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Abstract. Noisy, interacting, stochastic systems are analyzed
for the case in which their noise intensity varies with the hydro-
dynamic mode amplitude x according to the power law x4,
x € [0, 1]. It is shown that the phase space domain of definition
of the stochastic variable x forms a self-affine set of fractal
dimensionality D = 2(1 — a). Using the gauge procedure, a
system of calculus is chosen which is not reducible either to the
Ito case or the Stratonovich case. By generalizing the micro-
scopic picture of phase transitions it is demonstrated that the
system may reduce its symmetry (for 1 < D < 2) or lose ergo-
dicity (for 0 < D < 1). Over the entire interval D € [0,2], a
noise-induced transition is shown to be possible.

1. Introduction

The theory of stochastic systems has been attracting special
attention ever since the works of ] Maxwell, L Boltzmann and
J Gibbs, and the study of such systems today occupies a
leading position in theoretical physics. This is apparently due
to the universality of the stochasticity concept stating that the
behaviour of a system with an infinite number of degrees of
freedom cannot be described in an unambiguous (determi-
nistic) way. This circumstance has already been understood
by Gibbs, who proposed a scheme of statistical physics based
on the ergodic hypothesis [1]. The basic assumption of the
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latter is that the behaviour of a macroscopic system at
thermodynamic equilibrium, characterized by time averages,
can be represented by the distribution with respect to the
statistical ensemble which imitates the evolution of the
system. As a result, averaging over the Gibbs ensemble
allows a description, up to the fluctuation corrections, of the
time-averaged observables. Boltzmann’s kinetic description
of nonequilibrium systems is based essentially on the same
ideas [2]. The solution of Boltzmann kinetic equation gives
not only the distribution over the statistical ensemble, but
also its time evolution. Of fundamental importance therewith
is the theorem of entropy growth. It states that even though
the motion of an individual particle is reversible, the ensemble
behaves in such a way that the disorder in the distribution of
these particles cannot abate over the time. In this way,
Boltzmann for the first time encountered the problem of the
linkage between mechanical reversibility and statistical
irreversibility. According to the reciprocal theorem of
Poincaré and Zermelo, this linkage is due to the fact that
any point in the phase trajectory of the ergodic system of
many particles after a lapse of fairly extended time returns
arbitrarily close to its original position [3]. Because of this,
averaging over a finite volume, which is always required for
the transition to macroscopic variables, results in a coarser
representation of the stochastic systems. The loss of the fine
structure of the phase trajectory, attendant on averaging,
therewith leads to irreversibility. From the geometrical
standpoint, as discovered recently, this fact is related to the
fractal properties of the phase trajectory, which is a self-affine
geometrical pattern of a fractional dimension [4]. It was also
found that this property is observed in a phase space whose
dimension is not less than three [5].

A distinguishing feature of the systems under considera-
tion is that, by virtue of their being conservative, the
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irreversible behaviour is caused by the deterministic chaos [6,
7]. This implies that the exact equations of motion of the
original degrees of freedom are perfectly deterministic, but
the transition to averaged variables gives rise to stochastic
terms. In recent years, in connection with the advent of the
science of synergetics, such systems were found to possess a
rather curious property: the increasing intensity of the
stochastic terms may not only increase the disorder, but may
also result in the formation of ordered structures, thus leading
to self-organization of the system and a decrease in the
entropy [5, 8—11]. The latter is apparently associated with
the nonconservative nature of the phase space volume over
which averaging is carried out, since the entropy cannot
decrease in a completely closed system. Far from equili-
brium, the behaviour of open systems displays qualitatively
new features, such as self-induced oscillations of the type
appeared in the Belousov—Zhabotinskii reaction [12], the
formation of hierarchically subordinated structures [13], etc.

The main idea in the construction of the theory of
statistical systems consists in the transition from the exact
equation of mechanical motion of individual particles to the
approximate stochastic equations describing the behaviour of
the hydrodynamic degrees of freedom, characterized by the
dynamic variables averaged over a finite volume of the phase
space. In addition to the interaction between these modes,
which is represented by the deterministic terms, one must also
take into account the effects of the environment which
simulates the nonhydrodynamic degrees of freedom, not
included explicitly. The environment may give rise both to
the deterministic terms and to fluctuations. It is of basic
importance that these fluctuations (external with respect to
the selected degrees of freedom) are distinct from the internal
fluctuations, which owe their existence to the random
deviations of the hydrodynamic variables from their mean
values. The relative intensity of internal fluctuations varies as
N2 where N is the number of particles within the volume
of averaging, and so they usually can be neglected when
N — oo. This does not apply in the least to the external
fluctuations: since they are caused by the influence of
environment, their intensity cannot depend on the number
of particles N which constitutes a characteristics of the
separated subsystem rather than the environment. Accord-
ingly, unlike the internal fluctuations, the external fluctua-
tions may considerably change the behaviour of the system.
The most popular example of this kind is given by the
stochastic systems which exhibit noise-induced phase transi-
tions [14]. The increasing intensity of external fluctuations
therewith leads to a drastic change in the form of the
stationary distribution function of microscopic states.

The first example of a stochastic system in which external
fluctuations play a decisive role is the problem of Brownian
movement of a particle under the action of collisions with the
molecules of the surrounding liquid [15]. The solution of this
problem reveals that the mean square of the particle
displacement is equal to twice the time multiplied by the
diffusion coefficient. Accordingly, the stationary distribution
of the possible values of the coordinate is Gaussian. If the
diffusion coefficient does not depend on the coordinate, the
noise in the system is referred to as additive [14— 18]. It turns
out, however, that not only the external fluctuations affect the
stochastic system, but the latter also has a reciprocal effect on
their intensity (in case of Brownian movement this implies
that the diffusion coefficient depends on the coordinate of the
particle). Then the external fluctuations are said to be of

multiplicative nature. The existence of this effect was pointed
out in Refs [19-21]. The concept of multiplicative noise was
first used by R Kubo [22] in the description of the stochastic
shape of the spectral line. Studied in Refs [23, 24] was the
effect of the external Gaussian noise on the chaotic behaviour
of the system, which was simulated by a logistic sequence. It
was found that in the neighbourhood of attractors which
determine the limiting behaviour of the stochastic system,
such fluctuations will either generate bifurcations, or cause a
transition from the chaotic regime to self-induced oscilla-
tions.

One of the problems in the description of a stochastic
system with multiplicative noise consists in the choice of the
calculus. The fact is that the solution of the stochastic
equation of motion is not unique but a continual set of such
solutions is realized. The probability of each realization is
found from the solution of the Fokker —Planck equation [15].
Definition of the force that enters this equation is not
unambiguous. In Ito’s calculus [25] the force is interpreted
as the real force acting on the selected degree of freedom. In
Stratonovich’s calculus [26] there appears an additional term
proportional to the noise intensity and the derivative of the
effective diffusion coefficient. In Klimontovich’s kinetic
formulation [27] this additional term is doubled. It can be
demonstrated that the set of all possible calculuses is
continual, which means that the magnitude of this additional
term is arbitrary. At the same time, the additional term
strongly affects the behaviour of the stochastic system, and
it is therefore important to understand the physical meaning
of this term and select the right calculus.

This paper is devoted to the theoretical analysis of
stochastic systems with singular white noise, whose intensity
depends on the stochastic variable x and vanishes at x = 0. In
Section 2 we develop the mathematical tools used for the
description of the stochastic system. In Section 2.1 we follow
the standard scheme for constructing the stochastic equation
of motion and study the nature of multiplicative noise in
homogeneous and spatially distributed systems. Analyzed in
Section 2.2 is the approach which leads to different calculuses
in the solution to the stochastic equation of motion. We find
that the calculus choice depends on the selection of the point
used for taking the derivative of the time-dependent stochas-
tic variable. In Ito’s calculus this point corresponds to the left-
hand border of the infinitesimal time interval giving rise to the
time differential. In Stratonovich’s and Klimontovich’s
formulations this point corresponds, respectively, to the
centre and the right-hand border of this time interval. In
general, the calculus choice is determined by the parameter
/. € [0, 1], which in the above three cases takes on the values 0,
1/2, and 1. The solution to the stochastic equation of motion
involves a fictitious force, whose magnitude is proportional to
the parameter A and the derivative of the multiplicative
function. Section 2.3 deals with the application of field
theory methods to the study of stochastic systems. We
demonstrate that the standard field scheme based on
expressing the generating functional in terms of the general-
ized action is only valid for systems with additive noise. In this
connection for systems with multiplicative noise we propose
the transfer to a new stochastic variable whose noise becomes
additive. Our study is based on the Fokker — Planck equation
whose solution describes the probability distribution for the
realizations of values of the stochastic variable. This equation
is derived in Section 2.4, and its solution methods are
discussed in Section 2.5. The simplest way of constructing
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the Fokker—Planck equation (see Section 2.4.1) consists in
considering the equation of motion for the mean value of an
arbitrary function of the original stochastic variable. This
method is rather formal and is based on the fact that the
differential of the drift term in the Ito stochastic equation of
motion has the order of the diffusion component differential
to the second power. The method described in Section 2.4.2,
which is similar to the derivation of the kinetic equation,
seems to be more physical. It is based on the averaged
equation of continuity for the one-particle distribution
function. We show that its correlator with the random force
component equals the sum of the fictitious force, which
depends on the selected calculus, and a component which
somewhat resembles the Onsager diffusion flow but is not
reducible to the latter. Unlike these, the derivation of the
Fokker—Planck equation in Section 2.4.3 is microscopic in
character rather than phenomenological. It can be used for
Markovian processes described by the master equation,
which allows the force and the multiplicative function to be
represented in terms of the moments of the microscopic
transition intensity. It is worth noting that the resulting
value of the fictitious force, which depends on the choice of
calculus, is twice the value obtained in Section 2.2 from the
solution of the stochastic equation. The final Section 2.5 deals
with those cases when the Fokker—Planck equation admits
analytical solutions. This situation is shown to occur either in
the stationary case, or in the self-modelling regime when the
time dependence is only contained in the characteristic value
of the stochastic variable, selected as the scale. In both cases
the distribution function is quasi-Gibbsian: the role of the
temperature is played by the noise intensity, and the effective
Hamiltonian is reduced to the bare one only for additive
noise.

Section 3 is devoted to the study of the effects of singular
multiplicative noise on the behaviour of the stochastic system.
Since our treatment is based on the stationary solution of the
Fokker —Planck equation, in Section 3.1 we analyze the issue
of the existence of the force ensuing from the arbitrariness in
the choice of calculus. We show that this force can be
cancelled out if the bare probability density is multiplied by
an exponential whose index also depends on the selected
calculus. Such probability gauge removes the problem of
choice of calculus. At the same time, the exponent determines
the behaviour of the stochastic system over the entire range of
its evolution. This treatment is carried out both for the
forward (Section 3.1.1) and the inverse (Section 3.1.2)
Kolmogorov equations. The difference in the gauge schemes
for these equations consists in the different signs ahead of the
exponent. The central place is occupied by Section 3.2, which
describes the behaviour of the stochastic system depending on
the nature of the multiplicative noise. In Section 3.2.1 we
study the noise-induced transition which qualitatively
changes the form of the density of probability but does not
give rise to any singularities. We demonstrate that this
transition is continuous only in the limit of additive noise,
and when the multiplicative function is linear. Section 3.2.2
deals with the analysis of the character of the distribution
function divergence, which occurs when the growth of the
multiplicative function is fast and the density of probability is
nonintegrable. We show that this singularity reflects the
presence of the deterministic condensate, in which the
stochastic variable reduces to a time-independent constant.
As it turns out, this regime may involve a finite proportion of
the degrees of freedom which form the deterministic con-

densate. The density of condensate depends on the nature of
the multiplicative function and noise intensity. The discussion
in Section 3.3 reveals that the arbitrariness in the choice of
calculus and the pattern of phase transitions presented in
Section 3.2 are associated with the fractal nature of the
domain of definition of the stochastic variable in the phase
space. The fractal dimension depends on the character of the
multiplicative function. In consideration of similarity we
demonstrate that the probability of transitions between the
microscopic states is nonanalytical. This gives rise to a
singular force similar to the force associated with the calculus
choice. This time, however, the force is not arbitrary, and its
magnitude is proportional to the amplitude of the noise rather
than its intensity.

A stochastic system is usually analyzed under the
assumption that there is no interaction in the many-particle
ensemble simulated by the system. This is the reason why until
recently no phase transitions in the common sense have been
discovered [28]. Section 4 deals with the effects of interaction
between the particles on the behaviour of the stochastic
system. In Section 4.1 we obtain the stochastic equation of
motion which contains the force of interaction between
particles in the mean field approximation, which is used for
finding the stationary distribution of probability. It turns out
that the interparticle interaction leads to renormalization of
the parameters in the Landau expansion and gives rise to a
contribution to the effective potential which has the least
power in the stochastic variable. Section 4.2 deals with the
symmetry breaking in the stochastic system. The distribution
function therewith becomes asymmetrical with respect to the
inversion of sign of the stochastic variable. The condition of
self-consistency for finding the long-range order parameter is
defined. We show that symmetry breaking occurs when the
dimension of the phase space is between 1 and 2. The long-
range order parameter is plotted as a function of noise
intensity, and the relevant phase diagram is constructed. The
resulting functions are nonmonotone, and we prove that this
feature is associated with the fractal nature of the domain of
definition of the stochastic system in the phase space. Section
4.3 is devoted to the loss of ergodicity by the stochastic system
with interaction between particles. The effect of the latter on
the pattern of the loss of ergodicity is found to be not as strong
as that on the symmetry breaking. A similar situation is
encountered in case of a noise-induced transition. As
compared with systems without interaction between parti-
cles, the difference consists in the renormalization of the
critical temperature which enters the Landau expansion. In
the final Section 4.4 we analyze the linkage between the fractal
nature of the phase space and the behaviour of the stochastic
system, taking into account not only the force of interaction
between particles, but also the singular force introduced in
Section 3.3. Its effect is found to be equivalent to the effective
increase of noise intensity. For example, an increase in the
singular force leads to a decrease in the density of determi-
nistic condensate, the long-range order parameter, and the
abscissa of the maximum of the distribution function.

Section 5 deals with the effects of noise on the behaviour
of a synergetic system represented by the standard Lorenz
scheme. Such a scheme has been analyzed in detail in the
deterministic regime, when the order parameter, the con-
jugate field and the controlling parameter do not contain
fluctuating components [5, 10]. By contrast, our main task in
Section 5 is to find out how the behaviour of synergetic system
will change if all three degrees of freedom exhibit additive
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noise. In Section 5.1 we show that if the changes in the
controlling parameter and the conjugate field are subordi-
nated to the magnitude of the order parameter, the additive
noise of the former two degrees of freedom will transform to
multiplicative one. As this takes place, the multiplicative
functions of the conjugate field and the controlling para-
meter do not coincide. At the end of Section 5.1 we find the
stationary solution of the Fokker—Planck equation and the
location of the maximum of the probability density as a
function of noise intensity. In Section 5.2 we demonstrate that
additive noise in the order parameter does not produce any
qualitative changes in the behaviour of a synergetic system.
The time dependence of the order parameter is found in the
absence of noise. The central place belongs to Section 5.3,
devoted to the effects of multiplicative noise on the pattern of
self-organization. In Section 5.3.1 we demonstrate that the
multiplicative noise of conjugate field only leads to the
displacement of the point of synergetic transformation.
Much more important is the effect of the stochastic control-
ling parameter studied in Section 5.3.2. It develops that the
increasing noise intensity suppresses the disordered state. A
phase diagram is constructed which shows the domains of
existence of ordered and disordered phases. We demonstrate
that, similar to the systems considered in Section 3.2.2, the
synergetic system at low noise intensities may produce a
deterministic condensate. In the final Section 5.3.3 we
generalize the results obtained in Sections 5.3.1 and 5.3.2 to
the case of combined inclusion of noise arisen from the
conjugate field and the controlling parameter. Then the
phase diagram displays regions of metastable ordered and
disordered phases.

In Section 6 we summarize the results and show how this
formalism can be used for describing the effects of memory
and nonergodicity in the presence of multiplicative noise.

2. Methods of description of stochastic systems

2.1 Stochastic equation of motion

Let us consider the simplest example of a stochastic system
with a single hydrodynamic degree of freedom x = x(¢),
which is a random function of time 7. As indicated in the
Introduction, the quantity x for a many-body system is the
amplitude of a hydrodynamic mode, such as the concentra-
tion of (quasi-) particles, the flow of particles, etc. [29]. If the
random variable x(¢) has a nonzero average (x(¢)) = #, then
the system under consideration exhibits a long-range order
defined by the parameter 5 # 0. For visualization of a
stochastic system, it is convenient to consider Brownian
movement of a macroscopic particle experiencing the action
of'external force fand random collisions with the molecules of
the surrounding liquid. As this takes place, the stochastic
variable x(7) is reduced to the coordinate of the particle, and
the order parameter # defines its mean location.

In order to develop the stochastic equation of motion
which defines the function x(#), consider a deterministic
system characterized by the nonconservative quantity x and
the force f. The corresponding equation of motion is [30]

pi+y k=1, (2.1)
where the dot overhead denotes differentiation with respect to
time. For a mechanical system, the inertial term pX is
determined by the effective density p, and the dissipative

term 7~ x by the kinetic coefficient 7. If the system behaves in

a self-consistent way, the force f= f(x) depends on the
coordinate x. In the linear approximation we have

f = —x/y, where y is the generalized susceptibility, and the

solution of Eqn (2.1) gives exp(fiwot—t/1), where
o 12 . . .

wo = (zp)'* is the fundamental frequency of oscillations,
and T = y/y is the relaxation time. In this way, the inertial
term provides for the existence of oscillations with frequency
o (reactive regime), and the dissipative term ensures
damping characterized by the relaxation time 7. In the
stochastic case, the reactive regime is only realized in systems
which exhibit behaviour like that in the Belousov—Zhabo-
tinskii reaction [31]. As a rule, however, wyt=
12y~ 1p!/? < 1, and the inertial term in Eqn (2.1) can be
neglected. Then, given that the force fin the potential systems
is determined by the synergetic potential V(x) according to

or

=—— 2.2
! ox’ (2:2)
we come to the regression equation
oV
X=—-)— 2.3
¥ =735 (2.3)

which describes the dissipative regime of evolution of a
nonequilibrium system to the stationary state. This equation
was initially proposed by L Landau and I Khalatnikov for
thermodynamic systems, for which the synergetic potential
reduces to the Landau free energy F(7). The latter differs from
the conventional thermodynamic potential in that it depends,
apart from the parameters of state like the temperature and
the volume, on the order parameter 5. This means that a
nonequilibrium quasi-static state is fixed, corresponding to
the given value of 5. The state of equilibrium (x =0)
corresponds to 0F/0n = 0, which determines the stationary
value of the order parameter [28].

