
Abstract. Galvanomagnetic phenomena in metals in strong
magnetic fields, associated with the Fermi surface geometry
are considered. Using three-dimensional topology theorems, a
full classification of all possibilities is made. For non-closed
general-position electron orbits, special topological character-
istics are introduced for the conductivity tensor at B! 0.

1. Introduction. Historical remarks

It is known that the electrical conductivity of metals in
strong magnetic fields reveals a wide variety of effects. The
present paper is concerned with galvanomagnetic effects
related to quasiclassical electron orbits in a single crystal in
the presence of a uniform magnetic field B. As was shown
by I M Lifshitz, M Ya Azbel, and M I Kaganov around
1956, the geometry of such orbits, based on the single-
particle Bloch dispersion relation En�p�, completely deter-
mines the asymptotic behaviour of the electrical conductiv-
ity tensor in this case [1].

I M Lifshitz and V G Peschanski|̄ [2, 3] considered, in
particular, the important role of non-closed orbits lying in,
and passing through, a strip of finite width (for details see
below). The experimental study of various relevant situations
was carried out in Refs [4 ± 7] (literature references are limited
to those quoted later on in this paper). Theoretical and

experimental developments in this field have been discussed
thoroughly both in review articles [8, 9] and a monograph
[10]. Since then there have been a large number of studies to
examine specific materials based on a general theory of such
phenomena [8 ± 11].

Around 1982, one of us (S.P.N) observed that the physical
picture that emerges from these studies generates some
elegant problems in the topology of low-dimensional mani-
folds ([12], see also Refs [13 ± 15]), and a number of
topological investigations by his students A V Zorich,
I A Dynnikov, and S P Tsarev followed. As a result,
fundamental theorems on the topology of open general-
position orbitals were proved and some non-trivial (`ergo-
dic') non-general-position orbit geometries found that
require special conditions to be met for their observation
[16 ± 23].

It will be observed that this latter case had remained
untreated in the theory of galvanomagnetic effects simply
because no such orbits had been known to exist. As regards
the general-position orbits, the present authors, using the
topological results just mentioned, were able to find universal
topological characteristics for metals with a complex Fermi
surface, amenable to observation in strong-magnetic-field
conductivity studies on single crystals [24] (see below).

Note that complex Fermi-surface shapes occur, for
example, in such metals as Au, Pb, Pt, and Ag, to name but
a few. The Fermi surface of copper, determined by Pippard
[25], is the earliest example of this type.

The purpose of this review is, based on available
topological theorems, to present a general description of the
asymptotic strong-magnetic-field behaviour of the conduc-
tivity tensor. We will consider `general position' situations in
detail, observable with probability unity for an arbitrary
direction of the magnetic field and an arbitrarily complex
Fermi surface; and will also point out some special cases
possible for specially directed B (in particular, the `ergodic
case,' initially discovered in Ref. [23] and in Ref. [20], where
the more general examples were constructed, and analysed in
terms of conductivity in Ref. [27]). It will be shown, in
particular, that for B!1 all possible conductivity features
related to non-closed, open, and general-position orbits may
be classified into groups corresponding to certain regions on
the unit sphere (parametrising B directions), each region
being specified by an experimentally observable integer-
valued plane G which presents a topological characteristic of
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the given stable group of open orbits. These integer-plane
stability regions, together with the unit-sphere regions
containing no open orbits at all, form a set of full measure
on the unit sphere and thus embrace all general-position cases
possible. In general, we present, for the first time, the
classification, obtained in three-dimensional topological
studies, of all possible types of open orbits which occur for
directions of B of irrationality 3; and also summarise all orbit
types whichmay arise when themagnetic field is directed such
that the plane P�B� orthogonal to it contains reciprocal
lattice vectors. The paper also present an analysis of previous
theoretical and experimental studies in the field as well as new
theoretical results related to earlier unknown, non-trivial
topological aspects. The present work thus gives a full
picture of strong-magnetic-field galvanomagnetic phenom-
ena related to the complex topology of the Fermi surface of
the metal.

We will concentrate here on the results achieved with the
theory of normal metals [24]. Based on the recent topological
results of Refs [20 ± 22], it is also shown that these ideas are
equally applicable to the theory of semiconductors (see
Ref. [26]).

2. Observable quantities.
The general position case

The most important case to consider is, in our view, the
`general position' case, which is observed with probability 1
for an arbitrarily directed magnetic field B. As already
mentioned, the analysis of open orbits in this case brings
about non-trivial topological characteristics of the Fermi
surface Ð namely integer-valued (i. e., generated by two
reciprocal lattice vectors) planes and the corresponding unit
sphere zones Ð which determine the properties of all
general-position orbits occurring for various directions
of B.

