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Phase-coherent phenomena
in S-N-S structures

A F Volkov, V V Pavlovski|̄

1. Introduction
Progress in nanotechnology in the last few years has made it
possible to produce conducting nanostructures in which new
physical phenomena have been observed. Specifically, hybrid
structures consisting of superconductors (S) and normal
conductors (N) have been created. Metal films [1 ± 5] or
semiconductor layers [5 ± 7] have been used as the normal
conductors. The transport properties of these S/N structures
have turned out to be quite unusual. Firstly, conductivity
oscillations have been observed in these mesoscopic struc-
tures in a magnetic fieldH (i.e., in structures with dimensions
less then the phase-breaking length Lj). Oscillations of the
conductivity of the N channels appeared if the structure
contained superconducting or normal loops [1 ± 4, 6]. More-
over, for anN channel in contact with superconductors a non-
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monotonic dependence of the conductivity on the tempera-
ture T and voltage V has been observed at T5Tc [4]. The
main experimental facts have been explained in recent
theoretical works. It was determined that the proximity
effect plays the main role in the transport properties. For
example, the conductivity of an N channel in the structure
shown in Fig. 1 changes as a result of the contribution of the
condensate induced by the proximity effect. Since the
condensate is induced by both superconductors in a nonlocal
manner, interference appears and a term ÿdR cosj, which
depends on the phase difference j between the superconduc-
tors, appears in the resistance of the N channel [8 ± 10]. The
phase difference increases with the magnetic fieldH, and this
results in oscillations of the conductivity of the N channel in a
magnetic fields. The non-monotonic dependence of the
resistance R of an N channel on T and V has also been
explained [11, 12] (see also the theoretical works in the
conference proceedings in Ref. [7]). The non-monotonic
dependence of the resistance R�T;V� of a point contact ScN
(c is a constriction) was first obtained theoretically in Ref.
[13].

New effects have also been predicted in the theoretical
works devoted to S/N structures. For example, inRefs [14, 15]
it was shown that the critical Josephson current Ic in a
structure of the type displayed in Fig. 1 depends on the
voltage VS between the S and N conductors, changing sign
(p-contact) if VS exceeds a certain value. In addition, it has
been shown that the Josephson effect also arises in the case
when current flows only through one S/N boundary. Several
different configurations of S/N structures were studied inRef.
[16]. It was determined that under certain conditions the
current-voltage characteristics of the S/N structures have
descending segments ( dI= dV < 0).

An important circumstance was noted in Ref. [17] (see
also the works in Ref. [7]). It was shown that the local
conductivity of an N channel changes over distances from
the S/N boundary which can be much greater than the
coherence length xN �

���������������
D=2pT

p
(D is the diffusion coeffi-

cient). Important consequences follow from this fact. For
example, phase coherence effects in the conductivity of an N
channel remain even if the distance 2L1 between the super-
conductors is much greater than xN. This means that the
conductivity oscillations in the structure shown in Fig. 1 will
also be observed in the case of a negligibly low critical current
Ic. The oscillation conservation effect is due to fact that as T
increases, Ic decreases exponentially (Ic � exp�ÿ2L1=xN�T�),
and dR decreases slowly (dR � Tÿ1) [18].

In this work we shall consider the possibility of observing
long-range, phase-coherent effects in the S/N/S structure

shown in Fig. 1. We shall show in particular that Josephson-
like effects may arise in this structure even when the condition

2L1 4 xN�T� �
���������
D

2pT

r
; �1�

is fulfilled, i.e., if the Josephson critical current Ic is negligibly
small. However, these effects arise only in the case when a
current I flows along the N channel and dissipation takes
place [23].

2. Basic equations, long-range Josephson effects
As in Refs [8 ± 18], we shall study the diffusion regime of
charge transport (l5 xN, l is the mean free path) and we shall
employ the equation for the supermatrix �G whose elements
are the matrix Green's functions Ð the retarded (advanced)
functions ĜR�A� Ð and the Keldysh function Ĝ [19]. These
equations are supplemented by thematching conditions at the
S/N boundary [20, 21].

