
Abstract. This paper reviews the state of affairs in a modern
branch of mathematical physics called probabilistic topology.
In particular we consider the following problems: (i) we estimate
the probability of trivial knot formation on a lattice using the
Kauffman algebraic invariants and show the connection of this
problem with the thermodynamic properties of 2D disordered
Potts model; (ii) we investigate the limiting behavior of random
walks in multiconnected spaces and on non-commutative groups
related to knot theory. We discuss the application of the above-
mentioned problems in the statistical physics of polymer chains.
On the basis of non-commutative probability theory we derive
some new results in the statistical physics of entangled polymer
chains which unite rigorous mathematical facts with intuitive
physical arguments.

1. Introduction

It would not be an exaggeration to say that contemporary
physical science is becoming more and more mathematical.

This fact is too strongly manifested to be completely ignored.
Hence I permit myself to bring forward two possible
conjectures:

(a) On the one hand there are hardly any newly discovered
physical problems which are beyond the well established
methods of modern theoretical physics. This leads to the
fact that nowadays real physical problems seem to be less
numerous than the mathematical methods for their investiga-
tion.

(b) On the other hand mathematical physics is a fascinat-
ing field which absorbs new ideas from different branches of
modern mathematics, translates them into the physical
language and hence fills the abstract mathematical construc-
tions with new fresh content. This ultimately leads to creating
new concepts and stimulates the search for new deep
conformities to natural laws in known physical phenomena.

The penetration of new mathematical ideas in physics
sometime has a rather paradoxical character. It is not a secret
that the difference in means (in languages) and goals of
physicists and mathematicians leads to mutual misunder-
standing, making the very subject of investigation obscure.
What is true in general is certainly true in particular. To
clarify the point, let us turn to the statistics of entangled
uncrossable random walks Ð the well-known subject of the
statistical physics of polymers. Actually, since the 1970s, after
Conway's works, when the first algebraic topological invar-
iants Ð Alexander polynomials Ð became very popular in
mathematical literature, physicists working in statistical
topology have acquired a much more powerful topological
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invariant than the simple Gauss linking number. The
constructive utilization of algebraic invariants in the statis-
tical physics of macromolecules has been developed in the
classical works of A Vologodski|̄ and M Frank-Kamenetski|̄
[1]. However until recently in the overwhelming majority of
works the authors have continued using the commutative
Gauss invariant just making references to its imperfectness.

One of the reasons for such inertia consists in the fact that
new mathematical ideas are often formulated as `theorems of
existence' and it takes much time to retranslate them into a
physically acceptable form which may serve as a real
computational tool.

We intend to use some recent advances in algebraic
topology and the theory of random walks on non-commu-
tative groups for reconsidering the old problemÐ evaluating
the entropy of randomly generated knots and entangled
random walks in a given homotopic state. Let us emphasize
that this is a real physical paper, and when it is possible the
rigorous statements are replaced by some physically justified
conjectures. Generally speaking, the work is devoted to an
analysis of probabilistic problems in topology and their
applications in the statistical physics of polymer systems
with topological constraints.

Let us formulate briefly the main results of our work.
1. The probability for a long random walk to form a knot

randomly with a specific topological invariant is computed.
This problem is considered using the Kauffman algebraic
invariants and the connection with the thermodynamic
properties of 2D Potts model with `quenched' and
`annealed' disorder in interaction constants is discussed.

2. The limit behavior of random walks on the non-
commutative groups related to the knot theory is investi-
gated. Namely, the connection between the limit distribution
for the Lyapunov exponent of products of non-commutative
random matrices Ð generators of `braid group' Ð and the
asymptotic of powers (`knot complexity') of algebraic knot
invariants is established. This relation is applied for calculat-
ing the knot entropy. In particular, it is shown that the `knot
complexity' corresponds to the well known topological
invariant, `primitive path', repeatedly used in the statistics of
entangled polymer chains.

3. The random walks on multi-connected manifolds is
investigated using conformal methods and the non-abelian
topological invariants are constructed. It is shown that many

non-trivial properties of the limit behavior of random walks
with topological constraints can be explained in the context of
random walks on hyperbolic groups.

4. The limit behavior of entangled random paths estab-
lished above is used for investigation of the statistical
properties of a so-called `crumpled globule' (a trivial ring
without self-intersections in a strongly contracted state).

The connection between all these problems is shown in
Fig. 1.

2. Knot diagrams as disordered spin systems

2.1 Brief review of statistical problems in topology
The interdependence of such branches of modern theoretical
and mathematical physics as the theory of integrable systems,
algebraic topology and conformal field theory has proved to
be a powerful catalyst for the development of a new direction
in topology, namely, of analytical topological invariant
construction by means of exactly solvable statistical models.

Today it is widely believed that the following three
cornerstone findings have brought a fresh stream into
topology:

Ð A deep relation has been found between the Temper-
ley ± Lieb algebra and theHecke algebra representation of the
braid group. This fact resulted in the remarkable geometrical
analogy between the Yang ±Baxter equations, appearing as a
necessary condition of the transfer matrix commutativity in
the theory of integrable systems on the one hand, and one of
Reidemeister moves, used in the knot invariant construction
on the other hand.

Ð It has been discovered that the partition function of the
Wilson loop with the Chern ± Simons action in the topologi-
cal field theory coincides with the representation of the
known non-abelian algebraic knot invariants written in
terms of the time-ordered path integral.

Ð The need for new solutions of the Yang ±Baxter
equations has given a power impetus to the theory of
quantum groups. Later on a related set of problems was
separated into an independent branch of mathematical
physics.

Of course the above mentioned findings do not exhaust
the list of all brilliant achievements in that field during the last
decade, but apparently these new accomplishments have used

Spectral and quantum problems
of dynamic systems on hyperbolic
manifols

Lattice random walk in regular
arrays of obstacles

Diffusion on double (multi)
punctured plane

Limit distribution for powers
of algebraic invariants of randomly
generated knots

Knot invariants and non-abelian
Chern ë Simons éeld theory

Statistics of lattice knots and thermo-
dynamic behavior of Potts spin glasses

Random walk on braid groups Monodromy transformatios
and correlation functions in CFT

Limit behavior of random walks
on Riemann surfaces of constant
negative curvature

Random walks on free
and `local' groups

Topological invariants
from conformal methods

Figure 1.Links between topologically ± probabilistic problems. Solid boxesÐproblems, discussed in the paper; dashed boxesÐproblems not included in

the consideration.
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profound `ideological' changes in the topological science:
now we can hardly consider topology as an independent
branch of pure mathematics where each small step forward
takes so much effort that it seems incidental.

Thus in the middle of the 80s the `quantum group' gin
was released. It linked classical problems in topology,
statistical physics and field theory by a common mathema-
tical formalism. A new look at the old problems and the
beauty of the formulated ideas made an impression on
physicists and mathematicians. As a result, in the last few
years the number of works devoted to the search of the new
applications of the quantum group apparatus has grown
exponentially going beyond the framework of original
domains. As an example of the persistent penetration of
the quantum group ideas in physics we can cite the works
on anyon superconductivity [2], intensively discussing
problems on `quantum random walks' [3], the investigation
of spectral properties of `quantum deformations' of harmo-
nic oscillators [4] and so on.

Time will show whether such `quantum group expansion'
is physically justified or merely does tribute to today's
fashion. However it is clear that physics has acquired a new
convenient language allowing the construction of new `non-
abelian objects' and to work with them.

Among the vast number of works devoted to different
aspects of the theory of integrable systems, the topological
applications connected to the construction of knot and link
invariants and their representation in terms of partition
functions of some known 2D-models deserve our special
attention. There exist several reviews [5] and books [6] on
this subject and our aim by no means consists in a re-
interpretation or compilation of their contents. We attempt
a consecutive account of recently solved probabilistic pro-
blems in topology as well as attract attention to some
interesting, still unsolved, questions lying on the border of
topology and probability theory. Of course we employ the
knowledge acquired in algebraic topology utilizing the
construction of new topological invariants made by
V F R Jones [5] and L H Kauffman [7].

Besides the traditional fundamental topological issues
concerning the construction of new topological invariants,
investigation of homotopic classes and fibre bundles we mark
a set of adjoint butmuch less studied problems. First of all, we
mean the problem of so-called `knot entropy' calculation.
Most generally it can be formulated as follows. Take the
lattice ZZ 3 embedded in the space IR3. Let ON be the ensemble
of all possible closed non-self-intersecting N-step loops with
one common fixed point on ZZ 3; byowe denote the particular
trajectory configuration. The question is: what is the prob-
abilityPN that the trajectoryo 2 ON belongs to some specific
homotopic class. Formally this quantity can be represented in
the following way

PNfInvg � 1

ON

X
fo2ONg

D
�
Invfog ÿ Inv

�
� 1

ON

X
fr1;...;rNg

D
�
Invfr1; . . . ; rNg ÿ Inv

�ÿ
1ÿ D�ri ÿ rj�

�
D�rN�;

�2:1�

where Invfog is the functional representation of the knot
invariant corresponding to the trajectory with the bond
coordinates fr1 . . . ; rNg; Inv is the topological invariant
characterizing a knot of specific homotopic type and D�x� is

the Kronecker function:D�x � 0� � 1 andD�x 6� 0� � 0. The
firstD-function inEqn (2.1) cuts the set of trajectories with the
fixed topological invariant while the second and the third D-
functions ensure the N-step trajectory to be non-self-inter-
secting and to form a closed loop respectively.

The distribution function PNfInvg satisfies the normal-
ization conditionX

all homotopic
classes

PNfInvg � 1 : �2:2�

The entropy SNfInvg of the given homotopic state of the
knot represented by an N-step closed loop on ZZ 3 reads

SNfInvg � ln
�
ONPNfInvg

�
: �2:3�

The problem concerning the determination of knot
entropy has been discussed time and again by leading
physicists. However the number of new analytic results in
this field was insufficient till the beginning of the 80s: in about
90 percent of published materials authors used the Gauss
linking number or some of its abelian modifications for
classification of a topological state of knots and links while
the disadvantages of this approach were explained in the
remaining 10 percent. We do not include in this list the
celebrated investigations of A V Vologodski|̄ et. al. [1]
devoted to the first fruitful usage of the non-abelian
Alexander algebraic invariants for computer simulations in
statistical biophysics. We discuss physical applications of
these topological problems at length in Section 5.

Despite the clarity of the geometrical image, the topolo-
gical ideas are very hard to formalize because of the non-local
character of topological constraints. Besides, the main
difficulty in attempts to calculate analytically the knot
entropy is due to the absence of a convenient analytic
representation of the complete topological invariant. Thus,
to succeed, at least partially, in computation of the knot
entropy we simplify the general problem replacing it by the
problem of calculating the distribution function for the knots
with defined topological invariants. That problem differs
from the original one because none of the known topological
invariants (Gauss linking number, Alexander, Jones, HOM-
FLY) are complete. The only exception are Vassiliev
invariants [8], which are beyond the scope of the present
book. Strictly speaking we are unable to estimate exactly the
correctness of such a replacement of the homotopic class by
the mentioned topological invariants. Thus under the
definition of the topological state of the knot or entangle-
ment we simply understand the determination of the
corresponding topological invariant.

The problems where o [see Eqn (2.1)] is the set of
realizations of the random walk, i.e. the Markov chain are
of special interest. In that case the probability of finding a
closed N-step random walk in IR 3 in some prescribed
topological state can be presented in the following way

PNfInvg�
�
. . .

�YN
j�1

drj
YNÿ1
j�1

g�rj�1 ÿ rj�d
�
Invfr1; . . . ; rNg

ÿ Inv
�
d�rN� ; �2:4�

where g rj�1 ÿ rj
ÿ �

is the probability of finding the j� 1th step
of the trajectory in the point rj�1 if jth step is in rj. In the limit
a! 0 and N!1 (Na � L � const) in three-dimensional
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space we have the following expression for g rj�1 ÿ rj
ÿ �

g�rj�1 ÿ rj� �
�

3

2pa2

�3=2

exp

�
ÿ 3�rj�1 ÿ rj�2

2a2

�
'
�

3

2pa2

�3=2

exp

�
3

2a

�
dr�s�
ds

�2�
: �2:5�

Introducing the `time', s, along the trajectory we rewrite the
distribution function PNfInvg [Eqn (2.4)] in the path integral
form with the Wiener density measure

PNfInvg � 1

Z
�

. . .

�
Dfrg exp

�
ÿ 3

2a

�L
0

�
dr�s�
ds

�2

ds

�
� d�Invfr�s�g ÿ Inv� ; �2:6�

and the normalization condition is as follows

Z �
X

all different
knot invariants

PNfInvg :

The form of Eqn (2.6) up to the Wick turn and the
constants coincides with the scattering amplitude a of a free
quantum particle in a multi-connected phase space. Actually,
for the amplitude a we have

a �
X

all paths from a given
topological class

exp

�
i

h

�
_r2�s� ds

�
: �2:7�

If the phase trajectories can be mutually transformed by
means of continuous deformations, then the summation in
Eqn (2.7) should be extended to all available paths in the
system, but if the phase space consists of different topological
domains, then the summation in Eqn (2.7) refers to the paths
from the exclusively defined class and the `knot entropy'
problem arises.

2.2 Abelian problems in the statistics of entangled random
walks and the incompleteness of the Gauss invariant
As far back as 1967 S F Edwards had discovered the basis of
the statistical theory of entanglements in physical systems. In
[9] he proposed a way of exactly calculating the partition
function of a self-intersecting random walk topologically
interacting with an infinitely long uncrossible string (in 3D
case) or obstacle (in 2D-case). That problem had been
considered in mathematical literature even earlier Ð see
paper [10] for instance Ð but S F Edwards was apparently
the first to recognize the deep analogy between abelian
topological problems in the statistical mechanics of Markov
chains and quantum-mechanical problems (like Bohm ±
Aharonov) of particles in magnetic fields. The review of
classical results is given in [12], whereas some modern
advantages are discussed in [11].

The 2D version of the Edwards' model is formulated as
follows. Take a plane with an excluded origin, producing the
topological constraint for the random walk of length L with
the initial and final points r0 and rL respectively. Let
trajectory make n turns around the origin (Fig. 2). The
question is in calculating the distribution function
Pn�r0; rL;L�.

In the said model the topological state of the path C is
fully characterized by number of turns of the path around the
origin. The corresponding abelian topological invariant is
known as Gauss linking number and when represented in the

contour integral form, reads

Inv
�
r�s�	 � GfCg �

�
C

y dxÿ xdy

x2 � y2

�
�
C

A�r� dr � 2pn� # ; �2:8�

where

A�r� � x� r

r 2
; x � �0; 0; 1� �2:9�

and # is the angular distance between ends of the random
walk.

Substituting Eqn (2.8) into Eqn (2.6) and using the
Fourier transform of the d-function, we arrive at

Pn�r0; rL;L� � 1

pLa
exp

�
r20 � r2L
La

��1
ÿ1

Ijlj

�
2r0rL
La

�
� exp

�
il�2pn� #��dl ; �2:10�

which reproduces the well known old result [9] (some very
important generalizations one can find in [11]).

A physically significant quantity obtained on the basis of
Eqm (2.10) is the entropic force

fn�r� � ÿ q
qr

lnPn�r;L� ; �2:11�

which acts on the closed chain �r0 � rL � r, # � 0� when the
distance between the obstacle and a certain point of the
trajectory changes. Apparently the topological constraint
leads to a strong attraction of the path to the obstacle for
any n 6� 0 and to weak repulsion for n � 0.

Another exactly solvable 2D-problem closely related to
that under discussion deals with the calculation of the
partition function of a random walk with a given algebraic
area. The problem concerns the determination of the
distribution function PS�r0; rL;L� for a random walk with
the fixed ends and specific algebraic area S.

As a possible solution, D S Khandekar and F W Wiegel
[13] again represented the distribution function in terms of the
path integral Eqn (2.6) with the replacement

d
h
Inv
�
r�s�	ÿ Inv

i
! d

h
S
�
r�s�	ÿ S

i
; �2:12�

where the area is written in the Landau gauge:

S
�
r�s�	 � 1

2

�
C

y dxÿ xdy � 1

2

�
C

eA�r�_r ds; eA � x� r

�2:13�

[compare to Eqs (2.8), (2.9)].

y

0

n � 1

r0

rL

Figure 2. Random walk on the plane near the single obstacle.
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The final expression for the distribution function reads
([12])

PS�r0; rL;L� � 1

2p

�1
ÿ1

dg exp�iqS�Pq�r0; rL;L� ; �2:14�

where

Pq�r0; rL;L� � l
4p sin�Lal=4� exp

�
l
2
�x0yL ÿ y0xL� ÿ l

4

� ��xL ÿ x0�2 � �yL ÿ y0�2
�
cot

Lal
4

�
�2:15�

and l � ÿiq.
For closed trajectories Eqs (12.14), (2.15) can be simpli-

fied essentially, giving

Pcl
S �N� � 2La cosh2

�
2pS
La

�
: �2:16�

Different aspects of this problem have been extensively
studied in [11].

There is no principal difference between the problems of
random walk statistics in the presence of a single topological
obstacle or with a fixed algebraic area Ð both of them have
the `abelian' nature. Nevertheless we would like to concen-
trate on the last problem because of its deep connection with
the famous Harper ±Hofstadter model dealing with the
spectral properties of a 2D electron hopping on a discrete
lattice in a constant magnetic field [14]. Actually, rewrite Eqn
(2.4) with the substitution Eqn (2.12) in form of recursion
relation in the number of steps, N:

Pq�rN�1;N� 1� �
�
drNg rN�1 ÿ rN� �

� exp

�
iq

2
x�rN � rN�1�

�
Pq�rN;N�: �2:17�

For the discrete random walk on ZZ 2 we use the identity�
drNg�rN�1 ÿ rN��. . .� !

X
frNg

w�rN�1 ÿ rN��. . .� ; �2:18�

where w rN�1 ÿ rN� � is the matrix of the local jumps on the
square lattice; w is supposed to be symmetric:

w �
1

4
; for �x; y� ! �x; y� 1� and �x; y� ! �x;�1; y�;

0 otherwise :

8<:
�2:19�

Finally, in the Landau gauge we get :

4

e
W�x; y; q; e� � exp

�
1

2
iqx

�
W�x; yÿ 1; q�

� exp

�
ÿ 1

2
iqx

�
W�x; y� 1; q�

� exp

�
1

2
iqy

�
W�xÿ 1; y; q�

� exp

�
ÿ 1

2
iqy

�
W�x� 1; y; q� ; �2:20�

where W�x; y; q; e� is the generating function defined via the
relation W�x; y; q; e� �P1N�0 eNPS�rN;N� and q plays the

role of the magnetic flux through the contour bounded by the
random walk on the lattice.

There is one point which is still out of our complete
understanding. On the one hand the continuous version of
the described problem has very clear abelian background
due to the use of commutative `invariants' like the algebraic
area, Eqn (2.13). On the other hand it has been recently
discovered [15] that the so-called Harper equation, i.e. Eqn
(2.20), written in the gauge Sfrg � �

C y dx, exhibits a hidden
quantum group symmetry related to the so-called C �-
algebra [16] which is strongly non-abelian. Usually in
statistical physics we expect that the continuous limit
(when lattice spacing tends to zero with corresponding
rescaling of parameters of the model) of any discrete
problem does not change the observed physical picture, at
least qualitatively. But for the considered model the spectral
properties of the problem are extremely sensitive to the
actual physical scale of the system and depend strongly on
the lattice geometry.

The generalization of the above stated problems concerns,
for instance, the computation of the partition function for the
random walk entangled with k > 1 obstacles on the plane
located in the points fr1; . . . ; rkg. At first sight, the approach
based on the usage of the Gauss linking number as a
topological invariant might allow us to solve such a problem
easily. Let us replace the vector potential A�r� in Eqn (2.8) by
the following

A�r1; . . . ; rk� � x�
Xk
j�1

rÿ rj

jrÿ rjj2
: �2:21�

The topological invariant in this case will be the algebraic sum
of turns around obstacles, which seems to be a natural
generalization of the Gauss linking number to the case of
many-obstacle entanglements.

However, the following problem is bound to arise: for a
system with two or more obstacles it is possible to imagine
closed trajectories entangled with a few obstacles together but
not entangled with every one. In Figure 3 the so-called
`Pochhammer contour' is shown. Its topological state with
respect to the obstacles cannot be described using any abelian
version of the Gauss-like invariants.

