
Abstract. As a follow-up to the author's earlier paper [1], some
remarks concerning heat conduction in the superconducting
state are presented and prospects for the measurement of ther-
moelectric coefficients discussed.

In a recent paper [1], when discussing the electron part of
thermal conductivity in the superconducting state (Section 5
of paper [1]) I was not aware of the situation. This particularly
referred to allowance for the role of specimen boundaries
where a superconducting current is transformed to a normal
one (Fig. 1). After the Russian version of paper [1] had
already been published, some points were clarified and
included in a note to the English translation [1]. I would like,
however, to introduce the same corrections in the Russian
text in more detail allowing for some interesting newly-
appeared papers [2, 3]. For the reader's convenience we shall
first repeat a small part of the material presented in Section 5
of paper [1]{.

1. By complete analogy with the case of a normal-state metal,
the normal current density jn in a non-uniformly heated
superconductor is [5 ± 7]

jn � sn

�
Eÿ HHmn

e

�
� bnHHT ; �1�

where mn is the chemical potential referred to a single particle
(excitation) with charge e, E � ÿHHj is the electric field
strength, T is the temperature, and sn�T� is the electric
conductivity of normal electrons (excitations). In the super-
conducting state, in the stationary case we have

qLjs
qt
� Eÿ HHmn

e
� 0 ;

where js is the superconducting current density; under such
conditions we therefore have

jn � bn�T�HHT �2�
[bn�T� is certainly less than zero]{.

In a homogeneous and isotropic sample (Fig. 1) the total
current is j � js � jn � 0 and, therefore,

js � ÿjn : �3�
We digress here from the possibility of the appearance of a
certain resultant electric charge of quasi-particles of density
Q� (the so-called charge imbalance effect). Meanwhile, this
effect is of importance, in particular, for understanding the
limiting transition T! Tc as js ! 0 (for the corresponding
references see Ref. [6] and item 7 below).

2. Even when the currents are totally compensated for [see
Eqn (3)] in the superconducting state, a certain specific
convective contribution to a thermal conductivity must
occur owing to the presence of the current jn (recall that in
non-superconductors the coefficient of thermal conductivity
K is connected by definition with the heat flow q � ÿKHHT in
the absence of the electric current j; in the superconducting
state the current jn is present even when j � 0). The problem
of convective heat (thermal) conductivity in superconductors
has already been discussed for over 50 years (see Refs [5 ± 7,
10 ± 13]) but remains unclear.

The total coefficient of thermal conductivity is

K � Kph � Ktote ; Ktote � Ke � Kc ;
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{ I am taking the opportunity of correcting the misprints noticed in the

Russian text [1] (this was partly done in the English version of the paper).

On page 432, line 30 from the bottom, Ref. [42] should be replaced by [45].

Formula (31) referring to the case d5 d should include the expression

�1ÿ �H0=Hc�2�3=2 in the right-hand side; two lines below formula (31)

there should be: [see Eqn (29)]. On the same page 436, line 10 from the

bottom, the word `superheating' should be replaced by `supercooling' and

in lines 9 ± 10 the brackets [see Eqn (23)] should be substituted for [see Eqn

(27)]. Formula (33) includes the coefficient 0.89 from paper [61] referred to

in Ref. [1]. In the recent paper [4], the ratio Hc1=Hcm was obtained to a

higher accuracy, and therefore the coefficient 0.89 is replaced by

2ÿ1=4 � 0:84. On page 445, before formula (74) it should read

dII � dII�0��1ÿ T=Tc;II�ÿ1=2. In reference [132] from paper [1], Phys.

Lett. A 139 is substituted for A 138. Reference [55] should be Boulter C J,

Indeken J O Phys. Rev. B 54 12407 (1996); see also JMMishonov J. Phys.

(France) 51 447 (1990).