The equation for the supermatrix �G, averaged over the
thickness of the N film, has the form [10, 18]

Dqx� �Gqx �G� � ie��sz; �G� � ebwd�x� L1�� �GS; �G� : �2�

The right-hand side in Eqn (2) describes the influence of
the superconductors S, where all functions �GS are assumed to
be equilibrium functions, on the N channel. The coefficient eb
is a characteristic energy which is proportional to the
transmission of the S/N boundary: eb � rD=2Rb&dN, Rb& is
the resistance of a unit area of the S/N boundary; r and dN are
the resistivity and thickness of the N film. We have neglected
the interaction with phonons and depairing, making the
assumption that the system is mesoscopic: 2L < min� ��������Dte

p
,���������

D=g
p �, te is the energy relaxation time, and g is the depairing
rate. For simplicity, we assume that the width w of the S/N
boundary is small compared to xN. The elements of the
supermatrix �G are matrices of retarded (advanced) Green's
functions ĜR�A� and the matrix Ĝ, which is related to the
distribution functions f and f0 [19].

When deriving Eqn (2), the boundary condition

D� �Gqx �G� � �ebdN�� �G; �GS� : �3�

was used. Here the z-axis is normal to the plane of the S/N
interface. The boundary conditions for the quasiclassical
Green's functions �G was derived in the general case by
Za|̄tsev [20] and reduced to the simple form (3) by Kupriya-
nov and Lukichev [21] in the dirty case. In the case of a good
S/N contact, condition (3) is reduced to the continuity of the
Green's functions at the S/N interface: �G � �GS. In the case of
a poor contact (eb ! 0), condition (3) gives the same result for
the current through the S/N interface which can be obtained
using the tunneling Hamiltonian method [20]. However, for
an S/N contact with an arbitrary barrier transparency
condition (3) is not applicable. The point is that when
deriving Eqn (3) Kupriyanov and Lukichev [21] restricted
themselves to the Legendre polynomials of the zeroth and
first orders in the expansion of the angle-dependent Green's
function �G. Meanwhile, one can easily show that all the
Legendre harmonics are excited near the S/N (or N=N 0)
interface. They decay to zero (except the Legendre polyno-
mials of the zeroth and first order) over the mean free path
away from the interface. In order to obtain a correction of the
next order in eb to condition (3), one has to solve an integral

w

ÿVS I1

w
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NN I II� I1N
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Figure 1. Schematic diagram of the system considered.
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equation [22]. In the case of the S/N interface with an
arbitrary barrier transparency, the problem of boundary
conditions for the quasiclassical Green's functions becomes
complicated.

In what follows we shall consider the case of a strong
barrier and restrict ourselves to the lowest term in the
expansion in eb. Then using Eqn (3) as the boundary
condition, we come to Eqn (2).

The current in the system is expressed in terms of the
functions f, which we must determine from Eqn (2) with the
boundary condition

f��L� � �FN�e� ; �4�
where FN�e� � 1=2

�
tanh�e� eVN�bÿ tanh�eÿ eVN�b

�
is

the equilibrium function in the N reservoirs and b � �2T�ÿ1.
The solution method is the same as in Refs [15 ± 18]. Let us
multiply the elements (1,2) of Eqn (2) by ŝz (equation for Ĝ)
and calculate the trace. After one integration we obtain�

1ÿmÿ�x�
�
qx f � J� J1 ÿ JS; 0 < x < L1 ;

J; L1 < x < L

�
: �5�

Here the function mÿ�x� � �1=8�Sp
�
F̂R�x� ÿ F̂A�x��2 deter-

mines the correction to the conductivity of the N channel due
to the proximity effect. It is the main correction in the present
problem. The integration constants J and J1 might be called
partial `currents' per unit energy.More precisely, the current I
on the segment (L1, L) is an integral over the energy

I � �2er�ÿ1dN
�
deJ�e� : �6�

The current on the segment (0, L1) is expressed by the same
formula if J is replaced by J� J1. The quantity JS is the
superconducting `current', which does not depend on x on the
segments (L1, L) and (0, L1)

JS �
�
1

4

�
Sp ŝz�F̂ RqxF̂R ÿ F̂AqxF̂A� : �7�

The integral of JS (7) over the energy is exponentially small if
condition (1) is satisfied. As follows from Eqn (2), the
constant J1, is related to the Green's function and distribu-
tion function in the superconductor. It can be written in the
form [10, 18]

