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Electrons in quasi-one-dimensional
conductors: from high-temperature
diffusion to low-temperature hopping

M E Gershenson, Yu B Khavin, A L Bogdanov

1. Introduction

The past two decades have seen spectacular progress in the
physics of low-dimensional disordered conductors [1, 2]. One
of the directions of rapid growth is the study of electron
transport in quasi-one-dimensional (1D) conductors. The
experimental study of this problem is crucial for our under-
standing of transport mechanisms in a diversity of 1D
systems: metal-film and semiconductor nanometer struc-
tures [3], heavy-doped conjugated polymers [4], carbon nano-
tubes [5], and many others.

It is widely believed that all electron states in low-
dimensional conductors are localized [6, 7], at least in the
case of weak electron ± electron interaction. The extent of the
electron wavefunction is characterized by the localization
length x; for a quasi-1D conductor,

x � p�h

e2
W

R&
� 2p�hn2DDW ; �1�

where n2D is the two-dimensional (2D) density of electron
states,D is the electron diffusion constant, andW is the width
of a thin-film `wire'. In quasi-one-dimensional conductors,
the largest cross-sectional dimension is smaller than x, and, at
the same time, is much greater than the wavelength of the
current carriers. In spite of localization, the conductivity of
1D conductors can be very high at room temperature. This
`metallic' conductivity is due to the strong inelastic scattering:
the electron scatters to another state, localized around a
different site, before it diffuses over the localization length.
This is the weak localization (WL) regime. However, with
decreasing temperature, a 1D conductor will inevitably
become an insulator. Electron transport could proceed by
hopping only in this strong localization (SL) regime.

The goal of this work is an observation of the crossover
between WL and SL regimes and experimental study of
electron transport on the insulating side of the crossover.

2. Crossover from weak to strong localization

The theoretical prediction of the crossover from diffusion to
hopping in 1D conductors with decreasing temperature was
made by Thouless [6] in 1977. However, the experimental
study of this fundamental problem was delayed for 20 years.
The `gap' between the prediction and observation indicates
that this is a very demanding experiment; in particular, the
choice of adequate samples is important for success. Recently
we observed the crossover as a function of temperature in
experiments with narrow channels in the MBE-grown Si d-
doped GaAs structures [8]. The samples consisted of single

sheets of Si donors with concentration (3 ± 5)�1012 cmÿ2;
which were 0.1 mm below the surface of an undoped GaAs.
Using the e-beam lithography and ion etching, we were able
to prepare uniform conducting channels of effective widthW
as narrow as 0.05 mm. (Because of the side depletion, the
effective width is smaller than the geometrical width by
0.15 ± 0.2 mm, depending on the concentration of carriers).
In order to reduce the effect of mesoscopic conductance
fluctuations, we made these wires long enough (the length
L � 40 ± 500 mm was much greater than the localization
length) and connected many wires in parallel (up to 500
wires). Parameters of several samples are listed in Table 1.

The mean free path of electrons is small in the d-doped
layers (17 ± 35 nm) because of the strong scattering of
electrons by ionized impurities, and the electron motion is
always diffusive at distances smaller than the wavefunction
envelope of the length x. The relatively high concentration of
carriers ensures that the number of occupied 1D sub-bands
N1D � kFW=p is large;N1D ' 7 even in the narrowest sample
1. However, with respect to the quantum interference effects
all the samples are one-dimensional at low temperatures
[W < x, Lj�T�].

The resistance of the samples increases with decreasing
temperature (Fig. 1); a slow growth of R (logarithmic above
10 K) is consistent with the theory of quantum corrections to
the resistance in the WL regime [8]. However, below a certain
crossover temperature, a dramatic change in the dependence
R�T� was observed: it becomes exponentially strong and can
be fit with an activation law

R�T� � R0 exp

�
T0

T

�
: �2�

The Arrehnius-type dependence (2) was observed for all
the samples at T4 0:3T0, where T0 is the temperature that
corresponds to the activation energy (see Fig. 1). The
crossover from the one-dimensional WL dependence R�T�
to a stronger one occurs at T � T0; below we identify the
crossover temperature with T0.

The proof that we observe the Thouless crossover from
weak to strong localization is based on two experimental
facts. Firstly, the resistance Rx, calculated for a wire segment
of length x at T � T0, turns out to be 24� 4 kO for different
samples (see Table 1); this is consistent with the resistance
� h=e2 expected for a 1D conductor of length x in the vicinity
of the crossover [6]. Secondly, in terms of competition
between the length scales, the crossover should occur when
the temperature-dependent length Lj�T� becomes compar-

Table 1. Parameters of the samples.

