (2) in the form

Hint �
X
k

2Ak cos
kr

2
exp

�
ik�Rÿ r0�

�
qk ;

Ak �
���
2
p

gCk

E
: �8�

In the translation-invariant bipolaron theory Hamilto-
nian (8) is invariant with respect to the translational group
R! R� a, qk ! qk exp�ÿika�. These transformations deter-
mine the choice of the collective coordinates in the bipolaron
Hamiltonian in the form

R � r0 � q ; �9�

where r0 represents the fluctuating part of the coordinates,
and all the translations are applied to the coordinate q.
According to (9), the electron centre of mass fluctuates
together with the position of the potential well. In this case
rectilinear and steady motion of the electrons is described by
the collective coordinate q. Let us replace the coordinates qk

by the complex field coordinates Qk:

qk � �Uk � EQk� exp
�ÿ i�kq�� : �10�

Since the total number of dynamic variables for the system
of two electrons plus the field must be conserved, the new
coordinates (10) must meet several additional conditionsX

k

kv�kQk � 0 ; �11�

where vk are the complex numbers, satisfying the condition of
reality vÿk � v�k and the condition of orthogonalityX

k

kakbv�kUk � dab : �12�

Relations (9) ± (12) represent a canonical transformation
which was first used by Bogolyubov and Tyablikov in the
polaron theory.

Substituting in (8) the new variables r0; q;Qk instead ofR,
qk and taking into account the confinement (11), (12) we
obtain for the total Hamiltonian in [1] the expansion
H � H0 � EH1 � E2H2 � . . . In doing so the zero order
Hamiltonian contains an interaction which depends only on
the relative coordinates of two particles r � r1 ÿ r2:

U�r1 ÿ r2� � 4
X
k

jAkj2
nk

�
cos

kr

2

��c�r���2 d3r cos k
2
�r1 ÿ r2� ;

�13�
where c�r� is the wave function.

It should be reiterated that the interaction between two
particles is only determined by the difference in the particle
coordinates, and this conclusion is independent of the value
of the coupling constant. The parameter E (strong coupling)
was taken small only to express interaction (13) explicitly.

The results of Ref. [1] whose main concepts are presented
above, can be applied to the case of one particle. The energy of
the particle-field interaction will be written as

U �
X
k

2g2
jCkj2
ok

: �14�

This expression diverges ifCk is the interaction of the electron
with longitudinal polarization phonons. It should be pointed
out regarding this conclusion that, as was shown above in the
case of one particle, the translation-invariant approach based
on the description of the particle in physically meaningful
coordinates leads to the interaction energy (14), which is
independent of the particle coordinates. Therefore, expres-
sion (14) does not lead to any contradictions. Moreover, it
exactly corresponds to the expression for the small-radius
polaron energy: U � e2=~Erp, where rÿ1p stands for the upper
limit at which the sum (14) is cut out. The physical reason for
this correspondence is quite clear. According to Ref. [1], the
electron in this situation fluctuates together with the polariza-
tion potential well, which instantly follows its motions.

4. Numerical calculations

The potential energy (13) involved in the SchroÈ dinger
equation for two particles in a field in the limiting case of a
strong coupling can be considered as an exact result of the
translation-invariant theory. The phrase `exact solution of a
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two-particle problem in a quantum field' was used in paper [1]
in just this sense. In truth, the nonlinear differential equations
obtained for the bipolaron in Ref. [1] have no analytical
solution and were integrated approximately.

The authors of Refs [8, 9] applied probe wave functions to
these equations and obtained a total bipolaron energy less
than in Ref. [1]. So, the numerical solutions in Ref. [1] were
not of very high accuracy. The discrepancy is 7ÿ 14%. Table
1 compares the results of calculations for the total energy of
the bipolaron EL1 obtained by probe functions (9) in paper
[8],EL2 obtained by probe functions (11) in the same paper [8],
and EL found from improved numerical integration [10] of
the system (43) from Ref. [1]. It is seen that EL is less than the
values obtained by the variational computations of EL1 and
EL2. The deviation of the results listed in Tables 1 ± 3 of Ref.
[1] from those obtained with the use of improved solutions is
approximately 5% [10]. The results of improved calculations
of other physical quantities significant in the bipolaron theory
are given in Refs [10, 11].