Consider a single crystal of a normal metal with lattice L
generated by the vectors l1, l2, and l3. As is well known, in the
absence of a magnetic field, B � 0, single-particle electronic
states can be described in terms of energy bands and
quasimomenta p � �p1; p2; p3� defined modulo a reciprocal
lattice vector, i.e.,

p is physically equivalent to p� l �

for any vector l � such that hl �; lji � 2p�hnj, where the nj are
integers. The reciprocal lattice L� is generated by the vectors
�l �1 ; l �2 ; l �3 � such that hl �i ; lji � 2p�hdij.

In this approximation we have a set of `dispersion
relations'

En�p� � En�p� l �� ; n � 0; 1; 2; . . . ; �1�

which describe the quasimomentum dependence of the
electron energy.

Electrons in the ground state occupy all levels below the
Fermi energy EF, Ej�p�4EF, leaving all levels above unfilled.
The theory of electrical conductivity in normal metals deals
with small perturbations of this picture, so that all effects of
interest depend on the behavior of the electronic distribution
function in a small neighbourhood of the Fermi surface in
quasimomentum space E�p� � EF.

For most normal metals, the following conditions are
satisfied:

(a) The dispersion relation has no critical points at the
Fermi surface, i.e.,

HEj�p� 6� 0 for E � EF :

(b) The Fermi surfaces of different allowed energy bands
Ej�p� and Ei�p� do not intersect{, i.e., at the Fermi level E � EF

Ej�p� 6� Ei�p� ; i 6� j :

For future convenience, we will describe here the experi-
mental aspects of the unit probability general-position
situations and introduce integer-valued, observable, topolo-
gical strongmagnetic-field conductivity characteristics whose
existence was established in Ref. [24]. Let us apply a strong
magnetic field B (B ' 10 T){ and a weak electric field E
orthogonal to B. As shown by means of topological theorems
[24], in the general-position case there are two possibilities for
the asymptotic behaviour of the conductivity tensor in the
plane orthogonal to B.

Case 1. Compact orbits
The two-dimensional part of the conductivity tensor sabB

tends to zero as B!1 for B=B fixed: sabB ! 0, a; b � 1; 2 in
the plane orthogonal to B (this conductivity component is
already vanishingly small forB ' 10 T). The asymptotic form
of the conductivity tensor is (see Ref. [1])

sijB '
ne2t
m �

�oBt�ÿ2 �oBt�ÿ1 �oBt�ÿ1
�oBt�ÿ1 �oBt�ÿ2 �oBt�ÿ1
�oBt�ÿ1 �oBt�ÿ1 1

0B@
1CA ; �2�

where oB is the cyclotron frequency, and t is the electron
transit time. The z axis lies along B.

Case 2. Open general-position orbits
For a certain direction B=B � n, as B!1, the two-

dimensional part of the conductivity tensor sabB , a; b � 1; 2,
tends to the nonzero constant tensor sab1 dependent on the
direction of the unit vector n. In this case the �2� 2� tensor
sab1 is always of rank unity since one of its eigenvalues is zero.
To describe the total, 3� 3, conductivity tensor sijB,
i; j � 1; 2; 3, we introduce an orthonormal basis in which e1
is directed along the vector lying in the core of the �2� 2�
tensor sabB in the plane orthogonal to B; e2 lies in the same
plane e2 ? B, e2 ? e1; and e3 � B=B (Fig. 1).

Referring to this coordinate system, the three-dimen-
sional conductivity tensor is

sijB �
0 0 0
0 � �
0 � �

 !
�O�Bÿ1� ; �3�

where ��� stands for certain nonzero constants. Note that
sijB � sjiÿB and s�e1� � O�Bÿ1�.

The picture so described is stable in the sense that for
magnetic fields with directions e03 � B 0=B 0 close to the
original e3 � B=B the conductivity tensor will have the same

{This property may be destroyed by magnetic breakdown.

{ It can be shown from general arguments relevant to this type of effect

(see, e.g., Refs [8 ± 11]) that in order for our `geometric limit' to be

observable, the only condition on the magnitude of the magnetic field is

oBt4 1 (oB is the cyclotron frequency and t is the electron transit time).

This yields � 1 T for pure gold samples at temperatures of ' 4 K, which

are precisely the conditions used in Ref. [7]. The restriction securing the

quasiclassical nature of electron motion, �hoB 5 EF, is satisfied for all

realistic values of B (the upper bound being 103ÿ104 T).
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form (3) in a new orthonormal basis �e 01; e 02; e 03�, where
sB 0 �e 01� � 0, s 01 6� 0 in a plane orthogonal to B 0.

