
dj5 2pnt0. Note that the inequality nt0 5 1 is essential for
maintaining a significant energy pumping.

Another approximation is that we have allowed for
relaxation in the simplest possible way by using a single
relaxation time in the equation for the density matrix. This
assumption is adequate if the relaxation is caused by a
transfer of the electrons in real space between the ring and a
surrounding reservoir. If the electron energy spectrum in the
reservoir is continuous, then the lifetime of an electron state in
the ring with respect to this mechanism is almost independent
of its quantum numbers. The mechanism discussed above
allows us to describe electron states in the ring as pure
quantum states, the relaxation rate being the decay through
escape to the reservoir. The exact results obtained above are
relevant for the case when such an `escape' mechanism
dominates. Internal inelastic relaxation processes in the ring
can in principle lead to a significant difference between phase-
and energy relaxation rates. Such a situation requires a
separate treatment. However, in the most interesting case of
efficient Landau ±Zener tunneling, the intrinsic inelastic
processes must involve a large momentum transfer and
therefore they are strongly suppressed [5].

In conclusion, the quantum electron dynamics problem in
a single-channel ballistic ring with a barrier, subjected to a
linearly time-dependent magnetic flux has been solved
exactly. Exponential localization in energy space has been
proven. Finally, we have shown that the dc-current exhibits a
set of peaks with fractional structure when plotted as a
function of the induced electro-motive force. This structure
is strongly sensitive to the barrier height, as well as to the
relaxation rate.
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Interference effects in mesoscopic
disordered rings and wires

M Pascaud, G Montambaux

1. Introduction

The observation of persistent currents in mesoscopic metallic
rings has revived interest in the comprehension of interference
effects in coherent diffusive systems [1 ± 5] (for a review and
additional references see Ref. [6]). While transport quantities
like the weak-localization correction were calculated in the
'80s, the persistent current was studied more recently with the
same techniques [7 ± 17]. All these quantities can be related to
Diffuson or Cooperon diagrams which describe the diffusive
nature of the electronic motion, when the mean free path le is
shorter than the typical size L of the system.

These diagrammatic calculations were then rewritten in a
more transparent way which explicitly relates the quantities
of interest to the return probability for a diffusive particle. In
this paper, we summarize the derivation of these quantities,
using a formalism which very simply relates all the quantities
and which allows their calculation from the knowledge of a
single function. We have recently used this formalism to
calculate the mesoscopic magnetization in various geome-
tries like connected rings. This may give a better under-
standing of the experimental situation as well as of the
interplay between interaction and disorder in mesoscopic
structures [15]. As examples, we present here the results for
rings and wires which can be derived straightforwardly from
this formalism.

2. Transport, thermodynamics
and return probability

We characterize the diffusive motion by the quantity
pg�r; r0; t�, solution of the diffusion equation:�

q
qt
� gÿD

�
H� 2ieA

�hc

�2�
pg�r; r0; t� � d�rÿ r0�d�t� ; �1�

where D is the diffusion coefficient. The scattering rate
g � D=L2

f describes the breaking of phase coherence. Lf is
the phase coherence length. g will be compared to
1=tD � D=L2 where tD is the diffusion time, i.e. the typical
time to diffuse through a system of size L. This time is the
inverse of the Thouless energy Ec � �hD=L2.
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Figure 1. The normalized current I=I0 as a function of a � p=q at ~n � 0:2
for different Landau ±Zener tunneling amplitudes, t. I0 � jejD=�h. Arrows

indicate the positions of maxima.
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The return probability is actually the sum of two terms, a
purely classical one and an interference term which results
from interferences between pairs of time-reversed trajectories.
In the diagrammatic picture, they are related to the Diffuson
and Cooperon diagrams. The interference term, pCg �r; r0; t�, is
field dependent and is a solution of the above equation. The
classical term, pDg �r; r0; t�, is field independent. It is a solution
of the above equation with A � 0. Since the two functions
have the same form, we use the same notation pg�r; r0; t� for
Diffuson and Cooperon contributions.