To clarify the point we can apply this to the concept of the
homotopy group [17]. Consider the topological space
R � IR2 ÿ fr1; r2g where fr1; r2g are the coordinates of the
removed points (obstacles) and choose an arbitrary reference
point r0 6� rj, j 2 �1; 2�. Consider the ensemble of all directed
trajectories starting and finishing at the point r0. Take the
basis loops g1�s� and g2�s� �0 < s < L� representing the right-
clock turns around the points r1 and r2 respectively. The same

Figure 3. Pochammer contour entangled with two obstacles together but

not entangled with every one.
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trajectories passed in the counter-clockwise direction are
denoted by gÿ11 �s� and gÿ12 �s�.

The multiplication of the paths is their composition: for
instance, g1g2 � g1 � g2. The unit (trivial) path is the composi-
tion of an arbitrary loop with its inverse:

e � gig
ÿ1
i � gÿ1i gi ; i � f1; 2g : �2:22�

The loops gi�s� and ~gi�s� are called equivalent if one can be
transformed into another by means of a monotonic change of
variables s � s�~s�. The homotopic classes of directed trajec-
tories form the group with respect to the paths multiplication;
the unity is the homotopic class of the trivial paths. This
group is known as the homotopy group p1�R; r0�.

Any closed path on R can be represented by a `word'
consisting of set of letters fg1; g2; gÿ11 ; gÿ12 g. Taking into
account Eqn (2.22), we can reduce each word to the minimal
irreducible representation. For example, the word
W � g1g

ÿ1
2 g1g1g

ÿ1
1 gÿ12 g2g

ÿ1
1 gÿ12 can be transformed to the

irreducible form: W � g1g
ÿ1
2 gÿ12 . It is easy to understand that

the word W � e represents only the unentangled contours.
The entanglement in Fig. 3 corresponds to the irreducible
word W � gÿ11 g2g1g

ÿ1
2 � 1. The non-abelian character of the

topological constraints is reflected in the fact that different
entanglements do not commute: g1g2 6� g2g1. At the same
time, the total algebraic number of turns (Gauss linking
number) for the path in Fig. 3 is equal to zero, i.e. it belongs
to the trivial class of homology. Speaking more formally, the
mentioned example is the direct consequence of a well known
fact in topology: the classes of homology of knots (of
entanglements) do not coincide in general with the corre-
sponding homotopic classes. The first ones for the group p1
can be distinguished by the Gauss invariant, while the
problem of characterizing the homotopy class of a knot
(entanglement) by an analytically defined invariant is one of
the main problems in topology.

The principal difficulty connected with application of the
Gauss invariant is due to its incompleteness. Hence, exploit-
ing the abelian invariants for adequate classification of
topologically different states in systems with multiple topo-
logical constraints is very problematic.

2.3 Non-abelian algebraic knot invariants
The most obvious topological questions concerning the
knotting probability during the random closure of the
random walk cannot be answered using the Gauss invariant
due to its weakness.

A break through in that field was made in 1975 ± 1976
when the algebraic polynomials were used for the topological
state identification of closed random walks generated by the
Monte-Carlo method [1]. It has been recognized that the
Alexander polynomials, being much stronger invariants than
the Gauss linking number, could serve as a convenient tool
for the calculation of the thermodynamic properties of
entangled random walks. That approach actually appeared
to be very fruitful and themain part of ourmodern knowledge
on knot and link statistics was obtained with the help of these
works and their subsequent modifications.

In the present section we develop the analytic approach in
the statistical theory of knots considering the basic problem
Ð the probability of finding a randomly generated knot in a
specific topological state. We would like to reiterate that our
investigation would be impossible without utilizing the
algebraic knot invariants discovered recently. Below we

reproduce briefly the construction of Jones invariants
following the Kauffman approach in the general outline.

2.3.1 Disordered Potts model and generalized dichromatic
polynomials. The graph expansion for the Potts model with
the disorder in the interaction constants can be defined by
means of a slight modification of the well known construction
of the ordinary Potts model [18, 19]. Let us recall the
necessary definitions.

Take an arbitrary graph LwithN vertices. To each vertex
of the given graph we attribute the `spin' variable si
�i 2 �1;N�� which can take q states labelled as 1; 2; . . . ; q on
the simplex. Suppose that the interaction between spins
belonging to the connected neighboring graph vertices only
contributes to the energy. Define the energy of the spins'
interaction as follows

Ekl � Jkl d�sk; sl�
� Jkl ; sk � sl ; �sk; sl� ÿÿ neighbors;

0 otherwise;

�
�2:23�

where Jkl is the interaction constant which varies for different
graph edges and the equality sk � sl means that the
neighboring spins take equal values on the simplex.

The partition function of the Potts model now reads

Zpotts �
X
fsg

exp

�X
fklg

Jkl
T

d�sk; sl�
�
; �2:24�

where T is the temperature.
Expression Eqn (2.24) gives for q � 2 the well-known

representation of the Ising model with the disordered
interactions extensively studied in the theory of spin glasses
[20]. (Later on we would like to fill in this old story with a new
`topological' sense.)

To proceed with the graph expansion of the Potts model
[19], rewrite the partition function (2.24) in the following way

Zpotts �
X
fsg

Y
fklg

�
1� vkl d�sk; sl�

�
; vkl � exp

�
Jkl
T

�
ÿ 1:

�2:25�

If the graph L has N edges then the product Eqn (2.25)
contains N multipliers. Each multiplier in that product
consists of two terms: 1 and vkl d�sk; sl�. Hence the partition
function Eqn (2.25) is decomposed into the sum of 2N terms.

Each term in the sum is in one-to-one correspondence
with some part of the graph L. To make this correspondence
clearer, it should be considered that an arbitrary term in the
sum represents the product of N multipliers described above
in ones from each graph edge. We accept the following
convention:

(a) If for some edge the multiplier is equal to 1, we remove
the corresponding edge from the graph L;

(b) If the multiplier is equal to vkl d�sk; sl� we keep the
edge in its place.

After repeating the same procedure with all graph edges,
we find a unique representation for all terms in the sum, Eqn
(2.25), by collecting the components (either connected or not)
of the graph L.

Take a typical graph G consisting of m edges and C
connected components where the separated graph vertex is
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considered as one component. The presence of d-functions
ensures the spins' equivalence within one graph component.
As a result after summation of all independent spins and of all
possible graph decompositions we get the new expression for
the partition function of the Potts system Eqn (2.24)

Zpotts �
X
fGg

qC
Ym
fklg

vkl ; �2:26�

where the product
Qm
fklg runs over all edges in the fixed graph

G.
It should be noted that the graph expansion Eqn (2.26)

where vkl � v for all fk; lg coincides with the well known
representation of the Potts system in terms of a dichromatic
polynomial (see, for instance, [18, 19]).

Another comment concerns the number of spin states, q.
As can be seen, in the derivation presented above we did not
account for the fact that q has to take positive integer values
only. From this point of view the representation Eqn (2.26)
has an advantage with respect to the standard representation
Eqn (2.24) and can be considered an analytic continuation of
the Potts system to the non-integer and even complex values
of q. We show in the subsequent sections how the defined
model is connected to the algebraic knot invariants.

2.3.2 Reidemeister moves and the state model for construction
of algebraic invariants. Let K be a knot (or link) embedded in
3D-space. First of all we project the knot (link) onto a plane
and obtain a 2D-knot diagram in the so-called general
position (denoted by K as well). This means that only pair
crossings can be at the points of paths intersections. Then for
each crossing we define the passages, i.e. parts of the
trajectory on the projection going `below' and `above' in
accordance with its natural positions in 3D-space.

For the knot plane projection with defined passages the
following theorem is valid: (Reidemeister [22]):

Two knots embedded in IR3 can be deformed continuously
one into the other if and only if the diagram of one knot can be
transformed into the diagram corresponding to another knot via
the sequence of simple local moves of types I, II and III shown in
Fig. 4.

Work [22] provides us with a proof of this theorem. Two
knots are called regular isotopic if they are isotopic with
respect to the two last Reidemeister moves (II and III);
meanwhile, if they are isotopic with respect to all moves,
they are called ambient isotopic. As can be seen from Fig. 4,
the Reidemeister move of type I leads to the creation of a cusp

on the projection. At the same time it should be noted that all
real 3D-knots (links) are of ambient isotopy.

Now, after the Reidemeister theorem has been formu-
lated, it is possible to describe the construction of the
polynomial `bracket' invariant in the way proposed by
L H Kauffman [7, 23]. This invariant can be introduced as a
certain partition function being the sum over the set of some
formal (`ghost') degrees of freedom.

Let us consider a 2D-knot diagram with defined passages
as a certain irregular lattice (graph). The crossings of path on
the projection are the lattice vertices. Turn all these crossings
to the standard positions where parts of the trajectories in
each graph vertex are normal to each other and form angles of
�p=4 with the x-axis. It can be proven that the result does not
depend on such a standardization.

There are two types of vertices in our lattice Ð (a) and (b)
which we label by the variable bi � �1 as it is shown below:

The next step in the construction of the algebraic invariant
is the introduction of two possible ways of vertex splitting.
Namely, we attribute to each way of graph splitting the
following statistical weights: A to horizontal splitting and B
to vertical for a vertex of type (a);B to horizontal splitting and
A to vertical for a vertex of type (b). This can be schematically
reproduced in the following picture:

the constants A and B to be defined later.
For the knot diagramwithN vertices there are 2N different

microstates, each of them representing the set of splittings of
all N vertices. The entire microstate, S, corresponds to the
knot (link) disintegration to a system of disjoint and non-self-
intersecting circles. The number of such circles for the given
microstate Swe denote as S. The following statement belongs
to L Kauffman ([7]).

Consider the partition function

hKi �
X
fSg

dSÿ1AiB j ; �2:27�

where
P
fSg means summation over all possible 2N graph

splittings, i and j � Nÿ i being the numbers of vertices with
weights A and B for the given realization of all splittings in the
microstate S respectively.

The polynomial in A, B and d represented by the partition
function Eqn (2.27) is the topological invariant of knots of
regular isotopy if and only if the following relations among the
weights A, B and d are fulfilled:

AB � 1 ;

ABd� A2 � B2 � 0 : �2:28�

The sketch of the proof is as follows. Denote by . . .h i the
statistical weight of the knot or a part of it. The Kh i-value
equals the product of all weights of knot parts. Using the
definition of vertex splittings, it is easy to test the following
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Figure 4. Reidemeister moves of types I, II and III.

bi � �1,(a) bi � ÿ1.(b)

A

B

and

B

A
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identities valid for unoriented knot diagrams

completed by the `initial condition'

K [O

� � d


K
�
; if K is not empty; �2:30�

where O denotes the separated trivial loop.
The skein relations Eqn (2.29) correspond to the above

defined weights of horizontal and vertical splittings while
relation Eqn (2.30) defines the statistical weights of the
composition of an arbitrary knot and a single trivial ring.
These diagrammatic rules are well defined only for fixed
`boundary condition' of the knot (i.e., for the fixed part of
the knot outside the brackets). Suppose that by convention
the polynomial of the trivial ring is equal to unity:

hOi � 1 : �2:31�

Now it can be shown that under an appropriate choice of
relations between A, B and d, the partition function Eqn
(2.27) represents the algebraic invariant of the knot. The
proof is based on direct testing of the invariance of the Kh i-
value with respect to Reidemeister moves of types II and III.
For instance, for a Reidemeister move of type II we have:

Therefore, the invariance with respect to the Reidemeister
move of type II can be obtained immediately if we set the
statistical weights in the last line of Eqn (2.32) as written in
Eqn (2.28). Actually, the topological equivalence of the two
knot diagrams is restored with respect to the Reidemeister
move of type II only if the right- and left-hand sides of Eqn
(2.28) are identical. It can also be tested that the condition of
obligatory invariance with respect to the Reidemeister move
of type III does not violate the relations Eqn (2.28).

The relations Eqn (2.28) can be converted into the form

B � Aÿ1; d � ÿA2 ÿ Aÿ2 ; �2:33�

which means that the Kauffman invariant Eqn (2.27) is the
Laurent polynomial in A-value only.

Finally, Kauffman showed that for oriented knots (links)
the invariant of ambient isotopy (i.e., the invariant with
respect to all Reidemeister moves) is defined via the relation:

f �K� � �ÿA�3Tw�K�hKi ; �2:34�

here Tw�K� is the twisting of the knot (link), i.e. the sum of
signs of all crossings defined by the convention:

(not to be confused with the definition of the variable bi
introduced above). Eqn (2.34) follows from the following
chain of equalities

The state model and bracket polynomials introduced by
L HKauffman seem to be very special. They explore only the
peculiar geometrical rules such as summation over the formal
`ghost' degrees of freedomÐall possible knot (link) splittings
with simple defined weights. But one of the main advantages
of the described construction is connected with the fact that
Kauffman polynomials in A-value coincide with Jones knot
invariants in t-value (where t � A1=4).

Jones polynomial knot invariants were first discovered by
V F R Jones during his investigation of the topological
properties of braids (see Section 3 for details). Jones'
proposition concerns the establishment of a deep connection
between the braid group relations and the Yang-Baxter
equations ensuring the necessary condition of transfer
matrix commutativity [6]. The Yang ±Baxted equations play
an exceptionally important role in the statistical physics of
integrable systems (such as ice, Potts, O�n�, 8-vertex,
quantum Heisenberg models [19]).

2.4 Lattice knot diagrams as a disordered Potts model
An attempt to apply Kauffman invariants of regular isotopy
to the investigation of the statistical properties of random
walks with topological constraints in a thin slit was made
recently [24]. Below we extend the ideas of the work [24]
considering the topological state of the knot as a special kind
of a quenched disorder.

Let us specify the model under consideration. Take a
square latticeM turned to an angle p=4 with respect to the x-
axis and project a knot embedded in IR3 ontoM supposing
that each crossing point of the knot diagram coincides with
one lattice vertex without fall (there are no empty lattice
vertices)Ð see Fig. 5. Define the passages in allN vertices and
choose such boundary conditions which ensure the lattice to
form a single closed path; that is possible when

����
N
p

(i.e. N) is
an odd number. The frozen pattern of all passages fbig on the
lattice together with the boundary conditions fully determine
the topology of some 3D knot.

Of course, the model under consideration is rather rough
because we neglect the `space' degrees of freedom due to
trajectory fluctuations and keep the pure topological specifi-
city of the system. Later on in Chapter 4 we discuss the
applicability of such a model for real physical systems and
produce arguments in support of its validity.

The basic question of interest is as follows: what is the
probability PNff�K�g of finding a knot diagram on our
lattice M in a topological state characterized by some
specific Kauffman invariant f �Kfb1; . . . ; bNg� among all 2N

microrealizations of the disorder fbig in the lattice
vertices. That probability distribution reads [compare to
Eqn (2.1)]

B2= ABd+

A2 + AB

�ABd� A2 � B2�+ AB.

+

= (2.32)

ÿ1(b)�1,(a)

dA= B+

= �B� dA� � �ÿA�3.

A+ B,=

B+ A,=

(2.29)
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PN

�
f �K�	� 1

2N

X
fbig

D
h
f
�
Kfb1; b2; . . . ; bNg

�ÿ f �K�
i
; �2:35�

where f�Kfb1; . . . ; bNg� is the representation of the Kauffman
invariant as a function of all passages fbig on the latticeM.
These passages can be regarded as a sort of quenched
`external field' (see below).

Our main idea for dealing with PNff�K�g consists in two
steps:

(a) first we convert the Kauffman topological invariant
into the known and well-investigated Potts spin system with
the disorder in interaction constants;

(b) then we apply the methods of the physics of disordered
systems to the calculation of the thermodynamic properties of
the Potts model. This enables us finally to extract the
estimation for the requested distribution function.

Strictly speaking, we could have disregarded point (a),
because it does not lead directly to the answer to our main
problem. Nevertheless we follow the mentioned sequence of
steps in pursuit of two goals: (1) we would like to prove that
the topologically-probabilistic problem can be solved within
the framework of the standard thermodynamic formalism; (2)
we would like to employ the knowledge already accumulated
in the physics of disordered Potts systems to avoid some
unnecessary complications. Let us emphasize that the mean-
field approximation and formal replacement of the model
with short-range interactions by one with infinite long-range
interactions serves as a common computational tool in the
theory of disordered systems and spin glasses.

2.4.1 Algebraic invariants of regular isotopy. The general
outline of topological invariant construction concerns the
search for the functional, f �Kfb1; . . . ; bNg�, which is indepen-
dent of the knot shape i.e. is invariant with respect to all
Reidemeister moves.

Recall that the Potts representation of the Kauffman
polynomial invariant of regular isotopy for some given
pattern of `topological disorder', fbig, deals with simulta-
neous splittings in all lattice vertices representing the polygon
decomposition of the lattice M. Such lattice disintegration
looks like a densely packed system of disjoint and non-self-
intersecting circles. The collection of all polygons (circles) can

be interpreted as a system of so-called Eulerian circuits
completely filling the square lattice. Eulerian circuits are in
one-to-one correspondence with the graph expansion of some
disordered Potts systems introduced in Section 2.3.1 (see
details below and in [27]).

Rewrite the Kauffman invariant of regular isotopy, Kh i,
in form of disordered Potts model defined in the previous
section. Introduce the two-state `ghost' spin variables,
si � �1 in each lattice vertex independent on the crossing in
the same vertex

Irrespective of the orientation of the knot diagram shown
in Fig. 5 (i.e. restricting with the case of regular isotopic
knots), we have



Kfbig

� �X
fSg
�A2 � Aÿ2�Sÿ1 exp

�
lnA

XN
i�1

bisi

�
: �2:36�

Written in such a form, the partition function


Kfbig

�
represents the weighted sum of all possible Eulerian circuits{
on the latticeM. Let us show explicitly that themicrostates of
the Kauffman system are in one-to-one correspondence with
the microstates of some disordered Potts model on a lattice.
Apparently for the first time, a similar statement was
expressed in paper [7]. To be careful, we would like to use
the following definitions:

(i) Let us introduce the lattice L dual to the latticeM, or
more precisely, one of two possible (odd and even) diagonal
dual lattices, shown in Fig. 6. It can be easily noticed that the
edges of lattice L are in one-to-one correspondence with the
vertices of latticeM. Thus, the disorder on the dual latticeL is
determined on the edges. In turn, the edges of lattice L can be
divided into the subgroups of vertical and horizontal bonds.
Each kl-bond of lattice L carries the `disorder variable' bkl
being a function of the variable bi located in the correspond-

Figure 5. Lattice knot with topological disorder realized in a quenched

random pattern of passages.

si � ÿ1.si � �1;

{A Eulerian circuit is a trajectory on the graph which visits once and only

once all the graph edges.

M

L

Figure 6. Disintegration of the knot diagram on the M-lattice into an

ensemble of non-self-intersecting loops (Eulerian circuits) and a graph

representation of the Potts model on the dual L-lattice.
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ing i-vertex of latticeM. The simplest and most sitable choice
of the function bkl�bi� is as in Eqn (2.46) (or vice versa for
another choice of dual lattice); i is the vertex of the latticeM
belonging to the kl-bond of the dual lattice L.

(ii) For the given configuration of splittings on M and
chosen dual lattice L let us accept the following convention:
wemark the edge of theL-lattice by the solid line if this edge is
not intersected by some polygon on theM-latice and we leave
the corresponding edge unmarked if it is intersected by any
polygonÐas it is shown in Fig. 6. Similarly, the sum

P
sibi in

Eqn (2.36) can be rewritten in terms ofmarked and unmarked
bonds on the L-latticeX

i

sibi �
X

marked

sibi �
X

unmarked

sibi �
Xhorizontal

marked

sibi �
Xvertical

marked

sibi

�
Xhorizontal

unmark

sibi �
Xvertical

unmarked

sibi � ÿ
Xhorizontal

marked

bkl ÿ
Xvertical

marked

bkl

�
Xhorizontal

unmarked

bkl �
Xvertical

unmarked

bkl �
X

all edges

bkl ÿ 2
X

marked

bkl ;

�2:37�
where we used the relationX

unmarked

bkl �
X

marked

bkl �
X

all edges

bkl :

(iii) Let ms be the number of marked edges and Cs be the
number of connected components of the marked graph. Then
the Euler relation reads:

S � 2Cs �ms ÿN� w : �2:38�
Eqn (2.38) can be proved directly. The w-value depends on the
genus of the surface, which can be covered by the given lattice,
(i.e. w depends on the boundary conditions). In the thermo-
dynamic limit N4 1 the w-dependence should disappear (at
least for flat surfaces), so the standard equality
S � 2Cs �ms ÿN will be assumed below.