5. Various versions
of translation-invariant theories

Historically, the Bogolyubov ±Tyablikov theory was one of
the first translation-invariant theories considering the pro-
blem of retaining the symmetry properties of the Hamilto-
nian, which were lost as a result of separation of the classical
part of the boson field. The methodological significance of
this theory lies in the fact that a system with a constraint was
quantized for the first time. As distinct from classical
mechanics, where the study of systems with constraints is
reduced to solving a conditional extremum problem, in the
quantum theory there is no universal approach to the
solution of such problems. The consideration of systems
with constraints within quantum field theory became an
actual problem as late as a quarter of century after the
publication of the Bogolyubov ± Tyablikov papers. They
attracted interest in the context of the problem of quantiza-
tion in the curved space and the problem of quantizing
nonperturbative solutions of the field theory, such as kinks,
instantons, solitons, etc. Nowadays various approaches have
been developed in quantum field theory in which collective
coordinates are introduced immediately in the initial Hamil-
tonian just as r0 in expressions (4), (5). There are various ways
of imposing additional conditions which are used to keep the
total number of variables in the system constant. For
example, expanding a field into a Fourier series, the authors
of Refs [12, 13] do not use the Bogolyubov ± Tyablikov
condition, and from the outset reduce the number of Fourier
components by a number equal to the number of collective
variables introduced.

In the bipolaron theory, the Bogolyubov ±Tyablikov
method was used in papers [14, 15]. In these works the
Bogolyubov ±Tyablikov transformation was applied to
Hamiltonian (5) but collective coordinates were not intro-
duced. In this approach the zero approximation yields the

same results as in the theories with broken symmetry. As in
the case of the polaron these theories manipulate only split,
physically meaningless coordinates. Thus, a physical theory
which would use only physical variables, such as relative
coordinates r � r1 ÿ r2 and the potential energy U�r1 ÿ r2�,
was not developed in these works.

In the previous discussion we considered in detail the
behaviour of particles in nonrelativistic quantum field theory.
In the relativistic theory, the analysis of the problem should
include the retardation of the interaction caused by the
finiteness of the signal propagation. Since the corresponding
field equations in the relativistic theory are formulated in
terms of variables unaffected by symmetry transformations,
in particular, by space-time transformations, the conclusion
about the dependence of the interaction on the difference in
the particle coordinates only is valid in this case as well.

In summary it should be noted that the method of
introducing collective coordinates and the Bogolyubov ±
Tyablikov transformation in a two-particle problem consid-
ered in this work was applied to the deuteron problem [16].
This approach yields a physically correct result for nuclear
forces which only depend on the difference in the nucleon
coordinates.

In conclusion the author expresses his gratitude to
V K Fedyanin, N M Plakida, I V Puzynin, G N Chuev,
V AOsipov and E AKochetov for numerous discussions and
valuable comments.
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Table 1.

Z 0 0.053 0.094 0.132 0.166 0.199 0.228 0.256 0.282 0.305 0.317

EL1

EL2

EL

ÿ1.36
ÿ1.41
ÿ1.44

ÿ1.28
ÿ1.33
ÿ1.35

ÿ1.22
ÿ1.25
ÿ1.28

ÿ1.15
ÿ1.19
ÿ1.21

ÿ1.09
ÿ1.12
ÿ1.15

ÿ1.03
ÿ1.05
ÿ1.08

ÿ0.97
ÿ0.99
ÿ1.02

ÿ0.92
ÿ0.93
ÿ0.96

ÿ0.86
ÿ0.87
ÿ0.90

ÿ0.81
ÿ0.82
ÿ0.85

ÿ0.78
ÿ0.79
ÿ0.82
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