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parameter characterizing the ‘strength’ of the impurity
potential controls the RG-flow. The unified plot of the flow
diagram is rather rich. The flow diagram contains a new
attractive fixed line, L¢, controlling the low temperature
physics when the bare potential of the impurity is weak.
The existence of the attractive line Ly at an intermediate value
of the parameter u_, follows from the fact that both limiting
lines L, and Ly, have proved to be unstable. The presentation
of the phase diagram in the space of parameters characteriz-
ing the impurity potential, helps clarify the difference between
the Dy- and the L, lines of fixed points — they are located in
different parts of the phase diagram.

The scenario of Ref. [4] is based on the assumption of
scaling from a weak impurity scattering to a strong barrier.
The existence of the novel line of fixed points, the L¢-line,
indicates that the situation is more complicated (see
Figs 2a, 2b). We believe that the physics of the L-line (that
is different from the physics of two weakly connected semi-
infinite lines described by Djy) may be related to the
strengthening of the role of the Friedel oscillations in the TL
model [5]. We think that the attraction to L, but not to Dy, is
the reason for the results obtained by means of the Coulomb
gas theory for the tunneling density of states and the Fermi
edge singularity [7, 8].

To conclude, we identify a new attractive fixed point
controlling the strong coupling regime of the backward
scattering by a single local defect in the TL model. This
novel point may also have implications for some other related
problems, in particular to the theory of the motion of a
quantum particle in a dissipative environment. For a more
detailed version of the paper see Ref. [17].
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Ground states in one-dimensional
electron systems

W Hansen, D Schmerek, C Steinebach

The screening properties of a low-dimensional electron
system in heterostructures can be rather directly probed by
measurement of the capacitance between a metallic front
electrode and the electron system. In this way very valuable
information on the density of states (DOS) of the electron
system are acquired as demonstrated in a number of
publications on the DOS in electron systems of two [1, 2] or
even fewer [3—7] dimensions. For an unambiguous and even
quantitative analysis of the data it is crucial that the time in
which charge equilibrium in the system is established is much
shorter than the period over which the capacitance signal is
measured. This is generally not the case if the charge exchange
takes place by transport within the low-dimensional system.
At high magnetic fields the capacitance signal then incorpo-
rates transport properties in the electron system with peculiar
behavior at even filling factors where the diagonal conductiv-
ity vanishes [8 — 11]. On the other hand special heterojunction
devices are developed that contain a back contact from which
charge injection into the low-dimensional electron system
takes place at high rates even in high magnetic fields. In this
contribution we would like to summarize a number of
experiments performed on such devices with electron chan-
nels of different widths. The results demonstrate that the gate
voltage dependence of the capacitance reflects the formation
of edge states [12, 13] and — at even smaller channel width —
spatial quantization into one-dimensional (1D) subbands.

In Figure 1 a cross section and a top view of the metal
insulator semiconductor (MIS) devices used for our experi-
ments is sketched. The heterojunction samples are grown by
molecular beam expitaxy and contain an Si-doped back
contact, a GaAs spacer, a barrier formed by an AlAs/GaAs
superlattice a thin GaAs cap layer and thermally evaporated
gate electrodes that are finely patterned by electron beam
lithography [6]. The layer thicknesses of the GaAs spacer
layer, the barrier and the cap are 100 nm, 37 nm and 5 nm,
respectively. The gate electrodes form a 150 um long center
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Figure 1. Cross section and top view of a MIS heterojunction device for the
investigation of narrow electron channels. In the top view light areas
represent the front electrodes and the dark area — the back contact. The
thicknesses of the barrier and the separation between the gate and back
electrode are, respectively: d = 42 nm and D = 142 nm.
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electrode of width w that is enclosed by a tuning fork shaped
electrode. The latter essentially consists of two side gates
running parallel to the center electrode at a distance of
150 nm. In our devices the barrier is undoped to minimize
potential fluctuations in the electron channel under investiga-
tion. The gates are biased at different voltages V/; and V, with
respect to the back electrode. The electron channel is created
beneath the center gate at gate voltages V| larger than a
threshold voltage Vy,. Whereas the center electrode mainly
controls the electron density in the channel the confinement
potential is tuned by the voltage V, applied to the side gates
[14].