The Landau—Khalatnikov equation (2.3), which
describes evolution of the thermodynamic system towards
equilibrium, is deterministic. Accordingly, the variable x in
Eqn (2.3) should be read as the order parameter 7, and V(x)
must be replaced with F(y). Obviously, for describing the
fluctuations of the system near the steady state one must
include the stochastic component { = {(¢) of the velocity x,
which brings us to the Langevin equation

X=9/+C(. (2.4)

Here the deterministic force f'is given by Eqn (2.2), while the
stochastic velocity {(¢) is expressed in terms of its moments.
The first moment is zero by definition. In order to find the
second moment we go over to the Fourier transforms x(w),
{(w) with respect to time (o is the frequency) and use the
fluctuation-dissipation theorem [28]

(jox(@)*) =L 1m g(o). 25

where 0x = x — (x), and y(w) is the generalized susceptibility,
T is the temperature expressed in units of energy. In the limit
o — 0 we have ™! Im y(w) — yt3, where 1 is the bare time
of relaxation [32]. Then, taking into account that { — dx/o,
from Eqn (2.5) we get

}Jiino<\g(w)\2> —2T. (2.6)
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In the case of white noise, all spectral components
{(w) = const are represented in the same way, and the limit
symbol in Eqn (2.6) can be dropped. Going back to the time-
domain representation, we get

(L)) = 2To(— 1. 27
We see that in the white noise approximation the correla-
tion of the stochastic component {/y of the force is only
observed at the coinciding times ¢ = ¢’. Obviously, such a
situation is only possible when the macroscopic relaxation
time t = y/7y is much greater than the microscopic time 1.
If these times are commensurate, the Jd-function in Eqn
(2.7) spreads out into a bell-shaped characteristic of width
~ 19. The Fourier transform ((w) of the stochastic force
therewith becomes frequency-dependent, and the white
noise becomes coloured. Its intensity is determined by the
variable 7, which for thermodynamic systems is the
temperature. Observe that the coefficient 2y in front of T
does not depend on x. In this situation the noise is referred
to as additive.

Our treatment is mainly concerned with stochastic
systems with multiplicative noise. Following Ref. [14], we
shall show that the numerical factor 2 in Eqns (2.6), (2.7) is
replaced by g2(x), which is determined by the form of the
multiplicative function g(x). We note that the force f'= f,(x)
in Eqn (2.4) depends not only on the variable x defining the
stochastic system, but also on the controlling parameter o
which characterizes the environment of the system under
consideration (for a Brownian particle this parameter is
represented by the rate of collisions with the surrounding
molecules). In the linear in o < 1 approximation, we may
write

g(x) = afgix)

Ju(x) = fo(x) + ag(x), (2.8)

a=0

In Landau’s theory such an approximation evidently corre-
sponds to the expansion of the coefficient in the quadratic
term of the free energy in terms of the temperature [28]. As
indicated above, the inclusion of the stochastic addition {(7)
to the component fy(x), which is independent of the
environment influence, accomplishes the transition from the
deterministic Landau—Khalatnikov equation (2.3) to the
stochastic Langevin equation (2.4). Obviously, by doing this
we only included the internal fluctuations of the system. To
allow for the external fluctuations in Eqn (2.8), the stochastic
nature must be assigned not only to the internal force f(x),
but also to the controlling parameter «, which is assumed to
depend on the time in the following way

ww:a+§an7 (2.9)

where o describes the mean influence of the environment,
and ¢ describes its dispersion. The latter is defined in such
a way as to make the stochastic component &(z) delta-
correlated:

ED)y=0, (&ne())y=06(r—1"). (2.10)
Substituting Eqn (2.9) into Eqn (2.8), and the result deduced
into Eqn (2.4), we find the general form of the stochastic

equation of motion for a system allowed to external {, and

internal { noise:

X = pfu(x) + Ce(x, 1) + L(1) 5 (2.11)
fa(x) = fox) + ag(x) (2.12)
Le(x,1) = og(x)<(1) . (2.13)

In accordance with condition (2.7), the internal noise is
always additive, whereas for the external noise with due
account for Eqn (2.10) we have

(Celx, 0)Celx, 1)) = 9T (x)o(r = 1), (2.14)
where the intensity is defined as 7= ¢>f. Comparing

equations (2.7) and (2.14), we see that as long as the external
noise is additive, the multiplicative function is constant, viz.

£(x)=2. (2.15)
In accordance with definition (2.8), this implies that the
response of the system to the influence of the environment
does not depend on the state of the system as determined by
the stochastic variable x. In other words, there is no feedback
between the state of the stochastic system and that of the
environment.

Such is the scheme of constructing the stochastic equation
for the nonconservative variable x. This scheme is based on
the analogy with the mechanical problem of finding the
coordinate x of point mass occurring in a medium under the
action of the force f;, + 7y~ ({, + {). Observe that the stochas-
tic variable x does not depend on the coordinate r, which
implies that the system is spatially homogeneous. The
situation is entirely different if the quantity x is conserved
(like, for example, the concentration of particles). Then we
must start from the equation of continuity x + Vj = 0, where
V =0/0r, j is the generalized flux defined by the Onsager
relation j=—MVu, where M = D/T is the mobility of
particles expressed in terms of the diffusion coefficient D
and the temperature 7. In the Ginzburg— Landau theory, the
chemical potential u = 0V /0x — fV>x — his expressed via the
synergetic potential V' = V(x), the external field & = A(r, ),
and the parameter of inhomogeneity . Assuming that the
field / is purely stochastic, and including the corresponding
contributions of j, { to the flux jand velocity X, we arrive at the
general form of the stochastic equation for a spatially
distributed system

7V {5 (2.16)

D or ~

x:—V2<——/3V2x—h> - Vj+¢.
By reasoning similar to that used for deriving Eqn (2.14), we
get the normalization condition for the stochastic component
of the velocity

(L, 0L 1)) = VTR ()3 — )3 — 1), (2.17)
Here V' is the volume of the system; the kinetic coefficient
y = D/p is determined by the temperature 7 and the gradient
parameter f3, and the additional J-function of r — r’ appears
because of inhomogeneity of the system. In the absence of

+Observe that the conventional definition is 7 = ¢?/2 [14], and an
additional multiplier 2 occurs in Eqn (2.14). We find it more convenient,
however, to include this numerical coefficient into the multiplicative factor

().
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feedback between the quantities x and j, the stochastic
component of the flux j satisfies a condition similar to Eqn
(2.7), where the noise intensity is represented not by the
temperature 77, but by the diffusion coefficient D (factor y
is required from considerations of dimensionality). If,
however, the change in the stochastic variable x(r, 7) affects
the flux j(r,7), then the fluctuations of the latter become
multiplicative, and we get an equation similar to Eqn (2.14):

(§(r, 0j(r,t"))y = DV} (x)d(xr —x")3(t — 1), (2.18)
where the multiplicative factor g/z (x) goes over into a constant
multiplier 2 upon transition to additive noise. Fluctuations
h(r, 1) of the field conjugate to the stochastic variable x(r, 7)
are always multiplicative, and so

(h(r,t)h(r,t")) = SVgh(x)d(x —x/)S(t — t'), (2.19)
where we have introduced the intensity S and the multi-
plicative function g;(x), which determine the nature of the
noise of the conjugate field. A salient feature of spatially
distributed systems is that upon transition from the fluctua-
tions of the flux j to the corresponding contribution {; = —Vj
to the noise of velocity X, the operator —V? appears on the
right-hand side of Eqn (2.18) [31]. Accordingly, for the field
component {;, = —(D/T)V*hin Eqn (2.19) we get a factor of
(D/T)*V*. This implies that with the increasing scale / on
which the fluctuations {, {;, {; are observed, the components
vary as { oc 19, {joc [T, ) oc 172,

It is often convenient to consider stochastic equations
(2.11), (2.16) in a dimensionless form. For nonconservative
variable x this is accomplished by expressing the time ¢ in
terms of 7 = y/y, the force f,(x) in terms of y~!, and the
stochastic components (., { in terms of t~! (as regards the
stochastic variable x, it is dimensionless from the start on the
scale of unity). Then the factor y in Eqn (2.11) disappears, and
factor T occurs on the right-hand sides of equations (2.7),
(2.14), which leads to a dimensionless noise intensity @ = yT.

In the case of spatially distributed systems, it is convenient
to measure the quantities ¢, r, V(x), A, j, and { in Eqn (2.16) in
units of B/(DT), (B/T)"?, T, T, D(T/B)"?, and DT/P,
respectively. Then, upon transition to the spatial Fourier
transforms, the stochastic equation (2.16) assumes the form

oV e
%=k (— + k2x> +k*h —ikj+ (. (2.20)

Ox

The delta-function of r — r’ disappears in conditions (2.17)—
(2.19), and correlated are only the terms corresponding to the
wave vectors k and —k’. With the above units of measure-
ment, the noise intensities of the velocity { in Eqn (2.17) and
flux j in Eqn (2.18) are equal to unity, and for the conjugated
field #in Eqn (2.19) we have ©;, = SD/(ST).

On the strength of the arguments developed above, the
dimensionless stochastic equation of motion assumes the
canonical form

$=f+¢, (2.21)
where the deterministic force f is given by Eqn (2.2) for a
homogeneous system, and

f=-K (a—V - k2x>

. (2.22)

for a spatially distributed system. The stochastic component {
constitutes the total contributions of the external fluctuations
(e = +{ of the conjugate field {, =k%h and the flux
{; = —ikj, and the internal noise { of the stochastic variable
x. In accordance with conditions (2.14), (2.7), (2.17)—(2.19) in
dimensionless form, these components are expressed as
follows:

(= (20)"¢; (223)

{j = —ikgj(x)¢;

o= 0"2g(x)¢,

O = K0, gi(x)¢,

where Eqn (2.23) relates to the homogeneous system, and Eqn
(2.24) to the spatially distributed system (the dimensionless
noise intensity @ = yT occurs in Eqn (2.23) because the scale
of measurement is based on the inverse susceptibility y~!,
whereas in Eqn (2.24) the scale is the noise intensity itself: D
for {;, and T for {). In the absence of feedback applied to the
system and the environment, the multiplicative functions
g(x), gn(x), and gj(x) reduce to a constant multiplier 2'/2,
and the stochastic variable & = & () is delta-correlated:

(G0) =0, (GG (") =dwd(t—1).  (225)
For homogeneous systems, the wave vector k must be
dropped [see Eqn (2.10)].

2.2 Solution of the stochastic equation of motion
The study of Brownian movement revealed for the first time
that the law of motion x(7) is nonanalytical. In particular, the
function x(7), although being everywhere continuous, is
nondifferentiable [4, 33]. Because of this, the stochastic
equation of motion (2.21) is highly conventional, since its
left-hand side contains the time derivative x of this function.

Let us show that this singularity makes the solution of the
stochastic equation fundamentally ambiguous. This ambi-
guity consists in the possibility of selecting the continual set of
calculuses like those proposed by Ito [25], Stratonovich [26],
Klimontovich [27], etc. Each of these calculuses corresponds
to a particular solution x(z).

We start from the differential representation of the
stochastic equation of motion [14—17]:

dx =f(x)dt + ag(x)dw(s), (2.26)
where the first term describes the drift in the field f{x), and the
second term describes the diffusion with the coefficient
D = (6?/2)g*(x). The stochastic variable w = w(t) is intro-
duced in such a way that its differential replaces the ill-defined
quantity &(¢)ds in Eqns (2.21)—(2.24). The characteristic
property of the stochastic equation (2.26) lies in the fact that
the time differential ds is a 2nd-order infinitesimal with
respect to the differential dw of the stochastic variable.
Indeed, keeping only the diffusion term in Eqn (2.26), we get
(dx)* = 2D(dw)?, whereas (dx)? = 2D dt by definition. As a
result, we get

(dw)? = dr. (2.27)
The formal solution of Eqn (2.26) takes the form
t w(r)
x(t) = J f(x(t"))de" + O'J g(x(eh))dw(t),  (2.28)
0 w(0)
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where we have assumed that x(0) = 0. Since the function
x(¢") is continuous, evaluation of the first integral on the
right-hand side of Eqn (2.28) does not meet with any
singularities. However, in the calculation of the diffusion
component

w(r)
(1) = j g(x(1")) dn(t")

w(0)

(2.29)

the integration is not over the time, but with respect to the
stochastic variable w(¢’), which displays singularities. To
clarify the situation, we express Eqns (2.26), (2.29) in terms
of finite differences, splitting the time interval [0,] into

N — oo equal increments At; =t —1t; — 0, where
i=0,1,...,N,and NAt; = t:
Ax(t;) :f(x(l-))At,- + og(x(1;)) Aw;, (2.30)
=1 b A iy 2.31
Afl,rll(]zg x(;)) Aw; (2.31)

where Aw; = w(t;11) — w(¢;). The salient feature of these
expressions is that, because of the singular nature of w(z;),
the result crucially depends on the selection of the point

ti=t+iAt;, 1e0,1], (2.32)
used for defining the value of the multiplicative function
g(x(1;)). For A = 0, this point takes up the position at the left-
hand border of the interval A¢;, which corresponds to Ito’s
calculus. With 4 = 1/2, the time 1;1s fixed in the middle of At;,
and we come to Stratonovich’s calculus. Finally, with A = 1,
the time 7; = #;4; occupies the position at the right-hand
border of At;, and this is what was proposed by Klimonto-
vich. There is, however, no physical criterion for fixing any
specific value from 4 € [0, 1]. One may conclude therefore
that there exists a continual set of calculuses depending on the
selection of the point (2.32).

To evaluate the integral I(¢), we express in Eqn (2.31) the
magnitude g(x(7;)) of the multiplicative function within the
interval Az; in terms of the value of g(x(7;)) at the border of
the interval. With this purpose we construct the expansion

x(t;) = x(8;) + x(t;)AAt; = x(t;) + AAx(;) , (2.33)
which follows from Eqn (2.32). Similarly, we get
g(x(1) =~ g(x(1;)) + Vg (x(t:)) Ax(1;) , (2.34)

where Vg(x(;)) = dg/dx|,_,. Substituting here Ax(z;)
from Eqn (2.30), we come to the desired expression

g(x(1)) ~ g(x(1;)) + Aog(x(2:)) Vg (x(1;)) Aw;

+ Af (x(1;)) Vg (x(2:)) At; .
By virtue of Eqn (2.27), the last term is of second order in Aw;,
and can be dropped out. Substituting the retained terms from

Eqn (2.35) into Eqn (2.31), and going back to the continual
representation (2.29), (2.28), we get the expression

(2.35)

x(1) = r [f(x(l/)) + h(x(l'))} de’ + ajwm

0 w(0)

(2.36)

g(x(1)) dw(r),

which, unlike Eqn (2.28), contains the force

A 2

zi@VgQ(x), O=0,

h(x) (2.37)

which depends on the choice of the calculus. Observe that for
systems with additive noise, where the function g(x) reduces
to a constant, this force is identically equal to zero, and such
systems are insensitive to the calculus choice.

Differentiating and then averaging equality (2.36), from
condition (x) = fand definition w = & we get

<g(x(t))f(t)> = —io<g(x(t))Vg(x(z))> .

Thus, we see that in the general case of 1 # 0 the stochastic
velocity £(¢) correlates with the multiplicative function g(x).
Such a correlation is not observed only in Ito’s calculus
(4 =0), which in this respect stands alone. In particular, it is
only at A =0 that our condition (xX) = f coincides with the
result of averaging Eqn (2.21).

(2.38)

2.3 Field representation of a stochastic system
The use of field-theoretical methods for the description of
stochastic systems is one of the most promising directions of
research. As we know, field approach is useful for describing
systems possessing a continual set of degrees of freedom [34,
35]. In stochastic systems, the degrees of freedom are the
space-time fluctuations represented by the function x(r, ).
The construction of a field-theoretical scheme is based on
the stochastic generating functional [35, 36]

Z{u(r)} = [ Z{x(0)} exp{Ju(t)x(t) dt} Dx
b= (TTots—r— 00} der I%D

(2.39)

Z{x(1) (2.40)

whose variation with respect to the test field u(z) yields the
correlators of the stochastic variable x(¢). Equality (2.39)
expresses the functional Laplace transform of Z{x}, repre-
sented by Eqn (2.40), where the presence of a J-function
reflects the stochastic equation of motion (2.21), the determi-
nant ensures the transition from continual integration over {
to x, and the angle brackets indicate averaging with respect to
the random force {. The determinant can be eliminated by
introducing a pair of Grassmann-conjugate fields, whose
condensate determines the density of the antiphase bound-
aries [31]. In spatially homogeneous systems there are no such
boundaries, and the determinant is expressed in terms of the
original functions x(¢), f(x), and {(¢). According to Ref. [37],
in Ito’s calculus its value reduces to the noise intensity @,
while in Stratonovich’s calculus we get a more complicated

expression
=ex J af
=P Ox '

To perform averaging with respect to the field ((7),
consider the approximation of additive noise described by
the Gaussian distribution

dt) ,

ol

det |-=
eéx

(2.41)

P{L(n)} = (2n0) P exp (— J Mz(g (2.42)
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which corresponds to the normalization condition (2.7) for
the complex quantity {. Using the integral representation

o{u(n} = Jm exp <—Jv(l)go(t)dz> D¢

243

“ico 2mi ( )
and averaging over the distribution (2.42), we bring the
functional (2.40) to the standard form

Z{xU)}::Jexp{fS{x(O,@(ﬂ}]EEg

2.44
2mi ( )

expressed in dimensionless quantities (in particular, @ = 1).
The action S = [L£dr is determined by the Lagrangian £,
which in Ito’s calculus takes the form

2
czwu—ﬁ—%a (2.45)

By virtue of Eqn (2.41), the transition to Stratonovich’s
calculus gives rise to the additional term (1/2)0f/0x, which
can be included into the index of the exponential in Eqn
(2.39).

