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In Figure 5a the thus calculated differential capacitance is
depicted for temperatures 7 =4 and 8 K. At the lower
temperature the capacitance rises steeply and is clearly
enhanced in the onset region. At higher temperature the
enhancement is washed out. The origin of the enhancement
can be identified with the help of Fig. 5b and 5c, where the
Fermi energy and the energy separation between the first and
second 1D subband are depicted, respectively. If the quantum
wire just starts to become filled with electrons the Fermi
energy drops at low temperature and the energy separation
between the subbands increases. Neither feature is expected in
a Hartree calculation [22]. However, a qualitatively similar
behavior is predicted in analytical calculations that include
exchange-correlation effects [23]. In addition, it is well known
from experiments on 2D systems that many-particle effects
can lead to so-called ‘negative compressibility’ giving rise to
an enhanced capacitance [24, 25]. Such effects are observable
in our 2D devices at high magnetic field and low temperatures
[26]. The fact that they are less pronounced indicates that
correlation effects are much more important in 1D electron
systems.

In summary, we present capacitance measurements on
electron channels of different widths in the range where we
expect a transition from 2D to 1D behavior. In wide channels
the typical 2D behavior is found. Pronounced and symmetric
capacitance minima at even filling factors reflect the reduced
DOS in the cyclotron gap that is dependent on impurity
induced potential fluctuations in the bulk of the device. In
contrast the capacitance of 300 nm wide channels is
dominated by the influence of the confinement on the width
of the compressible electron stripes at the channel edge. The
onset of the capacitance is considerably smoother than in
wide channels and the minimum at integer filling factors is
asymmetric. At even smaller channel width the capacitance
reflects the spatial quantization into one-dimensional sub-
bands. The shape of the capacitance minima is strikingly
different to that of wider channels, the onset becomes steep
again and it exhibits additional structure. Simulation calcula-
tions indicate that the observed enhanced capacitance at the
onset reflects the importance of the exchange energy in the
ground state of quantum wires in the one-dimensional
quantum limit.
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Pumping of energy into a mesoscopic ring.
Exactly solvable model

L Gorelik, S Kulinich, Yu Galperin,
R I Shekhter, M Jonson

1. Introduction

The physical properties of mesoscopic systems are strongly
influenced by the quantum interference of electronic states
(see, e.g., Ref. [1] and references therein). Anderson
localization of electrons, universal fluctuations of conduc-
tance as well as the periodic magnetic field dependence of
thermodynamical and transport properties of multiply con-
nected devices (e.g., metallic rings) are important examples.
Previous extensive studies in mesoscopic physics were
concentrated mainly on thermodynamics, as well as on the
linear response of nanosrtuctures to dc or electrical and
magnetic perturbations slowly varying in time. At the same
time, relatively little is known about the nonlinear response of
mesoscopic systems to a time-dependent bias. In general, an
electron driven by an external time-dependent force does not
conserve energy. In spite of the non-conservation of energy,
interference processes remain crucially important if the phase
breaking rate is much less than the rate characterizing
dynamical redistribution of the electron wave function
between different states in the energy space.

Below we consider an example of such a system, namely a
single-channel mesoscopic ring subjected to a non-stationary
perpendicular magnetic field, linearly dependent on time. We
concentrate on the energy accumulation in such a system as a
function of time. To investigate the role of interference, we
take into account electron backscattering from a single
potential barrier (‘defect’), embedded in the ring. It is shown
that by tuning either the time derivative of the external
magnetic field variation, or the transmission amplitude
through the barrier (by the gate potentials), one can influence
the interference pattern, and in this way significantly change
the dynamics. Impure conducting rings have been extensively
discussed in connection with energy dissipation in mesoscopic
metallic systems [2]. Gefen and Thouless [3, 4] have suggested
that randomly distributed impurities lead to the so-called
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dynamical localization of the electrons in energy space. This
phenomenon, similar to the Anderson localization in the real
space, should exist even in ballistic rings, i.e. when the elastic
mean free path is much bigger than the ring’s diameter.
Specifically, the electron energy as a function of time
saturates rather than infinitely increasing (as takes place in a
perfect ballistic ring [5]). In the saturation regime the time-
averaged electric current vanishes. Consequently, a slow-
varying magnetic flux @(¢) through the ring induces a circular
slow-varying current only in the presence of phase breaking
processes. The role of these processes was analyzed numeri-
cally in Refs [6, 7].