Typical capacitance gate voltage traces of devices with
different widths of center electrode are presented in Fig. 2.
The sudden rise of the capacitance denotes the threshold
voltage at which the electron channel is created. Threshold
voltages are found to increase with decreasing gate width. In
Figure 2 the gate voltage scales of the different devices are
offset in order to make comparison convenient. For the same
reason the capacitances of the devices are normalized to
similar values. A magnetic field B = 6 T is applied perpendi-
cular to the sample surface. The dashed line depicts the
capacitance of a device with a wide gate so that the channel
edge does not contribute to the signal. A pronounced
minimum at V; — Vi, = 0.23 V denotes the gate voltage at
filling factor v = 2 where the chemical potential traverses the
Landau gap in the DOS. A much less pronounced minimum
at V; — Vi = 0.11 V is associated with filling factor v =1
where the chemical potential traverses the much smaller spin
gap. The DOS in the Landau and spin gap have been
thoroughly investigated in a similar device in recent publica-
tions [2, 15, 16]. The full line denotes the capacitance signal
recorded on a device with a center gate of width w = 300 nm.
The potential difference between the side gates and the center
gate is kept constant at AV = V| — V, = 3.5 V. It is obvious
that the onset of the capacitance at the threshold is much
smoother, the capacitance minimum at filling factor v =2 is
asymmetric and shifted to higher gate voltages. These features
can be understood in a simple model that considers the

contribution of the edge states to the capacitance signal [14,
17]. The dashed line presents the capacitance of a device with
gate width w = 100 nm and will be discussed in more detail
later.

Whereas in a bulk two-dimensional (2D) device the form
of the capacitance minimum is always symmetric and
determined by the defect-induced DOS in the whole device
[15], in the small w = 300 nm device we expect the edge states
to significantly contribute to the capacitance minimum. It is
well known that the screening properties of the electrons in
the edge states lead to the formation of compressible electron
stripes at the edge of the 2D device[12, 18]. They are separated
by a number of incompressible stripes that is equal to the
number of Landau gaps below the Fermi energy. In our
simple, semi-quantitative model the compressible stripes
contribute to the measured capacitance like perfect metallic
electrodes whereas the incompressible stripes do not. We
assume that the capacitance is proportional to the area of
the compressible stripes, which is a good approximation as
long as the distance between the electron system and the gate
is smaller than the width of the compressible stripes.

The capacitance thus approximately reflects the geometry
of the compressible stripes as indicated by the inserts in Fig. 3.
Here the capacitance is depicted together with the result of
our model for gate voltages at which the system is close to
filling factor v = 2. If spin splitting is neglected, the channel
form a single compressible stripes at filling factors v < 2 with
a width determined by the confinement potential [17]. In
particular, a smooth confinement potential results in a
smooth increase of the capacitance, which explains the
strikingly smoother onset of the capacitance of the
w = 300 nm device although the gate area of the sample is
just 6% of the bulk 2D sample. In our model we expect the
capacitance to be maximal at a gate voltage at which in the
center of the channel the local density is at filling factor v = 2.
In contrast the bulk device exhibits a minimum precisely at
v = 2 reflecting the low DOS in the cyclotron gap. This nicely
demonstrates that in our w =300 nm device edge states
predominantly determine the capacitance signal rather than
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Figure 2. Differential capacitance measured as a function of the gate
voltage in devices of different gate width at B =6 T. The capacitance
signals are normalized to similar values at ¥} — Vy, = 0.35 V in order to
make comparison possible. The dashed line presents the differential
capacitance of a 2D sample with wide gates, so that the edge channels do
not significantly contribute to the signal. The full line is recorded in a
device with w = 300 nm at AV = 3.5 V and the dotted line with w = 100
nm at AV = 1.0V, respectively.