By means of definitions (i) ± (iii), we can easily convert
Eqn (2.36) into the form:


Kfbklg
� � �A2 � Aÿ2�ÿ�N�1�

YN
all edges

�
Abkl

�
�
X
fGg
�A2 � Aÿ2�2Cs

Yms

marked

�
Aÿ2bkl�ÿA2 ÿ Aÿ2�� ;

�2:39�

where we used Eqn (2.37) and the fact that N� 1 is even.
Comparing Eqn (2.39) with Eqn (2.25) we immediately
conclude thatX

fGg
�A2 � Aÿ2�2Cs

Yms

marked

�
Aÿ2bkl�ÿA2 ÿ Aÿ2��

�
X
fsg

Y
fklg

�
1� vkld�sk; sl�

�
; �2:40�

which coincides with the partition function of the Potts
system written in the form of a dichromatic polynomial.
Therefore, we have

vkl � Aÿ2bkl�ÿA2 ÿ Aÿ2� � ÿ1ÿ Aÿ4bkl ;

q � �A2 � Aÿ2�2: �2:41�

Since the `disorder' variables bkl take the discrete values �1
only, we get the following expression for the interaction
constant Jkl

Jkl
T
� ln

�
1ÿ �A2 � Aÿ2�Aÿ2bkl� � ln�ÿAÿ4bkl � :

Combining Eqs (2.39) ± (2.41) we obtain the following
statement.

(a) Take an N-vertex knot diagram on the latticeM with
given boundary conditions and a fixed set of passages fbig.

(b) Take the dual lattice L in one-to-one correspondence
withM where one vertex ofM belongs to one edge of L.

The Kauffman topological invariant K�A�h i of regular
isotopy for knot diagrams onM admits representation in the
form of a 2D Potts system on a dual lattice L:


K�A�� � H
ÿ
A; fbklg

�
Zpotts

�
q�A�; �Jklÿbkl;A�	�; �2:42�

where:

H
ÿ
A; fbklg

� � �A2 � Aÿ2�ÿ�N�1� exp
�
lnA

X
fklg

bkl

�
�2:43�

is a trivial multiplier (H does not depend on Potts spins);

Zpotts

�
q�A�;�Jkl�bkl;A�	�
�
X
fsg

exp

�X
fklg

Jkl�bkl;A�
T

d�sk; sl�
�

�2:44�

is the Potts partition function with interaction constants, Jkl,
and number of spin states, q, defined as follows

Jkl
T
� ln�ÿAÿ4bkl �; q � �A2 � Aÿ2�2 ; �2:45�

and the variables bkl play the role of disorder on the edges of the
lattice L dual to the latticeM. The connection between bkl and
bi is defined by convention

bkl � ÿbi ; if edge �kl� is vertical;
bi ; if edge �kl� is horizontal:

�
�2:46�

Eqn (2.44) has the sense of a partition function of the 2D
disordered Potts system with random nearest-neighbor
interactions whose distribution remains arbitrary. The set of
passages fbklg uniquely determines the actual topological
state of the woven carpet for the definite boundary condi-
tions. Therefore the topological problem of the knot invariant
determination is reduced to a normal statistical problem of
calculation of the partition function of the Potts model with
the disorder in the interaction constants. Of course, this
correspondence is still rather formal because the polynomial
variable A is absolutely arbitrary and can take even complex
values, but for some regions of A that thermodynamic
analogy makes sense and could be useful as we shall see
below.

The specific feature of the Potts partition function which
gives the representation of the Kauffman algebraic invariant
is connected with the existence of a relation between the
temperature T and the number of spin states q [see Eqn (2.44)]
according to which T and q cannot be considered anymore as
independent variables.
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2.4.2 Algebraic invariants of ambient isotopy. The invariance
of the algebraic topological invariant, f�K�, with respect to all
Reidemeister moves [see Eqn (2.34)] for our system shown in
Fig. 5 is related to the oriented Eulerian circuits called
Hamiltonian walks{.

Let us suppose that the orientation of the knot diagram
shown in Fig. 5 is chosen according to the natural orientation
of the path representing a knot K in IR3. For the defined
boundary conditions we get the so-called Manhattan lattice
consisting of woven threads with alternating directions.

It follows from the definition of twisting Tw�K� (see
Section 2.3.2) that Tw�K� changes sign if the direction of
one arrow in the vertex is reversed. Reversing the direction of
any arrows in the given vertex an even number of times we
return the sign of twisting to the initial value.

We define groups of `even' and `odd' vertices on the lattice
M as follows. The vertex i is called even (odd) if it belongs to
the horizontal (vertical) bond �kl� of the dual latticeL. Now it
is easy to prove that the twisting of the knot on theManhattan
lattice M can be written in terms of the above defined
variables bkl. Finally the expression for the algebraic invar-
iant of ambient isotopy f�K� on the lattice L reads

f �K� � exp

�
3 ln�ÿA�

X
fklg

bkl

�

K
ÿfbklg;A�� ; �2:47�

where


K
ÿfbklg;A�� is defined by Eqn (2.42).

2.5 Notion about annealed and quenched realizations
of topological disorder
The fixed topological structure of a trajectory of a given
length fluctuating in space is a typical example of quenched
disorder. Actually, the knot structure is formed during the
random closure of the path and cannot be changed without
path rupture. Because of the topological constraints the entire
phase space of the ensemble of randomly generated closed
loops is divided into separate domains resembling the multi-
valley structure of the spin glass phase space. Every domain
corresponds to a sub-space of the path configuration with a
fixed value of the topological invariant.

Themethods of theoretical description of the systems with
quenched disorder in interaction constants are rather well
developed, especially in regard to the investigation of spin
glass models [20]. Central to these methods is the concept of
self-averaging which can be explained as follows. Take some
additive function F (the free energy, for instance) of some
disordered spin system. The function F is the self-averaging
quantity if the observed value, Fobs, of any macroscopic
sample of the system coincides with the value Fav averaged
over the ensemble of disorder realizations:

Fobs � hFiav :

The central technical problem is in the calculation of the free
energy F � ÿT lnZ averaged over the randomly distributed
quenched pattern in the interaction constants. In this section
we show that this famous thermodynamic problem of spin
glass physics is closely related to the knot entropy computa-
tion.

Another problem arises when averaging the partition
function Z (but not the free energy) over the disorder. Such

a problem is much simpler from the computational point of
view and corresponds to the case of annealed disorder.
Physically such a model corresponds to the situation when
the topology of the closed loop can be changed. It means that
the topological invariant, i.e. the Potts partition function, has
to be averaged over all possible realizations of the pattern
disorder in the ensemble of open (i.e. unclosed) loops on the
lattice. It has been shown in [26] that the calculation of the
mean values of topological invariants allows the extraction of
rather rough but non-trivial information about the knot
statistics.

2.5.1 Entropy of knots. Replica methods. Our main goal is the
computation of the probability distribution PNff�K�g [see
Eqn (2.35)]. Although we are unable to evaluate this function
exactly, the representation of PNff�K�g in terms of the
disordered Potts system enables us to give an upper estimate
for the fraction of randomly generated paths belonging to
some definite topological class (in particular, to the trivial
one). We use the following chain of inequalities restricting
ourselves to the case of regular isotopic knots for simplicity
([24]):

Probability PN

of knot formation
in a given topolo-
gical state

�
Probability
PNfK�A�g of knot
formation with a
speciéc topological
invariant K�A�h i for
all A

�

Probability
PNfK�A��g of knot
formation for
specific value of A�

minimizing the free

energy of the asso-

ciated Potts system

�2:48�

The first inequality is due to the fact that the Kauffman
invariant of regular isotopic knots is not a complete
topological invariant, whereas the last probability in the
chain can be written as follows

PN

�
K�A��	�X

fbklg
YfbklgD

h

Kfbkl;A�g

�ÿ 
K�A���i; �2:49�
where

P
means summation over all possible configurations

of the `crossing field' fbklg, theD-function cuts out all states of
the field fbklg with specific value of Kauffman invariant

Kfbkl;A�g

� � 
K�A��� and Yfbklg is the probability of
realization of a given crossings configuration.

In principle the distribution Yfbig depends on the
statistics of the path in the underlying 3D space and is
determined physically by the process of knot formation.
Here we restrict ourselves to the following simple supposi-
tions:

(i) We regard the crossings fbig in different vertices of the
M-lattice as completely uncorrelated variables (or, in other
words, we assume that the variables fbklg defined on the edges
of the L-lattice are statistically independent):

Yfbig �
YN
i�1

P�bi�; �2:50�

(ii) We suppose variable bi (or bkl) to take values �1 with
equal probabilities, i.e.:

P�bi� � 1

2
d�bi ÿ 1� � 1

2
d�bi � 1� : �2:51�{ AHamiltonian walk is a closed path which visits once and only once all

vertices of the given oriented graph.
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The probability of trivial knot formation can be estimated
now as follows

P�0�N �A��4
X
fbklg

YfbklgD
h
ln


Kfbkl;A�g

�i

' 1

2p

�1
ÿ1

dy

�
. . .

�Y
kl

P�bkl� dbkl


K iyfbkl;A�g

�
;

�2:52�
where



K�A��� � 1 for trivial knots.

Thus our problem is reduced to the calculation of non-
integer complex moments of the partition function, i.e.,
values of the type hK iyfbkl;A�gi. An analogous problem of
evaluation of non-integer moments is well known in spin-
glass theory. Indeed, the averaging of the free energy of the
system, F, over a quenched random field is widely performed
via the so-called replica-trick [28]. The idea of the method is
as follows. Consider the identityZn � exp�n lnZ� and expand
the right-hand side up to the first order in n. We get
Zn � 1� n lnZ�O�n2�. Now we can write

F � ÿ lnZ � ÿ lim
n!0

Zn ÿ 1

n
:

We proceed with the calculation of the complex
moments of the partition function Kfbklgh i. In other
words we would like to find the averaged value Knh i for
integer values of n. Then we put n � iy and compute the
remaining integral in Eqn (2.52) over y-values. Of course,
this procedure needs to be verified and it would be most
desirable to compare our predictions with the data obtained
in numerical simulations. However let us stress that our
approach is no more curious than the replica one, and it
would be extremely desirable to test the results obtained by
means of computer simulations.

The outline of our calculations is as follows. We begin by
rewriting the averaged Kauffman invariant using the stan-
dard representation of the replicated Potts partition function
and extract the corresponding free energy F�A� in the
frameworks of the infinite±range mean-field theory in two
dimensions. Minimizing F�A� with respect to A we find the
equilibrium value A�. Then we compute the desired prob-
ability of trivial knot formation P�0�N �A�� evaluating the
remaining Gaussian integrals.

Averaging the nth power of the Kauffman invariant over
independent values of the `crossing field' bkl � �1 we get

hKn�A�i �
�

. . .

�Y
kl

P�bkl� dbklK2nfbklg

� �2 cosh�2b��ÿ2n�N�1�X
fsg

Y
kl

exp

�
ip
X
kl

d�sak; sal �

� ln cosh

�
b
Xn
a�1

ÿ
4d�sak; sal � ÿ 1

���
; �2:53�

where b � lnA. Let us break for a moment the connection
between the number of spin states, q, and the interaction
constant and suppose jbj5 1. Later on we shall verify the
selfconsistency of this approximation. Now the exponent in
the last expression can be expanded as a power series in b.
Keeping the terms of order b2 only, we rewrite Eqn (2.53) in
the standard form of the n-replica Potts partition function



Kn�A�� � �2 cosh�2b��ÿ2n�N�1� exp �N� 1

2
b2n2

��
�

X
fs1;...;sng

exp

�
J 2

2

XN
kl

Xn
a 6�b

sakas
b
kbs

a
las

b
lb

�
�
J 2

2
�qÿ 2� � �J0

�XN
kl

Xn
a�1

sakas
b
lb

�
; �2:54�

where spin indexes a; b change over the interval �0; qÿ 1�,
b2 5 1 and

J 2 � 16b2 ;
�J0 � ipÿ 4b2n ;

q � 4� 16b2 > 4 : �2:55�

According to the results of Cwilich and Kirkpatrick [29]
and later works (see, for instance, [30]), spin-glass ordering
takes place and the usual ferromagnetic phase makes no
essential contribution to the free energy under the condition

�J0
J
<

qÿ 4

2
: �2:56�

Substituting Eqn (2.55) into Eqn (2.56) it can be seen that
Re [l.h.s.]<Re [r.h.s] in Eqn (2.56) for all b. Thus, we expect
that the spin-glass ordering (in the infinite-range model)
corresponds to the solutions

ma
a �



qd�sak; a� ÿ 1

� � 0 ;

Qab
ab �



qd�sak; a� ÿ 1

�

qd�sbk; b� ÿ 1

� 6� 0 ;

where ma
a and Qab

ab are the ferromagnetic and spin-glass order
parameters respectively. If it is so, we can keep the term in the
exponent [Eqn (2.54)] corresponding to inter-replica interac-
tions only.

We now follow the standard scheme of analysis of Potts
spin glasses partition function exhaustively described in [29 ±
31]; the main steps of this analysis are briefly shown below.
Performing the Hubbard ± Stratonovich transformation to
the scalar fields Qab

iab and implying a homogeneous isotropic
solution of the form Qab

iab � Qab
i dab, we can write down the

value Knh i Eqn (2.54) as follows [29]:

hKni � exp

�
N

�
ln

p
J 2

n�nÿ 1��qÿ 1�2

ÿ ln

�
2 cosh

J

2

�
� J 2n2

32

��
�
X
fsg

�Y
i

dQab
i exp

�
ÿ
�
HfQab

i g d2x

�
; �2:57�

where

HfQabg � �qÿ 1�
�
1

4

�
2

J 2
ÿ 1

�X
a 6�b
�Qab�2

ÿ 1

6

X
a 6�b 6�g

QabQbgQga ÿ qÿ 2

12

X
a 6�b
�Qab�3

ÿ qÿ 2

4

X
a 6�b6�g

�Qab�2QbgQga

ÿ 1

8

X
a 6�b 6�g 6�d

QabQbgQgdQda

ÿ q2 ÿ 6q� 6

48

X
ab

�Qab�4
�
: �2:58�
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In [29, 31] it was shown that the mean-field replica
symmetric solution of the mean-field Potts spin glass is
unstable for q5 2 and the right ansatz of Eqs (2.57) ± (2.58)
corresponds to the first level of the Parisi replica breaking
scheme for spin glasses. Hence, we have

Qab �
Q ; if a and b belong to the

same group of m replicas ;
0 otherwise:

(
�2:59�

Analysis shows that for q > 4 (our case) the transition to
the glassy state corresponds to m � 1 which implies the
accessory condition Fpm � Fsg, where Fpm and Fsg are the
free energies of paramagnetic and spin-glass phases respec-
tively. The transition occurs at the point

1ÿ 2

J 2
� �qÿ 4�2

3�q2 ÿ 18q� 42� : �2:60�

Substituting Eqn (2.55) into Eqn (2.60) we find the self-
consistent value of reverse temperature of a spin-glass
transition, btr:

btr � 0:35 : �2:61�

This numerical value is consistent with the condition
b2tr 5 1 implied above in the course of expansion of Eqn
(2.54).

According to the results of the work [29] the n-replica free
energy near the transition point has the following form

F ' 1

64
Nn�qÿ 1�2Qtr

�
1

b2
ÿ 1

b2tr

�2

; �2:62�

with

Qtr � 2�4ÿ q�
q2 ÿ 18q� 42

> 0 �2:63�

the resulting expression of the spin-glass order parameter.
From Eqn (2.62) we conclude that the free energy F

reaches its minimum as a function of A � exp �b� just at the
point A� � exp�btr�. Using Eqs (2.62) and (2.63) we rewrite
the expression for the averaged n-replica Kauffman invariant
Knh i in the vicinity of btr as follows (compare to [29]):



K 2n

� ' exp

�
Nn2

�
�3� 16b2�2 ln p

16b2
� b2

2

�

ÿNn

�
�3� 16b2�2 ln p

16b2
� ln 2� b2

2

ÿ �3� 16b2�2�bÿ2 ÿ bÿ2kr �2b2kr
�4� 16b2tr�2 ÿ 18�4� 16b2tr� � 42

#�
: �2:64�

Substituting Eqn (2.64) into Eqn (2.52) and bearing in
mind that n � iy, we can easily evaluate the remaining
Gaussian integral over y-values and obtain the result for
P�0�N �A�. As was mentioned above, to get the simplest estimate
for the probability of trivial knot formation, we use the last
inequality in the chain of equations (2.48) corresponding to
the choice A � A� � exp�btr�:
P�0�N �A�� ' exp�ÿcN� ; c � 1 : �2:65�

This dependence is not surprising from the point of view
of statistical mechanics because the value Z � P�0�N �A�� is
proportional to the free energy of the Potts system. But
from the topological point of view the value Z has the sense
of the typical `complexity' of the knot (see also Section 3). The
fact that Z grows linearly with Nmeans that the maximum of
the distribution function P�Z;N� is in the region of very
`complex' knots, i.e. knots far from trivial. This circumstance
directly follows from the non-commutative nature of topolo-
gical interactions.

3. Random walks on locally
non-commutative groups

Recent years have beenmarked by the emergence ofmore and
more problems related to the consideration of physical
processes on non-commutative groups. In trying to classify
such problems, we distinguish between the following cate-
gories in which the non-commutative origin of phenomena
appear with perfect clarity:

1. Problems connected with the spectral properties of the
Harper ±Hofstadter equation [14] dealing with the electron
dynamics on the lattice in a constant magnetic field. Wemean
primarily the consideration of groups of magnetic transla-
tions and properties of quantum planes [15, 32].

2. Problems of classical and quantum chaos on hyperbolic
manifolds: spectral properties of dynamical systems and the
derivation of trace formulae [33 ± 35] as well as the construc-
tion of probability measures for random walks on modular
groups [36].

3. Problems giving rise to the application of quantum
group theory in physics: deformations of classical abelian
objects such as harmonic oscillators [4] and standard random
walks [3].

4. Problems of knot theory and statistical topology: the
construction of non-abelian topological invariants [5, 23], the
consideration of probabilistic behavior of the words on the
simplest non-commutative groups related to topology (such
as braid groups) [37], and statistical properties of `anyonic'
systems [38].

5. Classical problems of random matrix and random
operator theory and localization phenomena: the determina-
tion of Lyapunov exponents for products of random non-
commutative matrices [39 ± 41], the study of the spectral
properties and the calculation of the density of states of
large random matrices [21, 42].

Certainly, such a division of problems into these cate-
gories is very speculative and reflects to a marked degree the
author's personal point of view. However, we believe that the
enumerated items reflect, at least partially, the currently
growing interest in theoretical physics of the ideas of non-
commutative analysis. Let us stress that we do not touch upon
the pure mathematical aspects of non-commutative analysis
in this paper and the problems discussed in the present work
mainly concern points 4 and 5 of the list above.

In the present section we continue analyzing the statistical
problems in knot theory, but our attention is paid to some
more delicate matters related to investigation of correlations
in knotted random paths caused by topological constraints.
The methods elaborated in Section 2 allow us to discuss these
questions but we find it more reasonable to take a look at the
problems of knot entropy estimation in terms of conventional
random matrix theory. We believe that many non-trivial
properties of the knot entropy problem can be clearly
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explained in the context of the limit behavior of randomwalks
over the elements of some non-commutative (hyperbolic)
groups [46].

Another reason which forces us to consider the limit
distributions (and conditional limit distributions) of Markov
chains on locally non-commutative discrete groups is due to the
fact that this class of problems could be regarded as the first
step in a consistent harmonic analysis on multiconnected
manifolds (like TeichmuÈ ller space); see also Section 4.

3.1 Brownian bridges on simple non-commutative
groups and knot statistics
As said above, problems dealing with the investigation of the
limit distributions of random walks on non-commutative
groups are not a new in probability theory and statistical
physics.