Dynamical localization in energy space, as well as
Anderson localization in real space, occurs due to destruc-
tive interference of partial waves with random phases
forming the electron state. However, in our case the nature
of the randomness is dynamic (cf. with the case of so-called
kicked rotator [8]). Consequently, the interference is
crucially sensitive to the rate of magnetic flux variation,
scattering amplitude against the barrier, etc. As was shown
in Refs [9, 10], in the single-impurity case at a certain value
of @(r) the energy-space propagation of the electron can be
mapped onto a real-space motion of a particle subjected to
a periodic potential. Such a Bloch-like state results in the
conductance behavior qualitatively similar to the one of
pure rings. At the same time, according to numerical
studies [7, 9], at other rates of magnetic flux variation the
electron appears localized in energy space, the pumped
energy being saturated as for the random systems. This
result makes clear the crucial importance of the flux driven
rate — by tuning the flux time derivative (i.e. the induced
electro-motive force in the ring) one can cross over from one
regime to the other, and in this way control the energy
pumping. This issue, not addressed in a previous work, is
the subject of the present study. We will show that the
scenario of the cross-over is as follows. Consider the
conductance of the ring, G, defined as the ratio between
the circulating current and the electro-motive force
&= —@/c induced in a ring of radius ry by a magnetic
field linearly dependent on time. If the scattering is strong,
G < £72. As the scattering strength decreases, a set of peaks
in the G(&) dependence appears. The peaks correspond to
rational values p/q of the dimensionless ratio 4 = A/2e€,
where A:ﬁzNF/mr(z). Here Ng is the number of filled
electron states while m is the effective mass. The shape of
the peaks as well as the distances between them are
governed by the interplay between the height 7 of the
potential barrier and the relaxation rate v; the maximum
value of ¢ being determined by the condition ©7/q ~ hiv/e€.
Here © = exp(—&./€) is the effective amplitude of Zener
tunneling through the energy gaps in the electron spectrum,
E. = m*V?/2Ae. The peak structure near a maximum can be
described by the interpolation formula

hvA
(hv)2 + (6&1)282

+nq e=A— (1)

g—1 5 th2 ’ r
(e€) q

Here g = G/Gy, Gy = €*/h, while 5(¢) is a smooth function of
e. If |¢<19/¢? the function 5 ~ 1; beyond this region it
decreases as |¢| increases. As the barrier becomes more
transparent, T — 1, the inter-peak distance (determined by
the maximum value of ¢) decreases. Finally, the peaks
overlap forming the conductance g = A/#v independent of
the barrier’s properties.