In order to bring the Lagrangian (2.45) to the canonical
form, we must introduce a new field ¢(z) defined by the
equation

X=¢+0. (2.46)
As a result, we get
) 2
L=%+<w>%>—ﬁ. (2.47)

With the aid of Eqn (2.2) we find that the last term here is the
total time derivative of ¥(x(¢)) which leads to the conven-
tional expression for the partition function [28]. Other terms
in Eqn (2.47) are the kinetic energy x?/2 and the potential
energy ¢f — ¢2/2. The latter assumes the canonical form ¢ /2
if ¢ = £, which implies that the field ¢ is reduced to the force f
conjugated with the order parameter x. Comparing the
equation of motion (2.21) with the Euler equation (2.46),
corresponding to the least action S'in Eqn (2.44), we see that ¢
defines the most probable value of the amplitude of fluctua-
tions of the conjugate field (its mean value is ({) = 0). Hence it
follows that the distribution in the integrand in Eqn (2.44) is
bimodal, unlike the Gaussian distribution introduced by
Eqn (2.42).

Obviously, such a situation only occurs in the case of
additive noise {(¢). When passing to multiplicative noise, we
must replace 20 with ©g?(x) in distribution (2.42), because of
which the averaging with respect to the noise { in Eqn (2.40)
becomes non-Gaussian. To restore the Gaussian distribution,
we go over to the new variable

¥(x) = j% .

(2.48)
According to Eqn (2.27), the terms in the differential dx in
Eqn (2.26) are variable in order of infinitesimal, and so for the
differential of the new stochastic variable y(x) we get

1d%y

_d :

where in the diffusion approximation we must set

(dx)? = 6°¢*(x)(dw)* = Og>(x) dt. (2.50)
Finding from Eqn (2.48) the derivatives of y(x), and
substituting the differentials (2.26), (2.50), we find from Eqn
(2.49) the stochastic equation of motion in the new variable:

dy =p(y)dt+adw, (2.51)
_f(x() o1\ dg
p(y) B g(x(y)) o </L 2) dx x=x(y) (252)

According to Eqn (2.51), its noise is additive, and we may use
the field-theoretical scheme described above. The effective
force is given in this case by Eqn (2.52), which includes the
component (2.37) associated with the arbitrariness in the
choice of calculus. Observe that the addition related to the
multiplicative nature of the noise [the last term in Eqn (2.52)],
disappears in Stratonovich’s calculus (1 = 1/2).

2.4 Fokker —Planck equation

In addition to the features discussed above, the stochastic
nature of the system is manifested in that, although the initial
conditions are fixed and the calculus is chosen, the equation
of motion admits a continual set of solutions {x(z)}
distributed in a random fashion. This circumstance is a
trivial consequence of the presence of a random force { in
the equation of motion (2.21). Because of this, it is important
to arrive at the function

PuJ)zjb{xfx@nP{ag}Dxu% (2.53)

which, given the functional P{x(¢)} of the distribution of
solutions of the stochastic equation, allows us to find the
density of the probability of realization of a value of x at a
given time 7. The distribution function P(x, ¢) is linked to the
initial distribution P(xo, 0) by the following relationship [14 —
18]:

P(x,t) = JP(x, t|x9, 0)P(x0,0) dxq , (2.54)

which includes the transition probability P(x, ¢|xo,0) under
the integral. In this way, the problem reduces to finding the
conditional probability P(x,#|xo,0), subject to the initial
condition P(x,0|xp,0) = d(x — xp). Formal methods of
derivation of the Fokker —Planck equation for the transition
probability P(x,|xp,0) can be found in the book [15].
Considering that relation (2.54) does not involve the
dependence on x, ¢, these methods can also be used for
finding the probability density P(x,?). Since, however, we
are mostly interested in the physical content of the problem,
we are going to study directly the dependence P(x,7). Of
course, we shall arrive at the same results as those obtained by
other methods [14— 18, 38].

2.4.1 Derivation of the Fokker—Planck equation from the
equation of motion. Consider an arbitrary analytical function
y(x), whose differential can be represented in the form of
expression (2.49). As already indicated, it is necessary to take
into account the square of the differential (2.26) because its
drift and diffusion components are variable in order of
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infinitesimal, as reflected by Eqn (2.27). Accordingly, the
diffusion contribution (2.50) of second order in dx is
commensurate with the drift component fds in Eqn (2.26),
which is of first order in dz.

Substituting the differentials (2.26), (2.50) into Eqn (2.49),
and averaging with respect to the distribution (2.54), we get

a3} = (0 Yo+ o ety )

o /dy ,

Here on the left-hand side we interchanged the order of
averaging and differentiation, and took Eqn (2.27) into
account. According to Eqn (2.38), in Ito’s approximation
(4 =0) the quantities g(x) and dw = £d¢ do not correlate,
which allows us to factor out (dw) = 0 in the second term in
Eqn (2.55) [see also Eqn (2.10)]. Then, going over to the time
derivative and using the definition of the mean

(2.55)

) = Jy(X)P(x, £)dx, .56
we arrive at
J Y)P(x, 1) dx = Jf (x) P(x, 1) %dx
2 )
+ gl[gZ(x)P(x, ) % dx. (2.57)

Carrying out integration by parts on the right-hand side, we
factor out y(x) in the integrands in Eqn (2.57) [as this takes
place, the differentiation operator V = 9/0x is switched to the
distribution function P(x,)]. Since the function y(x) is
chosen arbitrarily, the integrals are equal only when the
integrands are. Eliminating y(x), we come to the Fokker—
Planck equation

P=V {—fp +§ V(gzP)} , V=—. (2.58)

It can be represented in the form of the equation of continuity

P+VJI=0 (2.59)
in the space of the stochastic variable x, where the probability
flux J = J4r + Jyir 1s composed of the drift Jy4, and diffusion
J4ir components

]
Jao=fP, Jar= 5 V(g*P). (2.60)
Here, in accordance with the equation of motion (2.21), the
force fensures the drift velocity (X) = f, and the quantity

p(x) = 2 ()

> (2.61)

is the generalized diffusion coefficient defined by Eqn (2.50).
In the case of additive noise [g(x) = 2'/?], this coefficient
reduces to the intensity ©, as ought to be expected.

The above scheme is limited to Ito’s calculus. In the
general case of A #£ 0, the real force f(x) in Eqn (2.55) must
be supplemented by the fictitious force 4(x) as defined by Eqn
(2.37). If, however, we take into account the correlation
between g(x) and dw, then, in accordance with Eqn (2.38),

we have

<j—;} h(x)> + a<gi g(x)é(t)> =0

and the Fokker—Planck equation (2.58) remains invariable.

(2.62)

2.4.2 Construction of the Fokker—Planck equation in the
framework of the kinetic approach. The method described
above, like those presented in Ref. [15], is rather formal.
Therefore, following Klimontovich [27], we shall outline here
the kinetic approach which goes back to the Boltzmann
equation. Its main advantage consists in its perspicuity, for
the mechanical problem of diffusion of the probe particle in
the momentum space is considered. In addition, this method
demonstrates the linkage between two fundamental equa-
tions of statistical physics: the Fokker—Planck equation,
which governs the stochastic behaviour of the selected degree
of freedom, and the Boltzmann equation describing the
statistical ensemble of particles.

The equation of motion of the probe particle in a medium
comprised of parent particles is similar to Eqn (2.21):

p=—up+(2D)'*¢. (2.63)
Here, —pup is the force of friction in the medium of viscosity
w=u(p), D= D(p) is the effective diffusion coefficient,
linked with the multiplicative function g(p) by a relation
similar to Eqn (2.61), and & = £(¢) is the delta-correlated
noise. To construct the kinetic equation, we introduce the
one-particle distribution function

Pi(p,1) = o(p — (1)) (2.64)
and average the equation of continuity with respect to the
sought-for distribution P = (P;):

0

P1+VJ1=O, =_—,

% (2.65)

where the generalized flux has the form J; = pPy, like the first
expression in Eqn (2.60). As a result, we get the equation

P =V[upp - (20) (P, (2.66)
which contains the unknown correlator (£Py).

This correlator is most easily found within the framework
of the phenomenological approach based on the equation of
continuity (2.59), which unlike Eqn (2.65) involves not the
one-particle distribution (2.64), but the total distribution
p = (P1). The flux J = J4; + Jgir contains both the drift and
the diffusion components

Jar =ferP,  Jaip = —DVP. (2.67)

Unlike Eqn (2.60), here the diffusion coefficient D is factored
out of the operator V = 0/0p. This implies that, similar to the
method described at the end of Section 2.3, in the definition of
fluxes (2.67) we have accomplished the transition from
momentum p to a new variable q = j(2D)7'/2dp, for which
the noise is additive. Then, according to Eqn (2.52), the
effective force f.r, which determines the drift component of
the flux Jg,, has the form

1
for= —pp + (;v - z)vu. (2.68)
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Here, the first term contains the force of friction, the
parameter A in the second term takes care of the lack of
uniqueness when choosing the calculus, and the term
—(1/2)VD accounts for the diffusive contribution
(dp)* = 2D dr into the change of the new variable q(p) [see
Eqns (2.49), (2.50)]. Substituting Eqn (2.68) into (2.67), from
Eqn (2.59) we get the Fokker —Planck equation in the kinetic
form [27]:

b (3-2)vo] v

Comparing this equation with Eqn (2.66), we find the sought-
for correlator

(2.69)

1
(&p) = )»@‘/2Png§ 6'2v(gP), (2.70)
where we ha\l/ezintroduced the multiplicative function g(p) =
[(2/©)D(p)] /2 For additive noise, when D(p) = const = D,
the correlator is (£P;) = f(D/Z)l/ZVP, and equation (2.69)
assumes a simplest form

P=V(—fP+DVP), f=—up. (2.71)
A similar situation occurs for the multiplicative noise in
Stratonovich’s calculus (4 = 1/2), which gives it an advan-
tage over other calculuses [14].

At equilibrium, we have P =0 and the distribution

function P(p) is Maxwellian [28]:
2
p
P x exp( 2mT> ,

where m is the mass of the particle. Substituting this
expression into Eqn (2.69), we find the equation for the
effective diffusion coefficient

(2.72)

D(p) = mT{u(p) + G - 2) ]% dg—l()p)} . (2.73)
The Einstein relation
D(p) = mTu(p) (2.74)

holds either for additive noise, or for the Stratonovich’s
calculus.

2.4.3 Derivation of the Fokker—Planck equation from the
master equation. The approaches described above are essen-
tially phenomenological, and are incapable of disclosing the
microscopic content of such parameters as the generalized
diffusion coefficient. This becomes possible when the treat-
ment is based on the so-called master equation, which
expresses the rate of change of the distribution function
(2.54) in terms of the intensities of transitions between the
microscopic states [38].

Let us first describe the scheme of derivation of the master
equation. This equation only holds for Markovian processes,
for which the probability of transition from one microscopic
state to another does not depend on the way in which the
system was brought into the initial state (in other words, the
system does not feature microscopic memory). Then we may
avail ourselves of the Kolmogorov equation [39]

P(x +dx,t+dr) = W(x,x 4+ dx)P(x, 1) dxdr, (2.75)

which describes the evolution of the distribution function in
terms of the transition probability W(x,x + dx)dx from
microscopic state x to state x + dx per unit time. Hence, the
master equation follows directly

Plx,1) = J[W(x )Pt 3y 1) — Wix,x — y)P(x, )] dy,
(2.76)

where the first term corresponds to the forward transitions
X + y — x, and the second to the back transitions x — x — y.
It is easy to see that the latter governs the relaxation process
whose effective time is given by

(x) = J W(x,x —y)dy. (2.77)

Formally, this means that the integral intensity of transitions
is equal to the inverse relaxation time.

In order to solve Eqn (2.76), one has to find the intensity
of transitions W(x,y), which is a separate problem [40]. As
will be shown below, however, for our purposes we only need
to know the first two moments of the complete distribution
function W(x,y), not the function itself. A vital role in their
definition is played by the principle of detailed balance [15,
40]

Px)W(x,y) = P()W(y,x), (2.78)
which implies that the intensities of forward and back
transitions between any two microscopic states x, y are the
same. Then the integrand in Eqn (2.76) is zero, and P = 0,
which means that the distribution function (2.54) does not
depend on the time. The corresponding microscopic state is
referred to as stationaryt. Observe that the principle of
detailed balance (2.78) does not hold for an arbitrary
stationary state.

Embarking on the derivation of the Fokker—Planck
equation, we must note that the transfer to a latter is only
possible for those processes for which W/(x, y) is a continuous
function. In the opposite case of discrete processes the
transfer is not feasible, and the system is described by the
master equation (2.76).

For continuous processes, the first term in brackets in
Eqn (2.76) can be represented as the expansion

W(x+y,x)P(x+y,t) = W(x,x —y)P(x,1)
N O[W(x,x — y)P(x,1)] ’

ox
107 [W(x,x —y)P(x,1)] ,
3 o i S (2.79)

As a result, we get a differential equation containing the
moments
('(x)) = J W(x,x —y)y"dy. (2.80)

According to Pawula’s theorem [41], in the case of Markovian
processes for which the master equation just holds, all the

T In should be emphasized that a stationary state is not always equivalent
to the equilibrium state. For example, a piped flow is stationary when its
velocity is constant, and equilibrium when its velocity is zero.
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moments are equal to zero at n > 2, the odd-numbered
moments identically so. Then Eqn (2.76) becomes

0
ox

P:V[—fP—i—%V(gzP)y V= (2.81)

The force f=—(y) and the multiplicative function

g=(07'0?) '/2 are given here by the expressions
s == -y d, (28)
g (x) = J P W(x,x—y)dy, (2.83)

where @ is the noise intensity.

Let us now demonstrate that, as for the solution of the
stochastic equation (2.26), a more careful treatment of the
master equation (2.76) gives rise to a fictitious force which
depends on the choice of calculus. With this purpose we
represent the expansion (2.79) in terms of finite differences

W(X,‘ + AX,‘, X,')P(X,‘ + AX,‘, t) = W()E,‘,X,‘ — AX[)P()E,', l)

A[W()Z‘l, X; — AX,‘)P()E,‘, l‘)}
Axi

Like in Section 2.2, here we have taken due account of the fact
that, owing to function W(x,y) being nonanalytical, the
result of expansion in finite differences Ax; will depend upon
the point fixing [cf. Eqn (2.32)]:

Xi = Xx; + AAx;, Ae [0, ]] R (285)
within the interval Ax;. Like on the time axis, the location of
the point is described by the parameter A € [0, 1], which
corresponds to a given calculus. For a smooth distribution
function P(x), the arbitrariness in the selection of 4 does not
matter, and one may replace X; with x; in the argument.
Conversely, for the intensity of stochastic transitions, as for
Eqn (2.84), we have
W(xi, xi — Ax;) = W(x;, x; — Ax;)
A [W(X,‘, X — AX[)]
Axi

+ JAX + ... (2.86)

Substituting this expansion into Eqn (2.84), and the result
into the master equation written in terms of finite differences,
we pass to the continual limit and get

Pl ) = J{P(x, ) [M Py

Ox
1 0*W| X, X —y
3 0]
2 _
. % & [P(x, t)éﬂ;gx,x ”)] yz}dy, (2.87)

where we have dropped out the terms producing the zero
moments [see Eqn (2.80)] of order n > 2. Taking into account

that OW(x,x — y)/0x = —0W(x + y,x)/0y, and integrating
by parts with respect to y, we see that the first term is zero. The
second term is eliminated in a similar way. Then, with due
account for the definitions (2.82), (2.83), we get the equation

0

. ¢
P=V|—(f+hP+=V(P)|, V=—. (2.88)
2 Ox
As compared with Eqn (2.81), here we have the force
h(x) = 20Vg*(x), (2.89)

which depends on the choice of calculus. This force vanishes
in the case of additive noise and in Ito’s calculus (4 = 0).

We see that both in the solution of the stochastic equation
of motion (see Section 2.2) and in the proper derivation of the
Fokker—Planck equation, which defines the probability of
distribution of such solutions, the real force fis supplemented
by the fictitious force & depending on the calculus choice.
However, comparing expressions (2.37) and (2.89) we find
that the latter gives twice the value of / given by the former,
and the two values only coincide in the trivial case of 4 = 0,
which corresponds to Ito’s calculus (or to additive noise).

2.5 Solution of the Fokker —Planck equation

Expression (2.88) is a differential equation in partial deriva-
tives with varying coefficients, and its solution in the general
case is not possible. A rather comprehensive review of
methods for solving the Fokker—Planck equation can be
found in Ref. [15]. In our case of one variable, the most
popular of these methods is based on the transformation of
the variable (2.48), which allows the reduction of the multi-
plicative noise to additive noise, bringing the Fokker — Planck
equation to the form of the Schrédinger equation (see Section
3.1.1). This opens the possibility of using the powerful
methods of solution of the problem concerned with the
analysis of eigenfunctions and eigenvalues of the relevant
Sturm — Liouville operator [15]; the methods of supersymme-
try can also be used to great advantage [42]. Here we are not
going to employ these methods, which are capable of dealing
with the most general case of several variables in conditions
when the principle of detailed balance does not hold. As it
turns out, the coefficients of expansion in eigenfunctions then
obey the triangular recurrent relations, which lead to
continued fractions [15].

Our treatment will be based on the analysis of the
stationary solution to the Fokker—Planck equation. Aside
from the fact that it leads to the Gibbs distribution, the
cornerstone of statistical physics [28], we shall demonstrate
that a natural extension of this method allows determination
of a new class of solutions for nonstationary systems in the
self-modelling regime.

In stationary systems, the probability distribution (2.54)
does not depend on the time, so P = 0 in Eqn (2.88), and the
generalized flux assumes a constant value

(f+h)P— % V(g*P)=const=J, V= % . (2.90)

For equilibrium systems we have J = 0, and the solution of
Eqn (2.90) can be written as

P= Zflg*2(1*2/1) exp(gJﬂ dx) ,

2.91
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where the constant Z is determined by the normalization
condition

JP(x) dx=1. (2.92)
In the case of additive noise (g(x) =22, h=0), the
distribution (2.91), with due account for definition (2.2),
assumes the Gibbsian form

P(x)=2z"" exp(—m) .

