
3. Conclusion
In conclusion we note, as one can see from Fig. 3, that the
correction dR1 to the resistance of the normal channel caused
by the proximity effect depends on the temperature T in a
non-monotonic way: it is zero at T � 0 (the bias voltage is
zero as well), reaches a maximum at T � eL1

and decays to
zero at higher T. Such behavior of dR1�T� is related, as noted
in [15], to different dependencies of two contributions to dR1

on the energy e. One contribution which increases the N
channel resistance is connected with a decrease of the density-
of-states in the normal channel. It is described by the last term
in M e� � [see Eqn (16)]. Another contribution (anomalous)
which diminishes the resistance of the normal channel is
described by the first two terms in M�e�. This contribution
exactly compensates a contribution due to a change in the
density-of-states of the normal channel at e � 0 and dom-
inates at e 6� 0. At T > Tc it leads to the Maki-Thompson
contribution to the paraconductivity. Mathematically, com-
pensation of the two contributions at e � 0 arises because at
e � 0 FR � FA and mÿ in Eqn (16) becomes zero. The
monotonic behavior of dR has been observed in an experi-
ment [4]. It would be interesting to observe the long-range
Josephson effect experimentally.
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Sign memory of the Ruderman ëKittel
interaction in disordered metals
and magnetic coupling in mesoscopic
metal/ferromagnet layered systems

B Spivak, A Zyuzin

In the case when two paramagnetic spins are embedded in a
pure non-magnetic metal at zero temperature T � 0 the
Ruderman ±Kittel exchange interaction energy between
them has the well known form [1]

Ii j�R1;R2� � I0
cos�2pFjR1 ÿ R2j�
�pFjR1 ÿ R2j�d

di j : �1�

Here I0 is a factor which is proportional to the square of the
exchange interaction between the localized spins and spins of
conduction electrons in themetal, pF the Fermi momentum in
the metal, d is the dimensionality of the space, i; j are spin
indexes and R1, R2 are coordinates of the localized spins. In
the case of disordered metals jR1 ÿ R2j4 l4 pÿ1F the ampli-
tude of the average Ruderman ±Kittel exchange energy


Ii j�R1;R2�
� � exp

�
ÿ jR1 ÿ R2j

l

�
; �2�

is exponentially small [2]. Here brackets h i correspond to
averaging over realizations of a random scattering potential
(or averaging between samples) and l is the electron elastic
mean free path in the metal. On the other hand, it was shown
in [3 ± 5] that the exponential decay of the average
hIi j�R1;R2�i is the consequence of randomization of the sign
of Ii j�R1;R2� and that the typical amplitude of the interaction����������������������������������Dÿ

Ii j�R1;R2�
�2Er
� jR1 ÿ R2jÿd �3�

decreases with distance in the same way as in the pure case.
The interpretation of Eqs (2) and (3) given in [3] was that in a
given sample

Ii j�R1;R2� �
cos
ÿ
2pFjR1 ÿ R2j � d�R1;R2�

�
�pF�jR1 ÿ R2j�ÿd

; �4�

where d�R1;R2� has a random sign when jR1 ÿ R2j4 l, which
means that the sign of Ii j�R1;R2� cannot be predicted.

In fact what follows fromEqs (2) and (3) is that I ij�R1;R2�
has random signs between samples. We would like to point
out here that in a given sample the sign of Ii j�R1;R2� can be
predicted in a sense that there are long range correlations
between the signs of Ii j�R1;R2� and Ik;l�R3;R4�which survive
even over very large distances jR1 ÿ R3j � jR2 ÿ R4j �
jR2 ÿ R3j � jR1 ÿ R4j � R4 l and for arbitrary locations of
R1, R2, R3, R4. To prove this statement we can calculate the
correlation function (dIi j � Ii j ÿ hIi ji) at R4 l


dIi j�R1;R2�dIi j�R3;R4�
� � Rÿ4�dÿ1� �5�
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with the help of the diagrams shown in Fig. 2b. We use the
standard diagram technique [14] for averaging over realiza-
tions of a random potential. The solid lines in Fig. 2
correspond to electron Green functions in the Matsubara
representation, dashed lines correspond to the scattering on
the random potential and vertices correspond to the contact
magnetic interaction. Eqn (5) shows that the above men-
tioned sign correlations exhibit a very slow power-low decay
with the distance R. We would like to stress here that this
effect exists only in disordered metal when R4 l due to the
remarkable fact that it is insensitive to the change of
coordinates R1;R2;R3;R4 by a distance of order or larger
than 1=pF. (In pure metal the sign correlations decay
exponentially when R4 1=pF due to the oscillatory nature
of theRuderman ±Kittel interaction). The diagrams shown in
Fig. 2b were calculated in [4, 18], though the question of the
sign correlations was not discussed.