J1 � Jq � eJS; Jq �
�

r
dN
<b

��
FS�e� ÿ f�L1�

�
: �8�

Here <b �Rb&=w
�
nNnS � �1=8�Sp�F̂R � F̂A��FR

S � FA
S �
�ÿ1

is the resistance of the S/N boundary per unit length in
the y direction and nN and nS are the density of states in the
N and S conductors. It can be shown that for VN;S which
are small compared with T=e, the `supercurrent' eJS, flowing
through the S/N boundary equals JS. The distribution
function FS is the equilibrium function, i.e., it is identical
to the function in Eqn (4), if VN is replaced by VS (we
measure voltages from the point 0, where the voltage is
zero). Using the fact that mÿ is small, we can integrate Eqn
(5) and find the relation of J and Jq to FN and FS [see the
boundary condition (4)]. We obtain the normal currents�

dN
r

�
J � <bFN � <1�FN ÿ FS�

<b< � <1<2
;�

dN
r

�
J1 � Jq

�
dN
r

�
� <2FS � <1�FS ÿ FN�

<b<� <1<2
: �9�

Here <b is determined in Eqn (8); the quantity < � <1 � <2,
<1;2 � R1;2�1� hmÿi� can be termed the partial resistance.
The spatial average hmÿi1;2 on the segments (0, L1) and (L1,
L) gives a decrease in the resistances on account of the
proximity effect (hmÿi is negative). All resistances in Eqn (9)
depend on the difference of the phases j and on the energy;
they can be represented in the form <b � Rb ÿ d<b cosj and
<1;2 � R1;2 ÿ d<1;2 cosj. The corrections to the resistances
d<b and d<1;2 are small in the case of a weak proximity effect.
The quantitiesRb andR1;2, generally speaking, depend on the
energy e (for example, nS depends on e). We assume, for
simplicity, that these quantities do not depend on the energy.
This is valid if it is assumed that the superconductors are
gapless (the results remain qualitatively the same in the case of
superconductors with a gap). Then, integrating Eqn (9) over
energies, on the left-hand side we obtain the currents I and I1
[see Eqn (6)]. Eliminating VN from the two equations
obtained, we find for VS

VS � �h
qtj
4e
� I1

�
Rb � R1 ÿ �dRb � dR1� cosj

�
� I�R1 ÿ dR1 cosj� : �10�

Here we employed the Josephson relation;Rb is the resistance
of the S/N boundary, which in the case of zero-gap super-
conductors is approximately equal to its value in the normal
state. The resistance R1 is also approximately equal to
rL1= dN (the j Ð independent correction arising from hmÿi
is small and unimportant). Integrating Eqn (10), we obtain a
relation between the average voltage �VS and the fixed currents
I and I1.

�VS �
������������������������������������������������������������������������������������������������I� I1�R1 � I1Rb

�2 ÿ ��I� I1�dR1 � I1dRb

�2q
:

�11�
The function �VS I1� � is displayed in Fig. 2 for different
currents I. One can see that for I 6� 0 this dependence is
identical to the current-voltage characteristic of a standard
Josephson contact. In this case the critical current is

Ic � I
dR1Rb ÿ dRbR1

�Rb � R1�2
: �12�

Therefore Ic increases in proportion to the current I. We shall
show below that the correction dR1 decreases slowly with

ÿ250 ÿ200 ÿ150 ÿ100 ÿ50 0 I1, mA

200
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ÿ50
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Figure 2. �VS versus the current I1 for the following values of the current:

1Ð0; 2Ð250 mA; 3Ð500 mA; 4Ð750 mA; 5Ð1 mA.Here dR1 � 0;1R1;

Rb � 5R1; R1 � 1 O.
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increasing temperature (dR1 � Tÿ1), and the correction dRb

is small if condition (1) is satisfied. Therefore, forRb 4R1, we
obtain Ic ' IdR1=Rb. The maximum current I is limited by
the condition that the Joule heating be small and by the
condition eVN ' eIR5T. In the opposite case dR1 decreases
as VN increases. If condition (1) is not satisfied and a finite
Josephson coupling exists between the superconductors, then
it is easy to show that the critical current of the structure is
I �c � �I 2c � I 2cJ�1=2, where IcJ is the critical Josephson current.
An expression for IcJ can be easily obtained with the aid of
Eqn (6). This expression is presented in Ref. [10]. The
equilibrium phase difference j0 for I1 � IR1=�Rb � R1� � 0
is j0 � ÿ arcsin�Ic=I�c�.