Our most important statement here is that the plane
generated by the 0-vectors e1 and e 01 is integral-valued and
that it is the same for all small rotations B 0 of the direction of
the magnetic field B (Fig. 2).

The term integer-valued is here understood to mean that
the plane under consideration is generated by two reciprocal
lattice vectors ��l �;��l ��,

�l � � n1l
�
1 � n2l

�
2 � n3l

�
3 ;

��l
� � m1l

�
1 �m2l

�
2 �m3l

�
3

and

e1 � a�l � � b��l
�
; e 01 � a 0�l � � b 0��l � :

Here the nj andmj are integers. The components of the vector
�l � ���l

�
thus specify this plane uniquely, and we arrive

therefore at a set of three integers n1m2 ÿm1n2 �M3,
n2m3 ÿm2n3 �M1, n3m1 ÿm3n1 �M2 defined up to a
common factor (so that in reality only their ratios are
meaningful).

We shall call the set of numbers �M1;M2;M3� defined up
to a common factor the `topological type' of the conductivity
tensor in a strong magnetic field B for a given local `stability
region' for Case 2. A topological type is thus specified by two
(or more) close magnetic field directions, B and B 0, lying
within one and the same (field-direction-specifying) stability
region on the unit sphere and represents a locally stable

topological characteristic of the Fermi surface. For small
field direction variations, the topological type �M1;M2;M3�
remains unchanged, i. e., remains constant on a certain open
unit sphere region which we call a �M1;M2;M3� topological
type 'stability region.'

We will denote the area (or measure) of the �M1;M2;M3�
topological type stability regions by m�M1;M2;M3�, and the
measure of the unit sphere set corresponding to Case 1, by m0.
We argue that

m0 �
X

�M1;M2 ;M3�
m�M1;M2;M3� � 4p �4�

where the sum is over all topological types. In fact
m�M1;M2;M3� for many topological types and in any case
topological types with large numbers jMjj produce very small
values of m.

From what has been said it follows generally speaking,
that in a real experiment a finite (and not very large) number
of topological types and of their `stability ranges' can be
observed.

Mathematically, Eqn (4) implies that all non-general-
position possibilities other than Cases 1 and 2 correspond to
the B directions covering a set of zero measure on a unit
sphere. In the following treatment, some of the most
interesting examples of non-general position will be consid-
ered.

For a comparison with earlier experimental data we also
present here the asymptotic form of the resistivity tensor
inverse to s, R � sÿ1, using the same basis as for s in Eqn (3)
(see Refs [10, 11]).

Case 1. The components of R̂ are of the order

R̂ ' m�

ne2t

1 oBt 1
oBt 1 1
1 1 1

 !
�5�

(the part of the matrix proportional to B is skew-symmetric).
Case 2. The components of R̂ are of the order

R̂ ' m�

ne2t

�oBt�2 oBt oBt
oBt 1 1
oBt 1 1

0@ 1A ; �6�

where oB � eB=m�c is the cyclotron frequency and t, the
electron free transit time.

We now present some of the experimental data obtained
by Gaidukov [7] for Au. As we see from (6), the observed B
dependence of the resistance must be of the form r �
�B2 cos2 a�r0 in the plane orthogonal to B, where
r0 � m�=ne2t. The factor �cos2 a� is unity for the electric
field along the vector e1 (see above), which is an eigenvector of
the conductivity tensor (3) with an eigenvalue 0 in the plane
normal to B.

In Figure 3 (see Fig. 11 from Ref. [7]) the dashed regions
are those where the B behaviour was observed (numbers 1,0,0
etc. designating the directions of B). It is interesting to note,
according to Ref. [7], that the resistivity in the centres of these
regions `has very deep minima' and behaves as in Case 1.
Within the dashed regions but outside the indicated central
points, the resistivity should behave like B 2 as in Case 2.
Experiment, however, showed B a for a4 2 (`somewhat less,'
to quote Ref. [7]). Probably the magnetic fields B � 2 T were
not sufficient to observe our asymptotic behaviour, so it is

e1

e2

B

Figure 1. Special basis, corresponding to case 2.

e 02

e1

B

B 0

Figure 2. Integer-valued plane, generated by the vectors e1 and e
0
1, for small

rotations of the magnetic field.
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perhaps worthwhile repeating the experiments atB5 10T. In
the non-dashed regions we have Case 1. There are also some
interesting features (perhaps, non-general position cases?)
seen along the solid curves in these regions, which we will
discuss later.