The qualitative explanation of the origin of the correlation
is as follows. The mesoscopic fluctuations of the exchange
energy dIi j�R1;R2� result from the interference of random
probability amplitudes of diffusion paths between the points
R1 and R2. Among these paths there are some which visit
pointsR3 andR4 (An example is the line `a' in Fig. 1a). On the
other hand, among paths which determine the amplitude of
the probability of traveling between points R3 and R4 there
are those which again travel along the dashed lines in Fig. 1a
and visit pointsR1 andR2. This leads to the above mentioned
correlation between Ii j�R1;R2� and Ikl�R3;R4�.

Let us now consider a system of two ferromagnetic (F)
layers of sizesL1;L2;L3 divided by a disordered normal metal
(N) layer with thickness L and pFl4 1 (see Fig. 1). The sign
memory discussed above or the Ruderman ±Kittel interac-
tion can determine the exchange interaction energy between F
layers through the metal in the case when the N layer's
thickness L4 l is larger than the mean free path. The origin
of the exchange interaction between the ferromagnetic layers
is the Ruderman ±Kittel type interaction: The interaction of
itinerant nonmagnetic metal electrons with localized `f' or `d'
electrons in the ferromagnets induces a spin polarization in
the nonmagnetic metallic layers. This magnetization, in turn,
creates the effective interaction between two localized spins in

different ferromagnetic layers with the energy

E�R1;R2� � Ii j�R1;R2�S1
i S

2
j ; �6�

here S 1;2
i are components of localized spins in the F layers and

R1;2 are their coordinates. We employ the simplest model
where conduction `s'-electrons interact with localized `f' or `d'
electrons in the F layers via a contact interaction with energy
A
P

k d�rk ÿ R�skS. Here rk and sk are coordinates and spins
of conduction electrons in the metal which are labeled by the
index k and A is the interaction constant. As a result we have
I0 � �9p=64���An�2=EF� which is of order of the ferromag-
net's critical temperature. Here EF is the Fermi energy and
n � p3F=3p

2 is the concentration of electrons in the metal.
Following [10 ± 13], we will use the approximation where the
total exchange interaction energy �E between the magnetic
moments in the F layers is a sum of E�R1;R2� over
coordinates R1, R2 of the localized spins in the ferromagnetic
layers.

�E �
X
R1;R2

E�R1;R2� �
X
R1;R2

Ii j�R1;R2�S �1�i S
�2�
j � �Ii jn1i n2j;

�7�

here n1i and n2j are components of unit vectors n1, n2 parallel
to magnetizations in the first and the second layers respec-
tively. We will consider the case where the length L2 of the F-
layers is relatively short and one can neglect fluctuations of
the orientation of magnetizations along the F layers.

Both experimental and theoretical studies of this phenom-
enon have until now been restricted to the consideration of
the infinite dimensions of both F and N layers and clean N
layers L4 l, when the value of �Ii j and the relative orientation
of magnetizations of F layers are oscillating functions of L
[7 ± 13]. In this article we discuss the opposite case of small
sample sizes and disordered N layers where the mesoscopic
effects determine the exchange interaction between F layers.
To find the relative angle y� dn1; n2� between the magnetization
angles in F layers one has to calculate the sign and the
amplitude of the quantity �Ii j. In the case L4 l, �Ii j is a
random sample-specific quantity, which can be characterized
by its average and moments. It follows from Eqn (2) that in
the case L4 l the average exchange energy h �Ei is exponen-
tially small and can be neglected. Therefore, in the case L4 l
the exchange energy between the ferromagnetic layers has a
random sign while its characteristic value is determined by its
variance ���Ii j�2�1=2 which in turn is determined by the long
range correlations between Ii j�R1;R2� and Ik;l�R3;R4� dis-
cussed above. As a result, for example, in the case of square or
cubic geometries for the N layer and at low temperatures the
variance of the exchange energy has a random sign while its
characteristic value is sample size independent. The diagrams
which contribute to hd�Ii j d�Ikli in the lowest order in the
parameter �h=pFl5 1 are shown in Fig. 2. The diagrams
shown in Fig. 2a were considered in [13 ± 16]. They give the
main contribution to the correlation function

dIi j�R1;R2�dIkl�R1;R2�

� � jR1 ÿ R2jÿd. However, the con-
tribution of these diagrams to the correlation function

dIi j�R1;R2�dIkl�R3;R4�

�
decays exponentially when

jR1 ÿ R3j; jR2 ÿ R4j4 l. As a result, for example, in the case
L � L2 4L3 � L1 the contribution to hd�Ii jd�Ikli from these
diagrams is of order I 20 �npÿ3F �4�L1=L�2. (We assume the
density of localized spins in the ferromagnets is of order n.)
Though the diagrams in Fig. 2b give a much smaller
contribution to



dIi j�R1;R2�dIkl�R1;R2�

�
, they describe the

L2

L1

L

2 4F

F1 3

a
N

a b

F

F

S S

w1 w2
Nb

Figure 1. Schematic pictures of the ferromagnet-nonmagnet layered

systems.

