
increase in the noise voltage is observed as expected from
CDW dynamics.

5. Conclusions

We have presented four-probe measurements on CDW wire
structures with micron-size dimensions. Wires are made in
thin films consisting of single-phase Rb0:30MoO3 with a
granular structure. The quasi-particle resistance measured
as a function of temperature clearly reveals the expected
opening of an excitation gap at a Peierls temperature of
180 K. The value of the zero-temperature gap is suppressed
for films with the smallest grain sizes. We clearly observe
nonlinear current-voltage characteristics, indicative of the
sliding of CDWs. The threshold field is much higher than
reported on bulk crystals.

Finite-size effects may play a role, but the possibility of
CDW depinning from grain boundaries or contact interfaces
must also be considered.
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Flow diagram for impurity scattering
in Tomonaga ëLuttinger liquids

Y Oreg, A M Finkel'stein

1. Introduction
The electron liquids in quantumwires are usually described in
terms of the Tomonaga ±Luttinger (TL) model [1]. Edge
states in a two-dimensional electron gas, under conditions
of the fractional quantum Hall effect, were argued to be TL
liquids as well [2]. It is well known that in the TLmodel with a
repulsive electron ± electron (e ± e) interaction the effective
strength of backward scattering by an impurity defect
increases with decreasing temperature [3]. For this reason,
the description of a single defect in a TL liquids is based on
the assumption [4 ± 6] that at low temperatures the asympto-
tic behavior of the system may be described as tunneling
between two disconnected semi-infinite TL wires. The
effective amplitude of tunneling between the half-wires
scales to zero with decreasing temperature, because the
tunneling density of states at the ending point of a TL liquid
vanishes when the e ± e interaction is repulsive. This
description corresponds to a scenario in which the effective
strength of the impurity increases in the course of the
renormalization, so that at the final stage a weak impurity
transforms into a strong barrier, and disconnects the TLwire.
However, a direct calculation of the tunneling density of
states [7] obtained by a mapping of the weak impurity
problem onto a Coulomb gas theory, apparently contradicts
this intuitive picture. It has been found that at the location of
a weak impurity the tunneling density of states is enhanced,
rather than vanishing. The scenario in which a weak impurity
eventually disconnects a TL wire assumes that no other fixed
points intervene in the scaling from the repulsive fixed point
of a weakly scattering defect to the attractive fixed point
corresponding to a tunneling junction of two half-wires. The
contradiction by this scenario of calculations of single particle
properties, such as the tunneling density of states [7], and the
Fermi edge singularity [8], indicates that maybe this is not the
case.

In this work the problem of a single impurity in TL liquids
with a repulsive e ± e interaction is reinvestigated. We
concentrate on the limit when the Fermi wave length is
much larger than the defect size. This situation is typical for
semiconductors, where the filling of the conduction band is
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Figure 5. Noise-power spectral density of the output signal measured

across an Rb0.30MoO3 wire at V � 0 V (pinned state) and at V � 0:3 V

(sliding state). Inset: the rms noise voltage measured at different voltages.
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far from one half. Then the internal structure of the defect is
not important{, and it is possible to describe the problem as a
continuous model with an appropriately chosen point-like
defect. We show that in the continuous model the low energy
physics of a weak impurity is controlled by a fixed point that
differs from a tunneling junction of two half-wires. Namely,
we find here that the fixed point for infinitely strong impurity
backward scattering is repulsive. This implies that there
should also exist an attractive fixed point at a finite value of
the backward scattering amplitude. An important fact is that
the fixed point describing the tunneling junction and the two
new fixed points describing backward scattering are located
in different parts of the RG flow diagram. We think that the
attraction of the weak impurity problem to the new fixed
point is the reason for the difference between the results
obtained by means of the Coulomb gas theory for the single
particle correlators, and those obtained relying on the
scenario of two disconnected wires.