5 (2.93)

Here, the synergetic potential V' = V(x) reduces to the
effective Hamiltonian of the system [28], @ is the tempera-

ture expressed in energy units, and the normalization
constant

Z = Ji@ exp (— Vg)> dx

is the partition function whose magnitude determines the free
energy

(2.94)

F=-0hZ. (2.95)

The equilibrium distribution can be also written in the quasi-
Gibbsian form

—Ue‘"(x)) (2.96)

P(x)=2"! exp<— o

in the case of multiplicative noise. Then, however, the
effective potential Uer(x) is not reduced to the initial one,
V(x):

Uet(x) = 2(1 —24)@ Ing(x) + U(x); (2.97)
U(x) = —ZJgfz((xx)) dx, f= —Z—z. (2.98)

Expression (2.97) is characterized by the dependence of the
logarithmic term on the parameter A, which determines the
choice of calculus.

Now let us consider a nonequilibrium stationary state, in
which the flux J, while constant, is not equal to zero (such a
state can obviously be realized only in an open system with
restricted volume, with J # 0 on the boundaries). Then the
probability distribution retains the quasi-Gibbsian form of
Eqn (2.96), but the normalization constant Z ~! is replaced by
the function

23w =27 - [(e) Ve (0o, 299

where the dependence on x is contained in the subtrahend
proportional to J/©. If the flow of probability is outwardly
directed, then J > 0, and, according to Eqn (2.99), its growth
leads to a decrease in the free energy (2.95). Otherwise (J < 0)
the free energy exceeds the equilibrium value, which means
that energy is being pumped into the system.

The study of a nonstationary distribution is only possible
in the self-modelling regime, when the dependence on two
arguments x, ¢ is expressed in terms of a single variable

y=x/a(t):

P(x, 1) =a’p(y), (2.100)

where the functions a(¢), ¢(y) and the exponent o are to be
defined. Mathematically, Eqn (2.100) implies that the prob-
ability distribution is a homogeneous function of order .
Physically, the transition to the new variable y = x/a
corresponds to a scaling of the stochastic quantity x, the
scale a(f) being a function of time. The property of
homogeneity (2.100) reflects the self-similarity of the phase
space of the stochastic system, which allows measurement of
the quantity x on an arbitrary scale a(7). We know that such a
feature is displayed by fractal objects [4, 33]. Accordingly, the
assumption (2.100) implies that the domain of definition of
the phase space for the stochastic system is a fractal set, whose
dimension D lies between 2 (the conventional phase plane)
and 0 (the point of equilibrium).

In order to find the exponent o, we substitute the function
(2.100) into the normalization condition (2.92), getting as a
result

(a(r) ™" = JOO

—00

@(y)dy, (2.101)

The left-hand side of this equation depends on the time,
whereas the right-hand side does not. Hence it follows that

a=—1, (2.102)

which brings us to the conventional normalization condition

ro p(y)dy =1. (2.103)

—00

The form of the function ¢(x) can only be found at given
scaling properties of the force f(x) and the multiplicative
function g(x). By analogy with Eqn (2.100), we write

f(x)=a’F(y), (2.104)

gx)=a’Gy), :g ; (2.105)
where the functions F(y), G(y) and the exponents f3, y are
assumed to be known (in Section 3.3 we shall demonstrate
that the latter are expressed in terms of the fractal dimension
D as f=1—-D, y=1-— D/2). Substituting the relations
(2.100), (2.104), (2.105) into the Fokker—Planck equation
(2.88), and making use of expressions P = (ap — yp')a* 'a,
V =0/0x = a~'0/0y, we get

(aPa)(oap — yo') = —[(F+ H)(p]/ +% a2 PGP ).
(2.106)

The prime here denotes differentiation with respect to y. We
also assume that the fictitious force (2.89) obeys the same
scaling condition (2.104) as does the real force:

h(x) = aPH(y). (2.107)

Equation (2.106) becomes an ordinary differential equation

o

= (G2)" = [(F+ H)p]' + u(yg' — ap) =0

5 (2.108)

provided that its coefficients do not depend on the time. With
this purpose we must set a % = const = u, 2y — f— 1 =0,
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whence
a=[p(1—p)]" P pa-n, (2.109)

1
yo1tE (2.110)

2

Thus, the linkage (2.110) between f and y verifies our
assumption (2.107).

In this way, the considerations of similarity allow us to
find the time dependence (2.109) of the characteristic value
a(t) of the stochastic variable x(¢), and to define the exponent
(2.102) of the distribution function (2.100). The definitive
function ¢@(y) obeys the ordinary differential equation
(2.108). It is easy to see that this equation can be represented
as

0(G%p)" = (FuG o), (2.111)

where we have introduced the effective force [cf. Eqn (2.2)]

R _ aﬁef(y)
Fe(y) = T (2.112)
whose magnitude is determined by the potential
Ust(y) = =420 InG(y) + Uu(y) + U(y) ; (2.113)
Un(y) = uJ G (y)dr*, (2.114)
Fy)
Uly) = 72J dy. 2.115
) 20 Y (2.115)

Lowering the order of the differential equation (2.111), and
using the boundary conditions

o'(y) =0, y=+c0 (2.116)

p(y)=0 at

we find the general solution of the Fokker—Planck equation
in the self-modelling regime:

Here the effective synergetic potential Uy = Ugr + 260 In G,
renormalized on account of the factor G2 in Eqn (2.111), has
the form [cf. Eqn (2.113)]

o(y)=2z"" exp(— (2.117)

Uet(y) = Us(y) + Up(y) + U(y), (2.118)
where
Uo(y) =2(1-22)01InG(y), (2.119)

and the remaining terms are given by Eqns (2.114), (2.115).
The normalization constant Z is given by Eqn (2.103).

This analysis reveals that the description of nonstationary
self-modelling regime can be performed by analogy with the
stationary system, if from the original stochastic variable x
and functions P(x, ), f(x), h(x), and g(x) we go over to the
variables y = x/a, ¢ = P/a®, F=f/a?, H=h/a’, and
G = g/a’, whose magnitudes are determined by the scale
a = a(t), which gives the characteristic value of variable x.

Comparison between expressions (2.97), (2.118) indicates
that the transition to the nonstationary regime also gives rise
to an additional term (2.114), resulting from the change of
scale a(¢) in accordance with Eqn (2.109).

To conclude this section, let us note that the first
description of a nonstationary stochastic system in a self-
modelling regime was apparently given by I M Lifshitz and
V V Slezov [43] for the problem of coalescence of emanation
of a new phase. Today the considerations of similarity are
widely employed for describing the evolution of spatial
structures arising in the course of phase transformations
[31, 44].

3. Description of a stochastic system with
singular multiplicative noise

3.1 Gauging the probability distribution

of a stochastic system

As follows from our discussion in Sections 2.2, 2.4, the non-
analytical character of the dependence x(7), which determines
the time variation of the stochastic variable, gives rise to the
force h depending on the calculus choice [see Eqns (2.37),
(2.89)]. Unlike the situation in the field theory, where the
arbitrariness in the selection of potential does not affect the
experimental field strength [45], the force / has great influence
on the distribution of probability of realization of the
stochastic variable.

From a mathematical viewpoint, the appearance of the
force / is associated with the arbitrariness in the selection of
the point (2.85) on the x axis. The singular nature of the
function &(r), which determines the d-correlated character of
the white noise [see Eqn (2.10)], ensures the fixation of this
point. Apparently, as the J-correlator smears out, which
always happens in reality, the force / vanishes automatically
[14]. In other words, the force which depends on the calculus
choice and therefore has no physical meaning is an artifact of
the white noise approximation. In this connection one must
either reject this approximation, which will greatly complicate
the formalism [14], or use a gauge scheme which would
eliminate this ambiguity for J-correlated noise. Such a
scheme was first proposed in Ref. [46] and is reproduced in
this section; we shall consider separately the forward and the
backward Kolmogorov equations (Sections 3.1.1 and 3.1.2,
respectively).

For the sake of simplicity we shall analyze the spatially
homogeneous case, with the time measured in units of t = y/y
(x 1s the susceptibility, y the kinetic coefficient), the force on a
scale of y~!, the stochastic velocity component X in units of
7~!. Then the stochastic equation of motion assumes the form
[see Eqns (2.21), (2.23)]

X =f(x) + Tg(x)E(0). (3.1)
Here we have explicitly singled out the dimensionless noise
intensity 7' (which was denoted by @ in Section 2.1) and the
multiplicative function g(x); the force f{x) and the function
&(¢) are given by Eqns (2.2), (2.10). According to Eqn (2.88), it
is convenient to write the Fokker—Planck equation, which
defines the distribution function (2.54), in the form of an
equation of continuity in the space of the stochastic variable:

. 0
Pi ]1:0, = . 3.2
+V \% o (3.2)
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Here the probability flux is given by the expression

. T
Ji=(f+h)P—=5 V(g'Py), (33)
in which the force [see Eqn (2.89)]
hi(x) = ATVg*(x) (3.4)

depends on the parameter A € [0, 1], related to the choice of
calculus.

3.1.1 Forward Kolmogorov equation. As we know, the
evolution of the system in probability space is described by
the forward or backward Kolmogorov equations, depend-
ing on the time direction [14—18]. Let us consider first the
former of these, which is reducible to the Fokker—Planck
equation.

By way of an intuitive guideline, we shall sketch out the
known transfer from the Fokker—Planck equation to the
Schrodinger equation with imaginary time for a system with
additive noise, where the fictitious force is 4, = 0 by virtue of
g(x) =2'2, and the value of A does not matter [47]. This
transfer is accomplished through replacing the probability P;
in Eqns (3.2), (3.3) with the ‘wave function” ¥ = P, exp(—a).
As a result, the Fokker—Planck equation with additive noise
becomes

¥ = ¥ [V2V + (VV)Vo + T(Va)® + TV

+ (VV 4 2TV)VY + TV Y. (3.5)
This equality reduces to the Schrédinger-type equation in the
absence of terms containing V¥, which is achieved by
selecting the imaginary phase « in accordance with the
condition

24

V(x:—ﬁ.

(3.6)
This condition implies that the displacement of the origin of
the synergetic potential V' by oV shifts the phase by
oo = —0V/(2T) without modifying the Schrodinger equa-
tion itself, i.e.

—T%'I’:—TZVZ‘P—F Uy (3.7)
with the imaginary time —it, the potential energy
1 » T,
U=-(VV) == V'V 3.8
JVV) =3V (38)

and the Planck constant 7 (the mass of the effective particle is
1/2).

The fact that the origin of phase o does not depend on the
‘coordinate’ x corresponds to the condition of global gauge
invariance in the standard field-theoretical scheme [48], which
is obviously satisfied owing to the additive nature of the noise.
When the noise is multiplicative, its intensity becomes a
function of x, which causes the phase to change as o(x).
Because of this, the gauge condition must be made local, and
the scheme becomes much more complicated.

In order to analyze the local gauge invariance, we shall
express the initial distribution P;(x, ) in Eqns (3.2), (3.3) in

terms of the renormalized distribution function

P(x, 1) = Pj(x,1) exp[—a(x)] (3.9)
satisfying the canonical Fokker—Planck equation

. T 5

P=V (VV)P+§V(g P)|, (3.10)

in which the renormalized potential ¥ = V/(x) is not reducible
to the initial potential Vo (x) = — [ f(x) dx. As a result, we get

P=V [(VVO)P +§V(g2P) — AT(Vg*)P + T(Va)g* P
+ (VVo) (Vo) P — AT(Vg?) (Vo) P — g £ (Va)P

T
+3 2 (Va)’P, (3.11)

where on the right-hand side we have added and subtracted
the term (7/2)g>PV>a. Since Eqn (3.10) does not contain
terms proportional to P, we must set

(VVo — ATVg*)Vo = ET & [Va— (Va)*]. (3.12)

In addition, the expressions for flows which occur in Eqns
(3.10), (3.11) under the operator V must be equal:

VVo — ATV + T(Va)g> = VV. (3.13)

Now it is convenient to rewrite the result in the form of a
set of equations

2V,

Vo —VInVo = — v +22Ving?, (3.14)
V(V - V) 5
VO(:T‘FZVIH{Q y (315)

which defines the phase distribution «(x) and the renorma-
lized potential V/(x) via the bare potential Vj(x) and the
parameter of calculus /. Eliminating AVIng?, we get the
equation
VYV
VOC + V ln V{X = ng s

the first integral of which is

2 VYV
Vexptx = eXp(TJm dx) .

Hence we find the final expression for the phase factor

exp[a(x)] = Jexp {@} dx,

(3.16)

(3.17)

which is characterized by the shape of the effective potential
[cf. Eqn (2.98)]

U(x) = 2JM dx

0 (3.18)

As will be shown below, the physical meaning of the phase as
defined by Eqns (3.17), (3.18) consists in that the shape of the
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function o(x) determines the type of the boundary x = 0 and
the pattern of transition of the stochastic system to the
deterministic regime x(z) = 0.

As follows from the arguments developed above, the
fictitious force A, which occurs in the Fokker—Planck
equation in the approximation of d-correlated noise, can be
compensated on account of the transfer from the initial
synergetic potential Vy(x) to the renormalized potential
V(x). Then the initial probability distribution P;(x,?)
acquires the coefficient exp[—a(x)], where the phase «(x) is
also determined by the renormalized potential V(x). The
physical meaning of such a renormalization is that in the
white noise approximation one ought to use not the original
Fokker—Planck equation (3.2)—(3.4), whose solution
depends on the calculus choice (parameter A), but rather the
renormalized equation (3.10), obtained through gauging the
probability distribution P(x, ) and using Eqn (3.9). Similarly
to the renormalization techniques used in quantum electro-
dynamics [49], the synergetic potential }/(x) should be
regarded as a function with an innate physical meaning,
whereas V(x) is the bare potential without such a meaning.

To find the linkage between V(x) and Vy(x), we rewrite
the left-hand side of Eqn (3.14) as —V (In V exp(—«)), which
brings us to the solution

o(x) + a;(x) = const. (3.19)

This solution links the phase o, defined by the renormalized
potential (3.18), and the bare phase «;, which is defined by

exp [y (x)] = J(g(x))féu exp {UOT(X)] dx, (3.17a)
Us(x) = zJ'% dx. (3.18a)

Differently from «, phase «; is determined not only by the
shape of the bare potential V(x), but also by the parameter A
[in Ito’s calculus (4 = 0) the definitions (3.17), (3.17a) are the
same up to the replacement of V' with V). The physical
meaning of condition (3.19) is that the renormalization of
potential leads (up to a constant) to a change of sign of the
bare phase o;.

3.1.2 Backward Kolmogorov equation. In order to employ the
methods developed in the quantum theory [40], it will be
convenient to bring the Fokker—Planck equation into the
form of the Liouville equation

Pg(x7 [) = LA(X)P;L()C, [) s (320)
where the operator L, is written as follows
T
L, =V[(VVy) — AT(Vg")] + 5 Vig*. (3.21)

In the context of this approach, the gauge transformation
(3.9) is expressed by

P(x, 1) = U(x)P;(x,1), (3.22)

which implies passage to a new basis, which is given by the
operator

U(x) = exp[—a(x)] (3.23)

whose action is determined by the phase distribution a(x). On
the basis P, the Liouville equation assumes the form of
Eqn (3.20), if from Eqn (3.21) we go to the operator

L=UL,U". (3.24)
The form of the latter follows from the condition that the

Liouville equation on the new basis is reduced to Eqn (3.10),
whence it follows that

L=V(VV) +§V2g2.
Substituting Eqns (3.21), (3.23) into Eqn (3.24), and compar-
ing the result with Eqn (3.25), we come to equations (3.12),
(3.13), which are separated because the latter occurs under the
operator V.

Let us now go over to the backward Kolmogorov
equation, which corresponds to the inverted time direction
[39]. We know that time reversal in quantum theory is
achieved by the transition to conjugate quantities [40]. In the
case of the Liouville equation (3.20) we must replace the
distribution P;(x, r) by P; (x,), and the operator L,(x) by
L (x). Upon transition to the new basis [cf. Eqn (3.22)]

(3.25)

Pt (x,1) = U*(x)P] (x,1) (3.26)
we ought to expect that the operator
U™ (x) = expla(x)] (3.27)

should contain phase «(x) with opposite sign to that in
Eqn (3.23) for the forward time flow.

To prove this point, into the Liouville equation [cf.
Eqn (3.20)]

Pj(x, 1) =L} (x)P](x,1), (3.28)
corresponding to the inverted time flow, we substitute the
inverted expression (3.26) and the operator (cf. Eqn (3.21))

T

Lf = [(VV,) — AT(Vg*)]V — 3 @V, (3.29)
whose form follows from the conventional representation of
the back Kolmogorov equation [15]. Then, on the basis P,
the Liouville equation assumes the form (3.28), where L] is
replaced by the operator

Lt = (VV)V - % V2. (3.30)

The latter does not involve the fictitious force h = AT Vg? if
the same conditions (3.12), (3.13) are satisfied as for the
forward equation.

Thus, assumption (3.27) is true, and comparison of it with
Eqn (3.23) brings us to the conclusion that operator U(x) is
unitary. This can also be proved by applying the operation of
conjugation to Eqn (3.24) followed by the substitution of
expressions (3.27), (3.29), (3.30). As a result, we get the same
conditions (3.12), (3.13).

This train of thought brings us to an important conclu-
sion: the group of gauge transformations of the Fokker—
Planck equation, which eliminates the arbitrariness in the
choice of calculus, is unitary. As far as the Liouville operator
is concerned, a comparison between expressions (3.25) and
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(3.30) indicates that it is non-Hermitian. However, using the
exp [Uer(x)/(2T)] transform, where the effective potential is
given by Eqn (2.97), the operator can be reduced to the
Hermitian form [15].

3.2 Phase transitions in a stochastic system

By contrast to conventional phase transitions, when the
qualitative transformation of the system is related to the
appearance of integral singularities in the distribution
function, the noise-induced transitions cause less dramatic
changes of the system — for example, additional maxima may
arise as the noise intensity decreases. In case of multiplicative
noise, however, whose amplitude depends on the stochastic
variable x, these maxima may occur alongside the infinite
growth of the probability density in the neighbourhood of the
point x = 0 [14]. If such a singularity is nonintegrable, the
normalization condition is lost, and the deterministic con-
densate may precipitate in the stochastic system: a finite share
of the total number of degrees of freedom, represented by all
possible time dependences x(), assumes the form x(z) = 0.
The question we are facing in this connection is the following:
what will be the distribution of the system states between the
maxima corresponding to the deterministic regime and the
ordered state?