However in the context of a `topologically-probabilistic'
consideration, problems dealing with distributions of non-
commutative random walks are practically out of discussion,
except for very few special cases [41, 43, 49]. Particularly, in
these works it has been shown that the statistics of random
walks with a fixed topological state with respect to the regular
array of obstacles on the plane can be obtained from the limit
distribution of the so-called `Brownian bridges' (see the
definition below) on the universal covering Ð the graph
with the topology of a Cayley tree. The analytic construction
of a non-abelian topological invariant for the trajectories on
the double punctured plane and statistics of a simple non-
trivial random braid B3 was briefly discussed in [44].

Below we calculate the conditional limit distributions of
the Brownian bridges on the braid group B3 and derive the
limit distribution of powers of Alexander polynomial of knots
generated by random B3-braids. We also discuss the limit
distribution of random walks on locally free groups and
express some conjectures about the statistics of random
walks on the group Bn. A more extended discussion of the
results concerning the statistics of Markov chains on braid
and locally free groups can be found in [52 ± 54].

3.1.1 Basic definitions and statistical model. The braid group
Bn of n strings has nÿ 1 generators fs1; s2; . . . ; snÿ1gwith the
following relations:

sisn�1si � sn�1sisn�1 �14 n < nÿ 1� ;
sisj � sjsi �jiÿ jj5 2� ;
sisÿ1i � sÿ1i si � e : �3:1�
Any arbitrary word written in terms of `letters' Ð

generators from the set fs1; . . . ; snÿ1; sÿ11 ; . . . ; sÿ1nÿ1gÐ gives
a particular braid. The geometrical interpretation of braid
generators is shown below:

: : : : : :

���� �������� ���� � si ;

1 2 : : : i i�1 : : : nÿ1 n

: : : : : :

���� �������� ���� � sÿ1i :

1 2 : : : i i�1 : : : nÿ1 n

The length of the braid is the total number of letters used,
while theminimal irreducible length hereafter referred to as the
`primitive word' is the shortest non-contractible length of a

particular braid which remains after applying all possible
group relations Eqn (3.1). Diagrammatically the braid can be
represented as a set of crossed strings going from the top to
the bottom appeared after subsequent gluing the braid
generators.

The closed braid appears after gluing the `upper' and the
`lower' free ends of the braid on the cylinder.

Any braid corresponds to some knot or link. So, it is
feasible principal possibility to use the braid group represen-
tation for the construction of topological invariants of knots
and links. However the correspondence between braids and
knots is not mutually single valued and each knot or link can
be represented by an infinite series of different braids. This
fact should be taken into account in the course of knot
invariant construction.

Take a knot diagram K in a general position on the plane.
Let f�K� be the topological invariant of the knotK. One of the
ways to construct the knot invariant using the braid group
representation is as follows.

1. Represent the knot by some braid b 2 Bn. Take the
function f

f : Bn ! C

Require f to take the same value for all braids b representing
the given knot K. That condition is established in the well-
known Markov ±Birman theorem (see, for instance, [55]):

The function fKfbg defined on the braid b 2 Bn is the
topological invariant of a knot or link if and only if it satisfies
the following `Markov condition'

fKfb0 b00g � fKfb00 b0g ;
fKfb0 sng � fKfsn b0g � fKfb0g ; b0; b00 2 Bn ; �3:2�

where b0 and b00 are two subsequent sub-words in the braid (see
Fig. 7).

2. Now the invariant fKfbg can be constructed using the
linear functionaljfbg defined on the braid group and called a
Markov trace. It has the following properties

jfb0 b00g � jfb00 b0g ;
jfb0 sng � tjfb0g ;
jfb0 sÿ1n g � �tjfb0g ; �3:3�

� f .... . .
b00

b0
f .... . .

b0

b00

.... . .� f
b

.... . .f
b

Figure 7.Geometric representation of Eqn (3.2).
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where

t � jfsig; �t � jfsÿ1i g; i 2 �1; nÿ 1� : �3:4�

The invariant fKfbg of the knot K is connected with the
linear functional jfbg defined on the braid b as follows

fKfbg � �t�t�ÿ�nÿ1�=2
�

�t
t

��#���ÿ#�ÿ��=2
jfbg ; �3:5�

where #��� and #�ÿ� are the numbers of `positive' and
`negative' crossings in the given braid correspondingly.

The Alexander algebraic polynomials are the first well-
known invariants of such a type. At the beginning of the 1980s
Jones discovered the new knot invariants. He used the braid
representation `passed through' the Hecke algebra relations,
where the Hecke algebra, Hn�t�, for Bn satisfies both braid
group relations Eqn (3.1) and an additional ``reduction''
relation (see the works [55, 56])

s2i � �1ÿ t�si � t : �3:6�

Now the tracejfbg � j�t�fbg can be said to take the value in
the ring of polynomials of one complex variable t. Consider
the functional j�t� over the braid fb0 si b00g. Eqn (3.6) allows
us to get the recursion (skein) relations for j�t� and for the
invariant fK�t� (see for details [58]):

j�t�fb0sib00g � �1ÿ t�j�t�fb0b00g � tj�t�fb0sÿ1i b00g ; �3:7�

and

f�K �t� ÿ t

�
�t
t

�
fÿK �t� � �1ÿ t�

�
�t
t

�1=2

f 0K�t� ; �3:8�

where f�K � f fb0 si b00g, fÿK � f fb0 sÿ1i b00g, f 0K � f fb0 b00g and
the fraction �t=t depends on the representation used.

3. The tensor representations of the braid generators can
be written as follows

si�u� � lim
u!1

X
klmn

Rkm
ln �u�I �1�


. . . I �iÿ1� 
 Ei
nk 
 Ei�1

ml 
 I �i�1� 
 � � � I �n� ; �3:9�

where I �i� is the identity matrix acting in the position i;Enk is a
matrix with �Enk�pq � dnpdkq and Rkm

ln is the matrix satisfying
the Yang ±Baxter equationX

abc

Rbq
cr �v�Rap

kc �u� v�Ria
jb �u� �

X
abc

R
ap
bq �u�Ria

cr �u� v�Rjb
ka�v� :

�3:10�

In that scheme both known polynomial invariants (Jones
and Alexander) ought to be considered. In particular, it has
been discovered in [57, 58] that the solutions of Eqn (3.10)
associated with the groups SUq�2� and GL�1; 1� are linked to
Jones andAlexander invariants correspondingly. To bemore
specific:

(a) �t=t � t 2 for Jones invariants, fK�t� � V�t�. The
corresponding skein relations are

tÿ1V��t� ÿ tVÿ�t� � �tÿ1=2 ÿ t 1=2�V 0�t� ; �3:11�

(b) �t=t � tÿ1 for Alexander invariants, fK�t� � H�t�. The
corresponding skein relations{ are

H��t� ÿ Hÿ�t� � �tÿ1=2 ÿ t 1=2�H0�t� : �3:12�

To complete this brief review of the construction of
polynomial invariants from the representation of the braid
groups it should be mentioned that the Alexander invariants
also allow another useful description [59]. Write the gen-
erators of the braid group in the so-calledMagnus representa-
tion

sj � ŝj �

1 0 � � �
0 . .

.

..

. ..
.

. .
.

0
� � � 0 1

0BBBBBBB@

1CCCCCCCA jth row;

A �
1 0 0
t ÿt 1
0 0 1

 !
: �3:13�

Now theAlexander polynomial of the knot represented by
the closed braidWfKg �QN

j�1 saj of length N can be written
as follows

�1� t� t 2 � . . .� t nÿ1�H�t�fKg � det

"YN
j�1

ŝaj ÿ e

#
;

�3:14�

where the index j runs `along the braid', i.e. labels the number
of generators used, while the index
a � f1; . . . ; nÿ 1; n; . . . ; 2nÿ 2g marks the set of braid gen-
erators (letters) ordered as follows
fs1; . . . ; snÿ1; sÿ11 ; . . . ; sÿ1nÿ1g. In our further investigations
we repeatedly address this representation.

We are interested in the limit behavior of the knot or link
invariants when the length of the corresponding braid tends
to infinity, i.e. when the braid `grows'. In this case we can
rigorously define some topological characteristics, simpler
than the algebraic invariant, which we call the knot complex-
ity.

Call the knot complexity, Z, the power of some algebraic
invariant, fK�t� (Alexander, Jones, HOMFLY) (see also [26])

Z � lim
jtj!1

ln fK�t�
ln t

: �3:15�

Remark. By definition, the `knot complexity' takes one
and the same value for rather broad class of topologically
different knots corresponding to algebraic invariants of one
and the same power, being from this point of view weaker
topological characteristics than a complete algebraic poly-
nomial. Let us summarize the advantages of knot complexity.

(i) One and the same value of Z characterizes a narrow
class of `topologically similar' knots which is, however, much
broader than the class represented by the polynomial
invariant fK�t�. This enables us to introduce smoothed
measures and distribution functions for Z.

A

{ Let us stress that the standard skein relations for Alexander polynomials

can be obtained from Eqn (3.12) replacing T 1=2 by ÿt 1=2.
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(ii) The knot complexity Z correctly describes (at least
from the physical point of view) the limit cases: Z � 0
corresponds to `weakly entangled' trajectories whereas
Z � N matches the system of `strongly entangled' paths.

(iii) The knot complexity keeps all the non-abelian
properties of the polynomial invariants.

(iv) The polynomial invariant can give exhaustive infor-
mation about the knot topology. However when dealing with
the statistics of randomly generated knots, we frequently look
for rougher characteristics of `topologically different' knots.
A similar problem arises in statistical mechanics when passing
from the microcanonical ensemble to the Gibbs one: we lose
some information about the details of a particular realization
of the system but acquire smoothness of the measure and are
able to apply standard thermodynamicmethods to the system
in question.

The main purpose of the present section is the estimation
of the limit probability distribution of Z for the knots
obtained by randomly generated closed Bn-braids of the
length N. It should be emphasized that we essentially
simplify the general problem `of knot entropy'. Namely, we
introduce an additional requirement that the knot should be
represented by a braid from the group Bn without fail.

We begin the investigation of the probability properties of
algebraic knot invariants by analyzing the statistics of
random loops (`Brownian bridges') on simple non-commu-
tative groups. Most generally the problem can be formulated
as follows. Take a discrete group Gn with a fixed finite number
of generators fg1; . . . ; gnÿ1g. Let n be the uniform distribution
on the set fg1; . . . ; gnÿ1; gÿ11 ; . . . ; gÿ1nÿ1g. For convenience we
suppose hj � gi for j � i and hj � gÿ1i for j � i� nÿ 1;
n�hj� � 1=�2nÿ 2� for any j. We construct the (right-hand)
side random walk (the random word) on Gn with a transition
measure n, i.e. the Markov chain fxng, x0 � e 2 Gn and
Prob�xj �ujxjÿ1� v��n�vÿ1u��1=�2nÿ 2�. This means
that with probability 1=�2nÿ 2� we add the element haN to
the given word hNÿ1 � ha1ha2 . . . haNÿ1 from the right-hand
side{.

The random word W formed by N letters taken indepen-
dently with a uniform probability distribution n � 1=�2nÿ 2�
from the set fg1; . . . ; gnÿ1; gÿ11 ; . . . ; gÿ1nÿ1g is called the
Brownian bridge (BB) of length N on the group Gn if the
shortest (primitive) word ofW is identical to unity.

Two questions require most of our attention:
(1) What is the probability distribution P�N� of the

Brownian bridge on the group Gn?
(2) What is the conditional probability distribution

P�k;mjN� of the fact that the sub-word W 0 consisting of the
first m letters of the N-letter wordW has the primitive path k
under the condition that the whole word W is the Brownian
bridge on the group Gn? (Hereafter P�k;mjN� is referred to as
the conditional distribution for BB.)

It has been shown in paper [41] that for the free group the
corresponding problem can be mapped on the investigation
of randomwalks on a simply connected tree. Belowwe briefly
show some results concerning the limit behavior of the
conditional probability distribution of BB on the Cayley
tree. In the case of braids the more complicated group
structure does not allow us to apply the same simple
geometrical image directly. Nevertheless the problem of the
limit distribution for random walks on Bn can be reduced to
the consideration of the randomwalk on some graphC�G�. In

case of the group B3 we are able to construct this graph,
whereas for the group Bn (n5 4) we give upper estimate for
the limit distribution of the random walks considering the
statistics of Markov chains on so-called local groups.

3.1.2 Random process on PSL(2, ZZ ), B3 and the limit
distribution of powers of the Alexander invariant. We begin
with computing the distribution function for the conditional
random process on the simplest non-trivial braid group B3.
The group B3 can be represented by 2� 2 matrices. To be
specific, the braid generators s1 and s2 in the Magnus
representation [59] look as follows:

s1 � ÿt 1
0 1

� �
; s2 � 1 0

t ÿt
� �

; �3:16�

where t is `the spectral parameter'. It is well known that for
t � ÿ1 the matrices s1 and s2 generate the group PSL�2; ZZ �
in such a way that the whole group B3 is its central extension
with the center

�s1s2s1�4l � �s2s1s2�4l � �s1s2�6l

� �s2s1�6l � t 6l 0
0 t 6l

� �
: �3:17�

We first restrict ourselves to the examination of the group
PSL�2; ZZ �, for which we define ~s1 � s1 and ~s2 � s2 (at
t � ÿ1). The canonical representation of PSL�2; ZZ � is given
by the unimodular matrices S;T:

S � 0 1
ÿ1 0

� �
; T � 1 1

0 1

� �
: �3:18�

The braiding relation ~s1~s2~s1 � ~s2~s1~s2 in the fS;Tg-
representation takes the form

S 2TSÿ2Tÿ1 � 1 : �3:19�

In addition we have

S 4 � �ST�3 � 1 : �3:20�

This representation is well known and signifies the fact
that in terms of fS;Tg-generators the group PSL�2; ZZ � is a
free product Z2 
 Z3 of two cyclic groups of 2nd and 3rd
orders correspondingly.

The connection of fS;Tg and f~s1; ~s2g is as follows
~s1 � T �T � ~s1� ;

~s2 � Tÿ1STÿ1 �S � ~s1~s2~s1� : �3:21�
The modular group PSL�2; ZZ � is a discrete subgroup of

the groupPSL�2; IR�. The fundamental domain ofPSL�2; ZZ �
has the form of a circular triangle ABC with angles
f0; p=3; p=3g situated in the upper half-plane Imz > 0 of the
complex plane z � x� iZ (see Fig. 8 for details). According to
the definition of the fundamental domain, at least one
element of each orbit of PSL�2; ZZ � lies inside the ABC-
domain and two elements lie on the same orbit if and only if
they belong to the boundary of the ABC-domain. The group
PSL�2; ZZ � is completely defined by its basic substitutions
under the action of generators S and T:

S : z! ÿ 1

z
;

T : z! z� 1 : �3:22�{We can construct the left-hand side Markov chain analogously.
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Let us choose an arbitrary element z0 from the funda-
mental domain and construct a corresponding orbit. In other
words, we raise a graph, C�G�, which connects the neighbor-
ing images of the initial element z0 obtained under successive
action of the generators from the set fS;T;Sÿ1;Tÿ1g to the
element z0. The corresponding graph is shown in the Fig. 8 by
the broken line and its topological structure is clearly
reproduced in Fig. 9. It can be seen that although the graph
C�G� does not correspond to the free group and has local
cycles, its `backbone', C�g�, has a Cayley tree structure but
with a reduced number of branches compared to the free
group C�G2�.

Turn to the problem of limit distribution of a random
walk on the graph C�G�. The walk is determined as
follows:

1. Take an initial point (`root') of the random walk on the
graph C�G�. Consider the discrete random jumps over the
neighboring vertices of the graph with the transition prob-
abilities induced by the uniform distribution n on the set of
generators f~s1; ~s2; ~sÿ11 ; ~sÿ12 g. These probabilities are [see Eqn
(3.21)]

Prob
ÿ
xn � Tz0 j xnÿ1 � z0

� � 1

4
;

Prob
ÿ
xn � �Tÿ1STÿ1�z0 j xnÿ1 � z0

� � 1

4
;

Prob
ÿ
xn � Tÿ1z0 j xnÿ1 � z0

� � 1

4
;

Prob�xn � �TSÿ1T�z0 j xnÿ1 � z0� �
1

4
: �3:23�

The following facts should be taken into account: the
elements Sz0 and Sÿ1z0 represent one and the same point,
i.e. coincide [as follows from Eqn (3.22)]; the process is
Markovian in terms of the alphabet f~s1; . . . ; ~sÿ12 g only; the
total transition probability is conserved.

2. Define the shortest distance, k, along the graph between
the root and terminal points of the random walk. According
to its construction, this distance coincides with the length
jWfS;Tgj of the minimal irreducible wordWfS;Tg written in the
alphabet fS;T;Sÿ1;Tÿ1g. The link of the distance, k, with the
length jWf~s1; ~s2gj of the minimal irreducible word Wf~s1;~s2g
written in terms of the alphabet f~s1; ~s2; ~sÿ11 ; ~sÿ12 g is as
follows: (a) jWf~s1; ~s2gj � 0 if and only if k � 0; (b) for k4 1
the length jWf~s1; ~s2gj is asymptotic to: jWf~s1; ~s2gj � k� o�k�.

We define the `coordinates' of the graph vertices in the
following way (see Fig. 9):

(a) We apply the arrows to the bonds of the graph G
corresponding to T-generators. A step with (against) the
arrow means the application of T (Tÿ1).

(b)We characterize each elementary cell of the graph G by
its distance, m, along the graph backbone g from the root cell.

(c) We introduce the variable a � f1; 2g which numerates
the vertices in each cell. We assume that the walker stays in the
cell M located at a distance m along the backbone from the
origin if and only if it visits one of two in-going vertices of M.
Such labelling gives a unique coding of the whole graph C�G�.

Define the probability Ua�m;N� that the N-step random
walk along the graph C�G� starting from the root point ends
in an a-vertex of the cell at the distance of m steps along the
backbone. It should be emphasized that Ua�m;N� is the
probability of staying in any of N g�m� � 3� 2mÿ1 cells
situated at the distance m along the backbone.

It is possible to write the closed system of recursion
relations for the functions Ua�m;N�. However, here we
attend to rougher characteristics of the random walk.
Namely, we calculate the `integral' probability distribution
of the fact that the trajectory of the random walk starting
from an arbitrary vertex of the root cellO ends in an arbitrary
vertex point of the cell M situated at a distance m along the
graph backbone. This probability, U�m;N�, reads

U�m;N� � 1

2

X
a�f1;2g

Ua�m;N� :

The relation between the distances k, along the graphG, and m
along its backbone g is such: k � m� o�m� for m4 1, what
ultimately follows from the constructions of the graphs C�G�
and C�g�.

Suppose the walker stays in the vertex a of the cell M
located at a distance m > 1 from the origin along the graph
backbone C�g�. The change in m after making one arbitrary
step from the set f~s1; ~s2; ~sÿ11 ; ~sÿ12 g is summarized in the
following table:

Fundamental
domain PSL�2; ZZ �

Figure 8. Riemann surface for the modular group. The graph C�G�
representing the topological structure ofPSL�2; ZZ � is shown by the dashed
line.

M

T
T

T

S
S

0

Graph C�G�

Backbone
graph C�g�

Figure 9.GraphC�G� and its backbone graphC�g� (see the explanations in
the text).

a � 1 a � 2

~s1 � T

~s2 � Tÿ1STÿ1
~sÿ11 � Tÿ1

~sÿ12 � TSÿ1T

m! m� 1

m! m
m! mÿ 1

m! m� 1

~s1 � T

~s2 � Tÿ1STÿ1

~sÿ11 � Tÿ1

~sÿ12 � TSÿ1T

m! mÿ 1

m! m� 1

m! m� 1

m! m
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It is clear that for any value of a, two steps increase the
length of the backbone, m, one step decreases it and one step
leaves m unchanged.