To understand the result conjectured above let us
consider the electron energy levels in the vicinity of the
Fermi level, Er, where the energy dispersion can be
considered linear. In a ballistic ring, one then has two sets
of adiabatic energies E;(®) corresponding to clockwise and
counterclockwise motion. The scattering from the barrier
opens gaps for the flux wvalues E;=Er+IA/2,
[=0,+1,+£2,...; the energy levels for clockwise and
counterclockwise =~ motion coincide. Consequently, the
energy pumped into the system by a slowly varying
magnetic flux can be mapped onto the one-dimensional
motion of a quantum particle in the field of periodically
placed scatterers (cf. Refs [3, 4, 9]). Landau-—Zener
tunneling (with the amplitude t introduced above) through
the gaps corresponds to forward scattering while reflection
from the gaps is similar to backscattering. The important
difference from the usual impurity problem is that there is
no translational invariance at an arbitrary value of the
driving force £. This invariance is only present for rational
values p/q of the dimensionless ratio A4 [9]. In this case we
arrive at a superlattice containing ¢ ‘impurities’ per unit
cell. As a result, the motion along the F-axis is described by
¢ allowed bands, the ‘velocity’ being vz = E ~ A1/t (here
to = hfe€ = <1>0/<i> is twice the time interval between two
sequential Landau-—Zener scattering events). Since the
upper bound of the Brillouin zone is  4nh/gA, the
corresponding bandwidth for motion along the E-axis is
W ~ dnhvg/qA ~ 4nht?/toq. At rational values p/q of the
quantity A4 the electron experiences 2p rotations around the
ring while the enclosed magnetic flux changes by ¢ quanta.
As a result ‘motion’ of the system along the E-axis can be
mapped onto the motion of a quantum particle in a one-
dimensional periodic potential, the corresponding eigen-
states being extended. If p/q is irrational the equivalent
potential is quasi-periodic. It turns out that in such a case
the corresponding states are then localized (see below) in
spite of the fact that there is no real disorder in the system.
The localization length in energy space, Ry, can be
estimated for 4 = p/q+¢, |¢| < 1/q as follows. At finite ¢
the phase mismatch with respect to the case of rational
A=p/q can be ascribed to a quasiclassical potential
U(E) = e E with o = 8n/i/Aty. This potential gives rise to
band bending which creates semiclassical turning points for
the modes propagating along the E-axis. The localization
length can be estimated as a half of the distance between the
turning points produced by the upper and lower band edges:

R w B Atd
T 2ule]  dgle]

Consequently, the localization time is fjoc ~ 4Rjoc/vE ~
to/ gl

The manifestation of localization in the energy pumping
depends on the product vfjoc. At v > 1 localization has no
chance to develop and the band picture of energy pumping is
relevant. The conductance is estimated as (cf. with Ref. [4])
G = P/E%, where P is the average energy accumulation rate.
The quantity P, in turn, is determined as v(3E)Ngy. Here
SE ~ vg/v is the energy accumulated by a single state, while
Neir(OF) ~ SE/A is the number of states involved. It follows
that g ~ t2/(A/hv). If vioc < 1, on the other hand, G is
determined by hops between intraband localized states. In
this case, 8E ~ 2R, and we obtain g ~ fivAt2/(eqe)’.
These estimates are consistent with the first term in Eqn (1).
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2. Theory

2.1 The model and the average current
The following model is employed. The electron system is
described by the Hamiltonian

H@wﬁvA@Q%+é>+mmwy ®)

Here o, are Pauli matrices. We are interested in the current,
averaged over the time ¢,

1(r) = lJu

1

dt' Tr pj,

where 1, =1+ 19/2, j = (ie/h)[H, @] is the current operator.
The single-electron density matrix, p, is calculated from
the equation

D Lo H) (oo [H0).

where f is the Fermi function.

The formal solution of the equation for p can be expressed
in terms of the evolution operator i(z, '), which satisfies the
equation ifi(d/dr)a(t,t") = Hu(z,¢') with the initial condi-
tion i1(¢, 1) = 1. The average current can be expressed through
the  Heisenberg operators  for  the  current,
NOE L?J[(t7 0) ja(t,0), and the velocity in the energy space,
o(t) = a'(1,0) fo[H(2)] a(z,0). It is convenient to express the
average current / as

[P, H| —

I=""exp(=2vm) Tr(T""JT"F) -

TI‘jl7
m=0
1, ~
7= 20— exp(—ip) i (10, 0)

2

L] (/2 R R 10/2

J= —J deexp(—vt)j (1), F = J dr (ve) (1),
loJ—1)2 —1y/2

. 1 [%/2 to/2 .
Ji = —J dr J dt’ exp[—v(t—t"]j (D) o("). (3)
10J) 1,2 t

Thus the average current is expressed in terms of the
operators J, F,J; defined along the time interval —10/2, to/2
which are dependent on the dynamics between the successive
Landau— Zener tunneling events, and by the unitary operator
T'which describes the long-time dynamics. Actually, the long-
time behavior of the system is determined by the eigenstates
|B) and eigenvalues exp(iff) of the operator 7.