The diffusion equation has to be completed by appro-
priate boundary and continuity equations. In the general case
of a non-translation invariant geometry, the return prob-
ability pg�r; r; t� depends on the starting point r. One
important quantity is the space-integrated return probability
defined as

Pg�t� �
�
dr pg�r; r; t� :

We also recall the expression of the Cooperon Cg�r; r� Ð
whose zero field expression also corresponds to the Diffuson
at any field{:

Cg�r; r� �
�1
0

dt pg�r; r; t� :

It turns out that all the transport and thermodynamical
quantities of interest can be related to time integrals of
Pg�t�. We now review these quantities.

It has been shown in previous works [16, 17] that the
weak-localization correction to the conductivity s can be
written in terms of the interference part of the return
probability:

hdsi � ÿ2s e
2D

hO

�
Pg�t� dt ;

where O is the volume, s is the spin degeneracy. In the case of
a wire, the correction to the dimensionless conductance
g � G=�e2=h� is thus

hdgi � ÿ2s
�
Pg�t� dt

tD
;

where tD � L2=D is the diffusion time through the wire.
Similarly, the conductivity fluctuation can be written

directly as a function of Pg�t� [6, 15, 18]. When time-reversal
symmetry (TRS) is broken (largemagnetic field), it is given by

hds2i � 12s2
�
e2D

hO

�2 �
tPg�t� dt ;

so that, in the wire geometry, the conductance fluctuation is

hdg2i � 12s2
�
Pg�t� t dtt2D

:

In the more general case where the field H is finite, Pg�t�
should be replaced by Pg�t; 0� � Pg�t;H�.

We now turn to spectral and thermodynamic quantities.
The number variance S 2�E� measures the fluctuation of the
number of energy levels in a fixed energy range of size E. It is
an integral of the two-point correlation function of the
density of states whose Fourier transform, the form factor,
can be semiclassically related to the return probability Pg�t�
[11]. As a result, the number variance can be written directly
as an integral of Pg�t�:

S2�E� � 2s2

p2

�1
0

Pg�t�
t

sin2
Et

2
dt ;

when TRS is broken. Like for the conductance fluctuations,
Pg�t� should be replaced byPg�t; 0� � Pg�t;H� in a finite field.
This expression is a semiclassical result: the region where E
becomes as small as the level spacing D, corresponding to
times t as large as the Heisenberg time h=D is not well
described.

In the presence of a magnetic field H, the mesoscopic
magnetization of a ring or a more general network is
characterized by its average and typical values. The typical
value can also be related to the two-point correlation of the
density of states [6, 11] and then toPg�t�. At zero temperature,
it is (taking the spin into account):

M2
typ�H� �

1

2p2

�1
0

P00g �t;H�jH0
t3

dt ;

where P00g �t;H�jH0 � q2Pg=qH2jH ÿ q2Pg=qH2j0;H is the mag-
netic field.

The main contribution to the average magnetization
comes from the Hartree ±Fock correction to the energy [9,
12]. It can be rewritten in terms of the two-point correlation
function of the local density of states and then in terms of the
return probability [14]:

hMeei � ÿUr0
p

q
qH

�1
0

Pg�t;H�
t2

dt ;

whereU is the screened Coulomb interaction; r0 is the density
of states, where U � 4pe2=q2TF (higher order corrections have
been considered in Ref. [19]); qTF is the Thomas ±Fermi
vector.

One sees that all these physical quantities are time
integrals of the return probability with various power-law
weighting functions. Noting that Pg�t� has the form
P0�t� exp�ÿgt�, all these quantities can be written as integrals
or derivatives with respect to g of a single function S�g;H�
that we call the spectral function:

S�g;H� �
�
P0�t;H�

t
exp�ÿgt� dt �

�1
g

dg
�
Cg�r; r;H� dr :

�2�

This function S is related to the logarithm of the spectral
determinant defined in Ref. [20]. The number variance for a
closed system can be written in terms of this function

S2�E� � 2s2

bp2
Re
�
S�g� ÿ S�g� iE�� ; �3�

where s is the spin degeneracy; b � 1 with TRS; b � 2 if TRS
is broken.