From a formal standpoint, we have to classify the
possible types of boundary x = 0 with respect to the form
of the multiplicative function. To this end we may use the
recipe proposed in Ref. [14], which prescribes finding certain
parameters L;, L,, L3 and classifying the type of the
boundary in accordance with their divergence. Nothing is
said, however, about the physical meaning of parameters
Ly, L,, Ls; what is more, for their determination one needs
to know the distribution function which, as we know,
depends on the calculus choice. In the preceding section
we described the gauge scheme which allowed us to bring
the Fokker—Planck equation to the canonical Ito’s form
without an arbitrary force by introducing the phase factor
into the distribution function. In addition to eliminating the
ambiguity in the selection of the distribution function, such
gauge of the stochastic system allows us to give physical
meaning to the parameters L, L,, Ly — they are defined by
the phase factor (3.17) used for gauging the Fokker —Planck
equation.

Our task now is to study the singularities of the
equilibrium distribution [see Eqn (2.96)]

Uef(x)> '

T (3.31)

P(x)=2"! exp(—
Here and below we are dealing with the gauge distribution
(3.22), which implies that in the effective potential (2.97) we
set 4 =0. The bare potential will be approximated by the
Landau expansion [28]

A4, By
V(x) = F X g (3.32)
A=a(T-T,), (3.33)

where o, T, B are the positive constants, and 7 is the noise
intensity (temperature). With a view to studying the singula-
rities near the point x = 0, for the multiplicative function we
set

g(x) =22x7, (3.34)

where the exponent « is arbitrary [in Section 3.3 we shall
supply evidence to the effect that the power law (3.34) is
universal for self-similar systems]. Then the effective syner-
getic potential (2.97), (2.98) takes the form

Ue(x) =2Talnx + U(x), (3.35)

A

B 2(2—a)
21— a) o

2(1—a)
X +—2(2—a) b

Ulx) = (3.36)

A salient feature of systems with multiplicative noise lies
in the nonanalytical form of the renormalized potential U(x)
(3.36) in spite of the fact that the bare potential }/(x) is given
by a very simple expression (3.32). At a =0, the noise is
additive, and the potentials V(x) and U(x) coincide. The cases
of a =1, a =2, for which Eqn (3.32) does not hold, will be
treated separately. Finally, in accordance with Eqns (2.113),
(2.114), upon transition to the nonstationary self-modelling
regime the effective potential (3.35) acquires the term U,
which is of the same nature as the first term in Eqn (3.36). This
implies that this term may be taken into account by the
appropriate renormalization of the critical temperature T,
which enters Eqn (3.33).

3.2.1 Noise-induced phase transition. As indicated above, this
transition consists in that, as the noise intensity 7 decreases,
distribution (3.31) exhibits maxima at points +xy # 0 [14].
The location of these points is determined by the condition
aUef(x)

—Y 0,

- (3.37)

which defines the minima of the effective potential. Substitut-
ing here Eqns (3.33), (3.35), (3.36), for the location of
maximum xy measured in units of a7./B, one gets the
equation

2 01—
f@xoz“ 9_1_0,

x5+ (3.38)

where we have introduced the dimensionless temperature

T
0=—.

T (3.39)

This equation admits solutions only for values of @ limited
from above by a certain ®y. To find the latter, we note that at
the point @ = O the first and second derivatives of Ues(x) are
zero. This gives us an additional equation

20-a) _2a

X :;(1 —a)0. (3.40)

Eliminating x, from Eqns (3.38), (3.40), for the temperature
of transition we find

(1-600)" 2a(2—-a)" T (3.41)

e % (1—a)™’ T '
The critical intensity @ as a function of the exponent « is
plotted in Fig. 1 for different values of o. In the limit of a = 0,
which corresponds to additive noise, the transition point 7
coincides with the critical value T,. As the exponent increases
in the lower range, the quantity 7, decreases, the rate of
decline being the faster, the smaller the parameter o, the
motive power of the phase transition. As a increases further,
T passes through a minimum and then increases to the value
given by Eqn (3.44) and corresponding to @« = 1. Then the
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Figure 1. Limiting value ®y = T,/ T. of noise intensity as a function of
exponent « of the multiplicative function.
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Figure 2. Most probable value x, of the stochastic variable as a function of
the noise intensity © = T/T..

most probable value xo(T) of the stochastic variable decreases
as the noise intensity grows, as shown in Fig. 2. Observe that
in the limiting cases a =0, a = 1 the phase transition is
continuous, whereas between these values the quantity xg
exhibits a jump at the transition point 7.

For a = 1, in place of Eqn (3.35) we get

B
Ug =2TInx + U(x), U:Alnx+§x2. (3.42)
Then distribution (3.31) has a maximum at the point
2\ 12 T
=|l—-(1+- =— 4
X0 [ ( +a>@] , O T (3.43)

and the noise intensity, which corresponds to this maximum,
takes the form

2 -1
Ty = <1—|——> T..
o

3.2.2 Transition of a stochastic system to the deterministic
regime. The maximum of the distribution P(x), described
above, is not the only one possible. Indeed, substituting Eqn
(3.35) into (3.31), we see that for positive a the distribution
function has a singularity P ~ Z~'x~2? at x — 0. This means
that the normalization constant Z at the lower limit of
integration b — 0 has the form Z ~ h!=2¢. Consequently, if
the exponent of the multiplicative function a lies in the
interval 0 to 1/2, this singularity of the distribution (3.31) is
integrable, and the system behaves in an ordinary way. For
a > 1/2, however, we get Z = oo, and the distribution P(x) in
the limit x = 0 becomes nonnormalizable. This implies that a
condensate is formed, which corresponds to the deterministic
behaviour of the system at x =0. With due account for
Eqn (3.35), it is convenient to split the distribution function
(3.31) into two factors, viz.

(3.44)

P(x) = Py(x)P'(x); (3.45)

U(x)
- } . (3.46)

1
Po(x) = 255 P () = exp |-

where the potential U(x) is given by Eqn (3.36). In the first
term, which corresponds to the condensate, the constant Zj is
infinite, whereas in the second Z’' = Z/Z, < 0. For a = 1,
the terms in the distribution (3.45) become

1 B
P'(x) = = x4 Texp (—ﬁx2> .

(3.47)

Py(x) = Zo_lx_2 ,

In this way, in systems with multiplicative noise (3.34) the
point x = 0 appears as an attractor, the presence of which has
a considerable effect on the entire axis of x values. Represent-
ing the stochastic system as the process of diffusion of a
particle with coordinate x, we may regard this attractor as an
attractive boundary. Following Ref. [14], we shall give the
recipe which allows different types of diffusion processes to be
classified depending on the existence of the boundary » — 0.

Let us introduce the function

d(x) =exp {— J 72{;2(8) dx} (3.48)
and analyze the convergence of the following integrals

5

L= Jb o (x)dx, (3.49)
P [
L= Jb Tg(y) Jb exp{ Jﬂ Tg(z) dZ] dx
Y 2 (2)
X exp U/J () dz] dy, (3.50)

5o .

L= [ @) e, (3:51)

where b and f§ are the lower and upper limits of the diffusion
interval, respectively. If the first of the integrals is infinite
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(L = 00), then the boundary b is referred to as natural, and
cannot be reached even over the infinite time ¢ = oo. If
Ly < oo, Ly, =00, the boundary is attractive, and can be
reached by the particle only at 1 — oco. If Ly, L, < oo,
L3 = oo, the boundary b can be reached within a finite time,
and one has to define the boundary conditions. Finally, when
all three integrals L, L,, L3 are finite, the boundary is regular,
and the particle may at any time occur at the point x = b.

A disadvantage of this classification is that expressions
(3.49)—(3.51) are quite cumbersome, and the physical
content of the parameters L;, L,, L3 is not clear. How-
ever, from a comparison of Eqns (3.17), (3.18) with (3.48)
one may see that the function ¢(x), which determines the
parameters L1, Ly, Ls, is linked with phase «(x), which sets
the gauge of the Fokker—Planck equation, by the following
relation

exp[a(x)] = J.qﬁ(x) dx. (3.52)
Then the definitions (3.49)—(3.51) become
Ll(bvﬁ) :exp[a(ﬂ)] —CXp[O((b)] ) (353)
s
Ly(b,B) = ;L exp [a(x)] P(x) dx, (3.54)
B
Ly(b, ) = ZL P(x)dx, (3.55)

where f§ is an arbitrary parameter. In this way, the use of
phase «(x) allows a transparent meaning to be given to the
parameters Ly, Ly, L3. Since the phase factor exp o constitu-
tes, according to Eqn (3.17), the integral effect of the
exponential action of the effective potential U(x), reduced to
the noise intensity 7, then equation (3.53) defines the
difference of these effects at the limits f and b. Function
(3.54) is accordingly the phase factor averaged over distribu-
tion (3.31), which in turn is reduced to the normalization
constant Z. Finally, Eqn (3.55) defines, up to the same
reduction, the integral effect of accumulation of probability
(3.31) over the interval [b, f].

According to the recipe of Ref. [14], the deterministic
regime x = 0 is not reached even over an infinite time, if
L) = oo in the limit » — 0. If L; < oo, and L, diverges, the
deterministic behaviour is only feasible in the limit of  — oc.
In other words, even though such behaviour is manifested at
x — 01in the form of an infinite maximum of the singular term
Py(x), in reality it is not feasible. Because of this, in the
normalization of distribution (3.45) we must perform a cut-
off at the lower limit » — 0, whose magnitude defines the
constant

Zy=2(2a—1)"p'7%. (3.56)

If the values of L;, L, are finite, but L; = oo, then the
deterministic regime is established within a finite time, since,
according to (3.55), the system with infinite probability is
confined in the range [, f]. This implies that in the normal-
ization of the distribution function we must account explicitly
for the presence of condensate, which sets apart the J-shaped
singularity:

P(x) = C3(x) + Po(x)P'(x). (3.57)

Here, the intensity C of the deterministic condensate is
determined by the above normalization condition. Finally, if
all the parameters L, L, L3 are finite, then at any time the
deterministic regime, like the stochastic one, is realized in
accordance with its distribution Py(x).

Since the neighbourhood of point x = 0 is most impor-
tant, where the divergence of P(x) is concentrated, one may
find the asymptotic dependence of «(x) in the limit x — 0.
Setting B = 01in Landau’s expansion, from Eqns (3.17), (3.36)
fora # 1 we get

A
exp(o) = J dx exp [m x2<1’”)] .

2(1—a)

(3.58)

Introducing a new variable y = x , it is convenient to

rewrite this expression in the form

1
exp(a) = [2(1 — a)] Jy Texp(Ay)dy, (3.59)
where we have introduced the constants
1—-2a A
e [ B 3.6
T2 —a) 27(1 —a) (3:60)

Since exp(a) > 0 always, from Eqn (3.59) it follows first of
all that the positive parameter « is limited from above by the
value of 1, and therefore A > 0. At x < 1, the main contribu-
tion to the integral of Eqn (3.59) comes from the power
function, and for the phase factor we get exp(a) ~ x. There-
fore, the parameter L;, which is defined by Eqn (3.53),
assumes finite values. The distribution function for x < 1 is
defined by

2ZP(x) ~ x exp[fixz(lf”)] (3.61)
Substituting this into Eqn (3.54), we arrive at
1 (?
L, = —J x 2 exp[—2x*179)] dix. (3.62)
2T),

Upon transfer to the variable y = x*1~%), this integral is easily
computed:

Lo(b, p) = (2A)—‘{exp [p209] — exp [).bz(““)]} . (3.63)

From this we see that in the limit » — 0 the quantity L, is
always finite. Similarly, for L3 we get

Ly(b, B) = [2(2a— 1)) ' (B2 = b'-2) . (3.64)
The parameter L3 thus assumes finite values at ¢ < 1/2, and
becomes infinite at a > 1/2.

This analysis reveals that in the range 0 < a < 1/2 the
deterministic regime is realized on a level with the stochastic
regime at any time, and at 1/2 < a < 1 the system reaches the
position x = 0 in a finite time. The characteristic time 7¢r of
evolution of the stochastic subsystem at x < 1 is given by the
expression 7.;' = (7/2)V?g?, which follows from the Fok-
ker —Planck equation (3.10) in which the terms exhibiting the
most singular behaviour in the limit x — 0 are retained. As a
result, we get the equality

T = [2a(2a — 1)T] ' 209 (3.65)
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from which we see that 1o < 0 at a < 1/2, and ter > 0 at
a > 1/2. Thus, the time taken to reach the deterministic
regime x = 0 increases with increasing x < 1.

The self-consistent behaviour of the condensate, deter-
mined by the constant C, is ensured by the normalization
condition for distribution (3.57). Making use of Eqn (3.46)
and the normalization constant (3.56), we find

C=1 7% bZafl J x72a exp |:7 U(X):| dx
b T

=7 (3.66)
Now we go over to the integration variable y = x/b normal-
ized to the quantity » — 0, which cuts off the lower limit of
integration. Then

2a —

C=1-"—

1 JOC 72 exp [_ @] dx (3.67)

1

As follows from Eqn (3.36), at a # 1 the index of the
exponential in the limit » — 0 takes on the value of 0, and as
a result

1
C=1-—, (3.68)
Z' = J exp {—sz(l"‘) — ux* 9| dx (3.69)
0

where the expression for the normalization constant Z’
follows from Eqns (3.31), (3.35), (3.36), and also
u=B/R2T2-a),1/2<a< 1.

Numerical integration in Eqn (3.68) yields the curves
C(O) shown for different @, o in Fig. 3. We see that, as the
noise intensity ©@ = T/T, increases, the density of the
deterministic condensate gradually decreases from C =1 at
® = 0to C = 0 at the critical value of @.. For large values of
the constant o in Landau’s expansion (Fig. 3a), the fall-off of
the condensate density C occurs at greater values of the noise
intensity O, if the value of @ is higher. For o ~ 1, the function
C(O) becomes more complicated (Fig. 3b): the increase in a
causes the density of condensate to increase as before when @
is small, and to decrease when @ is large.

Figure 4 shows the curves of the critical noise intensity O
as a function of «a for different values of o. We see that with
small values of o the function monotonically decreases, and
increases with large values. Observe that at oo < 1 the critical
value @, becomes infinite when a decreases. This means that
when the multiplicative noise (3.34) increases slowly as the
stochastic variable x grows, the thermodynamic stimulus for
ordering is low, and the deterministic condensate is realized at
all values of the noise intensity @.

Fora=1and x < | we have

4 -1
exp(a) ~ (7,—&- 1) xATE D p(x) ez T AIT2)
(3.70)

Accordingly, in the range restricted by the noise intensity

= (1+a7")'Te,

(3.71)
we get L) = oo, while at T > T° the quantity L; is finite.
According to Eqn (3.54), one obtains

p

Ly(b,p) ~ (44 T)'In L (3.72)
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Figure 3. Density of deterministic condensate as a function of the noise
intensity @ for different values of the exponent a and parameter o.
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Figure 4. Critical noise intensity @, = T/ T as a function of exponent a.
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so that for 7> T° we have L, = co. Thus, in the limit of
a = 1 for the multiplicative function exponent the determi-
nistic regime is not manifested at all. However, while for
T < T9 this regime is not attainable even in an infinite time,
for T > T the condensate will appear at t — oo in the limit of
x=0.

As follows from Fig. 3, as the exponent of the multi-
plicative function (3.34) grows up to its limiting value of
a =1, the density of condensate C(©) as a function of the
noise intensity ©® = T/T, follows a stepwise pattern: below
the critical value T, we have C = 1, and for overcritical values
(T > T.) we obtain C = 0. Such behaviour corresponds to the
well-known Verhulst model [14]. The stepwise form of C(@)
is ensured by the unlimited growth of the factor x°/(26),
0 =1 —a > 0, which occurs in the first term of the potential
(3.36), in the limit of 6 — 0. At T < T, we have 4 < 0, and
the relevant first term in the exponential in (3.69) is positive.
As a result, we get Z’> 1, whence it follows that, in
accordance with Eqn (3.68), C = 1. In the opposite case of
T > T, both terms in the exponential in Eqn (3.69) are
negative, so Z’ < 1 and, hence, C = 0. Observe that when
a = 1 exactly, and the potential U(x) has the logarithmic form
(3.42), the stepin C(@) isreversed: C = 0at® < l,and C =1
at ® > 1. This is evidently associated with the change of sign
upon transfer from the limiting dependence x*°/(25) > 0,
0 — 40 to the logarithmic dependence Inx <0 at § =0
(x < 1). As the exponent a > 1 grows, the inverted step in
C(0O) is gradually smeared.

3.3 Fractal nature of phase space
Let us represent the resulting pattern by the function x(7),
which describes the time dependence of the particle coordi-
nate in the course of generalized diffusion [4]. Since,
according to Eqn (3.3), the diffusion coefficient reduces to
(T/2)g*>, we _obtain x>= T(g(x)ft, whence for
a(t) = <x2(t)>1/2 we get a(r) = (2T1)"/*""9. At the same
time, the process of generalized diffusion is described by the
Hurst relation a(z) o« t¥, where H is reduced to the Holder
index, which gives the highest order of derivative of a
nonanalytical function x(¢) [33]. In this way, we find the
linkage¥
H'=2(1-a) (3.73)
between the Holder index H and the parameter « in our
theory. According to Eqn (3.73), the process a(t) o t'/? is
realized in the case of additive noise (¢ =0) and it
corresponds to common diffusion. The function x(¢) is not
even once differentiable. Although the Holder index H grows
with increasing a, this situation continues up to a = 1/2. In
the range 1/2 < a < 3/4 we have 1 < H < 2. The function
x(2) itself is then smooth, but its first derivative is already
nonanalytical. It is easy to see that for an arbitrary interval
(2n—1)/2n < a < (4n—1)/2n all derivatives up to and
including the nth-order ones are smooth functions. Since the
deterministic condensate occurs at 1/2 < a < 1, this implies
that here the stochastic function x(¢) is smooth to the extent

T Because of the importance of Eqn (3.73), we shall quote a different way
of getting this result, based on transfer (2.48) to variable y which exhibits
additive noise. By definition, y o #'/2 and the substitution of Eqn (3.34)
into (2.48) yields y o< x!=%. Thus, x o ¢!/2(1=%) and a comparison with the
definition x ~ ¢ brings us to Eqn (3.73).

that a finite number of degrees of freedom degenerates into
the constant x(z) = 0. Conversely, at 0 < a < 1/2 the non-
analytical function x(7) is so complicated that the stochastic
process gets ‘entangled’ with it, and the deterministic
condensate is not formed.