2. Weak and strong impurities' potential limit
In this section we recall the main results concerning the
renormalization of the problem in the limits of a weak and
of a strong impurity potential. The Hamiltonian of the TL
model in the bosonic representation is given by

HB
TL �

vF
2g

�
dx

��
df
dx

�2

�
�
d~f
dx

�2�
: �1�

Here the operators f and its dual partner ~f are related to the
electron density and current density of the electron liquid
respectively. The parameter g describes the e ± e interaction;
g < 1 when the e ± e interaction is repulsive, while for the
attractive interaction g > 1.

Let us discuss the scattering of the electrons by an
impurity potential U�x�. For low energy physics only
processes of electron scattering with a momentum transfer
close to zero and to 2kF are essential. For a weak impurity the
forward and backward scattering amplitudes are

u� �
�
dx

U�x�
vF

; uÿ � jU2kF j
vF

;

where

jU2kF j exp�iju� � ÿ
�
dxU�x� exp�i2kFx� :

For a local potential the line of the bare parameters
corresponds to u� � uÿ. In addition to u�, uÿ, and ju,
another parameter, ua, describing the asymmetry of the
forward scattering of left and right movers can be intro-
duced. In the presence of time reversal symmetry ua � 0, but it
is not necessarily zero for the quantum Hall edge states. The
RG-equations for the backward scattering problem are

duÿ
dx
� uÿ�1ÿ g� ; du�

dx
� dua

dx
� dju

dx
� 0 : �2�

These equations describe a repulsive manifold of fixed
points L0, denoted as the L0-line at the left-bottom corner,

u�5 1, of the RG-plane depicted in Fig. 1. Under the
condition that the impurity can be described as a local weak
potential in a TL liquid, the forward scattering amplitude u�
is a marginal parameter. In contrast to u�, the backward
scattering amplitude uÿ is relevant for the repulsive case.
Equation (2) were derived [4] for small uÿ. The renormaliza-
tion of uÿ in the strong coupling regime is discussed in
Sections 3 and 4.

When the bare impurity is strong enough, the description
of the problem in terms of the scattering amplitudes
uÿ; u�; ua, and ju ceases to be adequate. On the other hand,
the fact that the impurity is strong does not contradict the
assumption of locality kFa5 1. A local and strong impurity
can also be considered as a point-like problem, but now it
should be described by two semi-infinite TL liquids, with a
weak tunneling junction between their ending points. Like in
the case of the weak potential scattering, there are four
parameters that describe the tunneling and reflection pro-
cesses at the tunneling junction of the two half-wires. These
parameters are the tunneling amplitude tÿ, its phase jt, and
the two parameters, t� and ta, characterizing the phases that
an electron acquires when it is reflected at the ends of the half-
wires. The parameter ta describes the asymmetry of the left
and the right parts of the tunneling junction. In the particular
case of a strong d-function potential, where u� � u 4 1, the
amplitudes t� � 1=u.

The low energy physics of each semi-infinite wire may be
described by a single chiral mode [4, 10]. It will be assumed
that there is no density ± density interaction between the half-
wires, but inside each of them the density ± density interaction
is present. The RG-equations for the tunneling problem are
analogous to Eqn (2):

dtÿ
dx
� tÿ

�
1ÿ 1

g

�
;

dt�
dx
� dta

dx
� djt

dx
� 0 : �3�

In contrast to uÿ, the tunneling amplitude tÿ scales to
zero for the repulsive e ± e interaction (g < 1). Therefore,
the manifold of fixed points describing the tunneling
problem is attractive. In the two-dimensional plot
depicted in Fig. 1 it is presented in the upper right
corner as the D0-line.

{On the contrary, when a tight binding model with a link defect is used to

analyze the backward scattering the final fixed point depends on the

internal structure of the defect (see, e.g., Ref. [9]).