c

ba

Figure 2.Diagrams for the correlation function hd�Iijd�Ikli.
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long range correlations


dIi j�R1;R2�dIi j�R3;R4�

� � Rÿ4�dÿ1�

when jR1 ÿ R3j � jR2 ÿ R4j � R4 l. As a result they give the
main contribution to the correlation function of the interlayer
exchange energy h�Ii j�Ikli at L4 l. As a result, we have:

hd�Ii jd�Ikli � 2

p
I 20E

2
FT
X
m

o
�
dR1 dR2 dR3 dR4

� �ŝiP̂c
o�R1;R2�ŝkP̂c

o�R2;R3�ŝjP̂c
o�R3;R4�ŝlP̂c

o�R4;R1�
� ŝiP̂d

o�R1;R2�ŝjP̂d
o�R2;R3�ŝkP̂d

o�R3;R4�ŝlP̂d
o�R4;R1�

�
:

�8�
Here o � p�2m� 1�T is the Matsubara frequency, m is an
integer, T is the temperature and ŝi are spin operators.
Integration over R1, R3 and R2, R4 in Eqn (8) is performed
over volumes of the first and the second ferromagnetic layers
respectively. The results of calculation of Eqn (8) depend on
the ratio between the lengths L, L2, LT �

����������
D=T

p
,

Lso �
����������
Dtso
p

and on the boundary conditions for Cooperons
and Diffusons, which are shown in Fig. 2c. Here Lso, tso are
the spin-orbit relaxation length and time, respectively, and D
is the electron diffusion coefficient in the N layer. In the case
of the `open' geometry of the N layer shown in Fig. 1a and
LT;Lso 4L > l; L;L2 4L1;L3, we have

hd�Ii jd�Ikli � 5� 27=2z�5=2�
32p9=2

X
I 20

�pFl�2
�pFL1�4di jdkl : �9�

Here X is a factor, which is of order unity when L � L2 4LT

and z�x� is the zeta-function. In different limiting cases we
have:

X �

�
L2

L

�4

; LT > L2 > L ,

L2L
3
T

L4
; L2 > LT > L .

8>><>>: �10�

It is interesting that in the case L � L2 < LT, Eqs (9), (10)
turn out to be independent of L. In the case L > LT the
expression for X acquires an additional exponentially small
factor exp�ÿL=LT�. In the case Lso > L the minimum of the
exchange energy corresponds to a parallel or antiparallel
orientation of the layer's magnetizations (y equals zero or
p). In the opposite limit Lso 5L we get the same formula as
Eqn (9) but without the factor di j dkl. This means that the
exchange interaction between the F layers is of the Dzia-
loshinski-Moria type and a minimum of the exchange energy
corresponds to a sample specific angle y� dn1; n2� distributed
randomly over the interval �0; p�. While deriving the results
presented above we neglected the sensitivity of the boundary
conditions for Cooperons and Diffusons shown in Fig. 2c to
the change ofmagnetization directions in F-layers. In the case
of the open sample geometry Fig.1a this is correct, provided
Ap3FL1=vF 5 1. To get an estimate for hd�Ii jd�Ikli in the
opposite limit one has to substitute EF for the factor
A�L1pF� in Eqn (5). For example, in the case
LT > L � L2 > Lso we have


d�Ii jd�Ikl
� � E 2

F�pFl�ÿ2 �
�h

t
: �11�

Here t is the elastic mean free path in themetal.Wewould like
to stress again that the origin of Eqs (9) ± (11) is the long range
correlation of the signs of Ii j�R1;R2� and Ikl�R3;R4� which
survive over distances much larger than l.

As is usual in the physics ofmesoscopicmetals [15, 16], the
external magnetic field changes the electron interference

pattern and thereby d�Iij, and y� dn1; n2� turns out to be a
random sample-specific oscillating function of the magnetic
fieldH. Another way to change the relative orientations of the
F-layers is demonstrated in Fig. 1b. Namely, y� dn1; n2� is a
random sample specific function of the order parameter
phase difference �w1 ÿ w2� in superconductors S1 and S2

shown in Fig. 1b. The reason for this is that some diffusive
paths connecting points 1 and 2 in Fig. 1b can visit super-
conductors (line `b' in Fig. 1b) and the corresponding
amplitude of the probability of traveling along these paths
acquires the additional phase �w1 ÿ w2� [17]. Another con-
sequence of the phase dependence of the exchange energy is
that the critical Josephson current of the device shown in
Fig. 1b depends on the angle y between the magnetizations of
the F layers.
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Coulomb effects in a ballistic
one-channel S-S-S device

D A Ivanov, M V Feigel'man

1. Introduction
Coulomb effects in several different types of three-terminal
devices consisting of an island connected to external leads by
two weak-link contacts, and capacitatively coupled to an
additional gate potential, have been extensively studied
during recent years [1 ± 3]. In the present paper we develop a
theory for a system consisting of two almost ballistic one-
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