Returning now to the interior of the dashed regions (with
remote central points), it is expected that the B 2 behaviour
will be experimentally confirmed there. Also, we argue that
the dashed regions in this case are in fact the stability regions
whose topological types correspond to integer-valued planes
orthogonal to unit vectors directed toward the remote central
points, so that in Fig. 11 from Ref. [7] (Fig. 3 of ours) the
following topological types can be observed:

�M1;M2;M3� � ��1; 0; 0�; �0;�1; 0�; �0; 0;�1�; ��1;�1; 0�;
��1; 0;�1�; �0;�1;�1�; ��1;�1;�1�: �7�

This statement must be verified experimentally, however.
Here we have considered the results of Ref. [7] as direct

experimental evidence that both the dashed regions and some
points on the solid lines have no relation to Case 1. Our
concept of integer-valued planes was not used Ð nor indeed
known Ð at the time.

Anyway, the disappearance of conductivity in the centres
of the dashed regions (to which, in this case, also corresponds
aminimum in resistivity) is consistent with our understanding
of the situation in Au. The point is that if at a certain B the
integer-valued plane we described becomes parallel to the
field and so open general position orbits exist for all field
directions close to that given, these orbits may still disappear
for this special direction of the field B (see below).

We now turn to a rather interesting case of ergodic open
orbits which may occur for special (irrationality 3) directions
of the magnetic field B [P�B� does not contain reciprocal
lattice vectors] and were discovered in Refs [20 ± 22].
Although the magnetic field directions mentioned above
form a set of measure 0 on the unit sphere for a given
general-type Fermi surface, still special directions of B exist
for which such situations may even be observed for rather
complex Fermi surfaces.

Case 3. Non-general position situation (ergodic orbits)
The experimental data of Ref. [7] indicate an unusual

behaviour for the resistivity tensor along the solid lines shown
in Fig. 4 (see Fig. 5 of Ref. [7]). It is found, specifically, that at
many points along these lines the resistance shows very deep
minima where its asymptotic behaviour is B a, with the values
of a lying in the range 1 < a < 1:8. In our view, it would be
interesting to repeat these measurements at say, B5 10 T,
instead of B � 2 T as used in Ref. [7]. In this case, much
shallower stability regions may be expected, corresponding to
the general-position Case 2 with topological types
�M1;M2;M3� of more complexity than that in Eqn (7).
There is an alternative possibility, though.

Onemay expect, that in this regionmore complex general-
position orbits of the type observed in Refs [20 ± 22] (`ergodic'
orbits) may exist. This type of orbit is illustrated in Fig. 5. This
situation, as one of the present authors (A Ya M) suggests,
must `generally' lead to `scaling' resistivity behavior R � B a,
1 < a < 2 (see Ref. [27]).

Also, the average value of the group velocity vz along each
such orbit is zero, and these ergodic orbits therefore
contribute to the three-dimensional conductivity tensor in

(1,0,0)

(1,1,0)

(0,1,0)
(0,0,1)

(1,1,2)

II

II

I

I I

(1,1,1)

(1,1,2)

Figure 3.Experimental data obtained by Yu PGa|̄dukov for Au. The dark

regions correspond to case 2.

(1,1,0)

(0,1,0)

g y 0

(1,0,0)

(2,1,1)

(1,1,1)(1,0,1)

(0,0,1) (0,1,1)

(1,2,1)(1,1,2)

Figure 4. Experimental data obtained by Yu P Ga|̄dukov for Au.

��

�

�
ÿ

ÿ

ÿ

ÿÿ

Figure 5. Example view of an ergodic open trajectory constructed by

I A Dynnikov. The signs `�' and `ÿ' indicate regions of greater and lesser

energy.
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such a way that

sijB�g� ! 0 �8�
for B!1 for all i; j � 1; 2; 3.

For the proper choice of axes in the planeP�B� normal to
themagnetic field, the general form of these contributions can
be written in the form [27]

sijB '
ne2t
m�

�oBt�2bÿ2 �oBt�ÿ1 �oBt�b�gÿ2
�oBt�ÿ1 �oBt�2aÿ2 �oBt�a�gÿ2

�oBt�b�gÿ2 �oBt�a�gÿ2 T 2

E2F
� �oBt�2gÿ2

0BBB@
1CCCA; �9�

where 0 < a; b; g < 1, a� b � 1.
To this contribution wemust, however, add those from all

closed (compact) orbits. These, as can be shown from general
arguments, must always exist in Au whatever the direction of
the magnetic field applied, so that in the limit of strong
magnetic fields we will generally have a nonzero longitudinal
(along B) conductivity,

szzB ! szz1 6� 0 :

We expect, however, that for the unity-sphereB directions
containing ergodic orbits, szz1 will be reduced compared with
similar general-position directions, thus implying the exis-
tence of local minima at such points on the unit sphere. This
property can presumably be used to experimentally distin-
guish between ergodic situations and very small stability
regions, where in order to observe the B 2 resistance
behaviour in the P�B� plane, with the size of the region
decreasing and its topological type growing in complexity,
increasingly larger boundary values of B are needed.