Sample 1 2 3 4 5 6

W, mm
L, mm
No. of parallel `wires'
R&�T � 20K� kO
x, mm
Dx, K
T0�H � 0�, K
Rx�T � T0�, kO
Hx, kOe
Hexp

x , kOe
Hexp

x =T0, kOe Kÿ1

0.05
500
470
1.6
0.40
2.1
2.6
20.4
1.0
1.0
0.37

0.06
500
470
1.7
0.46
1.5
1.87
21.3
0.74
0.80
0.43

0.1
40
5
3.5
0.37
1.1
1.47
28
0.56
0.51
0.35

0.12
500
470
1.6
1.0
0.35
0.42
23
0.17
0.21
0.50

0.2
40
5
4.2
0.61
0.34
0.39
24.4
0.17
0.17
0.44

0.18
500
470
1.7
1.4
0.17
0.2
24.3
0.083
0.12
0.59
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able to the localization length [6]. The phase-breaking length
can be estimated by fitting the high-temperature T > T0� �
magnetoresistance with theWL theory [9]. For all the samples
studied, Lj�T0� is approximately 1.5 ± 3 times smaller than x
calculated from Eqn 1 or estimated from the SL magnetore-
sistance (see below). Taking into account that the accuracy of
estimation of the phase-breaking length is not very high in the
vicinity of the crossover, and that there might be some
systematic errors in calculating x, we conclude that our
experimental data are consistent with the Thouless scenario
of the WL±SL crossover in 1D conductors.

An important feature of our experiment is that we observe
the crossover as a function of temperature, the electron states
being exactly the same at both sides of the crossover. In this
respect, our experiments differ from the measurements on
gated heterostructures, where all electron parameters are
changed by variation of the gate voltage [3].

3. Strong localization regime

3.1 The temperature dependence of the resistance
The activation energy kBT0 of the exponential dependence
R�T�, observed in the SL regime (the insert in Fig. 1), is very
close to the mean energy spacing of the electron states on the
scale of the localization domain;

Dx � n2DxW� �ÿ1 �3�

The values of Dx and T0 at H � 0 are listed for different
samples in Table 1. The crossover has not been observed for
samples wider than 0:3 mm in our temperature range

(T > 50 mK); this is consistent with the fact that Dx should
vary asWÿ2 for a fixed R&.

The Arrehnius-type temperature dependence of the
resistance may be attributed to either of two models of
electron transport in the SL regime: (a) hopping between
neighboring electron states, which strongly overlap in space,
and (b) variable-range hopping, which is substantially
modified in one dimension (the so-called Kurkijarvi model)
[10]. In both models, the resistance of a long 1D conductor is
governed by anomalously `resistive' (critical) hops, which
cannot be by-passed in 1D. The predictions of these models
differ in two important aspects. Firstly, the hopping length,
Lh, is of the order of x in the nearest-neighbormodel, whereas
in the Kurkijarvi model Lh ' xT0=T4 x [11, 12]. Secondly,
the distance between critical hops in the nearest-neighbor
model depends on the form of the distribution function of the
localization length. In the Kurkijarvi model, which does not
take into account fluctuations of x, critical hops should be
exponentially rare; the distance between these hops is [11, 12]

Lc ' x
2

�
T0

T

�1=2

exp

�
T0

T

�
: �4�

We observed similar R�T� dependences for samples with
L �40 ± 500 mm; for the `short' samples, L is smaller than the
estimate of Lc from Eqn (4). The distance between critical
hops can be obtained from studying the non-linearity of the
current-voltage characteristics (IVCs) (see below); it turns out
that Lc does not exceed 20x (� 10ÿ 20 mm) even at
T � 0:1T0. These two facts speak in favor of the nearest-
neighbor model. However, we believe that these two models
may merge if one takes into account both statistical fluctua-
tions of x, essential in one dimension [13], and unavoidable
fluctuations of the sample width.

3.2 Magnetoresistance
Themagnetoresistance of the samples studied is negative over
the whole temperature range. It is very anisotropic; we
observed no magnetoresistance due to the H component
parallel to the plane of the d-layer. The magnetoresistance
becomes exponentially large in the SL regime. One can see
from Fig. 1 that the magnetoresistance is due to the field
dependence of the activation energy. Indeed, T0 is the only
parameter that varies with the magnetic field: the form of
R�T� dependence (2) remains the same regardless of the field
magnitude, and the prefactor R0 is not affected byH.

The magnetic-field dependence of the activation energy
(3) stems from the field dependence of x. The localization
length in 1D conductors,

x � �bN1D � 2ÿ b�l �5�

is proportional to the symmetry index b [14]. In the absence of
spin-orbit scattering, a time-reversal symmetry-breaking
magnetic field induces a transition from b � 1 to b � 2, and
hence a doubling of x for N1D 4 1: Doubling of the
localization length results in halving the activation energy
which is in accord with our data. [In fact,N1D � 7 for sample
1, andT0 in strong fields should be smaller thanT0�H � 0� by
a factor of 1.75.] The experiment provides the first evidence of
the universal dependence of the localization length in quasi-
1D conductors on the symmetry class.