Differential capacitance (fF)

Figure 3. Differential capacitance of the w = 300 nm device close to the
gate voltages at which the second Landau level starts to become occupied.
The inserts sketch the screened confinement potential and the geometry of
the compressible stripes at gate filling factors below, about equal to and
above 2. The bias between the center gate and side gates AV = 3.2 V. The
dashed line and open circles are calculated in a model described in the text.




February, 1998

4. Quasi-1D systems, networks and arrays 177

the defect induced DOS as is the case in wider channels. At
higher voltages an incompressible gap arises in the channel
center as indicated by the top insert and leads to a steep
decrease of the capacitance. The capacitance drops until a
further compressible stripe arises in the center of the channel
that is associated with the second Landau level. The width of
the central stripe changes much faster than the area of the
incompressible stripes giving rise to a smooth increase of the
capacitance signal similar to that at the onset.

The dashed line and open dots denote the results of our
model calculations. The external confinement potential used
for the calculation was determined numerically with a Poisson
solver with boundary conditions dictated by the potentials of
the gates. The exposed surfaces between the gates are treated
as a dielectric interface with no additional surface charges
[14]. The agreement between measurement and model is quite
good.

From the dotted line in Fig. 2 it is obvious that the gate
voltage dependence of the capacitance changes completely if
the channel width is reduced even further, so that size
quantization becomes important. The onset is even steeper
than that of the two-dimensional sample. It has a small dent at
a slightly higher gate voltage and a larger one close to gate
voltages where in wider channels the density corresponds to a
filling factor v = 2. A structure associated with spin splitting
is not observed in this trace but becomes visible in greater
magnetic fields or at lower temperatures [19].

In Figure 4 the capacitance of the w = 100 nm device is
recorded at different magnetic fields. In contrast to the
behavior of 2D devices the capacitance trace exhibits an
already pronounced structure at zero magnetic field. Both
the dent close to the onset and steps in the capacitance can be
clearly resolved. It has been shown [6, 19] that the steps reflect
the onsets of the 1D subbands in the channel as indicated in

Differential capacitance (fF)

0 | | | | |
0.75 0.80 0.85 0.90 0.95 1.00 Vg, V

Figure 4. Differential capacitance of a w = 100 nm device recorded at
magnetic fields applied perpendicular to the wires. The topmost trace is
recorded at B = 0 T. The lower traces are offset for clarity and recorded at
fields increasing in steps of 1 T. Indices denote the one-dimensional
subbands that start to become occupied in the steps of the B =0 T trace.

Fig. 4. From magneto-capacitance measurements, for gate
voltages below the onset of the second subband we determine
typical average subband spacings of 4—5 meV with a
parabolic confinement model. From far infrared absorption
experiments we determine 6— 10 meV for the level spacing in
the unscreened confinement potential.

From comparison of the traces in Fig. 4 it is obvious that
the capacitance minimum observed in Fig. 2 is associated with
the onset of the second 1D hybrid subband. Even at high
magnetic fields where the magnetic length becomes smaller
than the channel width the asymmetry of the capacitance
minimum obviously remains very distinct from that in wider
channels.