Let us introduce the effective probabilities: p1 Ð to jump
to some specific cell among 3 neighboring ones of the graph
C�G� and p2 Ð to stay in the given cell. Because of the
symmetry of the graph, the conservation law has to be written
as 3p1 � p2 � 1. By definition we have: p1 � n � 1=4. Thus we
can write the following set of recursion relations for the
integral probability U�m;N�

U�m;N� 1� � 1

4
U�m� 1;N� � 1

4
U�m;N� � 1

2
U�mÿ 1;N�

�m5 2� ;
U�m;N� 1� � 1

4
U�m� 1;N� � 1

2
U�m;N� �m � 1� ;

U�m;N � 0� � dm;1 : �3:24�

The solution of Eqn (3.24) gives the limit distribution for
the random walk on the group PSL�2; ZZ �.

The probability distribution U�k;N� of the fact that the
randomly generated N-letter word Wf~s1; ~s2g with the uniform
distribution n � 1=4 over the generators f~s1; ~s2; ~sÿ11 ; ~sÿ12 g can
be contracted to the minimal irreducible word of length k, has
the following limit behavior

U�k;N� ' h���
p
p �4ÿ h�

�
h

4�hÿ 2�
�N

�
1

N 3=2
; k � 0 ,

k

N 3=2
2k=2 exp

�
ÿ k2h

4N

�
; 15 k ,

8>><>>: �3:25�

where h � 2� ���
2
p

=2.
Corollary. The probability distribution U�k;mjN� of the

fact that in a randomly generated N-letter trivial word in the
alphabet f~s1; ~s2; ~sÿ11 ; ~sÿ12 g the sub-word of the first m letters
has a minimal irreducible length k reads

U�k;mjN� � h���
p
p �4ÿ h�

k2�
m�Nÿm��3=2

� exp

�
k2h

4

�
1

m
� 1

Nÿm

��
: �3:26�

Actually, the conditional probability distribution
U�m;mjN� that the random walk on the backbone graph,
C�g�, starting in the origin, after the first m (m=N � const)
steps visits some graph vertex situated at a distance m and
after N steps returns to the origin, is determined as follows

U�m;mjN� � U�m;m�U�m;Nÿm�
U�m � 0;N�N g�m� ; �3:27�

where N g � 3� 2mÿ1 and U�m;N� is given by (3.25).
The problem considered above helps us in calculating the

conditional distribution function for the powers of Alexander
polynomial invariants of knots produced by randomly
generated closed braids from the group B3.

The closure of an arbitrary braid b 2 B3 of the total length
N gives the knot (link) K. Split the braid b into two parts b0

and b00 with corresponding lengthsm andNÿm andmake the
`phantom closure' of the sub-braids b0 and b00 as shown in

Fig. 10. The phantomly closed sub-braids b0 and b00 corre-
spond to the set of phantomly closed parts (`sub-knots') of the
knot (link) K. The next question is what is the conditional
probability of finding these sub-knots in the state character-
ized by the complexity Z when the knot (link) K as a whole is
characterized by the complexity Z � 0 (i.e. the topological
state of K `is close to trivial')?

We introduce normalized generators of the group B3

jjs�1j jj � �det s�1j �ÿ1s�1j :

to neglect the insignificant commutative factor dealing with
the norm ofmatrices s1 and s2. Nowwe can rewrite the power
of Alexander invariant [Eqn (3.14)] in the form

Z � �#��� ÿ#�ÿ��� Z ; �3:28�
where #��� and #�ÿ� are the numbers of generators saj or
sÿ1aj in a given braid and Z is the power of the normalized
matrix product

QN
j�1 jjsaj jj. The condition of the Brownian

bridge implies Z � 0 (i.e. #��� ÿ#�ÿ� � 0 and Z � 0).
Write

jjs1jj � T�t� ; jjs2jj � Tÿ1�t�S�t�Tÿ1�t� ; �3:29�

where T�t� and S�t� are the generators of the `t-deformed'
group PSLt�2; ZZ �

T�t� �
������ÿtp

0

0
1������ÿtp

0@ 1A 1
1������ÿtp

0 1

0@ 1A ;

S�t� �
1������ÿtp 0

0
������ÿtp

0@ 1A 0 1
ÿ1 0

� �
: �3:30�

The group PSLt�2; ZZ � preserves the relations of the group
PSL�2; ZZ � unchanged, i.e., �T�t�S�t��3 � S 4�t� �
T�t�S 2�t�Tÿ1�t�Sÿ2�t� � 1 [compare to Eqn (3.19)]. Hence,
if we construct the graph C�Gt� for the group PSLt�2; ZZ �
connecting the neighboring images of an arbitrary element
from the fundamental domain, we ultimately come to the
conclusion that the graphs C�Gt� and C�G� (see Fig. 9) are
topologically equivalent. This is the direct consequence of the
fact that group B3 is the central extension of PSL�2; ZZ �. It
should be emphasized that the metric properties of the graphs
C�Gt� and C�G� differ because of different embeddings of
groups PSLt�2; ZZ � and PSL�2; ZZ � into the complex plane.

b0

b00

Figure 10.Construction of a Brownian bridge for knots represented byB3-

braids.
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Thus, the matrix product
QN

j�1 jjsaj jj for the uniform
distribution of braid generators is in one-to-one correspon-
dence with theN-step random walk along the graph C�G�. Its
power coincides with the respective geodesic length along the
backbone graph C�g�. Thus we conclude that limit distribu-
tion of random walks on the group B3 in terms of normalized
generators (3.29) is given by Eqn (3.25) where k should be
regarded as the power of the product

QN
a�1 jjsaj jj. Hence we

come to the following statement.
Take a set of knots obtained by closure of B3-braids of

length N with a uniform distribution over the generators. The
conditional probability distribution U�Z;mjN� for the normal-
ized complexity Z of the Alexander polynomial invariant [see
(3.28)] has Gaussian behavior and is given by Eqn (3.26) where
k � Z.

3.2 Random walks on locally free groups
We aim at getting the asymptote of the conditional limit
distributions of BB on the braid group Bn. For the case n > 3
it presents a problem which is yet unsolved. However we can
estimate the limit probability distributions of BB on Bn

considering the limit distributions of random walks on the
so-called `local groups' [44, 48, 52 ± 54].

The group LF n�1�d� we call locally free if the generators,
ff1; . . . ; fng obey the following commutation relations:

(a) Each pair �fj; fk� generates a free subgroup of the group
F n if jjÿ kj < d;

(b) fjfk � fkfj for jjÿ kj5 d.
(Below we restrict ourselves to the case d � 2 where

LF n�1�2� � LF n�1).
The limit probability distribution for an N-step random

walk (N4 1) on the groupF n�1 to have the minimal irreducible
length m is

P�m;N� ' const

N3=2
exp

�
ÿN

6

�
m sinh m exp

�
ÿ 3m2

2N

�
�n � 3� ;

P�m;N� ' 1

2
������������
14pN
p exp

�
ÿ 8

7N

�
mÿ 3

4
N

�2�
�n4 1� :

�3:31�

We propose two independent approaches valid in two
different cases: (1) for n � 3 and (2) for n4 1.

(1) The following geometrical image seems useful. Estab-
lish a one-to-one correspondence between a random walk in
some n-dimensional Hilbert space LHn�x1; . . . ; xn� and a
random walk on the group LF n�1, written in terms of
generators ff1; . . . ; fÿ1n g. To be more specific, suppose that
when a generator, say, fj, (or fÿ1j ) is added to the given word
in LF n, the walker makes one unit step towards (away from
for fÿ1j ) the axis �0; xj� in the space LHn�x1; . . . ; xn�.

Now the relations (a), (b) of the definition of the locally
free group could be reformulated in terms ofmetric properties
of the space LF n. Actually, relation (b) indicates that
successive steps along the axes �0; xj� and �0; xk� �jjÿ kj5 2�
commute, hence the section �xj; xk� of the space LHn is flat
and has the Euclidean metric dx2j � dx2k. The situation with
the random trajectories in the sections �xj; xj�1� of the Hilbert
space LHn appears to be completely different. Here the steps
of the walk obey the free group relations (a) and the walk itself
is mapped onto the walk on the Cayley tree. It is well known
that Cayley tree can be uniformly embedded (without gaps
and self-intersections) into a 3-pseudosphere which gives a
representation of the non-Euclidean plane with constant

negative curvature. Thus, sections �xj; xj�1� have the metric
of the Lobachevski|̄ plane which can be written in the form
�dx2j � dx2j�1�=x2j .

For the groupLF 4 these arguments result in the following
metric of an appropriate space LH�3�

ds2 � dx21 � dx22 � dx23
x22

: �3:32�

Actually, the space section �x1; x3� is flat whereas the space
sections �x1; x2� and �x2; x3� have the Lobachevski|̄ plane
metric. The non-Euclidean (hyperbolic) distance between two
pointsM 0 andM 00 in the spaceH3 is defined as follows

cosh m�M 0M 00� � 1� 1

x2�M 0�x2�M 00�

�
X3
i�1

�
xi�M 0� ÿ xi�M 00��2 ; �3:33�

where fx1; x2; x3g are the Euclidean coordinates in the 3D-
halfspace x2 > 0 and m is regarded as a geodesic on a 4-
pseudosphere (Lobachevski|̄ space).

Some well known results concerning the limit behavior of
random walks in spaces of constant negative curvature are
reviewed in the next section where solutions of the diffusion
equations in the Lobachevski|̄ plane and space are given by
Eqn (3.49) and Eqn (3.51) correspondingly. Thus we can
conclude that the distribution function for a random walk in
Lobachevski|̄ space Ps�m;N� defined by Eqs (3.51) ± (3.54)
also gives the probability for the N-letter random word
(written in terms of uniformly distributed generators on F 4)
to have the primitive word of length m [see Eqn (3.31)].

(2) For the group LF n�1 (n4 1� we extract the limit
behavior of the distribution function exactly evaluating the
volume of the maximal non-commutative subgroup of
LF n�1.

Let Vn�m� be the number of all non-equivalent primitive
words of length m on the groupLF n�1.When m4 1,Vn�m� has
the following asymptote:

Vn�m� � const

�
1� 2

�
3ÿ 4p2

n2

��m
' 7m �n4 1� : �3:34�

To get Eqn (3.34) we write each primitive word Wp of
length m in the group LF n�1 in the so-called normal order (all
fai are different) similar to the so-called `symbolic dynamics'
used in the consideration of chaotic systems

Wp � fa1� �m1 fa2� �m2 . . . fas� �ms ; �3:35�

where
Ps

i�1 jmij � m �mi 6� 0 8 i; 14 s4m) and the
sequence of generators fai in Eqn (3.35) for all fai satisfies
the following local rules:

(i) If fai � f1, then fai�1 2 ff2; f3; . . . ; fnÿ1g;
(ii) If fai � fk (1 < k4 nÿ 1), then fai�1 2 ffkÿ1; fk�1; . . .

fnÿ1g;
(iii) If fai � fn, then fai�1 � fnÿ1.
These local rules prescribe the enumeration of all distinct

primitive words. If the sequence of generators in the primitive
word Wp does not satisfy the rules (i) ± (iii), we commute the
generators in the wordWp until the normal order is restored.
Hence, the normal order representation provides us with a
unique coding of all non-equivalent primitive words in the
group LF n�1.
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The calculation of the number of distinct primitive words,
Vn�m�, of the given length m is rather straightforward:

Vn�m� �
Xm
s�1

R�s�
X

fm1 ;...;msg

0
D
�Xs

i�1
jmij ÿ m

�
; �3:36�

where R�s� is the number of all distinct sequences of s
generators taken from the set ff1; . . . ; fng and satisfying the
local rules (i) ± (iii) while the second sum gives the number of
all possible representations of the primitive path of length m
for the fixed sequence of generators (`prime' means that the
sum runs over all mi 6� 0 for 14 i4 s; D is the Kronecker D-
function).

It should be mentioned that the local rules (i) ± (iii) define
the generalized Markov chain with the states given by the
n� n coincidence matrix bTn where the rows and columns
correspond to the generators f1; . . . ; fn:

The number of all distinct normally ordered sequences of
words of length swith allowed commutation relations is given
by the following partition function

Rn�s; d� � vin
� bTn�d�

�s
vout ; �3:38�

where

vin � � 1 . . . 1
z���}|���{n

� ; vout �
1

..

.

1

0B@
1CA
9>=>;n : �3:39�

Supposing that themain contribution in Eqn (3.36) results
from s4 1 we take for Rn�s� the following asymptotic
expression

Rn�s�
���
s4 1
� lmax

n

ÿ �s
; lmax

n � 3ÿ 4p2

n2
�O

�
1

n3

�
; �3:40�

where lmax
n is the highest eigenvalue of the matrix bTn (n4 1).

The remaining sum in Eqn (3.36) is independent of R�s�,
so its calculation is trivial:X0

fm1;...;msg
D
�Xs

i�1
jmij ÿ m

�
� 2s

�mÿ 1�!
�sÿ 1�!�mÿ s�! : �3:41�

Collecting all terms in Eqn (3.36) and evaluating the sum
over s we arrive at Eqn (3.34). The value Vn�m; d� grows
exponentially fast with m and the `speed' of this growth is
clearly represented by the fraction

zeff ÿ 1 � Vn�m� 1�
Vn�m�

����
m4 1

' 7ÿ 8p2

n2
; �3:42�

where zeff is the coordinational number of the effective tree
associated with the locally free group.

Thus, a random walk on the group LF n�1 can be viewed
as follows. Take the free groupGn with generators f~f1; . . . ; ~fng
where all ~fi (14 i4 n) do not commute. The group Gn has a
structure of a 2n-branching Cayley tree, C�Gn�; where the
number of distinct words of length m is equal to ~Vn�m�,eVn�m� � 2n�2nÿ 1�mÿ1 : �3:43�

The graph C�LF n�1� corresponding to the group LF n�1 can
be constructed from the graph C�Gn� in accordance with the
following recursion procedure: (a) Take the root vertex of the
graph C�Gn� and consider all vertices at the distance m � 2.
Identify those vertices which correspond to the equivalent
words in group LF n�1; (b) Repeat this procedure taking all
vertices at the distance m � �1; 2; . . .� and `gluing' them at the
distance m� 2 according to the definition of the locally free
group. By means of the described procedure we raise a graph
which on average has zeff ÿ 1 distinct branches leading to the
`next coordinational sphere'. Thus this graph coincides (on
average) with a zeff-branching Cayley tree.

Although the local structure of the graph C�LF n�1� is
very complex, Eqn (3.42) enables us to find the asymptote of
the randomwalk on the graphC�LF n�1�. Once having zeff, we
can write down the master equation for the probability
P�m;N� to find the walker at the distance m from the origin
after N random steps on the graph C�LF n�1�:

P�m;N� 1� �
�
1ÿ 1

zeff

�
P�mÿ 1;N� � 1

zeff
P�m� 1;N�

�m5 2� : �3:44�
The recursion relation (3.44) coincides with the equation
describing a random walk on the half-line with the drift
from the origin. Taking into account this analogy we can
complete Eqn (3.44) by the boundary conditions [52].
However the exact form of the boundary conditions does
not influence the asymptotic solution of Eqn (3.44) in the
vicinity of the maximum of the distribution function:

P�m;N� ' 1

2
���������������������������
2p�zeff ÿ 1�Np

� exp

�
ÿ z2eff
8�zeff ÿ 1�N

�
mÿ zeff ÿ 2

zeff
N

�2�
:

Thus we obtain the desired distribution function [Eqn (3.31)]
for the primitive word length for a random walk on the group
LF n�1.

Eqn (3.31) gives the estimate from below for the limit
distribution of the primitive words on the group Bn for n4 1.

We find further investigation of the random walks on the
groups LF n�1�d� for different values of d very perspective. It
should give insight for consideration of random walk
statistics on `partially commutative groups'. Moreover, the
set of problems considered there has a deep relation with the
spectral theory of random matrices.

3.3 Brownian bridges on the Lobachevski|̄ plane
and products of non-commutative random matrices
The problem of word enumeration on a locally non-commu-
tative group has an evident connection with the statistics of
Markov chains on graphs having a Cayley tree-like structure
and, hence, with random walk statistics on surfaces of a

f1 f2 f3 f4 . . . fnÿ1 fn

bTn�d� �

f1
f2
f3
f4
..
.

fnÿ1
fn

0
1
0
0
..
.

0
0

1
0
1
0
..
.

0
0

1
1
0
1
..
.

0
0

1
1
1
0
..
.

0
0

. . .

. . .

. . .

. . .
. .

.

. . .

. . .

1
1
1
1
..
.

0
1

1
1
1
1
..
.

1
0

(3.37)
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constant negative curvature. (We stressed once that the
Cayley tree-like graphs are isometrically embedded in
surfaces of a constant negative curvature).

Recall that the distribution function, P�r; t�, for a free
random walk in D-dimensional Euclidean space obeys the
standard heat equation:

q
qt
P�r; t� � DDP�r; t�

with the diffusion coefficient D � 1=�2D� and appropriate
initial and normalization conditions

P�r; t � 0� � d�r� ;
�
P�r; t� dr � 1 :

Correspondingly, the diffusion equation for the scalar
density P�q; t� of the free random walk on a Riemann
manifold reads (see [62] for instance)

q
qt
P�q; t� � D 1���

g
p q

qqi

� ���
g
p �gÿ1�ik

q
qqk

�
P�q; t� ; �3:45�

where

P�q; t � 0� � d�q� ;
� ���

g
p

P�q; t� dq � 1 �3:46�

and gik is the metric tensor of the manifold; g � det gik.
Eqn (3.45) has been subjected to thorough analysis for

manifolds of constant negative curvature. Below we repro-
duce the corresponding solutions for the best known cases:
for 2D- and 3D-Lobachevski|̄ spaces (often referred to as 3-
and 4-pseudospheres) labelling them by indices `p ' and `s ' for
the 2D- and 3D-cases correspondingly.

For the Lobachevski|̄ plane one has

jjgikjj � 1 0
0 sinh2m

���� �������� ���� ; �3:47�

where m stands for the geodesic length on a 3-pseudosphere.
The corresponding diffusion equation now reads

q
qt
Pp �m;j; t� � D

�
q2

qm2
�cothm q

qm
� 1

sinh2 m

q2

qj2

�
� Pp�m;j; t� : �3:48�

The solution of Eqn (3.48) is believed to have the
following form

Pp�m; t� � exp�ÿtD=4�
4p

����������������
2p�tD�3

q �1
m

x exp
�ÿ x2=�4tD���������������������������������

cosh xÿ cosh m
p dx

' exp�ÿtD=4�
4ptD

�
m

sinhm

�1=2

exp

�
ÿ m2

4tD
�
: �3:49�

For the Lobachevski|̄ space the corresponding metric
tensor is

jjgikjj �
1 0 0
0 sinh2 m 0

0 0 sinh2 m sin2 y

������
������

������
������ : �3:50�

Substituting Eqn (3.45) for Eqn (3.50) we have

Ps�m; t� � exp�ÿtD�
8p

��������������
p�tD�3

q m
sinh m

exp

�
ÿ m2

4tD
�
: �3:51�

For the first time this spherically symmetric solution of the
heat equation [Eqn (3.45)] in the Lobachevski|̄ space was
received in [63].

In our opinion one fact must be given attention. The
distribution functions Pp�m; t� and Ps�m; t� give the probabil-
ities of finding a randomwalk starting at the point m � 0 after
time t in some specific point located at the distance m in the
corresponding non-Euclidean space. The probability of
finding the terminal point of a random walk after time t
somewhere at a distance m is

Pp;s�m; t� � Pp;s�m; t�N p;s�m� ; �3:52�

where

N p�m� � sinh m �3:53�
is the perimeter of circle of radius m on the Lobachevski|̄ plane
and

N s�m� � sinh2 m �3:54�

is the area of a sphere of radius m in the Lobachevski|̄ space.
The difference between Pp;s and Pp;s is insignificant in

euclidean geometry, whereas in non-Euclidean space it
becomes dramatic because of the consequences of the
behavior of Brownian bridges in spaces of constant negative
curvature.

Using the definition of the Brownian bridge, let us
calculate the probabilities of finding an N-step random walk
(starting at m � 0) after first t steps at the distance m in the
Lobachevski|̄ plane (space) under the condition that it returns
to the origin on the last step. These probabilities are (N!1)

Pp�m; tj0;N� � Pp�m; t�Pp�m;Nÿ t�
Pp�0; t� '

' N

4pDt�Nÿ t� m exp
�
ÿ m2

4D
�
1

t
� 1

Nÿ t

��
;

Ps�m; tj0;N� � Ps�m; t�Ps�m;Nÿ t�
Ps�0; t� '

' N3=2

8pt3=2�Nÿ t�3=2
m2 exp

�
ÿ m2

4D
�
1

t
� 1

Nÿ t

��
: �3:55�

Hence we come to the standard Gaussian distribution
function with zero mean.