For the ergodic orbits, the two-dimensional resistivity
tensor in the plane orthogonal to B has the asymptotic form
[27], as B!1,

rZx�B� �
m�

ne2t
�oBt�2a oBt

oBt �oBt�2b
 !

�10�

if one employs the same coordinate system used in Eqn (9).
A more detailed discussion of ergodic orbits can be found

inRef. [27].We now turn to a topological interpretation of the
results presented above.

3. Topological analysis of general position cases

As is well known and was mentioned earlier, quasi-momenta
are represented by vectors p � �p1; p2; p3� defined modulo
reciprocal lattice vectors. Topologically, these equivalency
classes can be treated as points of a three-dimensional torus
T 3 which we call the `Brillouin zone'. The entire p space R3

will be referred to as the `extended Brillouin zone.' In
topological terms, we are dealing here with a `universal
covering' over a three-dimensional torus.

In the standard quasiclassical approach to galvanomag-
netic effects in the presence of a magnetic field B, the
`electronic orbits' for the adiabatic evolution of the Bloch
waves can be obtained from the following dynamic systems in
�x; p� space:

_x � �x; E�p�	 ; �11�
_p � �p; E�p�	 ; �12�

where E�p� is the dispersion relation in the absence of B, and
the Poisson brackets are of the form

fpi; xjg � dij ; fxi; xjg � 0 ;

fpi; pjg � e

c
Eijk Bk : �13�

For a uniform magnetic field B our equations (12) for
�p1; p2; p3� are closed (because Bk � const), thus yielding a
Hamiltonian system in a three-dimensional torus (Brillouin
zone), with Poisson brackets

fpi; pjg � e

c
EijkBk

and Hamiltonian E�p�. The system has two integrals of
motion, E�p� and PBk pk, the latter being the `Casimir' for
the bracket in p space. Since Ejqk � ÿEjkq,�

pj;
X

Bq pq

�
� e

c

X
q; k

EiqkBqBk � 0 :

Thus, electronic orbits are defined in R3 by the equations

E�p� � EF ;
X

Bk pk � const : �14�

Geometrically, these are cross sections of the Fermi surface by
planes orthogonal to the magnetic field, each section being a
union of orbits.

We will call an electronic orbit compact if it is closed in
space R3 (i. e., in the extended Brillouin zone). A curve in R3

will be called periodic with a period T (non-compact) if
p�t� T� � p�t� � l �, where l � is a certain reciprocal lattice
vector. Strictly speaking, such a curve is closed in the three-
dimensional torus T 3 (Brillouin zone) but, in topology
parlance, is non-homotopic to zero in T 3. Compact orbits
have the property l � � 0 and are, in topological terms,
homotopic to zero in the three-dimensional torus T 3.

It is easily seen that periodic non-compact orbits can only
occur if the magnetic field B is directed such that the plane
P�B� orthogonal to it contains at least one reciprocal lattice
vector l � 6� 0.

Consider now the magnetic fields B whose `irrational'
general-position directions satisfy the following conditions:

(1) PlaneP�B� does not contain reciprocal lattice vectors.
(2) All the points where planes orthogonal to B touch the

Fermi surface are non-degenerate [note that these are critical
points of the dynamic system (12) on the Fermi surface].

(3) A separatrix orbit emanating from one saddle does not
enter any other saddle, i.e., it either does not have the second
end or returns to the same saddle it started from. (In the
general position case any plane parallel to P�B�, i.e.,
orthogonal to B, contains no more than one saddle).

Let us now define the `topological rank' of the Fermi
surface. The relation

En�p� � EF

in quasimomentum space R3 (extended Brillouin zone) is
specified by the periodic function En�p�. The surface it defines
inR3 is a union of `connectivity components' on each ofwhich
two different points can be connected by a path lying at the
Fermi surface. We will call the Fermi surface `topologically
complex' if there is at least one connectivity component which
does not lie between two parallel planes in R3. In this case we
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will say that this Fermi surface component as well as the
Fermi surface itself are of rank 3 topologically (Fig. 6a).

A Fermi surface is said to be of topological rank 2 if any
one of its connectivity components may be confined between
a certain two parallel planes and if there exists at least one
component which cannot be confined in a cylinder (`warped
plane' components, see Fig. 6b). In particular, there may exist
two (or more) connectivity components of rank 2 confined
between a pair of parallel planes with different general
directions (Fig. 7).

A Fermi surface has a topological rank 1 if any one of its
connectivity components may be confined within a certain
cylinder and if there exists at least one component which
cannot be confined within a sphere of finite radius (`warped
cylinder' components, Fig. 6c).