From Figure 4 it is also clear that the structure at the onset
of the quantum wire also exists at zero magnetic field. In our
two-dimensional devices such a structure is not observed. At
present the origin of this structure is not fully clear. However,
numerical simulation calculations indicate that it may be the
result of interaction effects. Typical results of such calcula-
tions are presented in Fig. 5 for gate voltages very close to the
threshold voltage. The potential and electron density dis-
tributions in the quantum wire are calculated with a self-
consistent Schrodinger —Poisson solver. Electron—electron
interaction effects are included in a local density approxima-
tion [20]. Boundary conditions are determined by the applied
gate voltages. At the exposed crystal surface between the
center and side gate electrodes we assume the Fermi energy to
be pinned at the midgap position [21].
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Figure 5. (a) Differential capacitance, (b) Fermi energy and (c) subband
separation calculated with a self-consistent Schodinger —Poisson solver
for aw = 100 nm sample at gate voltages very close to the threshold of the
quantum wire. It is assumed that no magnetic field is applied, AV =2.0V
and that there is just thermal but no inhomogeneous broadening.
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In Figure 5a the thus calculated differential capacitance is
depicted for temperatures 7 =4 and 8 K. At the lower
temperature the capacitance rises steeply and is clearly
enhanced in the onset region. At higher temperature the
enhancement is washed out. The origin of the enhancement
can be identified with the help of Fig. 5b and 5c, where the
Fermi energy and the energy separation between the first and
second 1D subband are depicted, respectively. If the quantum
wire just starts to become filled with electrons the Fermi
energy drops at low temperature and the energy separation
between the subbands increases. Neither feature is expected in
a Hartree calculation [22]. However, a qualitatively similar
behavior is predicted in analytical calculations that include
exchange-correlation effects [23]. In addition, it is well known
from experiments on 2D systems that many-particle effects
can lead to so-called ‘negative compressibility’ giving rise to
an enhanced capacitance [24, 25]. Such effects are observable
in our 2D devices at high magnetic field and low temperatures
[26]. The fact that they are less pronounced indicates that
correlation effects are much more important in 1D electron
systems.

In summary, we present capacitance measurements on
electron channels of different widths in the range where we
expect a transition from 2D to 1D behavior. In wide channels
the typical 2D behavior is found. Pronounced and symmetric
capacitance minima at even filling factors reflect the reduced
DOS in the cyclotron gap that is dependent on impurity
induced potential fluctuations in the bulk of the device. In
contrast the capacitance of 300 nm wide channels is
dominated by the influence of the confinement on the width
of the compressible electron stripes at the channel edge. The
onset of the capacitance is considerably smoother than in
wide channels and the minimum at integer filling factors is
asymmetric. At even smaller channel width the capacitance
reflects the spatial quantization into one-dimensional sub-
bands. The shape of the capacitance minima is strikingly
different to that of wider channels, the onset becomes steep
again and it exhibits additional structure. Simulation calcula-
tions indicate that the observed enhanced capacitance at the
onset reflects the importance of the exchange energy in the
ground state of quantum wires in the one-dimensional
quantum limit.
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Pumping of energy into a mesoscopic ring.
Exactly solvable model

L Gorelik, S Kulinich, Yu Galperin,
R I Shekhter, M Jonson

1. Introduction

The physical properties of mesoscopic systems are strongly
influenced by the quantum interference of electronic states
(see, e.g., Ref. [1] and references therein). Anderson
localization of electrons, universal fluctuations of conduc-
tance as well as the periodic magnetic field dependence of
thermodynamical and transport properties of multiply con-
nected devices (e.g., metallic rings) are important examples.
Previous extensive studies in mesoscopic physics were
concentrated mainly on thermodynamics, as well as on the
linear response of nanosrtuctures to dc or electrical and
magnetic perturbations slowly varying in time. At the same
time, relatively little is known about the nonlinear response of
mesoscopic systems to a time-dependent bias. In general, an
electron driven by an external time-dependent force does not
conserve energy. In spite of the non-conservation of energy,
interference processes remain crucially important if the phase
breaking rate is much less than the rate characterizing
dynamical redistribution of the electron wave function
between different states in the energy space.

Below we consider an example of such a system, namely a
single-channel mesoscopic ring subjected to a non-stationary
perpendicular magnetic field, linearly dependent on time. We
concentrate on the energy accumulation in such a system as a
function of time. To investigate the role of interference, we
take into account electron backscattering from a single
potential barrier (‘defect’), embedded in the ring. It is shown
that by tuning either the time derivative of the external
magnetic field variation, or the transmission amplitude
through the barrier (by the gate potentials), one can influence
the interference pattern, and in this way significantly change
the dynamics. Impure conducting rings have been extensively
discussed in connection with energy dissipation in mesoscopic
metallic systems [2]. Gefen and Thouless [3, 4] have suggested
that randomly distributed impurities lead to the so-called