These features of the function x(¢) indicate that its
graph has a fractal appearance, like the graph of the
Weierstrass function [4]. As we know, such functions are
characterized by their fractal dimension [4, 33]. Observe,
however, that since the stochastic variable x and the time ¢
are measured on different scales, the graph of x(7)
represents a self-affine rather than self-similar set. Unlike
the latter, a self-affine set is characterized by three fractal
dimensions rather than one: global D =1, local D =2 — H,
and inner D = H~! [33]. To visualize these numbers,
consider a flat filament aligned with the graph of x(¢).
Then the global dimension features the dimension of the
domain of a new phase precipitated on the filament. The
local dimension characterizes the process of adsorption of
charged particles, and the inner dimension defines the
length of the filament. Obviously, it is the latter that
reflects the nature of the stochastic process. Using Eqn
(3.73), we get the following relationship for this dimension:

D=2(1-a). (3.74)
At0 <a < 1/2wehave2 > D > 1, and the graph of x(7) is a
geometrical object intermediate between a line and a plane.
This implies that the domain of definition of the distribution
function P(x,?) in Eqn (3.57) is extended to such an extent
that the condensate component Cd(x) does not emerge [C = 0
in Eqn (3.68)]. At 1/2 <a < 1, equation (3.74) gives us
1>D>0, and the domain of definition of P(x,t) is
intermediate between a line and a point. Such depletion of
the stochastic process causes freezing of the system in the
deterministic condensate x(7) = 0.

It is obvious that the primal reason for such behaviour of
the stochastic system is the fractal nature of the function
W(x, y) entering the master equation (2.76). The properties of
self-affinity allow us to find the form of this function in the
limits of x,y — 0. Indeed, taking advantage of the fact that
the sought-for function is homogeneous for the fractal
domain of definition [33], we may write

=R w|=

Wix,y)=x"p(u), u==; (3.75)

W(x,y)=yY), v=-, (3.76)

where b, ¢ are the exponents to be found. Since these functions
tend to the asymptotes W(x,y)~x? at x —0, and
W(x,y) ~ y¢aty — 0, we may conclude that the functions
¢(u), Y(v) tend to constant values at infinity. In this respect,
expression (3.75) corresponds to the domain x <y (u > 1),
and (3.76)toy < x (v > 1).

In order to find the exponents b, ¢, we use the asymptotic
approximation P(x) o< x?~2 in the conditions of the detailed
balance (2.78). Then for x < y <1, y < x < 1 the latter
brings us to the functional equations

P2l (u) = yP Y (),

u>l; (3.77)

P2y () =P b)), v 1. (3.78)
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Hence, in the limits of x, y — 0, we get

c=b+D-2, (3.79)
o(u) =yP Y(u), (3.80)
o(v) = x Y (v). (3.81)

In order to find b, we substitute Eqn (3.75) into the definition
of the multiplicative function (2.83), getting

b=—(1+D) (3.82)
and the normalization condition
J Wl —u)du=2T. (3.83)

As a result, the relations of similarity (3.75), (3.76) assume the
final form

W(x,y) = x*““))qo(%) at x<y, (3.84)
Wix,y) =y G) at  y<x. (3.85)

Obviously, both for x < y, when W ~ x~0+2)_and for x > y,
when W ~ y73, the function W{(x, y) is singular. The drift and
diffusion components are asymptotically represented by
fox x'P and g « x'7P/2, respectively. As ought to be
expected, with increasing parameter « (the fractal dimension
D decreases) these singularities are weakened, which causes
the appearance of the deterministic condensate at a > 1/2
(D<1).

The foregoing fractal analysis reveals that the power-law
approximation (3.34) of the multiplicative function g(x, ¢)
reflects its homogeneity as expressed by the equation [cf. Eqn
(2.109)]

glx, 1) = al_D/zG(y) ,

(3.86)

where a(t) is the time-dependent characteristic scale of the
stochastic variable, and G(y) — 2!/2 at y — oo. In this way,
the applicability of the results obtained in Section 3.2 is
restricted to those systems for which the domain of definition
of the stochastic variable represents a self-similar set char-
acterized by the inner fractal dimension D [33].

It would be interesting to note that in the limit of x — 0
the singular force f; oc x!~2 is of the same nature as the
fictitious force & = 24(2 — D)Tx'~? in the Fokker—Planck
equation (3.2)—(3.4). Since the primal cause of both these
forces is the fractal nature of the phase space [for /(x) this can
be seen from the derivation of the Fokker—Planck equation
in Section 2.4.3], one may assume that these forces coincide.
Such a coincidence, however, only relates to the form of the
dependence on the stochastic variable x. As far as the
dependence on the noise intensity 7' is concerned, from
definitions (2.82), (2.83) it immediately follows that, being
the moment of the first order, the force fox T''/? is propor-
tional to the noise amplitude, while the force s o< T is
proportional to the noise intensity. In addition, the singular
force f; does not involve the arbitrary parameter A, which
determines the fictitious force & o< A and thus the choice of
calculus.

The singular force deduced is governed by the dependence
of the multiplicative function g(x) on the stochastic variable.

An even higher degree of singularity is displayed by the force
f= —0U/dx oc xP~!, which is conditioned by the functional
form

_4 » B b

U(x)—Dx +2+Dx (3.87)
of the synergetic potential (3.36). However, whereas the force
fs(x) always points towards x = 0, the same applies to the
component f{x) only when the noise intensity exceeds the
critical value of T,. Then 4 > 0 and the function U(x) has a
minimum at x = 0, where the system is locked. Such situation
corresponds to the formation of a deterministic condensate,
whose density is given by Eqn (3.68). At T < T, we get A < 0,
and the force f(x) changes its direction towards the point
x0 = (fA/B)l/Z. In this case the appearance of deterministic
condensate is wholly caused by the action of the force f;(x),
which assumes the most singular nature in the neighbourhood
of the point x = 0.

4. Symmetry and ergodicity breaking in
stochastic systems with interparticle interaction

We know that the principal characteristic of a phase
transition in the common sense is the order parameter
n = (x), which is the mean value of the fluctuating quantity
x(t) (for example, the spin variable in the case of magnetics)
[28]. The nonzero moment # implies that the distribution
function P(x) is asymmetrical with respect to the replacement
—Xx — x, which leads to the symmetry breaking inherent in
phase transitions. The phase space then displays a region of
most preferred values of the microscopic variable x.
Obviously, a more radical restructuring is associated with
the loss of ergodicity [50]: the phase space then exhibits
forbidden regions, where P(x) = 0, or condensate regions,
where the probability density P(x) is much greater than at
other points x (see Section 3.2.2). A most vivid example of
such points is the discrete set of atomic coordinates in a
vitrified liquid. A salient feature of nonergodic systems is that
the mean over the distribution P(x) is not equivalent to the
average over the time ¢ [50]. As follows from Section 3.2.1,
systems with noise-induced transitions do not exhibit sym-
metry or ergodicity breaking, because the distribution P(x) is
modified more slightly in the course of transformation: its
maxima appears at x # 0.

As a rule, the studies of stochastic systems disregard the
interaction between particles, which is the cause of the
conventional phase transition. Accordingly, the question is
whether its inclusion could lead to a symmetry breaking? The
authors of Ref. [51] gave a positive answer to this question.
This study, however, was concerned with nonsingular multi-
plicative noise, whose intensity is finite for all values of x. In
Section 5 we shall demonstrate that for a stochastic system
simulated with the Lorenz equations, in which each of the
three degrees of freedom originally exhibits additive noise, the
hierarchy of relaxation times leads not only to the known
effect of subordination of modes [5], but also to the
transformation of noise inherent in some of these degrees of
freedom from additive to multiplicative [52]. In particular, the
multiplicative function of the controlling parameter falls off
linearly in the limit of x — 0, and the model of Ref. [51] does
not work.

In this way, we face the problem of studying a stochastic
system with interaction between particles and singular multi-
plicative noise (3.34). Then the effective diffusion coefficient
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D o< x2@has the form shown in Fig. 5. Ata < 1/2, the value of
D increases very rapidly with x, and the existence of the
singular point x where D =0 does not much change the
behaviour of the stochastic system as compared with the case
of additive noise — as the noise intensity 7" decreases, the
system may exhibit symmetry breaking but will always
preserve ergodicity. The situation becomes entirely different
for @>1/2, when the effective diffusion coefficient D
assumes small values in the neighbourhood of x =0, and
grows dramatically at x > 1. As it turns out, the stationary
distribution then always has a symmetrical form with a delta-
shaped singularity at x = 0. In other words, as the exponent
of the multiplicative function grows up to the values a > 1/2,
the symmetry of the stochastic system is completely restored,
but the deterministic condensate is produced. This implies
that in spite of the existence of noise, a finite proportion of
particles are ‘frozen’ to their original positions. In other
words, the stochastic system acquires memory, inherent to
the vitreous state, and also loses ergodicity.

a<l1/2

-8 —4 0 4 8 X

Figure 5. Effective diffusion coefficient D as a function of the stochastic
variable x for different values of the exponent a of the multiplicative
function.

4.1 Inclusion of the interparticle interaction

in the description of a stochastic system

As follows from Section 2, the formalism used in the
description of stochastic systems is phenomenological.
Because of this, the inclusion of the interaction between
particles, which is microscopic by nature, is a nontrivial
problem. Our approach will be centred around the most
simple model of harmonic oscillations of atoms in a one-
dimensional periodic chain [53]. The potential energy of
interaction of nearest neighbours with the atom at the site x
is given by

Vit (x) = %Z(x — X2, (4.1)

where ¢ is the stiffness of the effective spring, and the
summation is carried out over the locations x; of nearest
neighbours. In the mean field approximation, we replace x; by
the average value (x;) =5, and the force of interaction

fint = —0Vint/0x then becomes
fint =

—w(x —n), (4.2)

where we have introduced the characteristic value of the
interaction energy w = ¢z, z being the number of nearest
neighbours. The model considerations used in deriving Eqn
(4.2) are intuitive. In form, Eqn (4.2) coincides with the
expression proposed in Ref. [51]; we shall use it as the
simplest possible approximation, regarding w as a parameter
of the theory.

This force of interaction fi,; must be taken into account
along with the force of self-action f'in Eqns (2.96)—(2.98),
which determine the stationary distribution of the stochastic
variable. As a result, this distribution is given by the following
expressions:

P=2Z"exp [— U"fT(x)} , (4.3)
Uet(x) = 2aTn x 4 U(x), (4.4)
U= U(x) + Uin(%), (4.5)
Utx) = 2(1A— a) S 2(21i a) 6,

(4.6)
A=o(T—Ty),

x2(17a) x172a

Uint(x) = W(Z(l i U 2a) . (4.7

Here Z is the normalization constant as given by the
condition (2.92); the multiplicative function has the same
form as Eqn (3.34) in Section 3. The logarithmic term in the
effective potential (4.4) is due to the multiplicative nature of
the noise, component (4.6) is the renormalized Landau
potential, and contribution of (4.7) is due to interaction. A
comparison between Eqns (4.6) and (4.7) reveals that the
interaction w renormalizes the critical temperature
T. =Ty —w/o in the Landau expansion. If the order
parameter is 1 # 0, the interaction also contributes a term of
the lowest order in x.

According to Eqns (4.4)—(4.7), the shape of the distribu-
tion (4.3) mainly depends on the value of a, which determines
the magnitude of a singular contribution to the effective
potential (4.4): at x — 0, the multiplicative function leads to
the singularity P oc g72(x) o< x 2%, In the range 0 < a < 1/2,
this divergence is integrable, and does not have any dramatic
effect. In addition, the last term in Eqn (4.7) is decreasing, and
the potential U(x) is not singular. At a > 1/2, the divergence
of the distribution P(x) becomes nonintegrable, and the last
term in U(x) diverges. Because of this, the range of large
values of « calls for separate treatment.

4.2 Theory of a stochastic system with broken symmetry
Let us first consider the case of @ < 1/2. In accordance with
the normalization condition (2.92), the partition function has
the form

Z= r x"24P(x) P, (x)dx, (4.8)
P(x) = exp{—ixz(l_“> — ,uxz(z_“>} , (4.9)
Py(x) = exp(vnxl’Z”) , (4.10)

where A=oa(l1-0"/[2(1-a)], u=B/[22-a)0T],
v=w/[(1 -2a)@T.], and the temperature © = T/T is
measured in the units of renormalized critical temperature
T. = Teo — w/o. Observe that the first two terms in the
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integrand in Eqn (4.8) are symmetrical with respect to the
replacement —x — x, while the term P,(x), associated with
the long-range order 5 # 0, displays asymmetry, which is
responsible for the symmetry breaking in the course of
ordering. The quantity # = (x) is given by the condition of
self-consistency

00

n=2" J x!72p, (x)P(x) dx. (4.11)
Since at n = 0 we have P,(x) = 1, the integrand in Eqn (4.11)
is antisymmetrical, and the integral is identically equal to
zero. Because of this, condition (4.11) always admits the root
n = 0, which corresponds to the disordered phase. As for the
ordinary phase transitions, the nonzero solution arises when
the graphs of the right-hand and left-hand sides of Eqn (4.11)
touch. Evidently, this condition defines the point of phase
transition, or the so-called phase diagram of the system.

To construct the latter, we differentiate both sides of
Eqn (4.11) with respect to 1, and let  tend to zero:

aZ—l J+m

1= o X 172"P,1(x)13(x) dx

—00 n=0

—+00 .
+z! EJ x1724p, (x)P(x) dx (4.12)

on

—00

n=0

According to Eqns (4.8), (4.10), in the first term we have

0z!
on

(4.13)

—+00 .
=—vz? J x!74P(x)dx.
n=0 -

= o0

This expression reduces to zero, because the first multiplier in
the integrand is antisymmetrical, and the second, according
to Eqn (4.9), symmetrical with respect to replacement of x
with —x. As a result, condition (4.12) becomes

v o[* ~
1 = 3 2(172(4)})
Z(O) J—m ) (X) ax

(4.14)

where Z(0) = Z(n = 0). Since the integral on the right-hand
side is positive, we have v >0, and the parameter of
interaction w = (1 — 2a)OT,v is also positive.

Numerical analysis of Eqns (4.8), (4.11), (4.14) is
facilitated by reducing the integration over the entire axis
—00 < X < oo to integration over the positive semiaxis
0 < x < oo. With this purpose we represent the integral 7 on
the right-hand side of Eqn (4.11) as a sum of

I, = J xlfzaﬁ(x)P,,(x) dx,
0

(4.15)

0
I_= J x!729P(x) P, (x) dx. (4.16)
Replacing x by —x in Eqn (4.16), and taking into account the
evenness of the function P(x), we find

I =— Jm x1724P(x) Py (—x) dx. (4.17)

0

Since, according to Eqn (4.10), P, (—x) = (P,,(x))_l, then for
the total integral / = I, + I_ one obtains

1

—m} dx. (4.18)

= EO 172y {P,,(x)

Similarly, for the normalization constant Z in Eqn (4.8) we
have

(4.19)

7= f 2B (x) {P,,(x) + %] dx.

With due account for Eqns (4.10), (4.18), (4.19), equations
(4.8), (4.11), (4.14) take on the form

Z= 2J x72P(x) cosh (vyx172) dx, (4.20)
0
n=2z"" J x'72P(x) sinh(vnxl_z“) dx, (4.21)
0
2(0) = 2VJ 20220 B(x) d (4.22)
0

It would be interesting to compare these expressions with
the standard Ising model, in which the variable x can only
assume the values of 1, and the noise is additive [28]. In the
context of our approach this means that the distribution is
P(x) =0(x — 1) + 5(x + 1), and the multiplicative exponent
a = 0 (therefore, the parameter v = w/T). Then expressions
(4.20), (4.21) assume the standard form [28]

Z = 2cosh <¥> , 1 =tanh (g) .

Thus, our model of phase transition is an extension of the
Ising model. The extension consists in that the é-shaped
distribution function P(x) is smeared over the entire x-axis,
and the noise becomes multiplicative.

Numerical solutions of Eqn (4.21) for different values of a
are plotted in Fig. 6. Observe that in the case of additive noise
(a = 0) the temperature dependence of the order parameter
7(©) has the conventional monotonically decreasing form
[28]. At a > 0 it exhibits irregular kinks, which increase in
number as a increases. Near the limiting value of « = 1/2, on
approaching the phase transition temperature, the curve
exhibits jumps of the order parameter, followed by rather
extensive tails of low values of . These irregularities of (@)
are not related to the accuracy of numerical solution, but are

(4.23)

0 0.2 0.4 0.6 0.8 1.0 ©

Figure 6. Temperature dependence of the long-range order parameter for
different values of the exponent a.
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due to the multiplicative nature of the noise. Its physical
background will be discussed at the end of this section.

Figure 7 shows the phase diagram of the system based on
Eqn (4.22). In this diagram, the phase transition temperature
O, is plotted as a function of the exponent a and the
parameter of interatomic interaction w. As follows from the
function @¢(a) (curve I), with increasing a the quantity O
gradually increases from a finite value of ®y at a =0 to
infinity at @ = 1/2. At small a, the function O¢(w) (curve 2)
also grows monotonically. However, the tails of the function
1(©), which appear as a increases, give rise to flat (curve 3)
and even nonmonotone (curves 4, 5) stretches on the phase
diagram @ (w).

(N}
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16 |
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/3
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03 06 09 12 15 | 18 w/T.
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0 0.1 0.2 03 0.4 0.5 a

Figure 7. Temperature of symmetry breaking ©( as a function of the
exponent a for w = 0.3 (curve /), and as a function of the interatomic
interaction parameter w for ¢ = 0.3, 0.4, 0.42, and 0.45 (curves 2—35).

Let us now consider the conditions of symmetry breaking
in accordance with the value of the fractal dimension D. From
the analysis carried out above, the long-range order 1 # 0 is
observed when the exponent of the multiplicative function is
0 < a < 1/2. In Section 4.3 we shall prove that in the range
1/2 < a < 1 the long-range order disappears (y = 0). Taking
into account the linkage (3.74) between the fractal dimension
D and the exponent a, we see that the long-range order is
realized when 1 < D < 2, whereas for 0 < D <1 we have
n = 0. Obviously, such behaviour corresponds to the well-
known breakdown of long-range order by fluctuations in
systems with D < 1 [28].