2.2 Analysis of the operator T
We restrict ourselves to the case of weak scattering assuming
that the relevant matrix element 7 (which corresponds to a
momentum transfer ~ 2pg) is much less that the interlevel
spacing, A. At |V| < A the impurity potential is important
only near the crossings of ‘clockwise’ and ‘counterclockwise’
adiabatic terms, that takes place at the times #,, = mt,/2. As a
result of scattering, gaps are created in the adiabatic spectrum
at t = t,. Beyond the adiabatic approximation, these gaps
can be penetrated by Landau — Zener tunneling.
Consequently, one can discriminate between the rather
large time intervals of ballistic evolution (with duration
~ 1tp/2) and the small intervals of Landau—Zener tunnel-
ing. The typical duration of the latter is <+/#/i/A (cf. with
Ref. [11]). Thus at Aty/f > 1 the Landau—Zener tunneling is

indeed essentially confined within narrow intervals and
therefore can be described in terms of the scattering matrix

S = exp(idy) [V1 — 12 exp(i0;0.) + ita,] . (4)

The physical meaning of 7 is the probability amplitude for
Landau—Zener ‘forward scattering’, i.e. to the transition into
the state with the same angular moment while traversing the
interval of non-adiabatic motion. It turns out that the
quantities of interest here are independent of the phases 0,
and 0. For simplicity we put 6y = 0, = 0.

Having in mind the periodicity of ¢ we introduce the
vector basis

n, £)

1
E—zexp[il(NF n)elss

T

where

)0

In this representation, the operator T can be treated as an
operator acting on the direct product N and pseudo-spin
(s = £) spaces:

T= S{v 1 — 12 exp(inas.) ® N + 112 0L ® NRi} N. (5)

The operators Ry and N are defined as R.i|n,s) =
|nF 1,5), N = exp(2inan), ii|n, s) = n|n,s), a is the fractional
part of the quantity 4 = A/2e¢£ introduced above, while
o = (o £iay)/2.

The most interesting situation is the case of weak
relaxation, vy < 1. This inequality means that the relaxation
time is much longer than the interval between successive
Landau—Zener transitions. It can be shown by a direct
calculation that if this inequality is met then the operators J
and F acquire the form J=1LV® On's F=V® 00,1005
where Iy = |e|A/h is the amplitude of the persistent current
while

17:%( —SO‘ST)_‘L'G7—‘L'\/1—‘CZO')

Under the same conditions TrJ; = 72

The unitary operator 7' (as can be shown by direct
calculation)  possesses  the  properties R_TR, =
exp(—dina)T, o, T*(—i)a, = T(i). These properties result in

the following relations between the eigenstates of the
operator T
Op(n+m) = Qg azam(n), 0, 9p(=1) = @_g(n). (6

Here m = 0,+1, ... At irrational a these relations allow one to
generate a complete set of eigenstates provided i is known.
Hence, in this case the spectrum of 7 can be expressed in the
form exp(ifF) , where 7 = +f,(a) — 4nar, r = 0, +£1, 42, ...
At the same time it is evident that at rational a = p/q the
operator T, accordlng to Eqn (5) possesses the translational
symmetry, R! f"ﬁ; =T Consequently, the eigenstates of
the operator T have the Bloch form while the spectrum of 7'
can be represented by a band structure. In this case the
relations (6) also generate a complete set of eigenstates
provided structure of one band is known.
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Using equations (3) one can express the average current in
terms of eigenvalues and eigenfunctions of operator 7. In the
limit ¥ < 1 we get the following expression for the average
current:

= ZI Q) S Q= myy. (7)

+ sin? Dy

Here we denote ngy = ((|)ﬁ(n)7 I7q)ﬁr(n)), (a,b) is the
scalar product in pseudo spin space, @5 = (ff — f,)/2 and
¢4, (n) is any solution of the equation for eigenstates of the
operator 7. To find the eigenstates and eigenvalues of the
operator 7' explicitly it is convenient to introduce a new
operator

L =0_0, ®exp(inan) + So,o_ @ exp (— inan + %) .