L1 D0

1

1=t�

1=tÿ

u�
0

Lf

L0

"uÿ"

Figure 1.RG-flow diagram of a point-like defect in a quantum wire with a

repulsive electron ± electron interaction. The weak impurity scattering

problem is represented on the left side, and the tunneling model on the

right. For a local defect the two problems do not flow to each other in the

model with a linearized electron spectrum. The attractive fixed line Lf

controls the low temperature physics of the backward scattering. (For

details see Section 4.)
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3. A mapping onto a spin-1/2 semi-inénite chain
In this section the problem of a local impurity in the TLmodel
is mapped onto a semi-infinite spin-1=2 Heisenberg chain,
with a magnetic field h / uÿ acting on a spin located at the
origin of the chain. The mapping onto a spin chain is an
appropriate way to study the nature of the strong coupling
regime for the amplitude uÿ.

It is convenient to describe a point-like impurity scattering
by a pair of chiral variables [10]

Ye�x� � 1

2
���
2
p �

~f�x� � ~f�ÿx� ÿ f�x� � f�ÿx�� ;
Yo�x� � 1

2
���
2
p �

~f�x� ÿ ~f�ÿx� ÿ f�x� ÿ f�ÿx�� : �4�

In terms of self dual operators Ye and Yo the scattering
Hamiltonian can be rewritten in the form

H � He �Ho ;

Ho � vF
g

�
dx

��
qYo

qx

�2

ÿ uÿg
pZ

cos�b
���
2
p

Yo�d�x�
�
;

He � vF
g

�
dx

��
qYe

qx

�2

ÿ u�bg���
2
p

p

qYe�x�
qx

d�x�
�
: �5�

Although Ye and Yo do not commute,�
Ye�x�;Yo�y�

� � ÿi=4, the Hamiltonian H is divided into
even and odd parts, because the even part, He, contains only
derivatives. For simplicity we omit the phase ju, and the ua-
term related to time reversal asymmetry, inHo.

We now show that the odd part Ho is effectively
equivalent to the Hamiltonian of a semi-infinite spin-1=2
antiferromagnetic chain with anisotropy g:

HS � J

2

X1
n�0

ÿ
S�n S

ÿ
n�1 � Sÿn S

�
n�1
�� gJ

X1
n�0

��
S�n S

ÿ
n ÿ

1

2

�

�
�
S�n�1S

ÿ
n�1 ÿ

1

2

��
ÿ hJ

ÿ
Sÿ0 � S�0

�
: �6�

AHamiltonian of this type, with g � 0, was introduced by
Guinea [11] for the description of a quantum particle
interacting with a dissipative environment, at a particular
value of the friction coefficient. It has also been used to
discuss the transmission through barriers in TL liquids [4], for
a given value of the e ± e interaction g � 1=2. Here we
introduce the g-term in order not to be limited to a particular
value of the e ± e interaction.

To show the equivalence of Ho and HS, one should
perform a sequence of transformations. After applying the
inverse of the Jordan ±Wigner transformation [12], HS

transforms in a standard way into

Hc � J

2

X1
j�0

c
y
j cj�1 �H:c:� gJ

X1
j�0

��
nj ÿ 1

2

�

�
�
nj�1 ÿ 1

2

��
ÿ hJ

�
c
y
0 � c0

�
; �7�

where the fermion systemHc is at half filling. The continuum
limit of Hc (e.g., see Ref. [12]) corresponds to the effective
Hamiltonian Hcont

c � H0 �Hint �HUm �Hh, where

H0 � ivF

�1
0

dx�LyqxLÿ RyqxR� ;

Hint � vF�g
�1
0

dx��r2L � �r2R � 4�rR�rL� ;

HUm � ÿ2�gvF

�1
0

dx
��RyL�2 � �LyR�2� ;

Hh � vF 1���
Z
p h

�
R�0� � L�0� � Ry�0� � Ly�0�� :

Here vF � JZ, where Z is the lattice spacing, and the operators
L andR represent left and right movers on a semi-infinite line.
The remnant of the discrete structure of the chain is the term
HUm which corresponds to the Umklapp processes at half
filling. This Umklapp term scales to zero for j�gj < 1. It also
renormalizes the parameters of Hint. But at small �g the latter
effect is negligible, and therefore one may ignore HUm. The
last step which needs to be carried out is to unfold the semi-
infinite line with left and right movers into a full line with a
single chiral bosonic field. After diagonalizing the quadratic
part of the Hamiltonian, we find:

Hchiral � vF
gch

�1
ÿ1

dx

�
pr2ch�x�

ÿ 4gch������
2p
p

Z
h cos

�
bch �Ych�x�

�
d�x�

�
; �8�

where d �Ych�x�= dx �
���
p
p

rch�x�, bch �
������
4p
p

exp w,

w � 1

2
arctanh

�
2g

p� g

�
; gch �

�
1� g

p

�ÿ1
:

Notice, the important role of the g-term Ð it modifies bch
inside the cosine term.

Thus, as a result of the sequence of transformations

HS ! Hc ! Hcont
c ! Hchiral ! Ho �9�

we obtain that the Hamiltonians HS and Ho are equivalent
when bch �

���
2
p

b and h � uÿ�8p�ÿ1=2. Due to the g-term, this
equivalence is extended here to a finite interval of the e ± e
interaction.

We will use the equivalence of Ho and HS to analyze the
stability of the fixed line at uÿ � 1 and small u�. A variant of
theNozieÂ res andBlandin approach [13] in their analysis of the
two channel Kondo problem will be considered. Following
this approach, we will assume that h4 1, and check whether
the fixed point h � 1 is a stable one. In the presence of a
strong magnetic field h4 1, the spin at site 0 is oriented along
the direction opposite to themagnetic field. Its coupling to the
nearest neighbor at the lattice site 1, can be treated as a
perturbation. After performing the permutation x! z,
y! x, and z! y the reduced Hamiltonian that includes
only sites 0 and 1 is given by

H01
S � JSz

0S
z
1 �

J

4
�1ÿ �g��S�0 S�1 � Sÿ0 S

ÿ
1

�
� J

4
�1� �g��Sÿ0 S�1 � S�0 S

ÿ
1

�ÿ 2hJSz
0 : �10�

For h4 1 the spin at site 0 is in the state j0 "i. Up to the
first order in J we have h1# jh0" jH0

S1j0"ij1#i � ÿJ=4 and
h1" jh0" jH0

S1j0"ij1"i � J=4. This means that the spin at site
1 is under the action of an effective magnetic field ~h � ÿ1=4.
Under the assumption that h4 1, the higher orders in the
perturbation theory give small corrections to ~h, of the order of
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hÿ1. As a result of this renormalization procedure step, we
arrive at a problem equivalent to the initial one: a semi-
infinite spin-1/2 Heisenberg chain, with a local magnetic field
acting on the site at the origin of the chain (now it will be
site 1).

If one assumes that the discussed fixed point is such that
the local magnetic field at the origin of the spin chain flows
to infinity, then the renormalization procedure generates a
relevant operator that makes this process non-convergent.
This is in contradiction with the initial assumption that
h � 1 is a stable fixed point. We have to conclude that
h � 1 is a repulsive fixed point. This conclusion holds for a
finite interval of the parameter j�gj91, because �g does not
radically influence the effective magnetic field acting on
site 1.

It is not accidental that the present discussion resembles
the analysis of the overscreened two channel Kondo problem
[13]. Indeed, the spin chain model, in the absence of the g-
term, is equivalent to the TL-impurity problem at a particular
value of the e ± e interaction parameter g � 1=2, [4, 11]. The
latter problem can in turn be reduced to a resonant level
model [14]. The overscreened two channel Kondo model at a
specific value of the longitudinal exchange coupling is
equivalent to the resonant level model as well [15]. Thus, the
spin chain model and the Kondo model are equivalent at one
point. On the other hand, it is well known that in the
overscreened two channel Kondo problem the limit of
infinite exchange interaction is unstable, and there is an
anomalous fixed point at a finite coupling [13]. This property
is preserved in the presence of a spin exchange anisotropy,
which is irrelevant [16]. Since the spin chain model and the
two channel Kondo model are equivalent at one point, it is
natural that we have found that the point h � 1 is repulsive.
Since h / uÿ, it follows from this analysis that the line L1
corresponding to uÿ4 1 is a repulsive fixed line for the
problem of impurity scattering in a TL liquid. The present
treatment is not restricted to the special point of a TL liquid
with g � 1=2. This has been accomplished by the g 6� 0 term in
the spin chain model.