{ InRefs [8, 9] for the electron we see e > 0 [while in our formula (1) for the

electron we have e < 0] and the designations there are somewhat different

(b � ÿsa, where a � S � dE=dT is the Seebeck coefficient or, using

another terminology, the differential thermoelectric power and E is the

thermoelectric power).



where Kph corresponds to the thermal conductivity of
phonons and Ktote is the electron part of the coefficient of
thermal conductivity. Next, we rather conditionally separate
in Ktote the electron thermal conductivity Ke under the
condition that jn � 0, and the part Kc of the coefficient of
thermal conductivity connected with the current jn. The
coefficient K can be measured experimentally; one can
separate Kph and Ktote in various ways. However, at least in
the absence of an external magnetic field, Ke and Kc are
inseparable. Nevertheless, it is theoretically quite possible to
pose the question of the contributions of Ke and Kc, and under
more involved conditions (an external magnetic field in
anisotropic superconductors) the division of Ktote into Ke and
Kc may actually become of significance.

After the microtheory of superconductivity (BCS) was
created in 1957, a sufficiently consistent estimation of Ke and
Kc became possible. In Refs [11, 12], without a detailed
calculation the following result is presented

Kc
Ke
� kBTc

EF
; �4�

where EF is Fermi energy.
The same estimate had been obtained before [10] on the

basis of the two-fluid model of a superconductor and some
model considerations. Finally, I obtained the same result, too
[1, 7, 13]. I considered the breaking and formation of
superconducting pairs at the ends of a sample (at tempera-
tures T2 and T1 < T2) and at the same time I felt that perhaps
the heat transfer due to such a mechanism should be summed
up with the heat transfer obtained by the method of the
kinetic equation in the calculation of the heat flow through
the sample cross-section. But this is certainly incorrect, which
was noted at the end of the English translation of paper [1].
Indeed, for a sufficiently long sample (having a length L4 ln,
where ln is the free path of normal electron-excitations), the
flow through the sample cross-section calculated using the
kinetic equation is equal to the heat flow due to pair
transformation at the sample boundaries.

If one proceeds from the estimate (4), for conventional
superconductors, when EF � (3 ± 10) eV and Tc � (1 ± 10) K,
one has the ratio Kc=Ke93� 10ÿ3, that is, the convective heat
transfer is negligibly small. But for high-temperature super-
conductors (HTSC), as well as for superconductors with
heavy fermions, the situation is different. So, for EF � 0:1 eV
and Tc � 100 K, we already have Kc=Ke � 0:1 according to
Eqn (4). Furthermore, when the anisotropy and the uncon-
ventional pairing [14 ± 16] are taken into account, then for the
well-known reason that the Seebeck coefficient generally
increases EF=kBT times compared to the isotropic case. That
is why it may well be that Kc0Ke in an HTSC.

3. From experiment it is known [17 ± 21] that for several
HTSCs the measured coefficient K � Kph � Ktote for T < Tc

has amaximum (at aboutT � Tc=2; as an example see Fig. 2).
What is the source of such behavior: is it due to the
dependence Kph�T� or are we dealing with the temperature
run of Ktote � Ke � Kc? In principle, both are possible. Thus,
the thermal conductivity of phonons may have a maximum if
the leading role is played by the scattering of phonons on
electrons. Indeed, the concentration of normal electrons nn
falls with T, i.e., these electrons (excitations) merely freeze
out. One can hardly doubt that this is the nature of the
maximum of the function K�T� observed in some conven-

tional superconductors (alloys; see Refs [22, 23] and the
literature cited therein). There was an opinion (see, e.g., Refs
[24, 25]) that this is also the case with HTSCs. However, as
was suggested in Ref. [13], the maximum of the function K�T�
might be due to the appearance in a superconductor of a new
channel, i.e., an electron convective heat conductivity. The
crucial point is, of course, the quantity Kc�T�which should be
sufficiently large. As to the temperature run of Kc�T�, we shall
see below (which, however, is quite obvious) that Kc / jbn�T�j
and the function bn�T�, upon an unconventional pairing, has
a bell-like character with a maximum at T � Tc=2. Hence,
from this point of view the hypothesis of the convective nature
of the maximum of Ktote at T � Tc=2 does not meet with
objections.