It is convenient to convert the magnetoresistance into the
magnetic-field dependence of T0 (exploiting the conclusion
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Figure 1. Temperature dependence of the resistance of sample 1 in zero

magnetic field; the solid curve is a guide to the eye. The arrow indicates

the temperature that corresponds to the activation energy. The insert

shows R versus 1=T for sample 1 at H � 0 (&) and at H � 17 kOe (
).
The straight lines are dependences (2) with T0�H � 0� � 2:6 K and

T0�H � 17 kOe)=1.73 K.
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that the magnetoresistance stems solely from the T0�H�
dependence). The T0�H�=T0 dependences measured for
sample 1 at different temperatures T5T0 are shown in
Fig. 2; for all the samples, these dependences collapse onto
the same universal curve. According to the theory [14], a
transition from b � 1 to b � 2 should occur inmagnetic fields
Hx, where

Hx � F0

xW
�6�

is the field scale for breaking the time-reversal symmetry
within the area occupied by a localized state (F0 is the
magnetic flux quantum). Though it is obvious that the theory
predicts the correct value for the characteristic field (see
Fig. 2), it would be interesting to obtain the theoretical
dependence x�H� for all magnetic fields (only limiting values
of x are available now). Indeed, the experimental data on
R�H� and R�T� at H � 0 provide us with a direct method of
measuring of x in quasi-1D conductors. To make this method
more accurate, we need the theoretical expression for the
transition curve T0�H�, and this is a challenge for the theory.
It is worth noting, that in fields H > H� � F0=W

2 one could
expect a 1D± 2D crossover in the magnetoresistance of our
samples. A kink at the dependence, observed in the vicinity of
H� (see Fig. 2) may be an indication of this crossover.

In the absence of a theoretical expression for the transition
curve, we estimate Hx from the experimental data by fixing
the level T0�Hx� � 0:85T0�H � 0� (see Table 1). This choice
was based on comparison of the theoretical estimate for Hx

with experimental data for many samples. The calculated
values of Hx are in an excellent agreement with experiment;
this indicates that the shape of the transition curve is the same
for all the samples. Note that the ratio of the characteristic
magnetic field to the spacing between the levels at the scale x is
a universal quantity, which depends only on the effectivemass

m� of current carriers:

Hx

Dx
� F0n2D � m�c

e�h
: �7�

For GaAs, where the effective mass is well known, this
ratio is 0.5 kOeKÿ1; the last row in Table 1 demonstrates that
the experimental counterpart of this ratio, Hexp

x =T0, indeed,
remains the same (within � 20%) for all the samples studied.

3.3 Non-linearity of the resistance
So far we have discussed the experimental data obtained in
the linear regime (the limit of small electric fields). The study
of the non-linearity of the IVCs helps to determine the
distance between critical hops and to distinguish between
different mechanisms of electron transport in the SL regime.
The dependences of the `resistance' R � V=I on the applied
voltage V, measured for sample 1 at different temperatures,
are shown in Fig. 3. In small electric fields, the experimental
R�V� curves can be fit with the dependence

R � V

I
� R0 exp

�
T0 ÿ eVLc=L

T

�
; �8�

where Lc is the distance between critical hops, or the hopping
length,Lh, if all the hops are the same. The lengthLc increases
with decreasing temperature; at T ' 0:1T0 it exceeds x by a
factor of 20. These values of Lc are insufficiently large for our
data to be consistent with the Kurkijarvi model [see Eqn (4)]
[10 ± 12]. Hence, the most probable candidate for the electron
transport mechanism in our samples in the SL regime is
nearest-neighbor hopping between strongly overlapping
localized electron states. We hope that future experiments
will give information on the statistics of the resistance
fluctuations in long 1D conductors.
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4. Conclusions

This is the first experimental study of the crossover fromweak
to strong localization in quasi-1D conductors as a function of
temperature, when one is deal with the same electron states on
both sides of the crossover. In accord with the Thouless'
theory, the crossover occurs when the phase-breaking length
becomes comparable with the localization length. The
resistance of the wire segment of length x is close to the
quantum resistance h=e2 at the crossover. On the insulating
side of the crossover, an activation temperature dependence
of the resistance is observed; the activation energy is close to
the spacing between the energy levels of localized electron
states within the localization domain. The exponentially
strong magnetoresistance in this regime is due to the
magnetic field dependence of the localization length. Our
data can be considered as experimental evidence of the
magnetic-field-induced doubling of the localization length in
quasi-1D conductors with weak spin-orbit scattering. The
study of magnetoresistance in the SL regime provides a direct
measurement of the localization length in quasi-1D conduc-
tors. We estimate the distance Lc between the most resistive
hops from the non-linearity of the current-voltage character-
istics in the SL regime. Relatively small values of Lc contra-
dict the Kurkij�arvi model, in which the critical hops should be
exponentially rare. Thus, nearest-neighbor hopping is the
most probable candidate for the transport mechanism in our
samples on the insulating side of the crossover.
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