A Fermi surface has a topological rank 0 if any one of its
connectivity components may be confined within a sphere of
finite radius (Fig. 6d).

Upon application of a magnetic field we obtain electronic
orbits specified by the intersection of the planesP�B�with the
Fermi surface. The following possibilities then arise.

(1) The Fermi surface is of topological rank 0. All
electronic orbits are closed.

(2) The Fermi surfaces are of topological rank 1. Both
closed and open electronic orbits are possible. The latter can
only occur if the magnetic field is orthogonal to the axis of the
cylinder for one of the components. However, even in this
case orbits may all be compact, as exemplified by the `helix'
case of Fig. 8.

The open orbits (if they exist) are periodic, with the period
vector directed along the axis of the corresponding cylinder.
This is obviously a non-general position situation because
open orbits correspond only to the one-parametric family of
B directions on the unit sphere.

(3) The Fermi surface is of topological rank 2. Closed and
open orbits are possible for any direction of B and, as already
mentioned, there may generally exist second-rank connectiv-
ity components with different general directions of the
corresponding pairs of parallel planes. It is readily seen that
any open orbit lies in a straight strip of finite width, obtained
by the intersection with the P�B� plane of a pair of integer-
valued planes bounding the corresponding connectivity
component. (It is assumed thatP�B� has a different direction
from all such P�j��EF� planes for connected components on
the Fermi surface). We assert that for general-position,
magnetic field directions of irrationality 3, open orbits may
exist only on connectivity components corresponding to one
and the same direction of theP�j��EF� planes, so that all open
orbits have one and the same average direction specified by
the intersection of P�B� with the appropriate, uniformly
directed P�j��EF�. We note also that this picture is locally
stable to small rotations of the magnetic field B, and that the
topological type of the conductivity tensor is determined by
the integer-valued plane parallel to all correspondingP�j��EF�.
For large departures of the magnetic field directions, open
orbits may disappear on the components we consider so as to
emerge on those with integer-valued planes directed differ-
ently (if such planes exist), implying a transition to another
stability region or to Case 1 (if no new open orbits appear at
all). Note here that ifP�B� coincides with one ofP�j��EF�, then
all open orbits are periodic because of the B direction being
integer-valued. The above picture is enough to demonstrate
all basic conductivity tensor features predicted by our
rigorous topological analysis [16 ± 23].

(4) The Fermi surface of topological rank 3 is the most
interesting to consider. Generally speaking, each time we
consider electronic orbits we are dealing with only one of the
Fermi-surface connectivity components. Identifying equiva-
lent points in quasimomentum space by

p � p� l� ;

a
b

c d

Figure 6. Examples of rank 3, 2, 1 and 0 Fermi surfaces.

Figure 7. Example of a toppological rank 2 Fermi surface, containing two

components with different integral directions.

Figure 8. Connection of a `spiral' type component. Open orbits are absent

for any direction of B.
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we obtain a closed two-dimensional surface in a three-
dimensional torus T 3 (Brillouin zone). Let the magnetic field
B � �B1;B2;B3� be in totally irrational direction so thatP�B�
does not contain reciprocal lattice vectors l� and the
corresponding family of electronic orbits satisfies the non-
degeneracy conditions 1, 2, and 3 (see above).

Now let us remove all nonsingular open orbits (which are
all closed curves in quasimomentum spaceR3) from the Fermi
surface. The remaining part is, obviously, a union of surfaces
bounded by closed singular (i.e., terminating in a singular
point) orbits. Thus, the compact non-singular orbits having
been removed, the Fermi surface is a union of components Si

(if open orbits do at all exist). The boundaries of the Si are sets
of closed singular (separatrix) orbits gia (see Fig. 9).

Each of the separatrix orbits is a planar curve in P�B�,
with its interior being, in topological terms, a two-dimen-
sional disk Dia lying in the plane P�B�. Let us now fill all the
bounds of gia by planar two-dimensional disks Dia by adding
these latter to the Si (i.e., partial Fermi surfaces). We will then
have a two-dimensional, piecewise smooth surface in R3 and
hence (following a quasimomentum identification procedure)
also their images �Si in the three-dimensional torus T 3. By
definition, all open orbits lie on surfaces constructed in this
way.

We shall call the genus of surface �Si in a three-dimensional
torus a `genus of corresponding open orbits' lying in it (for
magnetic field directions of irrationality 3).

The result which we consider to be the most important in
the work of A V Zorich and I A Dynnikov [16 ± 22] is that in
the general-position case all surfaces �Si constructed in this
way are of genus 1, implying that they are topologically
equivalent to two-dimensional tori placed in the Brillouin
zone (i.e., a three-dimensional torusT 3). The general proof of
this theorem is highly involved [19] and need not be pursued
here.