To determine dR1 and dRb it is necessary to find the
condensate functions F̂R�A�, induced by the proximity effect.
An equation for F̂R�A� follows fromEqn (2) and is linear in the
case that F̂R�A� is small [10, 15, 18]. For jxj < L1 the solution
of this equation has the form

F̂R�A��x� � F
R�A�
S

�
iŝy cos

�
j
2

�
Py cosh�kx�

� iŝx sin
�
j
2

�
Pxsinh�kx�

�R�A�
: �13�

Here F
R�A�
S is the amplitude of the condensate functions in the

superconductors. In the zero-gap case F
R�A�
S � �D=�e� igS�,

where gS is the frequency of spin-flip collisions with impu-
rities. The functions Px;y are:

Px � b sinh y2
�sinh y� b sinh y1 sinh y2� ;

Py � b sinh y2
�cosh y� b cosh y1 sinh y2� ;

b � rw
�Rb&dN� k ; kR�A� �

�����������
� 2ie

D

r
;

y � y1 � y2 ; y1;2 � y01;2 � iy001;2 � kL1;2 : �14�

Once the functions F̂R�A� are known, the interference
correction dR1 to the resistance can be calculated:

dR1�ÿR1

�1
0

deb � coshÿ2�eb�
�
mÿ�x;j� ÿmÿ

�
x;

p
2

��
1

:

�15�
With the aid of the expressions for hmÿi1 [see Eqn (5)] and for
F̂R�A� [see Eqn (13)] we find

dR1

R1
�
�1
0

deb � coshÿ2�eb�M�e� ; �16�

where

M�e� �
�
1

8

��
jFSj2

�
jPyj2

�
sinh �2y01�

2y01
� sin�2y001�

2y001

�
ÿ jPxj2

�
sinh �2y01�

2y01
ÿ sin�2y001�

2y001

�
�ReF 2

S

�
P2
y

�
sinh �2y1�

2y1
� 1

�
ÿ P2

x

�
sinh �2y1�

2y1
ÿ 1

���
:

The temperature dependence of dR1 is displayed in Fig. 3.
One can see that for T > eL1

� D= 2L1� �2 the quantity dR1

decreases as Tÿ1 with increasing temperature. As noted in
Refs [15, 18], the slow decrease of dR1 T� � is due to the so-
called anomalous term FRFA in hmÿi1. The special role of this
term, which is non-analytic both in the upper and lower
planes of e, was noted in Ref. [24].

The Josephson current IS is determined by the integral of
JS (7) over all energies, i.e., the integral of products of either
advanced or retarded Green's functions. It can be calculated
by closing the integration contour in the upper (lower) half
plane of e and switching to summation over the Matsubara
frequencies on � pT�2n� 1�. For such energies the functions
FR�A� decay exponentially over distances kÿ1�on�4xn�T�
away from the S/N boundary. Therefore the current IS will
be exponentially small (IS � exp�ÿ2L1=xN�T��. The function
IS�T� for the structure shown in Fig. 1 is presented inRef. [18].
Similar arguments are also applicable to the calculation of
dRb, since forT < gS the functions F

R
S andFA

S can be assumed
to be equal and independent of the energy. At the same time,
the function FRFA, appearing in the expression for dR1,
decreases over a small (compared with T) energy
eL1
� D=�2L1�2 and makes a nonzero contribution. For such

energies the characteristic decay length of FR�A��x� is of the
order L1, i.e., of the order of the distance between the
superconductors.

In order to observe long-range Josephson effects, the
critical current Ic must exceed the fluctuation current Te=�h:
Ic 4Te=�h. On the other hand, the ordinary Josephson effect
is negligible if the condition eL1

5T is fulfilled. Combining
these inequalities, we obtain the condition

TRbR1

dRbRQ
5 eL1

5T ; �17�

which should be satisfied for observation of the effects under
consideration. Here RQ � �h=e2 � 3 kO, and we took into
account that a maximal value of I is determined by the
relation eIR4eL1

. Otherwise dR1 decreases with increasing
I. The first inequality of (17) means that the zeroth Shapiro
step on the I1�VS� curve is absent at I � 0. If the second
inequality of (17) is not fulfilled, then the critical current is not
zero at I � 0 (the ordinary Josephson effect). In this case the
effective critical current I�c should first increase with increa-
sing I and then decrease if I exceeds eL1

=eR.

dR1

R1

T

eL

dR1

R1

0 2 4 6 8 10T

eL1

2:0� 10ÿ2 1:2� 10ÿ4
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0

Figure 3. Interference correction dR1 to the resistance as a function of

temperature in the case L1 � 0:5L, R=Rb � 0:4, g=eL � 100, DeL � 30.