Equations (3.55) describing the random walk on the
Riemann surface of constant negative curvature have direct
application to the conditional distributions of Lyapunov
exponents for products of some non-commutative matrices.
Let us consider the first of Eqn (3.55). Changing the variables
m � ln�1� jzj�=�1ÿ jzj�; j � arg z where z � x� iy,
�z � xÿ iy we map the 3-pseudosphere �m;j� onto the unit
disk jzj < 1 known as the Poincare representation of the
Lobachevski|̄ plane. The corresponding conformal metric
reads dl 2 � �4 dz d�z�=�1ÿ jzj2�2. Using the conformal trans-
form z � �1� iw�=�1ÿ iw� we recover the so-called Klein
representation of the Lobachevski|̄ plane, where
dl 2 � ÿ�4 dwd�w�=�wÿ �w�2 and the model is defined in
Imw > 0 (w � u� iv; �w � uÿ iv).
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The following relations can be verified using conformal
representations of the Lobachevski|̄ plane metric (see, for
instance, [17]). The fractional group of motions of the
Lobachevski|̄ plane is isomorphic to:

(i) the group SU�1; 1�=� 1 � PSU�1; 1� in the Poincare
model;

(ii) the group SL�2; IR�=� 1 � PSL�2; IR� in the Klein
model.

Moreover, it is known (see, for example, [34]) that the
Lobachevski|̄ plane H can be identified with the group
H � SL�2; IR�=SO�2�. This relation enables us to resolve (at
least qualitatively) the following problem. Take the Brownian
bridge on the group H � SL�2; IR�=SO�2�, i.e. demand the
products of N independent random matricescMk 2 H �04 k4N� to be identical to the unit matrix.
Consider the limit distribution of the Lyapunov exponent, d̂,
for the first m matrices in those products. To have a direct
mapping of this problem onto the random walk in the
Lobachevski|̄ plane, write the corresponding stochastic
recursion equation for some vectorWk �

ÿ
uk
vk

�
Wk�1 � cMkWk ; W1 � 1

1

� �
; �3:56�

where Mk 2 H for all k 2 �1;N�. The BB-condition means
that

WN �W1 for N4 1 : �3:57�

Let us consider the simplest case

cMk � 1� bMk ; norm � bMk�5 1 : �3:58�

In this case the discrete dynamic equation (3.56) can be
replaced by the differential one. Its stationary measure is
determined by the corresponding Fokker ± Plank equation
(3.45). The Lyapunov exponent, d̂ of the product of random
matrices cM coincides with the length of geodesics in theKlein
representation of the Lobachevski|̄ plane. Hence, under the
conditions (3.57), (3.58) we have for d̂ the usual Gaussian
distribution coinciding with the first of Eqn (3.55). Without
the BB-condition (i.e. for `open walks') we reproduce the
standard F�urstenberg behavior [39].

Although this consideration seems rather crude (for
details see Appendix A), it clearly shows the origin of the
main result:

The `Brownian bridge' condition for random walks in a
space of constant negative curvature makes the space `effec-
tively flat' turning the corresponding limit probability distribu-
tion for random walks to the ordinary central limit distribution.

The question whether this result is valid for the case of the
random walk in non-Euclidean spaces of non-constant
negative curvature still remains.

Finally we would like to introduce some conjectures
which naturally generalize our consideration.

The complexity Z of any known algebraic invariants
(Alexander, Jones, HOMFLY) for the knot represented by
the Bn-braid of length N with the uniform distribution over
generators has the following limit behavior:

P�Z;N� � const

N3=2
Z exp

�
ÿ a�n�N� b�n�Zÿ Z2

d�n�N
�
;

�3:59�

where a�n�; b�n�; d�n� are numerical constants depending on n
only.

The knot complexity Z in an ensemble of Brownian bridges
from the group Bn shown in Fig. 10 has a Gaussian distribution,
where

hZi � 0 ; hZ2i � 1

2
d�n�N : �3:60�

These conjectures are yet to be proven. Themain idea is to
employ the relation between the knot complexity Z, the length
of the shortest non-contractible word and the length of
geodesics on some hyperbolic manifold.

4. Conformal methods in the statistics of random
walks with topological constraints

The last few years have beenmarked by considerable progress
in understanding the relationship between Chern ± Simons
topological field theory, the construction of the algebraic
knot and link invariants and conformal field theory (see, for
review, [64]).

Although the general concepts have been well elaborated
in the field-theoretic context, their application in related areas
of mathematics and physics, such as, for instance, probability
theory and statistical physics of chain-like objects is highly
limited.

The present section is mainly concerned with the con-
formal methods in statistical analysis which allow us to
correlate the problems discussed in Sections 1 and 2 and the
limit distributions of random walks on multiconnected
Riemann surfaces. To be more specific, we show on the level
of differential equations how simple geometrical methods can
be applied to the construction of non-commutative topologi-
cal invariants. The latter might serve as non-abelian general-
izations of the Gauss linking numbers for random walks on
multi-punctured Riemann surfaces. We also study the
connection between the topological properties of random
walks on the double punctured plane and behavior of four-
point correlation functions in the conformal theory with
central charge c � ÿ2. The approach developed is applied to
the investigation of the statistics of 2D-random walks with
multiple topological constraints. For instance, the methods
presented here allow us to extract non-trivial critical
exponents for the contractible (i.e., unentangled) random
walks in the regular lattices of obstacles. Some of our
findings support the conjectures of Sections 2 and 3 and
have direct application in the statistics of strongly entangled
polymer chains (see Section 5).

4.1 Construction of non-abelian connections for G2

and PSL(2, ZZ ) from conformal methods
We analyzed random walk of length L with a effective
elementary step a (a � 1) on the complex plane z � x� iy
with two points removed. Suppose the coordinates of these
points are A (z1 � �0; 0�) and B (z2 � �c; 0�) (c � 1). Such a
choice does not indicate a loss of generality because by means
of simultaneous rescaling of the effective step, a, of the
random walk and of the distance, c, between the removed
points we can always obtain any arbitrary values of a and c.

Consider the closed paths on z and attribute the gen-
erators g1; g2 of some group G to the turns around the points
A and B if we move along the path in the clockwise direction
(we apply gÿ11 ; gÿ12 for counter-clockwise motion) Ð see
Fig. 11.
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The question is: what is the probability P�m;L� for a
random walk of length L on the plane z to form a closed loop
with the shortest non-contractible word written in terms of
the generators fg1; g2; gÿ11 ; gÿ12 g of having length m (see also
Section 2).

Let the distribution function P�m;L� be formally written
as a path integral with a Wiener measure

P�m;L� � 1

Z
�

. . .

�
Dfzg exp

�
ÿ 1

a2

�L
0

�
dz�s�
ds

�2

ds

�
� d
�
Wfg1; g2; gÿ11 ; gÿ12 jzg ÿ m

�
; �4:1�

where Z � � P�m;L�dm and Wf. . . jzg is the length of the
shortest word onG as a functional of the path on the complex
plane.

Conformal methods enable us the construct the connec-
tion and the topological invariant W for the given group as
well as to rewrite Eqn (4.1) in a closed analytic form which is
solvable at least in the limit L!1.

Let z�z� be the conformal mapping of the double
punctured plane z � x� iy on the universal covering
z � x� il. The Riemann surface z is constructed in the
following way. Make three cuts on the complex plane z

between the points A and B, between B and �1� and between
�1� and A along the line Im z � 0. These cuts separate the
upper (Im z > 0) and lower (Im z < 0) half-planes of z. Now
perform a conformal transform of the half-plane Im z > 0 to
the fundamental domain of the group Gfg1; g2g Ð the
curvilinear triangle lying in the half-plane Im z > 0 of the
plane z. Each fundamental domain represents the Riemann
sheet corresponding to the fibre bundle above z. The whole
covering space z is the unification of all such Riemann sheets.

The coordinates of the initial and final points of any
trajectory on the universal covering z determine (see [66]): (a)
the coordinates of corresponding points on z; (b) the homotopy
class of any path on z. In particular, the contours on z are closed
if and only if Wfg1; g2jzg � 1, i.e. they belong to the trivial
homotopy class.

The coordinates of the ends of the trajectory on the
universal covering z can be used as the topological invariant
for the path on the double punctured plane z with respect to
the action of the group G.

Thus, we characterize the topological invariant, Inv�C�,
of some closed directed path C starting and ending at an
arbitrary point z0 6� fz1; z2;1g on the plane z by the
coordinates of the initial, zin�z0�, and final, zfin�z0�, points of
the corresponding contour P in the covering space z. The
contour P connects the images of the point z0 on the different
Riemann sheets. Write Inv�z��C� as a full derivative along the
contour C:

Inv�z��C� �def zin ÿ zfin �
�
C

dz�z�
dz

dz : �4:2�

The physical interpretation of the derivative dz�z�= dz is
very straightforward. Actually, the invariant, Inv�C�, can be
associated with the flux through the contour C on the plane
�x; y�:

Inv�C� � Inv�x;y��C� �
�
C

Hz�x; y�n dr

�
�
C

n� Hz�x; y�v�s� ds ; �4:3�

where: n is the unit vector normal to the curve C,
dr � ex dx� ey dy on the plane �x; y�; v�s� � dr= ds denotes
the `velocity' along the trajectory; and ds stands for the
differential path length. The simple transformations used in
Eqn (4.3) are: (a) n dr � ex dyÿ ey dx � dr� n; (b)
Hz�x; y�� dr� n� � �n� Hz�x; y�� dr, where n � �0; 0; 1� is
the unit vector normal to the plane �x; y�.

The vector product

A�x; y� � n� Hz�x; y� �4:4�

can be considered a non-abelian generalization of the vector
potential of a solenoidal `magnetic field' normal to the plane
�x; y� and crossing it at the points �x1; y1� and �x2; y2�. Thus,
A defines the flat connection of the double punctured plane z
with respect to the action of the group G.

It is easy to show how the basic formulae (4.2) and (4.3)
transform in the case of the commutative groupGcommfg1; g2g
which distinguishes only the classes of homology of the
contour C with respect to the removed points on the plane.
The corresponding conformal transform is performed by the
function z�z� � ln�zÿ z1� � ln�zÿ z2�. This immediately
gives the abelian connection and the Gauss linking number

c

�B�C

z

x

l

P1 P2

�A " 1

b

x0 1

Z

A B

y

C!1
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A B
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C2

W
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U

Figure 11. (a) Ð the double punctured complex plane z with two basis

loopsC1 andC2 enclosing pointsM1 andM2; (b)Ð the universal covering

z with fundamental domain corresponding to the free group G2. The

contours P1 and P2 are the images of the loops C1 and C2.
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as a topological invariant:

A�r� � n�
X

j�f1;2g

rÿ rj

jrÿ rjj2
;

Inv�C� �
�
C

A�r� dr � 2p�n1 � n2� ;

where n1 and n2 are thewinding numbers of the pathC around
the pointsM1 andM2 of the plane �x; y�.

Substituting Eqn (4.3) written in Euclidean coordinates
�x; y� for Eqn (4.1) and using the Fourier transform for the d-
function, we can rewrite equation (4.1) as follows

P�m;L� � 1

2p

�1
ÿ1

exp�ÿiqm�P�q;L� dq ; �4:5�

where

P�q;L� � 1

Z
�

. . .

�
Dfrg exp

�
ÿ 1

a2

�L
0

��
dr�s�
ds

�2

ÿ iqA�r� dr�s�
ds

�
ds

�
: �4:6�

The function P�q;L� coincides with the Green function
P�r0; r � r0; q;L� of the non-stationary SchroÈ dinger-like
equation for free particle motion in a `magnetic field' with
vector potential (4.4):

q
qL

P�r0; r; q;L� ÿ
�

1

2a
Hÿ iqA�r�

�2

P�r0; r; q;L�

� d�L�d�rÿ r0� ; �4:7�

where q plays the role of a `charge' and the magnetic field is
considered transversal, i.e. rotA�r� � 0.

We describe now the constructive way of getting the
desired conformal transform. The single-valued inverse
function z�z� � zÿ1�z� is defined in the fundamental domain
of z Ð the triangle ABC. The multivalued function f�z� is
determined as follows:

Ð the function f�z� coincides with z�z� in the basic
fundamental domain;

Ð in all other domains of the covering space z the function
f�z� is analytically continued through the boundaries of these
domains by means of fractional transformations consistent
with the action of the group G.

Consider two basic contours P1 and P2 on z being the
conformal images of the contours C1 and C2 (Fig. 11b). The
function f�z� (z 6� fz1; z2;1g) obeys the following transfor-
mations:

f�z!C1
z� ! ~f1�z� �

a1f�z� � b1
c1f�z� � d1

;

f z!C2
z

h i
! ~f2�z� �

a2f�z� � b2
c2f�z� � d2

; �4:8�

where

a1 b1
c1 d1

� �
� g1 ;

a2 b2
c2 d2

� �
� g2 �4:9�

are the matrices of basic substitutions of the group Gfg1; g2g.

We assume z�z� to be a ratio of two fundamental
solutions, u1�z�, and, u2�z�, of some second order differential
equation with peculiar points fz1 � �0; 0�; z2 � �0; 1,
z3 � �1�g. As follows from the analytic theory of differen-
tial equations [68], the solutions u1�z� and u2�z� undergo
linear transformations when the variable z moves along the
contours C1 and C2:

C1 :
~u1�z�
~u2�z�

� �
� g1

u1�z�
u2�z�

� �
; C2 :

~u1�z�
~u2�z�

� �
� g2

u1�z�
u2�z�

� �
:

�4:10�

The problem of restoring the form of the differential
equation knowing the monodromy matrices g1 and g2 of the
group G known as Riemann-Hilbert problem has a long
history [68]. In our particular case we restrict ourselves to
the well investigated groups G2 (the free group) and
PSL�2; ZZ � (the modular group). Thus, we have the following
second-order differential equations:

z�zÿ 1� d2

dz2
u�f��z� � �2zÿ 1� d

dz
u�f��z� � 1

4
u�f��z� � 0

�4:11�

for the free group and

z�zÿ 1� d2

dz2
u�m��z� �

�
5

3
zÿ 1

�
d

dz
u�m��z� � 1

12
u�m��z� � 0

�4:12�

for the modular group.
The function which performs the conformal mapping of

the upper half-plane Im z > 0 on the fundamental domain
(the curvilinear triangleABC) of the universal covering z now
reads

z�z� � u
�f;m�
1 �z�
u
�f;m�
2 �z�

; �4:13�

where u
�f�
1;2�z� and u

�m�
1;2 �z� are the basic solutions of (4.11) and

(4.12) for G2 and PSL�2; ZZ � respectively.
As an example we give an explicit form of the complex

potentialA�z� for the free groupG2. Substituting Eqn (4.2) for
Eqn (4.13), we get

A�z� � dz�z�
dz
� 1

2�zÿ 1�
�
F1�z�F4�z�

F 2
2 �z�

ÿ F3�z�
F2�z�

�
; �4:14�

where

F1�z� �
�1= ��zp
1

dK�������������������������������������1ÿ K2��1ÿ zK2�p ;

F2�z� �
�1
0

dK�������������������������������������1ÿ K2��1ÿ zK2�p ;

F3�z� �
�1= ��zp
1

���������������
1ÿ K2

1ÿ zK2

r
dK ; F4�z� �

�1
0

���������������
1ÿ K2

1ÿ zK2

r
dK :

The asymptote of (4.14) is as follows

dz�z�
dz
� zÿ1 ; z! 0 ,

�zÿ 1�ÿ1 ; z! 1

�
(compare to the abelian case).
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4.2 Random walk on a double punctured plane
and conformal field theory
The geometrical construction described in the previous
section is evidently related to the conformal field theory. In
the most direct way this relation could be understood as
follows. The ordinary differential equations Eqn (4.11) and
Eqn (4.12) can be associated with equations on the four-point
correlation function of some (still not defined) conformal
field theory. The question remains whether it is always
possible to adjust the central charge c of the corresponding
Virosoro algebra and the conformal dimension D of the
critical theory to the coefficients in equations like (4.11),
(4.12). The question is positive and we show this for the
example of a random walk on a double punctured plane with
the monodromy of the free group.

We restrict ourselves to the `critical' case of infinitely long
trajectories, i.e. we suppose L!1. In field-theoretic
language that means the consideration of the massless free
field theory on z. Actually, the partition function of the self-
intersecting random walk on z written in the field representa-
tion is generated by the scalar Hamiltonian
H � �Hj�2=2�mj2 where the mass m acts as the `chemical
potential' conjugated to the length of the path (m � 1=L).
Thus, for L!1 we have mc � 0 which corresponds to the
critical point in conformal theory [65].

We introduce the conformal operator, j�z�, on the
complex plane z. The dimension, D, of this operator is
defined from the conformal correlator


j�z�j�z0�� � 1

jzÿ z0j2D : �4:15�

Let us suppose j�z� to be a primary field, then the four-point
correlation function hj�z1�j�z2�j�z3�j�z4�i satisfies the
equation following from the conformal Ward identity [65,
69, 70]. In form of ordinary Riemann differential equation,
Eqn (4.15) on the conformal correlator c�zjz1; z2; z3� �
hj�z�j�z1�j�z2�j�z3�i with the fixed points
fz1 � �0; 0�; z2 � �1; 0�; z3 � 1g reads [65, 69]�

3

2�2D� 1�
d2

dz2
� 1

z

d

dz
� 1

zÿ 1

d

dz
ÿ D
z2

ÿ D

�zÿ 1�2 �
2D

z�zÿ 1�
�
c�zjz1; z2; z3� � 0 :

Performing the substitution c�zjz1; z2; z3� �
�
z�zÿ 1��ÿ2D�

u�z� we get the equation

z�zÿ 1�u00�z� ÿ 2

3
�1ÿ 4D��1ÿ 2z�u0�z�

ÿ 2

3
�2Dÿ 8D2�u�z� � 0 ; �4:16�

which coincides with Eqn (4.11) for one single value of D

D � ÿ 1

8
: �4:17�

The conformal properties of the stress-energy tensor,
T�z�, are defined by the coefficients, Ln, in its Laurent
expansion T�z�: T�z� �P1n�ÿ1 Ln=z

n�2 These coefficients
form the Virosoro algebra [65]

�Ln;Lm� � �nÿm�Ln�m � 1

12
c�n3 ÿ n�dn�m;0 ;

where the parameter, c, is the central charge of the theory.
Using the relation c � 2D�5ÿ 8D�=�2D� 1� established in
[69] and Eqn (4.17) we obtain

c � ÿ2 : �4:18�
We find the following fact, mentioned by B. Duplantier,

very intriguing. As he pointed out, the value D � ÿ1=8 [Eqn
(4.17)] coincides with the surface exponent (i.e. with the
conformal dimension of the two point correlator near the
surface) for the dense phase of theO�n � 0� lattice model (or,
which is the same, for the Potts model with q � 0) describing
the statistics of the so-called `Manhattan randomwalks' (also
known as `dense polymers' Ð see paper [27]). Recall that the
Potts model has been already mentioned in Section 2 in
connection with the construction of algebraic knot invar-
iants. It is hard to believe that such a coincidence is chance
and we hope that the relation between these problems will be
elucidated in the near future.

The conformal invariance of the random walk [66, 67]
together with the geometrical interpretation of the mono-
dromy properties of the four-point conformal correlator
established above enable us to express the following assertion:

The critical conformal field theory characterized by the
values c � ÿ2 and D � ÿ1=8 gives the field representation for
an infinitely long random walk on a double punctured complex
plane.

With respect to the four-point correlation function, we
could askwhat happens with the gauge connectionAj�z� if the
argument zj of the primary field j�zj�moves along the closed
contour C around three punctures on the plane. From the
general theory it is known that Aj�z� can be written as

Aj�z� � 2

k

X
i 6�j

RiRj

zÿ zi
; �4:19�

where k is the level of the corresponding representation of the
Kac ±Moody algebra and Ri, Rj are the generators of
representation of the primary fields j�zi�, j�zj� in the given
group [71]. The holonomy operator w�C� associated with
Aj�z� reads

w�C� � P exp

�
ÿ
�
C

Aj�z� dz
�
: �4:20�

It would be interesting to compare Eqn (4.14) (with one
puncture at infinity) to Eqn (4.19). Besides we could also
expect that Eqn (4.2) would allow us to rewrite the holonomy
operator (4.20) as follows

w�C� � exp�zin ÿ zfin� :

At this point we finish the brief discussion of the field-
theoretical aspects of the geometrical approach presented
above.