4. Thus, we face two problems: firstly, to separate the phonon
and the electron heat conductivities (i.e., to clarify the role of
Kph and Ktote ) and, secondly, to distinguish between the usual
electron heat conductivity Ke and the convective heat
conductivity Kc � Ktote ÿ Ke. The first problem has already
been solved: the part of the thermal conductivity K in an
HTSC which is responsible for the maximum is mainly the
electron thermal conductivity Ktote [19 ± 21, 26]. Especially
convincing in this respect are the experiments [20] on the
measurement of the Righi ±Leduc effect (also referred to as
the thermal Hall effectÐ the effect of the magnetic field upon
thermal conductivity; see, for example, Section 27 of Ref. [9]).
More precisely, the dominating role of the peaked electron
thermal conductivity in anHTSC has been established only in
some cases. For some HTSC materials, the characteristic
peak of thermal conductivity may be associated with the
phonon mechanism (see Ref. [27]), but this is apparently not
typical and in any case is accessible to control. Below, the role
of Kph is assumed to be insignificant.

As for the second problem, i.e., the division of Ktote into Ke
and Kc, it remains unsolved. In experiment, if the thermal
conductivity of phonons Kph is small or taken into account,
then, as has already beenmentioned, it is Ktote that ismeasured,
while the part Kc � Ktote ÿ Ke is, in a sense, a conditional
quantity Ð such would be the electron thermal conductivity
in the case that the current density jn were zero. Within the
applicability limits of the Wiedemann ±Franz law (see also
below) the coefficient Ke � Kne can be determined from the
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data on the electron conductivity sn�T� in the superconduct-
ing state. Incidentally, such data [28] testify in some cases to a
non-monotonic fall of sn with falling temperature (this is
obviously due to the corresponding behavior of the free path
ln�T� � vFtn�T�). It is therefore quite possible that in such
cases the indicated maximum of thermal conductivity is
associated with Ke. The same will of course hold if we know
that Ke 4 Kc.

5. Estimate (4) was obtained in Refs [10, 13] in an obviously
unreliable way. The calculations in Refs [11, 12] seemed to be
consistent, but the details were not presented. In my
discussion of the problem with L P Pitaevski|̄{ it became
clear that the final result (4) presented in Refs [11, 12] was due
to some inexplicable error. We shall therefore present the
estimate which we think is correct.

By analogy with superfluidity, the convective heat flow in
an isotropic superconductor is

qc � ÿKcHHT � Tsnvn ; �5�

where sn is the electron entropy per unit volume (as is known,
the contribution to sn is made only by normal electrons) and
vn is the mean velocity of the normal component (i.e., of the
same normal electrons). Next, jn � bnHHT � ennvn, where nn is
the concentration of normal electrons. Hence,

Kc � Tsn
enn
jbnj : �6�

At T � Tc, in the framework of the BCS model one can
employ the expressions for a free electron gas with T � Tc,
i.e., assume

sn � 1

2
p2kB

kBTc

EF
nn ; nn � n � 1

2p2

�
2pEF

�h2

�3=2

and thus

Kc�T � Tc� � kBTc

e

�
kBTc

EF

�
jbnj : �7�

According to the Wiedemann ±Franz law (see Section 78 of
Ref. [8]) we have

sn � 3e2

p2k2BT
Ke ; �8�

and the Seebeck coefficient (not to be confused with the
entropy sn !) is

Sn � jbnjsn
� p2k2BT

3eEF
: �9�

Incidentally, in such a simple model we have

sn � e2nntn
m

; Ke � p2k2BTnntn
3m

; �9a�

where tn � ln=vF is the free path time, ln is the free path length
and vF is the velocity on the Fermi surface.

Using expressions (8) and (9), we obtain from Eqn (7)

Kc
Ke
�
�
kBTc

EF

�2

: �10�

Since the starting point in Refs [11, 12] was, in fact,
expression (6), it follows that estimate (4) could be
obtained instead of Eqn (10) only by mistake. In Refs [10,
13] the error was due to the assumption that an energy of
the order of D � kBTc is released (or absorbed) upon
breaking or formation of pairs with concentration nn,
while the actual pair concentration is of the order of
kBTcnn=EF. The relative smallness of the convective heat
conductivity in superconductors is connected in the end
with the smallness of the electron specific heat in a metal. At
the same time, for metals with a complex electron structure
(in particular, for HTSCs) the ratio Kc=Ke may greatly
exceed estimate (10); see above and Refs [14 ± 16, 53].