{ The lower bound of the time integrals in this paper is actually the mean

collision time te above which diffusion takes place.
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The different magnetizations can be given in terms of the
successive integrals of this function:


Mee�H�
� � ÿUr0

p
q
qH

S �1��g;H� ; �4�

M2
typ�H� �

1

2p2
q2

qH2
S �2��g;H���H

0
; �5�

where S�n��g� � �1g dgn:::
�1
g2

dg1S�g1�.
Similarly, the weak-localization correction is easily

written as a function of S�g�:

hdsi � 2s
e2D

hO
qS
qg

: �6�

And finally, the conductivity fluctuation is also simply
related to S. For pure symmetries, one has:

hds2i � 24s2

b

�
e2D

hO

�2 q2S
qg2

: �7�

3. Solution of the diffusion
equation on a network

In principle, the calculation of these quantities is now
straightforward since it only requires the solution of the
diffusion equation for the system being considered. The case
of networks made of quasi-1D wires is simple, because the
diffusion can be described as one-dimensional. It was
considered by Doucot and Rammal for the calculation of
weak-localization corrections [17]. Here we generalize it to all
transport and thermodynamic quantities. The Cooperon
Cg�r; r0� obeys the one-dimensional diffusion equation�

gÿD

�
H� 2ieA

�hc

�2�
Cg�r; r0� � d�rÿ r0� �8�

with the continuity equations written for every node a
(including the starting point r0 that can be considered as an
additional node in the lattice) [17]:X

b

�
ÿ i

q
qr
� 2eA

�hc

�
Cg�r; r0�jr�a �

i

DS dr0;a ; �9�

r, r0 are linear coordinates on the network; S is the section of
the wire. The sum is taken over all links relating the node a to
its neighboring nodes b. Integration of the differential
equation (8) with the boundary conditions (9) leads to the
so-called network equations which relate Cg�a; r0� to the
neighboring Cg�b; r0�:X

b

coth

�
lab
Lf

�
C�a; r0� ÿ

X
b

C�b; r0� exp�ÿigab�
sinh�lab=Lf�

� Lf

DS da;r0 ; �10�

where lab is the length of the link �ab�, and

gab �
4p
f0

�b
a
A dl

is the circulation of the vector potential along this link.
Solving this set of linear equations and performing a spatial
integration of Cg�r0; r0� give access to the spectral function.

4. Examples

We now consider the cases of wires and rings of length L. In
this case the physical quantities can bewritten as a function of
the dimensionless function S�x�:

S�x� �
�
P�t�
t

exp

�
ÿ x

t

tD

�
dt ; �11�

where x � �hg=Ec � gtD � �L=Lf�2. The magnetization M of
a ring is proportional to its persistent current I �M=A,
where A is the area of the ring. We have

hdgi � 2sS 0�x� ;
hdg2i � 24s2

b
S 00�x� ;

S2�E� � 2s2

bp2
Re

�
S�x� ÿ S

�
x� iE

Ec

��
; �12�

hIeei � ÿUr0
p

e

tD

q
qj

S �1��x;j� ;

I2typ �
1

2p2

�
e

tD

�2 q2

qj2
S �2��x;j���j

0
;

where S�n��x� are integrals of Swith respect to x, andj is the
magnetic flux in units of the flux quantum F0 � h=e. It is
important to note that the cut-offs may be different for the
different quantities considered [21]. However, this does not
modify the functional relations we have found.

4.1 Isolated wire
We first consider the case of an isolated wire. Since no current
can flow at the edges, the boundary conditions are:

q
qr

C�r; r0�j0 �
q
qr

C�r; r0�jL � 0 :

Integration of the differential equation with these boundary
conditions gives [17]:

C�r; r� � Lf

D
cosh

�
r

Lf

�
cosh

�
Lÿ r

Lf

��
sinh

�
L

Lf

��ÿ1
:

After spatial integration and integration with respect to the
cut-off, the spectral function S is found to be

S�x� � ÿ ln
���
x
p

sinh
���
x
p

:

Using Eqns (12) the spectral rigidity can be derived. From the
expansion of the spectral function

ln
���
x
p

sinh
���
x
p � ln x�

X
n>0

ln

�
1� x

p2n2

�
; �13�

one recovers the expansion of the variance number in
diffusion modes given by Alsthuler and Shklovski|̄ for the
1D case [22].