The fractional dimension 1 < D < 2 also explains the
irregularities (see Figs 6 and 7) of the temperature depen-
dence of the order parameter 1(©) and the phase diagram
Oy (w). As indicated above, these irregularities are manifested
themselves when the exponent a approaches the value of 1/2.
According to the definition of fractal dimension, this means
that as the dimensionality decreases to the critical value of
D = 1, the phase space narrows down to such an extent that,
in spite of the retention of order n #0, the effect of
irregularities becomes large enough to cause such peculia-
rities. In particular, the high-temperature tails of low values
of 1 in Fig. 6 and the corresponding features on the phase
diagram (Fig. 7) are due to the fact that, as the temperature

increases, the clusterization of the fractal phase space leads to
an abrupt rather than gradual contraction of the region
corresponding to the ordered phase.

4.3 Theory of a nonergodic stochastic system

Now let us consider the range of a > 1/2, corresponding to a
faster growth of the multiplicative noise. Then the factor x~2¢
leads to divergence of the integral in Eqn (4.20). First let us
show that such divergence is responsible for the absence of
order over the entire temperature range. With this purpose we
introduce the lower limit of integration, » — 0. Then, taking
into account that the main contribution comes from the low
values of x, for which P(x) ~ 1, from Eqn (4.20) for n = 0 we
get Z(0) ~ b'724. A similar estimate for the integral I on the
right-hand side of Eqn (4.22) yields 7 ~ 574, As a result,
from Eqn (4.22) it follows that v=' ~ #*(1-9) ‘and for a < 1in
the limit of » — 0 we find that v = co. Thus, the graphs of the
left-hand and right-hand sides of the self-consistency condi-
tion (4.21) will only touch at @ = 0. When the temperature is
finite, the graph of the right-hand side of Eqn (4.21) leaves the
point 7 = 0 at an angle of o ~ vb2(1=9) Aside from the fact
that the condition « > 0 would require a negative value of the
interaction parameter w o< (1 — 2a)v, in the limit » — 0 this
angle is infinitesimally small, and condition (4.21) only holds
at the point 7 = 0.

We see that, in spite of the existence of interaction (4.2),
when the exponent of the multiplicative function (3.34)
exceeds the value of 1/2, the self-consistency condition
(4.21) admits only the trivial solution # = 0, which points to
the recovery of symmetry over the entire temperature range.
As a result, the picture of noise-induced transition and loss of
ergodicity (see Section 3.2) is the same as in the absence of
interaction. The only difference consists in the renormaliza-
tion of the critical temperature

w
TC:TCO__7
o

(4.24)
where Ty is its bare value in the synergetic potential (4.6), wis
the intensity of interaction, and o is the parameter in the
Landau expansion (3.32), (3.33).

This pattern of symmetry restoration at a > 1/2 can be
derived not only from the analysis of equations (4.20) —(4.22),
but also directly from the shape of the effective potential
Uer(x) as a function of the stochastic variable. According to
Eqns (4.4)—(4.7), the first term in Eqn (4.4) defines such a
deep minimum at x = 0 that the asymmetry caused by the
contribution of Uy (x) is of no consequence, and the self-
consistency condition (4.21) leads to # = 0. At the same time,
the minimum at x = 0 causes the appearance of deterministic
condensate. One could say therefore that the latter is
responsible for the restoration of symmetry. Since the
freezing of one-Cth fraction of the number of degrees of
freedom at the point x = 0 implies that the stochastic system
loses its ergodicity, we may state that, as the exponent a
increases, the symmetry breaking at a < 1/2 is succeeded by
the loss of ergodicity at a > 1/2.

This phenomenon can be interpreted in plain terms if we
go over from the exponent a to the fractal dimension D as
defined by equality (3.74). Indeed, at 0 < a < 1/2 we have
2> D > 1, and the graph of x(¢) represents a geometrical
object intermediate between a line and a plane. Then the
domain of definition of the integrand in Eqn (4.21) is so much
broadened that the self-consistency condition is satisfied for
n # 0. At the same time, the contribution from the §-shaped
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term to distribution (3.57) is negligibly small, and the
deterministic condensate is not manifested (C =0). With
1/2 <a<1wegetl > D >0,and the domain of definition
of the distribution function (4.3) is intermediate between a
line and a point. Such depletion of the stochastic process
reinforces the contribution from the J-shaped term to
distribution (3.57), which means that the system is frozen in
the deterministic condensate x(#) = 0. The integral on the
right-hand side of Eqn (4.21) is then mainly determined by the
range of x < 1, where its value is negligibly small, and
therefore n = 0.

4.4 Linkage of the fractal nature of the phase space

with the behaviour of a stochastic system

Arguments developed above indicate that the representation
of multiplicative noise by a power law (3.34), or by a more
general expression (3.86) is equivalent to the assumption that
the domain of definition of the stochastic system in the phase
space is a fractal object whose dimension D is related to the
exponent of the multiplicative function a by equality (3.74). In
the simplest case, the self-consistent behaviour of the
stochastic system is determined by the force of self-action,
corresponding to the renormalized Landau potential [see Eqn

(4.6)]

A

U(X) _ D B D+2

pY Ty "

A=ao(T—Ty). (425)
Then over the entire range of D € [0, 2] only the noise-induced
transition is possible, when the stationary distribution
function (4.9) exhibits maxima at x # 0. In the case of low
fractal dimension (D < 1) there is a nonintegrable singularity
at x = 0, which causes the appearance of the deterministic
condensate leading to the loss of ergodicity. The inclusion of
interaction between particles, characterized by the potential
[see Eqn (4.7)]

P xD-1
Uini(x) = w<3 -9 D 1)

(4.26)

(here = (x) is the long-range order parameter, and w is the
intensity of interaction), singles out the range of D € (1,2],in
which the stochastic system breaks its symmetry with respect
to reversal of the sign of variable x. This gives rise to a phase
transition similar to that observed in thermodynamic systems
[28].

This picture, however, is incomplete because we have not
taken into account the singular force due to the fractal nature
of the stochastic system. As shown in Section 3.3, this force
fi(x) oc T'2x'=P as a function of the stochastic variable is
similar to the fictitious force (3.4) associated with the calculus
choice, and yet it does not involve the arbitrary parameter
/. € [0, 1] and is proportional not to the noise intensity 7" but
rather to its amplitude 7''/2.

This section is concerned with the analysis of a stochastic
system, which includes not only the self-action U(x) and
interaction Ujn(x) as defined by Eqns (4.25), (4.26) but also
the contribution Us(x) due to the singular force f;(x) [54]. In
order to find this contribution, we rewrite, in dimensional
form, equations (2.82), (2.83) expressing the macroscopic
characteristics f(x), g(x) in terms of the intensity
W(x,x —y) of microscopic transitions. Comparing the
dimensional (2.11) and dimensionless (2.21) representations
of the stochastic equation, we see that the transfer to

dimensional quantities in the Fokker—Planck equation
(2.81) gives rise to the kinetic coefficient y measured in
erg~! s7'¥, which occurs before the force f(x) and the
multiplicative factor g?(x). Then it is easy to see that
definitions (2.82), (2.83) in the dimensional representation
may be written as

1 == [ owtex-na, (@27
1¢00 =5t [ AW ar. (428)

Here variables x, y are dimensionless by definition, and the
intensity of transitions W(x,x — y) is measured in s~'.
Therefore, given the microscopic nature of these transitions,
in order to convert the dimensionless similarity relations
(3.84), (3.85) into the dimensional form we must single out
the factor 7, ! related to the microscopic time 7q. As a result,
the intensity of transitions in definitions (4.27), (4.28)
becomes

W(x,x —y) =15 x " Po(1 —u), (4.29)
where u = y/x is the new variable, and ¢(1 —u) is the
unknown function which decreases with increasing u. The
construction of this function is a separate problem, and here
we shall use the simplest Gaussian approximation

u2
(1 —u) = (2n6®) " exp (f ﬁ> . (4.30)

Substituting this expression into Eqn (4.29), and the result
into Eqn (4.28), we find the variance

o= (2teyT)"?. (4.31)

Then Eqns (4.27), (4.29), (4.30) bring us to the following
expression for the singular force

12
f =-1(%) e,

where we have introduced the characteristic temperature

4
Ty=——. (4.33)
oy

(4.32)

If, like in Section 2.1, this temperature is measured in units of
reciprocal susceptibility y !, we get
I b4

TSX - b .
T To 7

(4.34)
Thus, the temperature T defines the ratio of the macroscopic
relaxation time 7 to the microscopic time 7.

In order to obtain the expression for the singular
contribution Us(x) to the effective potential [cf. Eqn (4.4)]

Ue(x) = (2—D)TIlnx + U(x) + Uin((x) + Us(x) (4.35)

+Observe that the dimension of the parameter y~' coincides with the

dimension of action S, and so the quantity y~! may be regarded as the unit
of measurement in Eqn (2.44).
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we must choose between relations (2.2) and (2.98), which link
the force f(x) with the relevant synergetic potential U(x). The
decision must be based on the fact that the latter differs from
the former by taking into account the multiplicative nature of
the noise. It is this circumstance that is responsible for the fact
that the exponents in Eqns (4.25), (4.26) for the renormalized
potentials of self-action and interparticle interaction involve
the fractal dimension D, which in the bare potentials (3.32),
(4.1) reduces to D = 2. However, expression (4.32) for the
singular force takes the multiplicative nature of the noise into
account from the outset, since it has been derived on the basis
of the similarity relation (4.29) reflecting the fractal nature of
the phase space, and therefore the multiplicative behaviour of
the system [see Eqn (3.74)]. Because of this, for finding the
singular potential one should make use of Eqn (2.2), whence it
follows that

(10"

U =55

(4.36)

Unlike potential components (4.25), (4.26), the growth of
fractal dimension here reduces the index of the stochastic
variable x. In the case of additive noise (D = 2), as ought to be
expected, the singular term vanishes.

In the range of D < 1, the stochastic system features an
appearance of deterministic condensate whose density is
given by the expressions

C=1-—;, (4.37)
z’:[ P(x)dx, (4.38)
0
P(x) = exp(—ux?P — JxP — pux*P) | (4.39)
RC A
2—-D ’
(4.40)
o o
y 1 o -1 — —1
A=p(1=07), p=5"p 07,

which are a generalization of Eqns (3.68), (3.69). The
corresponding temperature dependence C(©) is shown in
Fig. 8. We see that the increasing ratio Ts/T. of the
characteristic temperatures, which implies a growing con-
tribution of the singular force, leads to gradual reduction of
the density of condensate. Observe that distribution (4.39)
does not exhibit long-range order (1 = 0). The long-range
order appears when the fractal dimension reaches the range of
D € 1,2], but then the deterministic condensate vanishes
(this follows from the fact that at D > 1 the distribution
function (3.57) becomes normalizable even without the J-
shaped contribution). The self-consistency condition, which
determines the long-range order parameter, has the form [cf.
Eqns (4.20), (4.21)]

n:ZZ_IJ xD_lsinh(vnxD_l)ﬁ(x)dx, (4.41)

0

Z= 2[ xP=2 cosh (vyx 1) P(x) dx, (4.42)
0

v W g1 (4.43)
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Figure 8. Density of deterministic condensate C as a function of the noise
intensity @ ata = 0.7.

where the distribution ﬁ(x) is given by equalities (4.37),
(4.38). The phase transition point is given by [cf. Eqn (4.22)]
x2P-Dp(x) dx,

Z(0) =2v JOO (4.44)

0

where Z(0) = Z(n = 0). The temperature dependence of the
long-range order parameter and the phase diagram are shown
in Figs 9 and 10.

The temperature-dependent functions C(0), (@) and the
phase diagram (see Figs 8 —10) show that the singular force
(4.32), whose action is determined by the ratio Ty/T.,
manifests itself in the following manner: the increasing
contribution from the singular component lowers the

0.8

04

0 1 1 1
0 0.1 0.2 0.3 %}

Figure 9. The long-range order parameter n as a function of the noise
intensity © for different values of 75/ 7.
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Figure 10. Temperature of symmetry breaking as a function of the
parameter of interatomic interaction w for D = 1.16.

temperature of formation of deterministic condensate and the
threshold of formation of the nonsymmetrical phase (1 # 0).
Since both these quantities and the singular force (4.32)
increase as the fractal dimension D decreases, we may state
that this force acts in accordance with the generalized Le
Chatelier principle, working to suppress the effects of the
fractal structure of the phase space which caused this force in
the first place.

5. Effects of noise on the behaviour
of a synergetic system

In the preceding sections we have studied those stochastic
systems which are characterized by a single hydrodynamic
mode parametrically represented by the variable x. We
showed that, when the influence of the environment repre-
senting the nonhydrodynamic degrees of freedom depends on
the state of the stochastic system x, the noise becomes
multiplicative, which gives rise to highly nontrivial changes
in the behaviour of the system. In particular, the domain of
definition of stochastic system in the phase space assumes a
fractal nature, because of which the synergetic potential on
the one hand is renormalized and on the other acquires a
singular term. Recall that the multiplicative noise was
represented by a power-law function (3.34).

Now the question that naturally arises is just how realistic
our model of multiplicative noise is? Obviously, to answer this
question we must initially select several hydrodynamic
degrees of freedom rather than one, and consider their self-
consistent behaviour with due account for the noise in each of
them. If we later single out one of these selected degrees of
freedom, we should automatically get the form of the
multiplicative function, which will supply the answer to our
question [52, 55].

In Section 5.1 we consider the Lorenz stochastic system
which differs from the standard synergetic scheme [5] only in
that each hydrodynamic mode involves stochastic contribu-
tions in addition to the deterministic terms — in a manner
similar to the transfer from the Landau-Khalatnikov
equation (2.3) to the Langevin equation (2.4). The analysis
of the synergetic scheme so modified reveals that even when

all degrees of freedom feature additive noise from the start,
their hierarchical subordination (giving preference to a single
mode) transforms the additive noise of the preferred mode
into multiplicative noise. In addition, the use of the synergetic
scheme offers an independent method for reproducing the
results obtained for the one-parameter system (see Section
3.2).

5.1 Lorenz stochastic system

As we know, synergetics is the extension of thermodynamics
of phase transitions [28] to open systems, which may exhibit
self-organization as the growing external forces push the
system away from equilibrium [5, 10, 11, 14, 56]. According
to the Ruelle—Takens theorem, a nontrivial pattern of self-
organization, which involves strange attractors, is observed
when the number of selected degrees of freedom is not less
than three [57]. The most popular three-parameter scheme is
the Lorenz system [58]. Initially developed for simulation of
atmospheric phenomena, it was later applied in physics,
chemistry, biology, sociology, etc. [5, 10, 11, 14—18].
Recently the concepts of synergetics have been used for
explaining the effects of restructuring of condensed matter
[59, 60].

Embarking on the construction of the Lorenz scheme, we
introduce the quantities 7, 4, S, which are commonly known
as the order parameter, the conjugate field, and the control-
ling parameter, respectively. For the sake of simplicity we
consider a spatially homogeneous system, for which our task
is reduced to finding the time dependences 7(7), h(t), and S(¢).
With this purpose we use the phenomenological approach, in
which the equations of motion determine the rates 7, 4, S of
change of the quantities #, i, S depending on their values. In
writing these equations one must first of all bear in mind that
in the autonomous regime the change of all hydrodynamic
modes is dissipative. Also important is the Le Chatelier
principle: since self-organization is caused by the growth of
the controlling parameter S, then the order parameter n and
the conjugate field # must vary in such a way as to resist the
growth of S. Formally, this circumstance can be regarded as
the existence of negative feedback between # and /. Finally, of
primary importance is the positive feedback between the
order parameter 1 and the controlling parameter S, which
works to increase the conjugate field 4. It is this feedback that
is the motive power of self-organization.

The Lorenz system takes all these circumstances into
account in the most simple way. With fluctuation terms
included, it has the form

1'7:711+yh+21/20,1§, (5.1)
n

: h 12 ¢

==t gnS+ 20, (52)
h

S= So—S —gsnh+ 21264¢. (5.3)

Here the first terms on the right-hand sides describe the
autonomous relaxation of the quantities #, &, S to their
respective stationary values n = 0, h = 0, S = Sy with relaxa-
tion times t,, T4, Ts;  is the kinetic coefficient; the positive
constants gy, gs are the measures of feedback applied to the
system; ¢ is the delta-correlated stochastic component [see

Eqn (2.10)], and a;, 0}, o are the noise intensities of the
relevant variables.
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If 74,15 < 1y, the subordination principle allows setting
1h =158 =0 in Eqns (5.2), (5.3), and yet retaining the
stochastic terms. Then the last two equations express the
conjugate field and the controlling parameter in terms of the
order parameter:

2\ —1
h= <1 + Z—2> [A/,n(SO + 21/205155) + 2'/20111;,5] , (5.4)

m
S =S8y — Asnh+ 2 egtsé, (5.5)
where we inserted the quantities
Ay=gity, As=gsts, Ny = AsAy. (5.6)

Substituting Eqn (5.4) into (5.1), we get the stochastic
differential equation in Ito’s form

ST (So + 21 2ast5E) + 21 g TyTié

'L'n}:] =-n + 1 T ,/’2/]/’2 s (57)
m
where
S;l = VT, &nTh - (5.8)

Separating the deterministic and the stochastic components,
we bring Eqn (5.7) to the canonical form [cf. Eqn (2.11)]

0
n= ——V-l- [osgs(n) + ongn(n)] & +2"%6,¢, (5:9)

on

where the time ¢ is measured in units of t,, the order
parameter on the scale of i, the noise intensities a,, o, and
osin 7, (r,,r,,y)_l and S;/ts, respectively. The synergetic
potential V(1) takes the form

1

Vzi[Qf@ln(l+n2)], @E%. (5.10)

Expanding this expression in powers of > < 1, we see that it
reduces to the Landau expansion (3.32) with the parameters
A=1—-0 <1, B=06 ~ 1. The multiplicative functions
gs(n), gn(n) have the form
-1
gs(n) = nga(n) =20 (1 +0%)", (5.11)

1

gn(n) =22 (1 +4%) " . (5.12)

From the above treatment we see that in the context of the
adiabatic approximation (t;, Ts < 1), the synergetic system
with additive noise reduces to a one-parameter stochastic
system with multiplicative noise. It can be studied using the
methods described in Section 2, if by the stochastic variable x
we understand the order parameter 1, whose relaxation time
is the largest. The synergetic potential (5.10) exhibits a
minimum at the point

o =+(0 —1)"?, (5.13)
which, as distinct from the scheme used above, pertains to
large rather than small stationary values ® = Sy/S. of the
controlling parameter.