194 Mesoscopic and strongly correlated electron systems ``Chernogolovka 97'' Physics ±Uspekhi 41 (2)



3. Conclusion
In conclusion we note, as one can see from Fig. 3, that the
correction dR1 to the resistance of the normal channel caused
by the proximity effect depends on the temperature T in a
non-monotonic way: it is zero at T � 0 (the bias voltage is
zero as well), reaches a maximum at T � eL1

and decays to
zero at higher T. Such behavior of dR1�T� is related, as noted
in [15], to different dependencies of two contributions to dR1

on the energy e. One contribution which increases the N
channel resistance is connected with a decrease of the density-
of-states in the normal channel. It is described by the last term
in M e� � [see Eqn (16)]. Another contribution (anomalous)
which diminishes the resistance of the normal channel is
described by the first two terms in M�e�. This contribution
exactly compensates a contribution due to a change in the
density-of-states of the normal channel at e � 0 and dom-
inates at e 6� 0. At T > Tc it leads to the Maki-Thompson
contribution to the paraconductivity. Mathematically, com-
pensation of the two contributions at e � 0 arises because at
e � 0 FR � FA and mÿ in Eqn (16) becomes zero. The
monotonic behavior of dR has been observed in an experi-
ment [4]. It would be interesting to observe the long-range
Josephson effect experimentally.
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Fundamental Research (Project 96-02-16663a), by the Rus-
sian Grant on highTc Superconductivity (Project 96053), and
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Sign memory of the Ruderman ëKittel
interaction in disordered metals
and magnetic coupling in mesoscopic
metal/ferromagnet layered systems

B Spivak, A Zyuzin

In the case when two paramagnetic spins are embedded in a
pure non-magnetic metal at zero temperature T � 0 the
Ruderman ±Kittel exchange interaction energy between
them has the well known form [1]

Ii j�R1;R2� � I0
cos�2pFjR1 ÿ R2j�
�pFjR1 ÿ R2j�d

di j : �1�

Here I0 is a factor which is proportional to the square of the
exchange interaction between the localized spins and spins of
conduction electrons in themetal, pF the Fermi momentum in
the metal, d is the dimensionality of the space, i; j are spin
indexes and R1, R2 are coordinates of the localized spins. In
the case of disordered metals jR1 ÿ R2j4 l4 pÿ1F the ampli-
tude of the average Ruderman ±Kittel exchange energy


Ii j�R1;R2�
� � exp

�
ÿ jR1 ÿ R2j

l

�
; �2�

is exponentially small [2]. Here brackets h i correspond to
averaging over realizations of a random scattering potential
(or averaging between samples) and l is the electron elastic
mean free path in the metal. On the other hand, it was shown
in [3 ± 5] that the exponential decay of the average
hIi j�R1;R2�i is the consequence of randomization of the sign
of Ii j�R1;R2� and that the typical amplitude of the interaction����������������������������������Dÿ

Ii j�R1;R2�
�2Er
� jR1 ÿ R2jÿd �3�

decreases with distance in the same way as in the pure case.
The interpretation of Eqs (2) and (3) given in [3] was that in a
given sample

Ii j�R1;R2� �
cos
ÿ
2pFjR1 ÿ R2j � d�R1;R2�

�
�pF�jR1 ÿ R2j�ÿd

; �4�

where d�R1;R2� has a random sign when jR1 ÿ R2j4 l, which
means that the sign of Ii j�R1;R2� cannot be predicted.

In fact what follows fromEqs (2) and (3) is that I ij�R1;R2�
has random signs between samples. We would like to point
out here that in a given sample the sign of Ii j�R1;R2� can be
predicted in a sense that there are long range correlations
between the signs of Ii j�R1;R2� and Ik;l�R3;R4�which survive
even over very large distances jR1 ÿ R3j � jR2 ÿ R4j �
jR2 ÿ R3j � jR1 ÿ R4j � R4 l and for arbitrary locations of
R1, R2, R3, R4. To prove this statement we can calculate the
correlation function (dIi j � Ii j ÿ hIi ji) at R4 l


dIi j�R1;R2�dIi j�R3;R4�
� � Rÿ4�dÿ1� �5�
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