4.2 Connected wire
We now consider the case of a wire perfectly connected to
external leads. Using the boundary condition
C�0; r0� � C�L; r0�, one has [17]

C�r; r� � Lf

D
sinh

�
r

Lf

�
sinh

�
Lÿ r

Lf

��
sinh

�
L

Lf

��ÿ1
:
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The spectral function S is now

S�x� � ÿ ln
sinh

���
x
p���
x
p � ÿ

X
n>0

ln

�
1� x

p2n2

�
: �14�

The logarithmic contribution of the zero mode in Eqn (13) is
suppressed. The weak-localization correction and the var-
iance of the conductance fluctuations can be found immedi-
ately using expressions (12). In particular, in the limit of
complete phase coherence Lf 4L, i.e. x! 0, the expansion
of the function S�x�,

S�x� ! ÿ x

6
� x2

180
;

immediately leads to the known universal values, for s � 1
and broken TRS:

hdgi � 2S 0�0� � ÿ 1

3
;

hdg2i � 12S 00�0� � 2

15
:

The variance should be multiplied by two when there is time
reversal symmetry. When Lf is finite, the variance of the
fluctuations is simply related to the mean weak-localization
correction (s � 1):

hdg2i � ÿ12 q
qx
hdgi ; �15�

where hdgi � 1=xÿ coth
���
x
p

=
���
x
p

. The size dependence of the
conductance fluctuation is shown in Fig. 1. For large samples,
it has the expected �L=Lf�3 behavior, with a prefactor quite
different from that usually used in the literature [23]. Former
experimental results and estimates of Lf should be recon-
sidered in the light of our result.

4.3 Ring
In the case of a ring of perimeter L, the Cooperon is now
translation invariant:

C�r; r� � Lf

2D

sinh�L=Lf�
cosh�L=Lf� ÿ cos�4pj� ;

so that

S�x;H� � ÿ ln
�
cosh

���
x
p ÿ cos�4pj�� : �16�

We deduce immediately the weak-localization correction:

hdgi � ÿ 1���
x
p sinh

���
x
p

cosh
���
x
p ÿ cos�4pj� :

From derivation with respect to x, one obtains a simple but
lengthy expression for hdg2i. It agrees with that calculated by
Aronov and Sharvin in the form of an infinite sum over
diffusion modes [24].

The average persistent current is

hIeei � Ur0
e

tD

�1
x

sin�4pj�
cosh

���
x
p ÿ cos�4pj� dx : �17�

This integral can be calculated explicitly in terms of the
Lobatchevski|̄ function and it has the Fourier decomposition
found by Ambegaokar and Eckern [12].

The typical persistent current is given by Eqns (12) and
agrees with previous calculations [6].

5. Conclusions

We have shown that the transport and thermodynamic
quantities can be written simply in terms of a single
function, the spectral function, which is related to the return
probability for a diffusive particle. This function is deter-
mined by the geometry of the system and the magnetic field.
Once it is calculated, all physical quantities can be deduced
immediately.
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Electrons in quasi-one-dimensional
conductors: from high-temperature
diffusion to low-temperature hopping

M E Gershenson, Yu B Khavin, A L Bogdanov

1. Introduction

The past two decades have seen spectacular progress in the
physics of low-dimensional disordered conductors [1, 2]. One
of the directions of rapid growth is the study of electron
transport in quasi-one-dimensional (1D) conductors. The
experimental study of this problem is crucial for our under-
standing of transport mechanisms in a diversity of 1D
systems: metal-film and semiconductor nanometer struc-
tures [3], heavy-doped conjugated polymers [4], carbon nano-
tubes [5], and many others.

It is widely believed that all electron states in low-
dimensional conductors are localized [6, 7], at least in the
case of weak electron ± electron interaction. The extent of the
electron wavefunction is characterized by the localization
length x; for a quasi-1D conductor,

x � p�h

e2
W

R&
� 2p�hn2DDW ; �1�

where n2D is the two-dimensional (2D) density of electron
states,D is the electron diffusion constant, andW is the width
of a thin-film `wire'. In quasi-one-dimensional conductors,
the largest cross-sectional dimension is smaller than x, and, at
the same time, is much greater than the wavelength of the
current carriers. In spite of localization, the conductivity of
1D conductors can be very high at room temperature. This
`metallic' conductivity is due to the strong inelastic scattering:
the electron scatters to another state, localized around a
different site, before it diffuses over the localization length.
This is the weak localization (WL) regime. However, with
decreasing temperature, a 1D conductor will inevitably
become an insulator. Electron transport could proceed by
hopping only in this strong localization (SL) regime.