The term `in the general-position case' is understood here
to mean that if for a certain energy level E�p� � E0 this
statement does not hold then such a situation is destroyed
by an arbitrarily small variation of the level (with the
direction of B fixed [20]); note that the magnetic field
directions for which this statement may not hold is a set of
measure zero [20 ± 22]. It is readily shown that the �Si surfaces
are in fact immersed in a three-dimensional torus T 3 which
has no self-intersections. Nor do the surfaces intersect one
another. It follows from the above that once the two-
dimensional disks Dia are filled in the way described, in the
general-position case each Si surface in quasimomentum
space R3 appears as a `warped plane' and hence its sections

by planes parallel to P�B� lie in finite-width strips in those
planes.

That the above topological picture is locally stable follows
from the fact that the compact nonsingular orbits employed
in constructing the `reduced Fermi surface' (see above) are
locally stable towards small magnetic field rotations. The two
conditions we have formulated, the `nondegenerate' Fermi
surface and the `general-position` condition on field B
directions, are both significant in deriving the statements
above. It is easily seen that the above arguments provide
justification for Case 2 for the general-position conductivity
tensor.

The earliest example of such a topologically stable open
orbit was given by IMLifshitz andVGPeschanski|̄ [2] for the
Fermi surface of copper (or for the `fine' space net to use the
language of Pippard's work on this metal). For this net (see
Fig. 10, or Figs 2, 3 of Ref. [2]), in the dashed stability regions
we have open general-position orbits corresponding to Case
2. As noted by I M Lifshitz and V G Peschanski|̄, the
directions of the open orbits are, on average, specified by the
intersection of planes orthogonal to the magnetic field with
the coordinate planes �xy�, �yz�, and �xz� (for the correspond-
ing stability regions). Thus, in this case the topological types
will be given by the numbers

�M1;M2;M3� � ��1; 0; 0�; �0;�1; 0�; �0; 0;�1� :
The stability regions in this case are small regions in the

vicinity of the corresponding magnetic field directions on the
unit sphere. The remaining part of the unit sphere represents
(for a fine enough net) Case 1.

In a subsequent work by IMLifshitz and VGPeschanski|̄
[3] the case of a unit sphere region with open orbits is
discussed for a more complex Fermi surface defined by

a
�
cos

apx
�h
� cos

apy
�h
� cos

apx
�h

�
� b
�
cos

apx
�h

cos
apy

�h
� cos

apy

�h
cos

apz
�h
� cos

apz
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for various values of the parameters (corresponding integer-
valued planes are not mentioned in [3]){. The authors of Ref.

B

gia

Si

Figure 9.Components Si, consisting of open orbits. The closed singular gia
and critical points form the boundary of the Si components.
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III
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III
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I I

Figure 10. So-called `fine space net' and its corresponding stability zones.

Its shown by I M Lifshitz and V G Peschanski|̄, the average directions of
open orbit in these zones is given by the intersections of P�B with the

coordinate planes (xy), (yz), and (xz).

{Our notation a, b, d, and z0, although different from that adopted in Ref.

[3], is more convenient for the present discussion.
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[3] are, however, incorrect in claiming the presence of unit
sphere regions in which open orbits with different average
directions may coexist (see Fig. 4 in Ref. [3]). This result is in
conflict with our general arguments and cannot therefore be
correct. The situation described in Ref. [3] cannot occur for
open unit sphere regions, so that the scenario shown last in
Fig. 11 (Fig. 1 in Ref. [3]) is wrong. This statement is a
mathematically rigorous consequence of the theorems proved
in Ref. [19].

There is one further important point to be made. In Ref.
[3] it pointed out that depending on the values of a, b, d, and z0
there are a finite number of topologically different Fermi
surface shapes of the type defined by Eqn (15). All of these are
described in some detail and for each of them the diagram of
existence of open orbits is given (Fig. 11), it being assumed
that the existence regions (on the unit sphere) of open orbits
refer to the Fermi surface type as a whole. In our view, this is
not an entirely justified approach, however, because as the
parameters a, b, d, and z0 are varied, both the regions of
existence of open orbits and the related integer-valued planes
undergo changes even if both the surface itself and its
topology remain unchanged.

Following Refs [20 ± 22] and [16] we now describe an
alternative result, namely:

(1) The union of stability regions (i.e., of those with
general-position open orbits) for all surfaces described by
Eqn (15) for a, b, and d fixed and z0 arbitrary, is a dense set
everywhere on the unit sphere. Stability regions correspond-
ing to different integer-valued planes, although may have a
common point at their boundary, do not intersect. The
regions that exist here are those corresponding to topological
types with arbitrarily large numbers Mj and representing
topological characteristics of the global dispersion relation
for a, b, and d fixed. For z0 fixed, only part of these regions
will be seen, the interiors of the remaining regions corre-

sponding to Case 1. If z0 is varied, both the observed
topological types and their corresponding regions will
change even if the surface topology remains unchanged.