Of great interest is the study of thermal conductivity in the
superconducting state in the presence of an external magnetic
field Ð we mean the influence of the field on the tensor
coefficient of thermal conductivity Kik�T;H�. Measurements
of the Righi ±Leduc effect have already been mentioned [20].
In papers [2, 3], the influence of a transverse field H directed
along the c-axis on the thermal conductivity of cuprates in the
ab-plane was investigated. The result is as follows: in a strong
field we have Ktote ! 0. If heat transfer is connected with the
current jn, such a result is quite natural Ð clearly, a strong
field H does not allow the current jn ? H to flow, and
therefore the heat flow qc will be suppressed, too. But the
field can, of course, also suppress the transverse heat flow q in
the case of a conventional (i.e. non-convective) thermal
conductivity. Quite obviously, the problem of thermal
conductivity in the superconducting state cannot be properly
analysed either with or without the fieldH until the quantities
Ke;ik�T;H� are calculated for s- and d-pairing. More precisely,
in the absence of the field some results have already been
obtained (see Refs [12, 26] and Section 98 of Ref. [8]) but with
the terms Ke and Kc not separated{. Since by experiment it is
only the sum Ktote � Ke � Kc that is measured, the clarification
of the role of the current jn (i.e., the role of the term Kc) may, of
course, be thought of as uninteresting. But I repeat that in my
opinion, however, the separation of the convective term Kc
has a physical meaning and provides an insight into the
mechanism of thermal conductivity in the superconducting
state, in particular, in the presence of a magnetic field [2, 3].
When dealing with the micropicture (i.e., the corresponding
kinetic equation for normal excitations), the separation of the
convective term does not seem to be a problem.

6.One cannot but be sorry that in spite of repeated calls [7, 29]
for attention to the question of convective heat conductivity
in the superconducting state, it has remained uninvestigated.
It is the more strange as quite a lot of efforts (besides those
referred to in paper [1] and above in the text, see also Refs
[30 ± 39]) have been made in studying thermal conductivity in
superconductors. But still more unclear is the lack of
attention to the study of thermoelectric effects in the super-
conducting state, while many papers are devoted to measure-

{ I take the opportunity to thank L P Pitaevski|̄ for his help on this

question.

{ I suspect that in the corresponding calculations the contribution of the

convective heat conductivity may have been ignored.However, as clarified

in Section 98 of Ref. [8], the fact that vs 6� 0 only leads to higher-order

corrections in jHTj in the calculation of the heat flow q.
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ments of thermoelectric power in the normal state of super-
conductors (in particular, HTSC).

Obviously, to analyse thermoelectric phenomena in the
superconducting state, one should measure the coefficient
bn�T� in this state in the isotropic case and the coefficients
bn; ik�T� in anisotropic superconductors. For this purpose,
several effects can be investigated [6, 40], but I shall dwell on
only two of them which I have considered myself [5 ± 7, 29,
41]; see also the literature cited therein.

In a circuit consisting of two superconductors (Fig. 3), one
should measure the magnetic field flux through the circuit:

F � nF0 � FT ; FT � 4p
c

�T2

T1

ÿ
bn; IId

2
II ÿ bn; Id

2
I

�
dT ; �11�

where d�T� is the magnetic field penetration depth,
F0 � hc=2e is the flux quantum, n is an integer; the
derivation of this formula is given, for example, in Refs [6,
7]. It is desirable and, obviously, not difficult to choose as one
of the superconductors in a circuit (for definiteness, super-
conductor I) such that for the one under consideration
(superconductor II) the inequality bn; IId

2
II 4 bn; Id

2
I holds.

Next, as distinct from `closed' circuits, for `open' ones (see
item 7 below) an entrapped flux is typically absent (i.e., n � 0
in Eqn (11); the same always holds certainly for a bimetallic
plate without a hole [5]). Under such conditions the quantity
FT � �4p=c�

� T2

T1
bn; II�T�d2II�T� dT is measured and the func-

tion bn; II�T� can be found because the depth dII�T� can be
measured in quite an independent way. Formula (11) also
holds for an anisotropic sample if by bn and d we understand
the components bn; ik and dk that correspond to the geometry
of the circuit (we mean the orientation of the crystal axes
relative to the `arms' of the circuit). The flux FT for
conventional superconductors was measured in a number of
papers (in the last one [42] and in Refs [6, 40] earlier references
are given).