4.3 Statistics of random walks with topological constraints
in a two-dimensional lattice of obstacles
The conformal methods can be applied to the problem of
calculating the distribution function for random walks in
regular lattices of topological obstacles on the complex plane
w � u� iv. Let the elementary cell of the lattice be an equal-
sided triangle with side length c.

Introduce the distribution function P�w0;w;Ljhom�
defining the probability of the fact that the trajectory of a
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random walk starting at the point w0 comes after `time' L to
the point w and all paths going from w0 to w belong to the same
homotopy class with respect to the lattice of obstacles.
Formally we can write the diffusion equation

a

4
DwP�w;Ljhom� � q

qL
P�w;Ljhom� �4:21�

with initial and normalization conditions:

P�w;L � 0jhom� � d�z0� ;X
fhomg

P�w0;w;Ljhom� � 1

paL
exp

�
ÿ jwÿ w0j2

aL

�
:

The conformal methods can be used to find the asympto-
tic solution of Eqn (4.21) when L4 a. Due to the conformal
invariance of the Brownian motion, the new random process
in the covering space will again be random but in the metric-
dependent `new time'. In particular, we are interested in the
probability of finding the closed path of length L to be
unentangled in the lattice of obstacles.

The construction of the conformal transformation z�w�
(explicitly described in [66]) can be performed in two stepsÐ
see Fig. 11:

1. First, by means of auxiliary reflection w�z� we transfer
the elementary cell of the w-plane to the upper half-plane of
the Im �z� > 0 of the double punctured plane z. The function
w�z� is determined by the Christoffel ± Schwarts integral

w�z� � c

B�1=3; 1=3�
�z
0

d~z

~z2=3�1ÿ ~z�2=3
: �4:22�

where B 1
3
; 1
3

ÿ �
is the Beta-function. The correspondence of the

branching points is as follows:

A�w � 0� ! ~A�z � 0� ; B�w � c� ! ~B�z � 1� ;
C

�
w � c exp

�
ÿ i

p
3

��
! eC�z � 1� :

2. The construction of the universal covering z for the
double punctured complex plane z is realized by means of
automorphic functions. If the covering space is free of
obstacles, the corresponding conformal transform should be
as follows

ÿ 1ÿ
z0�z��2 �z�z�	 � z2 ÿ z� 1

2z2�zÿ 1�2 ; �4:23�

where
�
z�z�	 is the so-called Schwartz's derivative

�
z�z�	 � z000�z�

z0�z� ÿ
3

2

�
z00�z�
z0�z�

�2

; z0�z� � dz

dz
:

It is well known in the analytic theory of differential
equations [68] that the solution of Eqn (4.23) can be
represented as ratio of two fundamental solutions of some
second order differential equation with two branching points,
namely, of Eqn (4.11). The final answer reads

z�z� � k2�z� � y42
ÿ
0; exp�ipz��

y43
ÿ
0; exp�ipz�� ; �4:24�

where y2�0; z� and y3�0; z� are the elliptic Jacobi Theta-
functions. We recall their definitions

y2
ÿ
w; exp�ipz�� � 2 exp

�
i
p
4
z
�

�
X1
n�0

exp
�
ipzn�n� 1�� cos�2n� 1�w ;

y3
ÿ
w; exp�ipz�� � 1� 2

X1
n�0

exp�ipzn2� cos 2nw : �4:25�

The branching points eA; eB; eC have images in the vertex
points of a zero-angled triangle lying in the upper half-plane
of the plane z. We have from Eqn (4.24):

eA�z � 0� ! �A�z � 1� ; eB�z � 1� ! �B�z � 0� ;
eC�z � 1� ! �C�z � ÿ1� :
The half-plane Im �z� > 0 functions as a covering space

for the planewwith a regular array of topological obstacles. It
does not contain any branching point and consists of an
infinite set of Riemann sheets, each having the form of a zero-
angled triangle. These Riemann sheets correspond to the fibre
bundle of w.

The conformal approach gives us a well defined non-
abelian topological invariant for the problem Ð the differ-
ence between the initial and final points of the trajectory in the
covering space (see Srction 4.1). Thus, the diffusion equation
for the distribution function P�z;L� in the covering space z
with given initial point z0 yields

a

4

q2

qzqz
P�z; z0;L� �

��w 0�z���2 q
qL

P�z; z0;L� ; �4:26�

where we took into account that under the conformal
transform the Laplace operator is transformed in the
following way

Dw �
���� dzdw

����2Dz ;

���� dzdw
����2 � 1��w 0�z���2 :

In particular, the value P�z � z0; z0;L� gives the prob-
ability of the path of length L being unentangled (i.e. being
contractible to a point) in the lattice of obstacles.

The expression for the Jacobian w0�z�j j2 can be found
using the properties of Jacobi Theta-functions [72]. Write
w 0�z� � w 0�z� z0�z�, where

w 0�z� � c

B�1=3; 1=3�
y16=33

y8=32 y8=30

; z0�z� � ip
y42 y

4
0

y43
;

i
p
4
y40 �

d

dz
ln

�
y2
y3

�

(we omit the arguments for compactness).
The identity

y 01
ÿ
0; exp�ipz�� � dy1

ÿ
w; exp�ipz��
dw

����
w�0

� py0
ÿ
w; exp�ipz�� y2ÿw; exp�ipz�� y3ÿw; exp�ipz��

enables us to get the final expression��w 0�z���2 � c2h2
��y 01ÿ0; exp�ipz����8=3 ;

h � 1

p1=3B�1=3; 1=3� ' 0:129 ; �4:27�
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where

y1
ÿ
w; exp�ipz�� � 2 exp

�
i
p
4
z
�

�
X1
n�0
�ÿ1�n exp �ipn�n� 1�z� sin�2n� 1�w : �4:28�

Return to Eqn (4.26) and perform the conformal trans-
form of the upper half-plane Imz > 0 to the interior of the
unit circle on the complex plane t in order to use the symmetry
properties of the system. It is convenient to choose the
following mapping of the vertices of the fundamental
triangle �A �B �C

�A�z � 1� ! A0�~z � 1� ;
�B�z � 0� ! B 0

�
~z � exp

�
ÿ i

2p
3

��
;

�C�z � ÿ1� ! C 0
�

~z � exp

�
i
2p
3

��
:

The corresponding transform reads

z�t� � exp

�
ÿ i

p
3

�
tÿ exp�i2p=3�

tÿ 1
ÿ 1 ; �4:29�

and the Jacobian jw0�t�j2 takes the form

jw0�t�j2 � 3c2h2

j1ÿ tj4
�����y 01
�
0; exp

ÿ
ipz�t���8=3

����� : �4:30�

In Figure 12 we plot the function g�r;c� � �1=c2�jw 0�t�j2
where t � r exp�ic�.

The gain of such a representation becomes clear if we
average the function g�r;c� with respect to c. The numerical
calculations give us:

lim
r!1



g�r;c��c � lim

r!1

1

2p

�2p
0

g�r;c� dc � �o

�1ÿ r 2�2 ;

�4:31�
where �o ' 0:0309 (see the Fig. 13).

Thus it is clear that for r rather close to 1 the diffusion is
governed by the Laplacian on the surface of constant negative
curvature (the Lobachevski|̄ plane). The representation of the
Lobachevski|̄ plane in the unit circle and in the upper half-
plane (i.e. Poincare and Klein models) was discussed in
Section 3.4. Finally the diffusion equation (4.26) takes the
following form:

q
qN

P�r;c;N� � D�1ÿ r 2�2Dr;cP�r;c;N� ; �4:32�
where D � a2=4�oc2 is the `diffusion coefficient' in the
Lobachevski|̄ plane and N � L=a is the dimensionless chain
length (i.e. effective number of steps).

Changing the variables �r;c� ! �m;c�, where
m � ln�1� r�=�1ÿ r�, we get the unrestricted random walk
on the 3-pseudosphere [see Eqn (3.49)]. Correspondingly the
distribution function P�m;N� reads

P�m;N�� exp�ÿND=4�
4p

�������������������
2p�ND�3

q �1
m

x exp�ÿx2=�4ND���������������������������������
cosh xÿ cosh m
p dx : �4:33�

The physical meaning of the geodesic length on the 3-
pseudosphere, m, is straightforward: m is the length of the so-
called `primitive path' in the lattice of obstacles, i.e. the length
of the shortest path remaining after all topologically allowed
contractions of the random trajectory in the lattice of
obstacles. Hence, m can be considered a non-abelian topolo-
gical invariant, much more powerful than the Gauss linking
number. This invariant is not complete except one point m � 0
where it precisely classifies the trajectories belonging to the
trivial homotopic class. Let us note that the length Z is
proportional to the length of the primitive (irreducible)
word written in terms of generators of the free group G2.

5. Physical applications. Polymer language
in the statistics of entangled chain-like objects

Topological constraints essentially modify the physical
properties of statistical systems consisting of chain-like
objects of a completely different nature. It should be said
that topological problems are widely investigated in connec-
tion with quantum field and string theories, 2D-gravitation,

Figure 12. Relief of the function g�r;c�Ð see explanations in the text.
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Figure 13. Plot of product 2phg�r;c�ic � �1ÿ r 2�2 as a function of r.
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the statistics of vortices in superconductors and world lines of
anyons, the quantum Hall effect, thermodynamic properties
of entangled polymers etc. Modern methods of theoretical
physics allow us to describe rather comprehensively the
effects of non-abelian statistics on physical behavior for
each particular referred system; however, in our opinion, the
following general questions remain obscure:

How do the changes in the topological state of the system
of entangled chain-like objects affect their physical proper-
ties?

How can the knowledge accrued in statistical topology be
applied to the construction of the Ginzburg ±Landau-type
theory of fluctuating entangled chain-like objects?

In order to have a representative and physically clear
image for the system of fluctuating chains with the full range
of non-abelian topological properties it appears quite natural
to formulate general topological problems in terms of the
polymer physics. It allows us: to use a geometrically clear
image of polymer with topological constraints as a model
corresponding to the path integral formalism in the field
theory, and to advance in the investigation of specific physical
properties of biological and synthetical polymer systems
where the topological constraints play a significant role.

For physicists, polymer objects are attractive for many
reasons. First of all, the joining of monomer units in chains
essentially reduces all equilibrium and dynamic properties of
the system under consideration. Moreover, due to that
joining the behavior of polymers is determined by space-
time scales larger than for low-molecular-weight substances.
The chain-like structure of macromolecules causes the
following peculiarities (see, for instance, [73]): so-called
`linear memory' (i.e. the fixed position of each monomer
unit along the chain); low translational entropy (i.e. the
restrictions on independent motion of monomer units due to
the presence of bonds); large space fluctuations (i.e. just a
single macromolecule can be regarded as a statistical system
with many degrees of freedom).

It should be emphasized that the above mentioned `linear
memory' leads to the fact that different parts of polymer
molecules fluctuating in space can not go through one
another without chain rupture. For a system of non-
phantom closed chains this means that only those chain
conformations which can be transformed continuously into
one another are available, which inevitably gives rise to the
problem of knot entropy determination (see Section 2 for
details).

5.1 Polymer chain in a 3D-array of obstacles
The 3D-model, `polymer chain in an array of obstacles'
(PCAO), can be defined as follows [43, 49, 66]. Suppose a
polymer chain of length L � Na is placed between the edges
of a simple cubic lattice with spacing c, whereN and a are the
number of monomer units in the chain and the length of the
unit correspondingly. We assume that the chain cannot cross
(`pass through') any edges of the lattice.

The PCAO-model can be considered as the basis for a
mean-field-like self-consistent approach to the major pro-
blem of entropy calculation of ensembles of strongly
entangled fluctuating chains. Namely, choose a test chain,
specify its topological state and assume that the lattice of
obstacles models the effect of entanglements with the
surrounding chains (`background'). Neglecting the fluctua-
tions of the background and the topological constraints
which the test chain produces for itself, we lose information

about the correlations between the test chain and the back-
ground. However even in the simplest case we arrive at some
non-trivial results concerning the statistics of the test chain
caused by topological interactions with the background. This
means that for the investigation of properties of real polymer
systems with topological constraints it is not enough to be
able to calculate the statistical characteristics of chains in
lattices of obstacles, but it is also necessary to be able to adjust
any specific physical system to the unique lattice of obstacles,
which is a much more complicated task.

So, let us take a closed polymer chain without volume
interactions (i.e. a chain with self-intersections) in the trivial
topological state with respect to the 3D lattice of obstacles.
This means that the chain trajectory can be continuously
contracted to a point. It is clear that because of the obstacles,
the macromolecule will adopt a more compact conformation
than the standard random walk without any topological
constraints.

It is convenient to begin with the lattice realization of the
problem. In this case the polymer chain can be represented as
a closedN-step randomwalk on a cubic lattice with the length
of the elementary step a being equal to the spacing of the array
of obstacles, c. The general case a 6� cwill be considered later.

A random walk on a 3D-cubic lattice in the presence of a
regular array of topological constraints produced by uncros-
sible strings on the dual lattice is equivalent to a free random
walk on the graph Ð the Cayley tree with branching number
z � 6.

The average space dimension R�N� � �������������
R2�N�p

of the
closed unentangled N-step random walk is [43]:

R � aN 1=4 : �5:1�
The outline of the derivation of result (5.1) is as follows.

First of all note that the Cayley tree with z branches (called
latter as z-tree with z � 2D branches) plays the role of a
universal covering and is just a visualization of the free group
G1 with an infinite number of generators. At the same time
G1= ZZ

D � Gz=2, where Gz=2 is the free group with z genera-
tors. Writing down the recursion relations for the probability
P�k;N� for an N-step random walk on the z-tree [compare to
(3.24) ± (3.44)], we can easily find the conditional limiting
distribution for the function
P�k;mjN� � P�k;m�P�k;Nÿm�=z�zÿ 1�kÿ1. Recall that
P�k;mjN� gives the conditional probability distribution of
the fact that two sub-chains C1 and C2 of lengths m and
Nÿm have a common primitive path k under the condition
that the composite chain C1 C2 of length N is closed and
unentangled in regard to the obstacles:

P�k;mjN� '
�

N

2m�Nÿm�
�3=2

k2 exp

�
ÿ k2N

2m�Nÿm�
�
:

�5:2�
This equation enables us to get the following expressions for
the mean length of the primitive path, hk�m�i of a closed
unentangled N-link chain divided into two parts of lengths m
and Nÿm correspondingly:



k�m�� �XN

k�0
kP�k;mjN� ' 2���

p
p

������������������������
2m�Nÿm�

N

r
�N4 1� :

�5:3�
The primitive path itself can be considered a randomwalk in a
3D space with the restriction that any step of the primitive
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path should not be strictly opposite to the previous one.
Therefore the mean-square distance in the space h�r0 ÿ rm�2i
between the ends of the primitive path of k�m� steps is
�r0 ÿ rm�2

� � z

zÿ 2
ka2 ; �5:4�

where rm is the radius-vector of the link number m and the
boundary conditions are: rN � r0 � 0. The mean-square
gyration radius, hR2

gi of an N-step closed unentangled
random walk in the regular lattice of obstacles reads

hR2
gi �

1

2N2

X
n 6�m


�rn ÿ rm�2
� � 1

2N

XN
m�1


�r0 ÿ rm�2
�

� z

zÿ 2

������
2p
p

8
a2

����
N
p

: �5:5�
This result should be compared to the mean-square gyration
radius of the closed chain without any topological con-
straints, hR2

g;0i � a2N=12
The relation R � N 1=4 is reminiscent of the well-known

expression for the dimension of a randomly branched ideal
macromolecule. The gyration radius of an ideal `lattice
animal' containing N links is proportional to N 1=4. This
means that both systems belong to the same universality class.

Now we turn to the mean-field calculation of the critical
exponent n of a non-self-intersecting randomwalk in a regular
lattice of obstacles [75]. Within the framework of Flory-type
mean-field theory the non-equilibrium free energy, F�R�, of
the polymer chain of size R with volume interactions can be
written as follows

F�R� � Fint�R� � Fel�R� ; �5:6�

where Fint�R� is the energy of the chain self-interactions and
Fel�R� is the `elastic', (i.e. pure entropic) contribution to the
total free energy of the system. Minimizing F�R� with respect
toR for fixed chain length,L � Na, we get the desired relation
R � N n.

Write the interacting part of the chain free energy written
in the virial expansion

Fwz �R� � V�Br2 � Cr3� ; �5:7�

where V � RD is the volume occupied by the chain in d-
dimensional space; r � N=V is the chain density;
B � b�Tÿ y�=y and C � const > 0 are the two± and three±
body interaction constants respectively. In the case B > 0 the
third virial coefficient contribution to Eqn (5.7) can be
neglected [73].

The `elastic' part of the free energy Fel�R� of an
unentangled closed chain of size R and length Na in the
lattice of obstacles can be estimated as follows

Fel�R� � const� lnP�R;N�
� const� ln

�
dkP�k;N�P�R; k� ; �5:8�

where the distribution function P�k;m;N� is the same as in
Eqn (5.2) and P�R; k� gives the probability of the primitive
path of length k having a space distance between the ends
equal to R:

P�R; k� �
�

D

2pack

�D=2

exp

�
ÿ DR2

2ack

�
: �5:9�

Substituting Eqn (5.8) for Eqs (5.2) and (5.9) we get the
following estimate

Fel�R� � ÿ
�

R4

a2c2N

�1=3

� o�R4=3� : �5:10�

Equations (5.7) and (5.10) allow us to rewrite Eqn (5.6) in
the form

F�R� ' B
N 2

RD
ÿ
�

R 4

a2c2N

�1=3

: �5:11�

Minimization of Eqn (5.11) with respect to R for fixed N
yields

R � B 3=�4�3D��ac�2=�4�3D�N n ; n � 7

4� 3D
: �5:12�

The upper critical dimension for this system is Dcr � 8.
For D � 3 Eqn (5.12) gives R � N 7=13

It is interesting to compare Eqn (5.12) to the critical
exponent nan of the lattice animal with excluded volume in
D-dimensional space, nan � 3=�4�D�, which gives nan � 3=7
for D � 3. The difference in exponents signifies that the
unentangled ring with volume interactions and the non-self-
intersecting `lattice animal' belong to different universality
classes (despite that in the absence of volume interactions
they belong to the same class).

5.2 Collapsed phase of unknotted polymer
In this section we show which predictions about the fractal
structure of the strongly collapsed phase of an unknotted ring
polymer can be made using the concept of a `polymer chain in
an array of obstacles'.

5.2.1 `Crumpled globule' concept in the statistics of strongly
collapsed unknotted polymer loops. Take a closed non-self-
intersecting polymer chain of length N in the trivial
topological state{. After a temperature decrease the forma-
tion of the collapsed globular structure becomes thermo-
dynamically favorable [78]. Supposing that the globular state
can be described in the virial expansion we introduce as usual
two± and three-body interaction constants:
B � b�Tÿ y�=y < 0 and C � const > 0. But in addition to
the standard volume interactions we would like to take into
account the non-local topological constraints which
obviously have a repulsive character. In this connection we
express our main assertion [79].

The condition for forming a trivial knot in a closed polymer
significantl changes all the thermodynamic properties of a
macromolecule and leads to specific non-trivial fractal proper-
ties for a line representing the chain trajectory in a globule.

We call such structure a crumpled (fractal) globule. We
prove this statement consistently describing the given
crumpled structure and showing its stability.

It is well-known that in a poor solvent there exists some
critical chain length, g�, depending on the temperature and
energy of volume interactions, so that chains which have
lengths greater than g� collapse. Taking a long enough chain,
we define these g�-link parts as new block monomer units
(crumples of minimal scale).