By direct calculations [12] one can obtain a set of equations
for the auxiliary function dg(n) = L~ @g(n), which is
equivalent to the set of equations for the components
dip(n) = (st,dg(n)). Introducing the function B(m) as
d g(m/2) for even m and d_ 3[(m + 1)/2] for odd m one can
reduce this set of difference equations to a single equation for
B(m):

B(m+1)+Bm—1)+ K, B(m)=0,

where

2 i _
K, =—exp 1na sin | mwam + f—ma .
T 2 2

Solution of this equation allows one to determine both the
eigenstates and eigenvalues of 7. The results are different for
the cases of rational and irrational a.

Irrational a. According to the analysis = ﬁri =
+na —4nar, r =0,+1,42,... At = ma the eigenstate has
the form

: 2n
Pre = %J dk exp [ — ik(2n — 1)]
2 0

n
(exp [—
X
exp [ —
where £, = Fran(2n + 1),
= 7! k—m
k) 7;lsin(na1) o8 [1 2 } '

The infinite series (8) converges for almost all irrational
values of a, and y(k) is an analytic function. Consequently,
all eigenfunctions are exponentially localized, the localization
length Rio. = A((?) — <fz>2)1/2 in energy space being deter-
mined by the expression

( 2Rioc > i

ya % (nal)

One can see that in the vicinity of rational values p/q of a the
localization length Ry, diverges as At?/(2mngla — p/q|) in
agreement with the qualitative estimates given above.

Rational a(=p/q). Since the problem is translation
invariant in n-space the eigenstates can be labeled by a
quasi-momentum K (0 < K < 2rn/q). The spectrum is now
given by the equation

=00y — omalr o L) +2
[fr(lC)ona(;—l—z):I:q

X arcsin {rq sin {g (K —2mar + TC):| } ,

where r=0,1,...,¢ — 1. The expression for the Bloch
function @g(n) in the rational case is given elsewhere [12].

2.3 Final results

In the strong localization limit (v — 0) from Eqn (7) one
obtains the following expression for the current and dimen-
sionless conductance

R 2Rloc : _ 2Rloc :
I—Iov( A > , g_nhVA<e5A) . 9)

Consequently, in the irrational case the average current
tends to zero, when v — 0. In the rational case with the help of
Eqn (6) and the equation for $(K) the current can be expressed
as

I 1-vV1—a L Q=%
LT e et
I v 52 V2 + sin” @,
where

q—1

'Q;tlc = Z(¢ﬁ()> I}¢ﬁ/i) )

n=0

and ¢ (n) is the Bloch amplitude corresponding to the
eigenstate Y (n), &F = [B{(K) — f£(K)]/2. The first term
in Eqn (10) determines the contribution from the intraband
transitions on the average current. Formally, it tends to
infinity when v — 0. Consequently, the intraband transitions
determine the singular behavior of the current in the rational
case. These conclusions are in agreement with the results of
numerical calculations in Ref. [9]. An exact expression for the
eigenfunction ¢ﬂi( ) shows the limiting transition to expres-
sion (8) as g, p — oo, p/q = const. The current calculated
according to Eqn (10) also remains continuous. Thus,
Eqn (10) with large enough p and ¢ can be used as a good
approximation for irrational a-values. The results of such a
calculation is shown in Fig. 1.