In the determination of bn; ik�T� for an anisotropic super-
conductor, it seems most attractive to measure the magnetic
fieldHT perpendicular to the superconducting plate in which
the temperature gradient HT makes an angle j with the
crystal axes, say, the z 0-axis (Fig. 4; the role of the z 0-axis
can be played, for example, by the a-axis in HTSC cuprates).
This fieldHT is proportional to jHTj2 and to the correspond-
ing quantities bn; ik�T� (see Refs [5 ± 7, 41, 51])

HT � 2p
c

d20�az0bz0 ÿ ax0bx0 � sin 2j
Tc�1ÿ T=Tc�2

�
dT

dz

�2

; �12�

where ax0 , az0 , bx0 , and bz0 are the principal values of the tensors
aik and bn; ik corresponding to the crystal symmetry axes x 0

and z 0.

The quantities 2mak, where k � x 0; y 0; z 0, are involved in
the familiar expression for the density of a superconducting
current

js; k � 2ie

2mak

�
C�

qC
qxk
ÿC

qC�

qxk

�
ÿ 2e2

mak
AkjCj2 ;

where e andm are the charge and themass of an electron,Ak is
the vector potential and the function C � ���������

ns=2
p

eij is so
normalised that ns=2 is the concentration of superconducting
pairs; one can also write Lk � Lak, L � m=e2ns � 4pd2=c2,
and in Eqn (12) we assumed d2 � d20�1ÿ T=Tc�ÿ1 because
temperaturesT close toTc are being considered. As noticed in
paper [43], the fieldHT in Eqn (12) generally depends strongly
on the coordinates because the temperatureT is dependent on
them. Therefore, when calculating the fluxFT through a plate
under certain conditions one should take into account the
dependence of HT on z, and as a result the flux FT is
proportional to dT= dz rather than � dT= dz�2. But this is a
minor detail.

It is amazing that there has been only a single attempt [44]
to measure the fieldHT in a superconducting crystal, and this
attempt yielded vague results. Seemingly, now that strongly
anisotropic HTSC crystals are available, measurements of the
thermal field HT must attract attention. Incidentally, it may
be more convenient to measure not the field HT, but the
superconducting current flowing around the crystal [41].

7. In connection with the problem of thermal conductivity
[see Eqns (6), (7)] the quantities bn�T� and bn; ik�T� appreci-
ably below bn; ik�T� should bemeasured first of all. But for the
analysis of thermoelectric effects as a whole, the temperature
region in the vicinity ofTc also seems to be of great interest. In
this region, first of all for HTSCs (see the end of paper [7] and
Ref. [37]) the fluctuation effects must be substantial.
Secondly, since the superconducting transition is a second-
order transition, it must be continuous. This is guaranteed by
the fact that asT! Tc, the field penetration depth is dk !1.
In the case of circuits and plates (films) the characteristic
parameter is the ratio �d=d�2, where d is the sample size (the
wire diameter or the plate thickness). So, the total super-
conducting current in a circuit (see Fig. 3) is Is � �d=d�2In,
where In is the current in this circuit in the normal state [6].
Another aspect of the problem of the transition T! Tc is the
applicability limit of expression (2). In a non-closed sample
(Fig. 1) at T > Tc we obviously have j � jn � 0, and

I

II

T2 T1

Figure 3.

Is Is

Is

x

x 0

z

j

z 0

T1T2

L

Is

Figure 4.
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according to Eqn (1) the equalityEÿ HHm=e � ÿbHHT=s holds.
AtT < Tc, far enough from the ends of a sample, relations (2)
and (3) hold. But near the ends a certain charge of density Q�

(charge imbalance) is accumulated. The quantity Q� depends
on the distance from the boundaries (ends) of the sample and
jn depends on HQ� (see Refs [40, 45 ± 48]). This guarantees a
continuous transition from the superconducting to the
normal state. Measurements of the charge Q� and the related
quantities can be used [48] to determine the coefficient bn�T�.
Next, as d�T� increases, the flux F becomes comparable with
or greater than the flux quantum F0 (under the conditions of
[42] we still find FT 5F0). As soon as the temperature
approaches Tc the entrapped flux nF0 will possibly and,
strictly speaking, inevitably increase [see Eqn (11)]. Accord-
ing to [49] (in which, as in Ref. [1], earlier works are cited) this
is the fact accounting for the giant thermoeffect observed in
Ref. [40] in circuits with a closed geometry (a cylinder, a
toroid){. Measurements of the total flux F�T� when F4F0

have been carried out neither for the thermoeffect nor in an
external magnetic field for different geometries of super-
conductors. Meanwhile, they seem to be very interesting and
useful for the understanding of the thermodynamics and
kinetics of some processes in superconductors [49, 50].

References

1. Ginzburg V L Usp. Fiz. Nauk 167 429 (1997) [Phys. Usp. 40 407
(1997)]

2. Krishana K et al. Science 277 83 (1997)

3. Ong N P, Krishana K, Kimura T Physica (Proc. M2 SHTSC,

Beijing, Feb. 1997) (in press)

4. Dolgert A J, Di Bartolo S J, Dorsey ATPhys. Rev. B 53 5650 (1996);

Phys. Rev. B 56 2883 (1997)

5. Ginzburg VLZh. Exp. Teor. Fiz. 14 177 (1944); J. Phys. USSR 8 148

(1944)

6. Ginzburg V L, ZharkovG FUsp. Fiz. Nauk 125 19, 750 (1978) [Sov.

Phys. Usp. 21 381 (1978)]

7. Ginzburg V LUsp. Fiz. Nauk 161 2 1 (1991) [Sov. Phys. Usp. 34 101

(1991)]

8. Lifshitz E M, Pitaevski|̄ L P Fizicheskaya Kinetika (Physical

Kinetics) (Moscow: Nauka, 1979) [Translated into English (Oxford:

Pergamon Press, 1981)]

9. Landau L D, Lifshitz E M Elektrodinamika Sploshnykh Sred

(Electrodynamics of Continuous Media) (Moscow: Nauka, 1992)

[Translated into English (Oxford, New York: Pergamon, 1984)]

10. Klemens PGProc. Phys. Soc. A 66 576 (1953);Handbuch der Physik

XIY 198 (1956) [Translated into Russian Low-Temperature Physics

(Moscow: Inostrannaya Literatura, 1989)]

11. Geilikman B T Zh. Exp. Teor. Fiz. 34 1042 (1958) [Sov. Phys. JETP

34 721 (1958)]

12. Geilikman B T, Kresin V Z Kineticheskie i Nestatsionarnye Yavle-

niya v Sverkhprovodnikakh (Kinetic and Nonsteady-State Effects in

Superconductors) (Moscow: Nauka, 1972) [Translated into English

(New York: J. Wiley, 1974)]

13. Ginzburg VLPis'maZh. Exp. Teor. Fiz. 49 50 (1989) [JETPLett. 49

58 (1988)]

14. Arfi B et al. Phys. Rev. Lett. 60 2206 (1988); Phys. Rev. B 38 2312

(1988); Arfi B, Pethick C J Phys. Rev. B 39 8959 (1989)

15. Hirschfeld P J Phys. Rev. B 37 9331 (1988)

16. Pethick C, Pines D, in Problems of Theoretical Physics and Astro-

physics (to the 70th anniversary of V LGinzburg) (Moscow: Nauka,

1989) p. 304

17. Jezowski A et al. Helv. Phys. Acta 61 438 (1988); Phys. Lett. A 139

265 (1989)

18. Cohn J L et al. Phys. Rev. B 45 13144 (1992)

19. Yu R C et al. Phys. Rev. Lett. 69 1431 (1992)

20. Krishana K, Harris J M, Ong N P Phys. Rev. Lett. 75 3529 (1995)

21. Matsukawa M et al. Phys. Rev. B 53 R6034 (1996)

22. Shoenberg D Superconductivity (Cambridge: Univ. Press, 1952)

[Russian translation of the previous edition (Moscow: Inostrannaya

Literatura, 1955)]

23. Lynton E Sverkhprovodimost' (Moscow: Mir, 1971) [English

edition: Lynton E A Superconductivity (London: Methuen, 1969)]