{ The fact that the closed chain cannot intersect itself causes two types of

interactions: (a) volume interactions which vanish for an infinitely thin

chain and (b) topological constraints which remain even for a chain of zero

thickness.
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Consider now a part of a chain with several block
monomers, i.e. crumples of the smallest scale. This new part
should again collapse in itself, i.e. should form a crumple of
the next scale if other chain parts do not interfere with it. The
chain of such new sub-blocks (crumples of new scale)
collapses again and so on till the chain as a whole (see
Fig. 14) forms the largest final crumple. Thus the procedure
is completed when all initial links are united into one crumple
of the largest scale. It should be noted that the line
representing the chain trajectory obtained through the
procedure described above resembles the 3D-analogue of the
well known self-similar Peano curve.

A specific feature of the crumpled globule is the fact that
different chain parts are not entangled with each other, they
completely fill the allowed volume of space and are `collapsed
in themselves' starting from the characteristic scale g�. It may
seem that due to space fluctuations of the chain parts all that
crumples could penetrate each other with the loops, destroy-
ing the self-similar scale-invariant structure described above.
However it can be shown on the basis of the PCAO-model
that if the chain length in a crumple of an arbitrary scale
exceeds Ne then the crumples coming in contact do not mix
with each other and remain segregated in space. Recall that
Ne is the characteristic distance between neighboring entan-
glements along the chain expressed in number of segments
and, as a rule, the values of Ne lie in the range 30ÿ300 [73].

Since the topological state of the chain part in each
crumple is fixed and coincides with the state of the whole
chain (which is trivial) this chain part can be regarded as an
unknotted ring. Other chain parts (other crumples) function
as an effective lattice of obstacles surrounding the `test' ring
Ð see Fig. 15. Using the results of Section 5.1 [see Eqn (5.5)]
we conclude that any M-link ring subchain without volume
interactions not entangled with any of obstacles has size

R�0��M� � aM 1=4. If R�0� is the size of an equilibrium chain
part in the lattice of obstacles, the entropy loss for a ring
chain, S, as a function of its size, R, reaches a maximum for
R ' R�0� [see Eqn (5.10)] and the chain swelling for values of
R exceeding R�0��M� is entropically unfavorable. At the same
time in the presence of excluded volume the following obvious
inequality must be fulfilled R�M�5 aM 1=3, which follows
from the fact that density of the chain in the globular phase
r � R3=N is constant. In connectionwith the obvious relation
R�M� > R�0��M� we conclude that the swelling of chains in
crumples due to their mutual inter-penetration with the loops
does not result in an entropy gain and, therefore, does not occur
in a system with finite density. It means that the size of the
crumple on each scale is of the order of its size in the dense
packing state and the crumples are mutually segregated in
space. These questions are discussed in detail in the work [79].

The system of densely packed globulized crumples
corresponds to a chain with the fractal dimension Df � 3
(Df � 3 is realized from the minimal scale, g�, up to the whole
globule size). The value g� is of order

g� � Ne�ra3�ÿ2 ; �5:13�

where r is the globule density. This estimate was obtained in
[79] using the following arguments: g � �ra3�ÿ2 is the mean
length of the chain part between two neighboring (along the
chain) contacts with other parts; consequently Neg is the
mean length of the chain part between topological contacts
(entanglements).

a b

c d

Figure 14. (a) ± (c) Subsequent stages of collapse; (d) Self-similar structure

of crumpled globule segregated on all scales.

a

b

Figure 15. (a) Part of the closed unknotted chain surrounded by other parts

of the same chain; (b) Unentangled ring in lattice of obstacles. The

obstacles replace the effect of topological constraints produced by other

part of the same chain.

342 S K Nechaev Physics ±Uspekhi 41 (4)



Of course, for phantom chains, the Gaussian blobs of size
g are strongly overlapped by others because pair contacts
between monomers are screened (because of so-called y-
conditions [78]). However for non-phantom chains these
pair contacts are topologically essential because chain cross-
ings are prohibited for any value and sign of the virial
coefficient.

The entropy loss connected with crumpled state forma-
tion can be estimated as follows:

S ' ÿ N

g�
: �5:14�

Using Eqn (5.14) the corresponding crumpled globule
density, r, can be obtained in the mean-field approximation
via the minimization of its free energy. The density of the
crumpled state is less than that of the usual equilibrium state
which is connected with additional topological repulsive-type
interactions between crumples:

rcrump �
req

1� const�a6=CNe� < req ; �5:15�

where req is the density of the Lifshits globule.
The direct experimental verification of the proposed self-

similar fractal structure of the unknotted ring polymer in the
collapsed phase meets some technical difficulties. One of the
ways to justify the `crumpled globule' (CG) concept comes
from its indirect manifestations in dynamic and static proper-
ties of different polymer systems. The following works should
be mentioned in this context:

1. The two-stage dynamics of collapse of the macromole-
cule after abrupt changing of the solvent quality, found in
recent light scattering experiments by B Chu and Q Ying
(Stony Brook) [80].

2. The notion about the crumpled structure of the
collapsed ring polymer allowed the explanation [84] of the
experiments on compatibility enhancement in mixtures of
ring and linear chains [85], as well as the construction of a
quantitative theory of collapse for N-isopropilacrylamide gel
in poor water [83].

3. Paper [82] where the authors claim observation of a
crumpled globule in numerical simulations.

5.2.2 Knot formation probability. We can also utilize the CG-
concept to estimate the trivial knot formation probability for
the dense phase of the polymer chain. Let us repeat that the
main part of our modern knowledge about knot and link
statistics has been obtained with the help of numerical
simulations based on the exploitation of algebraic knot
invariants (Alexander, as a rule). Among the most important
results we should mention the following:

Ð The probability of chain self-knotting, p�N�, is
determined as a function of chain length N under random
chain closure [1, 86]. In the work [87] (see also the recent paper
[88]) the simulation procedure was extended up to chains of
order N ' 2000, where the exponential asymptote of type

P0 � exp

�
ÿ N

N0�T�
�
:

was found for the trivial knot formation probability for
chains in good and y-solvents. A statistical study of random
knotting probability using the Vassiliev invariants was under-
taken in a recent work [88].

Ð The knot formation probability p is investigated as a
function of the swelling ratio a �a < 1� where
a � �hR2

gi=hR2
g;0i�1=2, hR2

gi is the mean-square gyration
radius of the closed chain and hR2

g;0i � Na2=12 is the same
for an unperturbed �a � 1� chain (see Fig. 16 [1]). It has been
shown that this probability decreases sharply when a coil
contracts from the swollen state with a > 1 to the Gaussian
state with a � 1 [8971;] and especially when it collapses to the
globular state [1, 86].

Ð It has been established that in the region a > 1 the
topological constraints are screened almost completely by
volume interactions [89].

Ð It has been shown that two unentangled chains (of the
same length) even without volume interactions in the coil
state repel each other as impenetrable spheres with radii of
order �hR2

g;0i�1=2 [1, 90].
Return to Fig. 16, where the knot formation probability p

is plotted as a function of the swelling ratio, a, in the globular
region �a < 1�. It can be seen that in the compression region,
especially for a < 0:6, data for numerical experiments are
absent. It is difficult to discriminate between different knots
in the strongly compressed regime because it is necessary to
calculate the Alexander polynomial for each generated closed
contour. It takes of orderO�l 3� operations (l is the number of
self-interactions in the projection). This value becomes larger
as the system becomes denser.

Let us present the theoretical estimates of the non-trivial
knot formation probability p�a� in the dense globular state
�a < 0:6� based on the CG-concept. The trivial knot forma-
tion probability under random linear chain closure, can be
defined by the relation:

q�a� � Z�a�
Z0�a� ; q�a� � 1ÿ p�a� ; �5:16�

where Z�a� is the partition function of an unknotted closed
chain with volume interactions for a fixed value of swelling
parameter, a, and Z0�a� is that of the `shadow' chain without
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p�a� � 0:925 exp�ÿ0:03=a6�
p�a� � 1:2 exp�ÿ0:25=a2�

Figure 16. Dependence of non-trivial knot formation probability, p on

swelling parameter, a, in globular state. Points Ð data from Ref. [1];

dashed lineÐapproximation in weak compression regime [Eqn (5.21)];

solid line Ð approximation based on the concept of crumpled globule

[Eqn (5.23)].
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topological constraints but with the same volume interac-
tions. Both partition functions can be estimated within the
framework of the mean field theory. To do so, let us write
down the classic Flory-type representation for the free energy
of the chain with given a (in the equations below we take the
temperature T � 1):

F�a� � ÿ lnZ�a� � Fint�a� � Fel�a� ; �5:17�
where

Fel�a� � ÿS�a� : �5:18�
Here the contributionsFint�a� from the volume interactions to
the free energies of unknotted and shadow chains of the same
density (i.e. of the same a) are equivalent. Therefore, the only
difference concerns the elastic part of the free energy, Fel, or,
in other words, the conformational entropy. Thus, equation
(5.16) can be written in the form:

q�a� � exp
ÿÿF�a� ÿ F0�a�

� � exp
ÿ
S�a� ÿ S0�a�

�
: �5:19�

According to Fixmann's calculations [91] the entropy of a
phantom chain S0�a� (S0�a� � lnZ0�a�) in the region a < 1
can be written in the following form:

S0�a� ' ÿaÿ2 : �5:20�
In the weak compression region 0:6 < a4 1 the probability
of non-trivial knotting, p�a�, can be estimated from the
expression for the phantom ring entropy Eqn (5.20). The
best fit of numerical data [1] gives us

p�a� � 1ÿ A1 exp�ÿB1aÿ2� �0:6 < a4 1� ; �5:21�

where A1 and B1 are numerical constants.
The non-trivial part of our problem is reduced to the

estimation of the entropy of strongly contracted closed
unknotted ring �a5 1�. Using Eqs (5.13) and (5.14) and the
definition of a we find

S�a� ' ÿ 1

Ne
aÿ6 : �5:22�

In the region of interest �a < 0:6� the aÿ2-term can be
neglected in comparison with aÿ6. Therefore, the final
probability estimate has the form:

p�a� � 1ÿ A2 exp

�
ÿ 1

Ne
aÿ6
�

�a < 0:6� ; �5:23�

where A2 and Ne are numerical constants (their values are
given below).

The probabilities of the non-trivial knot formation, p�a�,
in weak and strong compression regions are shown in Fig. 16
by the dotted and solid lines respectively. The values of the
constants are:A1 � 1:2,B1 � 0:25,A2 � 0:925,Ne � 34; they
are chosen by comparing Eqs (5.21) and (5.23) with the
numerical data of Ref. [1].

5.2.3 Quasi-knot concept in the collapsed phase of unknotted
polymers. Speculations about the crumpled structure of
strongly contracted closed polymer chains in the trivial
topological state could be partially confirmed by the results
of Sections 1 and 2. The crucial question is: why do the
crumples remain segregated in a weakly knotted topological
state on all scales in course of chain fluctuations? To clarify the
point we begin by defining the topological state of a crumple,
i.e. the unclosed part of the chain. Of course, a mathemati-

cally strict definition of a knot can be formulated for closed
(or infinite) contours exclusively. However everyday experi-
ence tells us that even an unclosed rope can be knotted. Thus,
it seems attractive to construct a non-rigorous notion of a
quasi-knot for the description of long linear chains with free
ends.

Such ideas were firstexpressed in 1973 by IMLifshits and
AYuGrosberg [92] for the globular state of a chain. Themain
conjecture was rather simple: in the globular state the distance
between the ends of the chain is of order R � aN 1=3, being
much smaller than the chain contour length L � Na. There-
fore, the topological state of a closed loop, consisting of the
chain backbone and the straight end-to-end segment, might
roughly characterize the topological state of the chain on the
whole. The composite loop should be regarded as a quasi-
knot of the linear chain.

The topological state of a quasi-knot can be characterized
by the knot complexity, Z, introduced in Section 3 [see Eqn
(3.15)]. It should be noted that the quasi-knot concept failed
for Gaussian chains where the large space fluctuations of the
end-to-end distance lead to indefiniteness of the quasi-
topological state.

Our model of a crumpled globule can now be reformu-
lated in terms of quasi-knots. Consider the ensemble of all
closed loops of length L generated with the right measure in
the globular phase. Let us extract from this ensemble the
loops with Z�L� � 0 and find the mean quasi-knot complex-
ity, hZ�l�i, of an arbitrary subpart of length l
(l=L � h � const; 0 < h < 1) of the given loop. In the
globular state the probability p�r� of finding the end of the
chain of length L at some point r inside the globule of volume
R3 is of order p�r� � 1=R3 being independent on r (this
relation is valid when La4R2). So, for the globular phase
we could roughly suppose that the loops in the ensemble are
generated with a uniform distribution. Thus our system
satisfies the `Brownian bridge' condition and according
to the conjecture of Section 3, Eqn (3.60), we can apply the
following scale-invariant estimate for the averaged quasi-
knot complexity

��������������hZ2�l�ip
��������������
hZ2�l�i

q
� l 1=2 � h1=2L1=2 : �5:24�

This value should be compared to the averaged complexity��������������hZ2�l�ip
of the part of the same length l in the equilibrium

globule created by an open chain of length L, i.e. without the
Brownian bridge condition��������������

hZ2�l�i
q

� l � hL : �5:25�

Comparing Eqs (5.24) and (5.25) we conclude that any
part of an unknotted chain in the globular state is far less
knotted than the same part of an open chain in the
equilibrium globule, which supports our mean-field consid-
eration presented above. Let us stress that our statement is
thermodynamically reliable and is independent of the kinetics
of crumpled globule formation.

6. Some `tight' problems of probability theory
and statistical physics

Usually, in the conclusion it is accepted to overview the main
results and imperceptibly prepare the reader to an idea of how
important the work itself is... We would like not to go by the
usual way and to make a formal conclusion, because the
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summary of received results together with a brief exposition
of ideas and methods were indicated in the introduction and
some incompleteness of the account could only stimulate the
fantasy of the reader.

On the contrary, we will try to pay attention to some
hidden difficulties, which we persistently met on our way, as
well as to formulate possible, yet unsolved problems, logically
following from our consideration. Thus, we shall schemati-
cally designate borders of the given research and shall allow
the reader to decide whether a given subject deserves further
attention or not.

6.1 Remarks and comments on Section 2
1. The derivation of Eqs (2.57) ± (2.58) assumed the passage
from a model with short-range interactions to the mean-
field-theory, in which all spins are supposed to interact with
each others. From the topological point of view such an
approximation is unphysical and requires additional verifi-
cation. We believe that the considered model could be
investigated with the help of conformal theories and the
renormalisation group technique in the case of `weak
disorder', i.e. when a strong asymmetry exists in the choice
of vertex crossings on a lattice.

2. As was shown above, the utilization of the Jones
topological invariant necessarily results in the study of the
thermodynamic properties of a Potts model. In the work [57]
it was mentioned, that Alexander polynomials are naturally
connected to a partition function of a free fermionmodel and,
hence, to an Ising model. Probably, the use of a similar
functional representation of Alexander polynomials in the
framework of our disordered model would result in simpler
equations, concerned with the statistical properties of Ising
spin glasses.

3. All results received in this work are stuck to a model,
which is effectively two-dimensional, since we are interested
in the statistical properties of a planar projection of a knot in
which all space degrees of freedom are thrown away and only
the topological disorder is kept. Thus, physically, the model
corresponds to the situation of a globular polymer chain
located in a narrow two-dimensional slit. In connection with
that the following question is of significant interest: how do
the space fluctuations of a trajectory in a three-dimensional
space modify our consideration and, in particular, answer
(2.65)?

6.2 Remarks and comments on Sections 3 and 4
1. The investigation of topological properties of trajectories
on multiconnected manifolds (on planes with sets of removed
points) from the point of view of the conformal field theory
assumes a construction of topological invariants on the basis
of monodromy properties of correlation functions of appro-
priate conformal theories. In connection with that there is a
question concerning the possibility of construction of a
conformal theory with the monodromies of the locally-free
group considered in this work.

2. Without any doubt the question about the relation
between topological invariants design and the spectral
properties of dynamic systems on hyperbolic manifolds is of
extreme importance. The nature of the connection mentioned
consists in the prospective dependence between knot invar-
iants (in the simplest case, Alexander polynomials), recorded
in terms of a trace of products of elements of some hyperbolic
group [see expression (3.14)] and trace formulae for some
dynamic system on the same group.

3. Comparing the distribution function of primitive paths
m (4.33) with the distribution function of a knot complexity of
Z (3.15), we can conclude that both these invariants have the
same physical sense: a random walk in a covering space,
constructed for lattice of obstacles, is equivalent from the
topological point of view to a random walk on a Cayley tree.
Thus, the knot complexity is proportional to the length of the
primitive (irreducible) word, written in terms of group
generators, i.e. is proportional to a geodesic length on some
surface of constant negative curvature. We believe that the
detailed study of this interrelation will appear rather useful
for the utilization of algebraic invariants in problems
concerning the statistics of ensembles of fluctuating mole-
cules with a fixed topological state for each separate polymer
chain.

3. The questions considered in Section 3 admit an
interpretation in the spirit of spin glass theories, discussed at
length in Section 2. Let us assume, that there is a closed
trajectory of length L, which we randomly drop on a plane
with a regular set of removed points. Let one point of the
trajectory be fixed. The following question appears: what is
the probability of finding a random trajectory in a given
topological state with respect to the set of removed points?
The topological state of a trajectory is a typical example of
quenched disorder. According to the general concept, in order
to find an appropriate distribution function (statistical sum),
it is necessary to average the moments of the topological
invariant over a Gaussian distribution (i.e. with the measure
of trajectories on a plane). The same assumptions permit us to
assume that the function g�r;c� (Jacobian of conformal
transformation) Ð see Fig. 12 has a sense of an ultrametric
`potential', in which the random walk takes place and where
each valley corresponds to some given topological state of the
path. The closer r is to 1, the higher are the barriers between
neighboring valleys. Thus, all reasonably long (La4 c2)
random trajectories in such a potential will become `loca-
lized' in some strongly entangled state, in the sense that the
probability of spontaneous disentanglement of a trajectory of
length La is of the order of exp�ÿconst � �La=c2��. Probably
this analogy could be useful in a normal theory of spin glasses
because of the presence of a explicit expression for the
ultrametric Parisi phase space [20] in terms of double-
periodic analytic functions.

6.3 Remarks and comments on Section 5
1. We would like to express a conjecture (see also [93])
concerning the possibility of reformulation of some topolo-
gical problems for strongly collapsed chains (see Section 5.4)
in terms of integration over the set of trajectories with fixed
fractal dimension but without any topological constraints.

We have argued that in an ensemble of strongly con-
tracted unknotted chains (paths) most of them have fractal
dimension Df � 3;

We believe that almost all paths in the ensemble of lines
with fractal dimensionDf � 3 are topologically isomorphic to
a fairly simple (i.e. close to trivial) knot.

Let us recall that the problem of the calculation of the
partition function for closed polymer chain with topological
constraints can be written as an integral over the set O of
closed paths with a fixed value of the topological invariant
(see Section 2):

Z �
�
O
DwfrgeÿH �

�
. . .

�
DwfrgeÿHd�Iÿ I0� ; �5:26�
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where Dwfrg means integration with the usual Wiener
measure and d�Iÿ I0� cuts the paths with a fixed value of the
topological invariant (I0 corresponding to trivial knots).

If our conjecture is true, then the integration overO in Eqn
(5.26) for the chains in the globular phase (i.e. when La4R2)
can be replaced by an integration over all paths without any
topological constraints, but with a special new measure,
Dffrg:

Z �
�

. . .

�
DffrgeÿH : �5:27�

The usual Wiener measure Dwfrg is concentrated on
trajectories with fractal dimension Df � 2. Instead of that,
the measure Dffrg with fractal dimension Df � 3 for the
description of statistics of unknotted rings should be used.

2. We believe that the distribution of knot complexity
found for some model systems can serve as a starting point in
construction of a mean-field Ginsburg ±Landau Ð type
theory of fluctuating polymer chains with a fixed topology.
From a physical point of view it seems to be important to
emphasise the mean-field theory which takes into account the
influence of topological restrictions on phase transitions in
bunches of entangled directed polymers.

3. Let us note that despite a number of experimental
works, indirectly testifying for the existence of a fractal
globule (see section 5 and references), the direct observation
of this structure in real experiments involves to significant
technical difficulties and has not so far been carried out. We
believe that the organization of an experiment to determine
themicrostructure of an entangled ringmolecule in a globular
phase could introduce final clarity to the question of
crumpled globule existence.
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