The goal of this work is an observation of the crossover
between WL and SL regimes and experimental study of
electron transport on the insulating side of the crossover.

2. Crossover from weak to strong localization

The theoretical prediction of the crossover from diffusion to
hopping in 1D conductors with decreasing temperature was
made by Thouless [6] in 1977. However, the experimental
study of this fundamental problem was delayed for 20 years.
The `gap' between the prediction and observation indicates
that this is a very demanding experiment; in particular, the
choice of adequate samples is important for success. Recently
we observed the crossover as a function of temperature in
experiments with narrow channels in the MBE-grown Si d-
doped GaAs structures [8]. The samples consisted of single

sheets of Si donors with concentration (3 ± 5)�1012 cmÿ2;
which were 0.1 mm below the surface of an undoped GaAs.
Using the e-beam lithography and ion etching, we were able
to prepare uniform conducting channels of effective widthW
as narrow as 0.05 mm. (Because of the side depletion, the
effective width is smaller than the geometrical width by
0.15 ± 0.2 mm, depending on the concentration of carriers).
In order to reduce the effect of mesoscopic conductance
fluctuations, we made these wires long enough (the length
L � 40 ± 500 mm was much greater than the localization
length) and connected many wires in parallel (up to 500
wires). Parameters of several samples are listed in Table 1.

The mean free path of electrons is small in the d-doped
layers (17 ± 35 nm) because of the strong scattering of
electrons by ionized impurities, and the electron motion is
always diffusive at distances smaller than the wavefunction
envelope of the length x. The relatively high concentration of
carriers ensures that the number of occupied 1D sub-bands
N1D � kFW=p is large;N1D ' 7 even in the narrowest sample
1. However, with respect to the quantum interference effects
all the samples are one-dimensional at low temperatures
[W < x, Lj�T�].

The resistance of the samples increases with decreasing
temperature (Fig. 1); a slow growth of R (logarithmic above
10 K) is consistent with the theory of quantum corrections to
the resistance in the WL regime [8]. However, below a certain
crossover temperature, a dramatic change in the dependence
R�T� was observed: it becomes exponentially strong and can
be fit with an activation law

R�T� � R0 exp

�
T0

T

�
: �2�

The Arrehnius-type dependence (2) was observed for all
the samples at T4 0:3T0, where T0 is the temperature that
corresponds to the activation energy (see Fig. 1). The
crossover from the one-dimensional WL dependence R�T�
to a stronger one occurs at T � T0; below we identify the
crossover temperature with T0.

The proof that we observe the Thouless crossover from
weak to strong localization is based on two experimental
facts. Firstly, the resistance Rx, calculated for a wire segment
of length x at T � T0, turns out to be 24� 4 kO for different
samples (see Table 1); this is consistent with the resistance
� h=e2 expected for a 1D conductor of length x in the vicinity
of the crossover [6]. Secondly, in terms of competition
between the length scales, the crossover should occur when
the temperature-dependent length Lj�T� becomes compar-

Table 1. Parameters of the samples.

Sample 1 2 3 4 5 6

W, mm
L, mm
No. of parallel `wires'
R&�T � 20K� kO
x, mm
Dx, K
T0�H � 0�, K
Rx�T � T0�, kO
Hx, kOe
Hexp

x , kOe
Hexp

x =T0, kOe Kÿ1

0.05
500
470
1.6
0.40
2.1
2.6
20.4
1.0
1.0
0.37

0.06
500
470
1.7
0.46
1.5
1.87
21.3
0.74
0.80
0.43

0.1
40
5
3.5
0.37
1.1
1.47
28
0.56
0.51
0.35

0.12
500
470
1.6
1.0
0.35
0.42
23
0.17
0.21
0.50

0.2
40
5
4.2
0.61
0.34
0.39
24.4
0.17
0.17
0.44

0.18
500
470
1.7
1.4
0.17
0.2
24.3
0.083
0.12
0.59
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