4. The uniéed RG êow diagram
The information collected up to now is presented in the
combined plot as Fig. 1. In this plot, the scattering model is
presented on the left side, and the tunneling model on the
right. Since for a large barrier the backscattering amplitude
is large, and the tunneling amplitude is small, we use the
vertical axis to represent uÿ and 1=tÿ. The horizontal axis
represents u� together with the other parameters, which in a
model with a linearized electron spectrum are not renorma-
lized. To complete the central part of the flow diagram, a
region of an intermediate impurity strength should be
studied. None of the two limiting models describes the
problem faithfully in this crossover region, and a considera-
tion of a more comprehensive Hamiltonian, which covers
both limiting cases, is needed. Moreover, to study the RG-
flow in the crossover region, one has to give up the
approximations of the linearized electron spectrum and/or
of the locality of the defect. (In the bosonized representation
the curvature of the electron spectrum is described by terms
/ rL�R�3. To consider the nonlocality of the impurity one
may add a term

/ cyR�0�
d

dx
cL�0� �H:c: ;

when kFa5 1 the coefficient of this term is very small.)
Effects arising due to the nonlinearity of the electron
spectrum and the nonlocality of the defect should be studied
by a loop expansion in higher orders. These effects may have
highly important influence on the renormalization of the
parameters u� and uÿ, because the decoupling of forward
and backward scattering is no longer valid. As a result it may
cause the flow lines near the Lf-line to bend to the left or
right.

The plot in Fig. 1 is based on the idealizedmodels, and as a
draft it gives a hint how the known limiting cases could be
matched together. Since the curvature of the electron spec-
trum is not universal, different scenarios can occur. The two
most apparent versions of the flow diagram are presented in
Figs 2a and 2b, but more sophisticated variants can be
imagined due to the multidimensionality of the problem,
which up to now was hidden by the linearized spectrum
approximation together with the locality of the defect. In the
version presented in Fig. 2a, the limiting cases of a weak and a
strong impurity are not connected by flow trajectories. In
contrast, the RG-flow presented in Fig. 2b corresponds to a
scaling from L0 toD0, i.e., from a weak impurity scattering to
the limit of two disconnected half-wires, as was assumed in
Ref. [4]. However, this version of the RG-flow acquires, in the
present discussion, a new essential element. Namely, the flow
trajectory after the first stage where it reaches the Lf -line
dwells at length in its vicinity, and this leads to an intermediate
asymptotic behavior. For a weak enough impurity this
intermediate regime can be very long, and then it determines
the low energy physics in a certain temperature range.

We emphasize that in considerations of a local defect
within a linearized electron spectrum approximation, RG-
trajectories that start at L0 end at Lf. This approximation has
been utilized in the mapping of the problem onto a Coulomb
gas theory [7, 8]. Therefore, the tunneling density of states,
and the Fermi edge singularity exponent, found in Refs [7, 8]
correspond to the physics near Lf, and not to a tunneling
junction, i.e., not near D0.