3. Discussion and conclusion

The following two assumptions have been implicitly made in
our consideration: (i) the electron dynamics are governed by a
linear dispersion law; (ii) the energy gaps as well as the
scattering matrices S are the same for all the energy levels
involved. Assumption (i) is valid if the number of involved
states (limited by the relaxation rate) is much less than Ng.
This is the case if

m\* A
— | = N> 1.
( A ) €
The first factor in this product is small while the other two are
large. However, it can be concluded that the criterion can be
met under realistic experimental conditions.

Assumption (ii) is valid if the Fourier component of the
impurity (barrier’s) potential,

[V(w) exp(ing) dg,

is essentially n-independent for relevant n. This is the case if
the scattering potential is confined to a region of width
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I/1

0 r/q 1

Figure 1. The normalized current //1 as a function of « = p/g at v = 0.2
for different Landau —Zener tunneling amplitudes, 7. Iy = |e|A/h. Arrows
indicate the positions of maxima.

d¢p < 2mvty. Note that the inequality vty < 1 is essential for
maintaining a significant energy pumping.

Another approximation is that we have allowed for
relaxation in the simplest possible way by using a single
relaxation time in the equation for the density matrix. This
assumption is adequate if the relaxation is caused by a
transfer of the electrons in real space between the ring and a
surrounding reservoir. If the electron energy spectrum in the
reservoir is continuous, then the lifetime of an electron state in
the ring with respect to this mechanism is almost independent
of its quantum numbers. The mechanism discussed above
allows us to describe electron states in the ring as pure
quantum states, the relaxation rate being the decay through
escape to the reservoir. The exact results obtained above are
relevant for the case when such an ‘escape’ mechanism
dominates. Internal inelastic relaxation processes in the ring
can in principle lead to a significant difference between phase-
and energy relaxation rates. Such a situation requires a
separate treatment. However, in the most interesting case of
efficient Landau—Zener tunneling, the intrinsic inelastic
processes must involve a large momentum transfer and
therefore they are strongly suppressed [5].

In conclusion, the quantum electron dynamics problem in
a single-channel ballistic ring with a barrier, subjected to a
linearly time-dependent magnetic flux has been solved
exactly. Exponential localization in energy space has been
proven. Finally, we have shown that the dc-current exhibits a
set of peaks with fractional structure when plotted as a
function of the induced electro-motive force. This structure
is strongly sensitive to the barrier height, as well as to the
relaxation rate.
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Interference effects in mesoscopic
disordered rings and wires

M Pascaud, G Montambaux

1. Introduction

The observation of persistent currents in mesoscopic metallic
rings has revived interest in the comprehension of interference
effects in coherent diffusive systems [1—35] (for a review and
additional references see Ref. [6]). While transport quantities
like the weak-localization correction were calculated in the
’80s, the persistent current was studied more recently with the
same techniques [7— 17]. All these quantities can be related to
Diffuson or Cooperon diagrams which describe the diffusive
nature of the electronic motion, when the mean free path /, is
shorter than the typical size L of the system.

These diagrammatic calculations were then rewritten in a
more transparent way which explicitly relates the quantities
of interest to the return probability for a diffusive particle. In
this paper, we summarize the derivation of these quantities,
using a formalism which very simply relates all the quantities
and which allows their calculation from the knowledge of a
single function. We have recently used this formalism to
calculate the mesoscopic magnetization in various geome-
tries like connected rings. This may give a better under-
standing of the experimental situation as well as of the
interplay between interaction and disorder in mesoscopic
structures [15]. As examples, we present here the results for
rings and wires which can be derived straightforwardly from
this formalism.

2. Transport, thermodynamics
and return probability

We characterize the diffusive motion by the quantity
py(r, ', 1), solution of the diffusion equation:

. 2
) Jpterin = ow -0, )

[% +y—D (V +
where D is the diffusion coefficient. The scattering rate
y = D/Lfb describes the breaking of phase coherence. Ly is
the phase coherence length. y will be compared to
1/tp = D/L?* where tp is the diffusion time, i.e. the typical
time to diffuse through a system of size L. This time is the
inverse of the Thouless energy E. = hD/L>.
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