(2) The variation of the parameters a, b, and d changes the
boundaries of large regions and causes a complete rearrange-
ment of the band picture for small regions corresponding to
integer-valued planes with large �M1;M2;M3�. (As in 1, here
too a set of bands for all possible z0 is considered). The
corresponding boundary value of jMjj is the greater the
smaller variations in a, b, and d.

Thus, it follows from the above argument that the general
stability pattern of surfaces (15) must actually be more
complex. However, the regions (and solid lines) of existence
of open orbits, plotted by IMLifshitz and VGPeschanski|̄ in
Figs 1 through 3 inRef. [3] (Fig. 11 of ours) correctly show the
position of the largest stability regions, which always exist for
surfaces (15) of a fixed topological type and correspond, in
this sense, to the topological types of surfaces (15). We also
predict here the existence of smaller zones with conductivity
tensors of complex topological types.

The same authors [2] derive the contribution (3) from the
open orbits of the type described above (i.e., of those lying in
and passing throughout a strip of finite width). This result
holds for the general-position open orbits we discussed earlier
[24] and consider in the present paper. Our results, however,
also rely on a topology related property, namely that on
average, stable open general-position orbits are all unidirec-
tional.

The last property, as already mentioned, only applies to
stable general-position orbits. Thus, for example, if B is
directed such that the plane P�B� is integer-valued (i.e.,
contains two non-collinear reciprocal lattice vectors) then
we may have open orbits with different integer-numbered
average directions of l�. The classification of open orbits in
this case is quite simple, namely each of them is periodic and
its contribution to the conductivity is as described in Ref. [2].
The sum of such `partial conductivity tensors' sabi1, however,
will bemore complex in structure than inCase 2; in particular,
there will be no eigenvector with zero eigenvalue in P�B� in
theB!1 limit. Such a pattern is destroyed by an arbitrarily
small rotation of the magnetic field. If B is directed such that
the planeP�B� contains only one integer-valued vector l� (up
to a constant factor), then the above situation is not possible.

As regards open orbits for the case of P�B� with one
integer-valued vector (B direction of irrationality 2), it was
shown by I A Dynnikov [20] that open orbits have an
asymptotic direction here. It does not necessarily follow,
however, that an open orbit lies in and passes through a
straight strip of finite width and, along with general-position
orbits possessing this property, there may occur for such
directions of B Ð and an example of this kind was given by
S P Tsarev Ð open orbits obeying the following, compara-
tively weak restriction: there exist orthonormal basis �e1; e2�
inP�B� such that

lim
t!1

p1�t� ÿ p1�0�
t

� const 6� 0 ;

lim
t!1

p2�t� ÿ p2�0�
t

� 0 :

As is the case with ergodic orbits observed for B
directions of irrationality 3, this type of orbit is also
unstable towards any arbitrarily small rotations of the B
direction.

a

c

b

d

Figure 11. Stability zones given by I M Lifshitz and V G Peschanski|̄ for
different analytical examples of Fermi surfaces corresponding to a cubic

lattice. Integer planes, corresponding to these zones, are not discussed in

the literature. According to our results, the last diagram is erroneous, since

the stability zones may not intersect one another for a whole region of the

unit sphere, and open general-position orbits with different average

directions may not coexist over whole region.
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4. Conclusions

An important feature of the present analysis should be noted.
Up to this point it has been assumed throughout that different
portions of the Fermi surface (or Fermi surfaces of various
energy bands, as is often the case inmetals) do not intersect. A
material may or may not have this property, however. In
particular, in some metallic lattices various Fermi surfaces
(or, as we call them, various components) may, as a
consequence of symmetry properties, come very close
together and, due to a magnetic breakdown in strong
magnetic fields [28], may undergo strong changes with the
result that an electron moves in one of the components
without noticing the second at their intersection (see Ref.
[10] for the physical conditions on the value of B). In this case
the reasoning above can only be applied to open orbits lying
on each individual non-self-intersecting component, with
stability regions separated for each such component; the
stability regions for different intersecting components being
generally independent of each other. Here we can have
intersecting stability regions and, consequently, unit sphere
regions with general-position orbits differing in their average
direction. Such a situation occurs in strong magnetic fields in
the `strong magnetic breakdown' region. (The problem of
magnetic breakdown in this context was brought to the
authors' attention by M I Kaganov).

Helpful discussions with M I Kaganov, V G Peschanski|̄,
L A Falkovsky and M E Fisher are gratefully acknowledged.
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