5. Conclusions
We have studied a single impurity in TL liquids with a
repulsive e ± e interaction. The problem has been described
by a continuous model with a point-like defect. Apart from
the backward scattering amplitude for a weak impurity, and
the tunneling amplitude at the opposite extreme, another

D0

u�

L11
1=tÿ

0
L0

"uÿ"

D0

u�

L11
1=tÿ

0
L0

"uÿ"

a b

Figure 2. Two possible modifications of the flow diagram that can occur

beyond the approximations of the model, such as the linearization of the

spectrum, the locality of the defect, etc. The flow diagram becomes

dependent on the model parameters in a non-universal way.
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parameter characterizing the `strength' of the impurity
potential controls the RG-flow. The unified plot of the flow
diagram is rather rich. The flow diagram contains a new
attractive fixed line, Lf, controlling the low temperature
physics when the bare potential of the impurity is weak.
The existence of the attractive line Lf at an intermediate value
of the parameter uÿ, follows from the fact that both limiting
linesL1 andL0, have proved to be unstable. The presentation
of the phase diagram in the space of parameters characteriz-
ing the impurity potential, helps clarify the difference between
the D0- and the Lf- lines of fixed points Ð they are located in
different parts of the phase diagram.

The scenario of Ref. [4] is based on the assumption of
scaling from a weak impurity scattering to a strong barrier.
The existence of the novel line of fixed points, the Lf-line,
indicates that the situation is more complicated (see
Figs 2a, 2b). We believe that the physics of the Lf-line (that
is different from the physics of two weakly connected semi-
infinite lines described by D0) may be related to the
strengthening of the role of the Friedel oscillations in the TL
model [5]. We think that the attraction to Lf, but not toD0, is
the reason for the results obtained by means of the Coulomb
gas theory for the tunneling density of states and the Fermi
edge singularity [7, 8].

To conclude, we identify a new attractive fixed point
controlling the strong coupling regime of the backward
scattering by a single local defect in the TL model. This
novel point may also have implications for some other related
problems, in particular to the theory of the motion of a
quantum particle in a dissipative environment. For a more
detailed version of the paper see Ref. [17].
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Ground states in one-dimensional
electron systems

W Hansen, D Schmerek, C Steinebach

The screening properties of a low-dimensional electron
system in heterostructures can be rather directly probed by
measurement of the capacitance between a metallic front
electrode and the electron system. In this way very valuable
information on the density of states (DOS) of the electron
system are acquired as demonstrated in a number of
publications on the DOS in electron systems of two [1, 2] or
even fewer [3 ± 7] dimensions. For an unambiguous and even
quantitative analysis of the data it is crucial that the time in
which charge equilibrium in the system is established is much
shorter than the period over which the capacitance signal is
measured. This is generally not the case if the charge exchange
takes place by transport within the low-dimensional system.
At high magnetic fields the capacitance signal then incorpo-
rates transport properties in the electron system with peculiar
behavior at even filling factors where the diagonal conductiv-
ity vanishes [8 ± 11]. On the other hand special heterojunction
devices are developed that contain a back contact from which
charge injection into the low-dimensional electron system
takes place at high rates even in high magnetic fields. In this
contribution we would like to summarize a number of
experiments performed on such devices with electron chan-
nels of different widths. The results demonstrate that the gate
voltage dependence of the capacitance reflects the formation
of edge states [12, 13] andÐ at even smaller channel widthÐ
spatial quantization into one-dimensional (1D) subbands.

In Figure 1 a cross section and a top view of the metal
insulator semiconductor (MIS) devices used for our experi-
ments is sketched. The heterojunction samples are grown by
molecular beam expitaxy and contain an Si-doped back
contact, a GaAs spacer, a barrier formed by an AlAs/GaAs
superlattice a thin GaAs cap layer and thermally evaporated
gate electrodes that are finely patterned by electron beam
lithography [6]. The layer thicknesses of the GaAs spacer
layer, the barrier and the cap are 100 nm, 37 nm and 5 nm,
respectively. The gate electrodes form a 150 mm long center

Back electrode
Barrier

GaAs

V2

V1

150 mm

w

150 nm

Electron channel

100 nm

Figure 1.Cross section and top view of aMIS heterojunction device for the

investigation of narrow electron channels. In the top view light areas

represent the front electrodes and the dark area Ð the back contact. The

thicknesses of the barrier and the separation between the gate and back

electrode are, respectively: d � 42 nm and D � 142 nm.
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