24. Peacor S D et al. Phys. Rev. B 44 9508 (1991)

25. Cohn J L et al. Phys. Rev. Lett. 71 1657 (1993)

26. Hirschfeld P J, Putikka W O Phys. Rev. Lett. 77 3909 (1996)

27. Ikebe M, Fujishiro H, Nakasato K J. Low Temp. Phys. 107 467

(1997)

28. Bonn D A et al. Phys. Rev. B 47 11314 (1993)

29. Ginzburg V L J. Supercond. 2 323 (1989)

30. Zeh M et al. Physica C 167 6 (1990)

31. Graf M J, Yip S-K, Sauls J A J. Low Temp. Phys. 102 367 (1996)

32. Cohn J L Phys. Rev. B 53 R2963 (1996)

33. Claughton N R, Lambert C J Phys. Rev. B 53 6605 (1996)

34. Beal-Monod M T, Maki K Physica C 265 309 (1996)

35. Gagnon R et al. Phys. Rev. Lett. 78 1976 (1997)

36. Guttman G D et al. Phys. Rev. B 55 3849 (1997)

37. Houssa M et al. Phys. Rev. B 56 802 (1997); Houssa M, Ausloos M,

Cloots R Phys. Rev. B 56 6226 (1997)

38. Taillefer L et al. Phys. Rev. Lett. 79 483 (1997)

39. Plackowski T et al. Phys. Rev. B 56 11267 (1997)

40. Van Harlingen D J Physica B 109 ± 110 1710 (1982)

41. Ginzburg V L, Zharkov G F Pis'ma Zh. Exp. Teor. Fiz. 20 658

(1974) [JETP Lett. 20 302 (1974)]

42. Gerasimov AM et al. Sverkhprovodimost': Fiz., Khim., Tekhn. 8 634

(1995); J. Low Temp. Phys. 106 591 (1997)

43. Lawrence W E, Pipes P B, Schwartzman K Phys. Rev. B 23 4476

(1981)

44. Selzer P M, Fairbank WM Phys. Lett. A 48 279 (1974); Selzer P M

A Study of Thermally Generated Magnetic Fields in an Anisotropic

Crystal at Low Temperatures (Dissertation. Stanford University,

1974)

45. Pethick C J, Smith H Phys. Rev. Lett. 43 640 (1979); Ann. Phys.

(N.Y.) 119 133 (1979)

46. Mattoo B A, Singh Y Prog. Theor. Phys. 70 51 (1983)

47. Artemenko SN,VolkovAFZh. Exp. Teor. Fiz. 70 1051 (1976) [Sov.

Phys. JETP 43 548 (1976)]

48. Van Harlingen D J J. Low Temp. Phys. 44 163 (1981)

49. Arutyunyan RM, Ginzburg V L, Zharkov G F Zh. Exp. Teor. Fiz.

111 2175 (1997) [JETP 84 1186 (1997)]; Usp. Fiz. Nauk 167 457

(1997) [Phys. Usp. 40 435 (1997)]

50. Ginzburg V L, Zharkov G F J. Lows. Temp. Phys. 92 25 (1993);

Physica C 235 ± 240 3129 (1994)

51. Kresin V Z, Litovchenko V A Pis'ma Zh. Exp. Teor. Fiz. 21 42

(1975) [JETP Lett. 21 19 (1975)]

52. Marinescu D C, Overhauser A W Phys. Rev. B 55 11637 (1997)

53. Fedorov N K Solid State Commun. 106 177 (1998)

{ In the recent paper [52], as in Refs [1, 49], it was justly stressed that the

giant thermoeffect in superconductors deserves great attention. The giant

thermoeffect is associated in Ref. [52] with the expected strong increase of

the coefficient bn�T�. In paper [52] it is the coefficient as�T�. Since in Ref.

[52] ordinary superconductors are considered (Sn is meant), such an

assumption seems to contradict the experimental facts obtained at a

certain distance from Tc (see, for instance, Ref. [42]). The theoretical

arguments involved in Ref. [52] are not clear to me. The possible role of

convective heat transfer in HTSCs is discussed in paper [53].
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