The stochastic component in Eqn (5.9)

(1) = [osgs(n) + ongn(m)]E(t) + 220, E(2) (5.14)

comprises the multiplicative noises of the controlling para-
meter and conjugate field, and the additive component of the
order parameter. Observe that the noise increases with n only
for the controlling parameter, whose multiplicative function
at #* < 1 assumes the form

gs(n) =2, (5.15)
Comparing this with Eqn (3.34), we see that the exponent
a =1 and Eqn (3.74) gives the minimum value D = 0 of the
fractal dimension. Thus, the domain of definition of the
synergetic system in the phase space reduces to an ensemble
of isolated points. Obviously, these can be either the points of
maxima of the stationary distribution (2.96), or the point
n = 0 corresponding to the deterministic condensate (see
Section 3.2). The domain of definition of the synergetic
system can be expanded to dimensions D > 0 if we assume
that the factor # is raised in Eqn (5.2) to the power 1 — D/2,
and in Eqn (5.3) to the power 1+ D. This implies that the
positive feedback therewith is enhanced (5'~?/2 > 1), and the
negative feedback is reduced (n'*? < ). Observe that the
exponent of the order parameter n assumes fractional values
only in the nonlinear terms of the set of equations (5.1)—(5.3),
which are responsible for the feedback. This is quite natural if
we recall that the multiplicative nature of the noise is due to
the existence of feedback between the medium and the
stochastic system (see Section 2.1).

Finally, let us reproduce the main expressions which
define the extreme points of the stationary distribution [cf.
Eqn (2.96)]

P(n) = Z""exp[~Us(n)] (5.16)
of the synergetic system (5.1)—(5.3). Here, the effective
potential [cf. (2.97), (2.98)]

oV /on

20 dy (5.17)

Ust(n) = Ing2(n) + 2J

is determined by the bare synergetic potential (5.10) and the
square of the effective multiplicative function

g (n) = 20; + 038;(n) + o5g5(n).- (5.18)
This expression follows from the known property of additiv-
ity [39] of squares of variances of independent Gaussian
random quantities [see Eqn (2.10)]. Combining expressions
(5.10)—(5.12), (5.17), (5.18), we find the explicit form of
Uer(n), which is too cumbersome to be reproduced here.
Much simpler is the equation

¥ —Ox —205x+ 405 —01) =0, x=1+n*, (519)
which defines the locations of the maxima of distribution
(5.16). According to Eqn (5.19), they are insensitive to
changes in the intensity of noise 03 of the order parameter,
and are determined by the stationary value @ of the
controlling parameter and the relative intensities 0%, o7 of
the multiplicative noises.

5.2 Synergetic transition in the case of additive noise

In the simplest case of 6, = 6, = 05 = 0, equations (5.1)-
(5.3) reduce to the classical Lorenz system [58], and the
stochastic equation (5.9) assumes the deterministic
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Landau—Khalatnikov form

A SR
= L+n?)"

Passing to the new variable x = 1 + #?, we transform this into

(5.20)

xdx
——=-2d 5.21
EEnEEr 520
whence it immediately follows that
_ e
n2 = (@ —1)|” «exp[-2(@ — 1)1]. (5.22)

Thus, in the subcritical region @ < 1 the system relaxes into a
disordered state = 0, and into an ordered state (5.13) in the
supercritical region ©® > 1. Such phases are commonly
referred to as symmetrical and asymmetrical [28]. The
distribution function (5.16) has one central maximum in the
former case, and two maxima at points (5.13) in the latter.
Observe that, owing to the absence of noise, all these maxima
are delta-shaped:

wft)

As the additive noise of the order parameter becomes
available (o, # 0, 65, = 05 = 0), according to Eqn (5.19) the
stationary states of the system do not change. However, as
follows from Eqns (5.16)—(5.18), the delta-shaped peaks in
the distribution function are smeared and they become

P =7 ewp |- ).

n

(5.23)

(5.24)

Their width depends on the noise intensity of the order
parameter.

5.3 Synergetic transition in the case of multiplicative noise
Let us calculate the integral contribution U(n) to Eqn (5.17)
for the effective potential when ¢, =0. According to
Eqns (5.11), (5.12), (5.18) we have

n(1+n*)(1—0+n?)
Un) = d
o = [T S gy

(5.25)

Now we introduce the ratio of noise intensities & = ¢, /o5 and
the new variable y = o> + 5. Equation (5.25) then becomes

1 2
(1712)(17a278)1ny7%.

(5.26)
Returning to the old variables and taking advantage of the
fact that the potential is defined up to an arbitrary constant,
which may be incorporated into the normalization constant
of distribution (5.16), for the effective synergetic potential we
finally get

(5.27)

5.3.1 Inclusion of the stochasticity of the conjugate field.
Expanding Eqn (5.27) in o, we find that

o7 Uer(n) = 2'/237! (gh(ﬂ))_3 - 29(&('1))_2 + 207 In g;(n)
(5.28)

up to an insignificant constant. The corresponding distribu-
tion function (5.16) has a minimum at # = 0 if the stationary
value © of the controlling parameter does not exceed the
critical level

0! =1-4q;, (5.29)
whose value decreases with increasing intensity of noise of the
conjugate field. In this case the system is in the symmetric
state. At O > @ch, the solution of Eqn (5.19) yields the
locations 1, = —#_ of the maxima of distribution (5.16) in
the asymmetrical phase. The function n, =#(0,q,) is
plotted in Fig. 11. For small values of @ and ), we have

[ S, oo
Ny~ 40/2 ) (5.30)
@71+@21, 0'/1—>0.

Equation (5.30) and Fig. 11 point to the occurrence of a type I1
transition at the critical value @ = @/. Observe thatat @ = 0
the synergetic transition into the asymmetric state may also
take place, when o, > o, = 1/2. Obviously, this phenomenon
belongs to the class of noise-induced transitions.

0“

KK
B,

Figure 11. Order parameter 7 as a function of the controlling parameter ©
and the noise intensity of the conjugate field o,

5.3.2 Inclusion of the stochasticity of the controlling parameter.
Now let us analyze the stationary states of a synergetic system
in the presence of the noise of the controlling parameter. As in
our previous case, one may demonstrate that the stationary
distribution function (5.16) is determined by the effective
potential

4 2]
vt =%+ (1-9)

+(1-6+20%) Iny—203In(1+7). (531)
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The expression for the minimum of function (5.31) is found
from Eqn (5.19) with ¢, = 0. Let us analyze the solutions of
this equation depending on the values of parameters O, as.
Similarly to Eqn (5.29), the critical value

63 =1+ 20% (5.32)
limits from above the domain of existence of the zero solution
to Eqn (5.19). Other solutions 7, correspond to the asym-
metric phase. Eliminating the root > =0, we get the
biquadratic equation

n*+(B—- 0 — (20 +20%-3) =0, (5.33)

which has the roots

ni:%{@fw\/(376)2+4(2@—3+26§)} (5.34)

The magnitude of this solution has its minimum
1
m=50-3+VO+7N0O -1

on the line defined by expression (5.32). At © < 4/3, the roots
+1, are complex, at @ = 4/3 they become zero, at @ > 4/3
they are real, and #, = —»_. In this way, the point

4 1

8257 O'?Sv:g

(5.35)

(5.36)

corresponds to the appearance of roots . # 0 of Eqn (5.19),
corresponding to the asymmetric phase. If condition (5.32) is
satisfied, the root # = 0 corresponds to the minimum of the
potential (5.31) at ® < 4/3, whereas at @ > 4/3 this root
corresponds to the maximum, and the roots 7, to symmetric
minima.

Let us now find the condition of existence of roots 7.
Setting the discriminant of Eqn (5.19) equal to zero, we get the
equations

2 2 3
o5 =0, a‘é—aé{i(l—g) —@—} +@—:07 (5.37)

(5.38)

This equation defines a bell-shaped curve ©(os), which
intersects with the horizontal axis at the points o5 = 0 and
s = (27/2)1/2, and has a maximum at

0=2, os=V2. (5.39)
It is easy to see that this line touches the curve (5.32) at point
(5.36).

The analysis carried out above allows us to construct the
phase diagram of the system at hand in the presence of noise
of the controlling parameter (Fig. 12). Here, the region S
below curve 2 defined by Eqn (5.38) corresponds to the stable
symmetric phase (1 = 0), whereas region N above curve /
defined by Eqn (5.32) corresponds to the asymmetric phase

(©]
1
N
SM
3 -
C

2

T
1

S
2
| | |

0 1 2 3 os

Figure 12. Phase diagram of a system with the noise of the controlling
parameter og. Curves / and 2 correspond to Eqns (5.32) and (5.38); S
denotes the stable symmetric phase, N — asymmetric, SM — stable
symmetric and metastable asymmetric, 7 is the tricritical point, C is the
critical point.

(ny. # 0). The region SM between curves / and 2 corresponds
to the coexisting stable symmetric and metastable asymmetric
phases. Point 7 where curve / intersects with curve 2, defined
by Eqn (5.36), is tricritical, and the point C with the
coordinates given by Eqn (5.39) is critical.

Bifurcation diagrams in Fig. 13 depict the behaviour of
stationary states of the system depending on the noise
intensity oy at fixed values of the controlling parameter 6.

n CAS n 1<0<4/3
3+ 3+
rlm }’]m
2+ 2+
’1”
1k 1k Ty
n

| | | \S | | |
0 2 4 6 o5 0 2 4 6 os
n 43<0 <2 n
3F 3

M
2 F 2
1 sy, & I
—M"u| | |

0 2 4 6 [ 0 2 4 6 os

Figure 13. Bifurcation diagrams for stationary values of the order
parameter 7 depending on the noise intensity og and the mean value @ of
the controlling parameter (17 denotes stable solution, #,, — metastable,
1, — unstable).
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On the border of region S at 6% > 1/6 we observe a sudden
occurrence of two extremes of the potential (5.31), one of
which corresponds to the unstable state #,, and the other to
the metastable state #,,,.

It is worth noting that the effective synergetic potential
(5.31) exhibits a logarithmic singularity at # — 0, and so
Uer() — —oo below curve (5.32), and Ug(n) — +oo aboveit.
Let us analyze the behaviour of the system near the singular
point 17 = 0 according to the scheme described in Section
3.2.2. Similarly to the factorization (3.45), we can represent
the distribution function (5.16) as

P(nn) = Po(n)P’(n), (5.40)
where
Z: (1 +p2)° B Uy
P()(;/I): ! ( P ) ) Pl(”)zzllexp{i (2):|7
n Os
(5.41)
and the synergetic potential is
o) 4
Un) = <1—5)n2+%+(1—@)lnn. (5.42)

When 1 < 1, we may use asymptotic approximation and
arrive at

Un)~(1—0)lny, P~z 'y t0-0/5%  (543)
Hence for the phase factor (3.17) we get
n(l—@)/o§+1
~— 5.44
exXp(a) = (= 0)/% + 1 (5:44)

Then the parameter (3.53) takes the form

1-0
2

-1
+ 1) [[3(17@)/a§+1 _ b(l—@)/GZSJrl] ]

(5.45)

Li(b,p) = (

Os
In the limit » — 0 we have L; = oo in the region restricted

from above by the noise intensity

=01, (5.46)

and L; < oo at s > a.. For parameter (3.54) we get

Lyb,f)=(1-0+3%) 'InL . (5.47)
At o5 > 0. we have L, = oo. Consequently, in the range
os < 0. the deterministic condensate does not form even in an
infinite time, and for o5 > g, its appearance is only possible in
the limit 7 — co. At g, # 0 the condensate disappears,
because the multiplicative function at n = 0 takes on a finite
value.

5.3.3 Simultaneous inclusion of the stochasticity of the
conjugate field and the controlling parameter. Let us now
consider the more general case of two multiplicative noises
o, and gg. The stationary distribution function has the form
(5.16), where the effective potential is in the general form
(5.27). Unlike Eqn (5.31), it has a finite limit at 4 — 0.
Introducing the parameter a = 1 — o and the renormalized
variables 6 = o5/a, © = O/a, > = (1 +n*)/a—1,at a < 1
we may represent Eqn (5.27) in the form Uef/'&z, where Uy is
found from Eqn (5.31) by replacing o5, @, n with the
renormalized quantities o, @, 1. Then the action of the noise
of the conjugate field is reduced to the renormalization of the
minimum value of the order parameter by the quantity
(@' — 1)1/2, so that the region of divergence 7 ~ 0 becomes
inaccessible.

The condition of extremum of the potential (5.27) splits
into two equations, one of which is simply # = 0, and the
other is given by Eqn (5.19). The analysis of the latter
indicates that the line of existence of the zero solution is
defined by an expression which differs from Eqn (5.32) by the
added term —407 on the right-hand side. The tricritical point
has the coordinates

@:g(l—og), ogzé(HSoﬁ). (5.48)
The phase diagram for fixed values of g, is shown in Fig. 14.
We see that for o7 < 1 itis generally the same as that shown in
Fig. 13. At g7 = 1, the tricritical point (5.48) occurs on the o
axis (Fig. 14b), and at o3 > 2 the region of symmetric phase
disappears. The main distinction of this situation is that,
because the potential (5.27) is finite, the phase diagram
exhibits curve 3 corresponding to the coexistence of sym-
metric and asymmetric phases (binodal). Below this line, the
symmetric phase is stable, and the asymmetric phase is

0 | | | |

3 as 1.0 1.4 1.8 22 26 os

Figure 14. Phase diagrams for fixed values of the noise intensity of the conjugate field: (a) o, = 0.5; (b) g, = 1; (¢) 6, = 2. Curves I and 2 define the
boundary of stability of nonsymmetric and symmetric phases, curve 3 corresponds to coexistence of two phases; N — nonsymmetric phase, NM —
nonsymmetric metastable, S — symmetric, M — metastable, and SM — symmetric metastable.
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metastable (above this line the situation is reversed). Curve /
(spinodal) defines the threshold of absolute loss of stability of
the symmetric phase. Above this line the system finds itself in
a stable asymmetric state.

6. Conclusions

This review is concerned with the study of stochastic systems
with singular multiplicative noise and interaction between
particles. The system with one degree of freedom is considered
along with the synergetic system parametrically represented
by three hydrodynamic modes. By assumption, all values of
the stochastic variable x can be realized in the initial state (in
other words, the initial distribution function is not local).
Notwithstanding the fact that we confined our analysis to the
stationary distribution and did not consider the time evolu-
tion of the system, this circumstance is of fundamental
importance, because the diffusion coefficient in the case of
singular noise goes to zero at x =0, and the positive and
negative semiaxes of x values are disconnected. For example,
a Brownian particle with a -shaped distribution cannot cross
the border x = 0.

The main purpose of the review consists in extending the
microscopic theory of phase transitions to systems with
multiplicative noise. This required analyzing the structure of
the Fokker—Planck equation itself. We found that the
arbitrary force, which comes about in deciding on the choice
of calculus, can be counterbalanced by multiplying the initial
probability density by the exponential whose index deter-
mines the behaviour of the system over the entire time
interval. The synergetic potential must also be renormalized.
Such gauge, however, does not imply that Ito’s calculus is
preferential. In Section 4.4 we show that the nonanalytical
behaviour of the rate of microscopic transitions gives rise to a
singular force in the Fokker—Planck equation, which
depends on the stochastic variable similarly to the fictitious
force mentioned above, but does not involve an arbitrary
coefficient. This force is proportional to the amplitude (rather
than intensity) of the noise, and the square root of the ratio of
the macroscopic to microscopic times. This force is directed
so as to oppose the factors which brought it into existence.

The main result of this paper is that the existence of
multiplicative noise transforms the domain of definition of
the stochastic system in the phase space into a self-affine
fractal set whose dimension lies between 0 and 2. It is the
fractal nature of the phase space that gives rise to the singular
force, whose magnitude is defined by the derivative of the
multiplicative function with respect to the stochastic variable.
Our power-law approximation (3.34) of the multiplicative
noise reflects the self-affine nature of the phase space, and
equation (3.74) links the geometrical and dynamic character-
istics of the stochastic system.

Our treatment reveals that for the fractal dimension
0 < D <1 the deterministic regime is realized, in which the
stochastic variable is time-independent. As the noise intensity
decreases, a finite share of the degrees of freedom form a
deterministic condensate, and the system loses ergodicity in a
way similar to the vitrification of liquid. Interaction between
particles at 1 < D < 2 leads to the symmetry breaking: the
distribution function becomes antisymmetrical with respect
to sign reversal of the stochastic variable. The temperature
dependence of the long-range order parameter is nonmono-
tonic, which is due to the clusterization of the fractal phase
space.

In Section 5 we consider the example of Lorenz system, a
popular object in the theory of self-organization. The
inclusion of additive noises in all of the Lorenz equations
leads in the adiabatic approximation to the transformation of
these noises into multiplicative noises of the conjugate field
and the controlling parameter. This gives rise to nontrivial
restructuring of the synergetic system depending on the noise
intensity of the controlling parameter.

As regards our approximations, our treatment was based
on a spatially homogeneous system and a nonconservative
stochastic variable. In addition, in connection with non-
ergodic systems, we only mentioned the memory effects,
without specifying the parameters of nonergodicity and
memory (the latter is apparently associated with the density
of deterministic condensate defined in Section 3.2.2). They
can be found using the field-theoretical scheme based on
correlation techniques [31]. In the case of multiplicative noise
(3.34), however, the correlators of the field variables are
raised to fractional powers, and the standard field-theoreti-
cal scheme does not work. This difficulty can be avoided by
passing to a new variable (2.48) in the initial Langevin
equation, and basing the action in accordance with the
scheme developed in Section 2.3. Since the new variable
exhibits additive noise, one may now use the standard
scheme, and go over to the initial stochastic variable in the
final results. To the author’s knowledge, such a program has
not yet been realized.
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